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Abstract Attempts to minimize scarring remain among the most difficult challenges facing 
surgeons, despite the use of optimal wound closure techniques. Previously, we reported improved 
healing of dermal excisional wounds in circadian clock neuronal PAS domain 2 (Npas2)-null mice. In 
this study, we performed high-throughput drug screening to identify a compound that downregu-
lates Npas2 activity. The hit compound (Dwn1) suppressed circadian Npas2 expression, increased 
murine dermal fibroblast cell migration, and decreased collagen synthesis in vitro. Based on the 
in vitro results, Dwn1 was topically applied to iatrogenic full-thickness dorsal cutaneous wounds 
in a murine model. The Dwn1-treated dermal wounds healed faster with favorable mechanical 
strength and developed less granulation tissue than the controls. The expression of type I collagen, 
Tgfβ1, and α-smooth muscle actin was significantly decreased in Dwn1-treated wounds, suggesting 
that hypertrophic scarring and myofibroblast differentiation are attenuated by Dwn1 treatment. 
NPAS2 may represent an important target for therapeutic approaches to optimal surgical wound 
management.

Editor's evaluation
This study attempts to use high-throughput drug screening to identify a compound, Dwn1, that 
downregulates Npas2 activity, and in doing so, increases murine dermal fibroblast cell migration and 
decreases collagen synthesis in vitro. This work represents a significant advance towards improving 
the outcomes of surgical wound healing with translational implications.

Introduction
Postsurgical hypertrophic scarring is relatively frequent, even with careful surgical care aimed at 
reducing inflammation, angiogenesis, and fibrogenesis (Shirakami et al., 2020). Hypertrophic scarring 
results from the excessive deposition of collagen extracellular matrix (ECM) during wound healing. 
Since the 1970s, the scar-free wound healing noted in fetal skin during early gestation (Burrington, 
1971; Rowlatt, 1979) has generated extensive research interest in scarless wound healing. Compar-
ative characterizations of fetal and adult wounds have resulted in the identification of numerous 
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soluble growth factors (Lichtman et al., 2016), insoluble ECM proteins (Buchanan et al., 2009), and 
mechanics of tissue contraction (Parekh and Hebda, 2017). Research in each of these target areas of 
interest has generated considerable progress in understanding wound healing. As a result, therapies 
using individual modulators of the wound healing process, such as transforming growth factor β1 
(TGFβ3) (McCollum et al., 2011) and IL-10 (Kieran et al., 2014), have been studied in clinical trials. 
To date, however, the outcomes have been mixed, and therefore, the search for new clinically viable 
solutions to address the problem of pathological wound healing continues.

During skin wound healing, dermal fibroblasts migrate along the ECM scaffold found at the wound 
edges and into the wound bed (Tracy et al., 2016). Mathematical modeling (McDougall et al., 2006) 
and on-chip wound healing assays (Shabestani Monfared et al., 2020) suggest that the activation 
of dermal fibroblast migration plays a critical role in wound closure and the degree of scarring. It has 
recently been reported that human burn wounds sustained during daylight hours were found to heal 
faster than those that occurred at night (Hoyle et al., 2017). This observation is consistent with obser-
vations in circadian entrained/rhythmic hamsters in which cutaneous wounds created 3 hr after light 
onset healed faster than those created 2 hr after dark onset (Cable et al., 2017). Investigation into 
the mechanisms behind these findings revealed that fibroblast migration behavior was affected by the 
circadian rhythm (Hoyle et al., 2017).

Circadian rhythm provides temporal regulation and coordination of physiological processes and 
is responsible for functions related to homeostasis (Franzoni et al., 2017). The core circadian clock 
is rigidly maintained by the suprachiasmatic nuclei (SCN) in the hypothalamus (Akhtar et al., 2002; 
O’Neil et  al., 2013). Clock transcription factors such as circadian locomotor output cycles kaput 
(CLOCK), neuronal PAS domain 2 (NPAS2), and aryl hydrocarbon receptor nuclear translocator-like 
(ARNTL, BMAL1) induce the expression of the period (PER) and cryptochrome (CRY) genes. Heterod-
imers of PER and CRY molecules, in turn, inhibit the transcriptional activity of CLOCK, NPAS2, and 
BMAL1 (Takahashi, 2017). Given the emerging discovery of functional circadian rhythms in all cells 
and organs (Matsui et al., 2016) and the finding that circadian dysregulation is associated with a wide 
range of diseases (Miller et al., 2004; Sipahi et al., 2014), clock genes and the products of their 
expression have become targets in the growing research and clinical field of chronotherapy (Ye et al., 
2018; Wei et al., 2018).

Recently, we discovered that the suppression of Npas2 via a knockout (KO) mutation in mice signifi-
cantly accelerated wound healing and skin closure (Sasaki et  al., 2020). Npas2 KO dermal fibro-
blasts exhibited increased cell migration and contraction in vitro (Sasaki et al., 2020). While the role 
of Npas2 in the central circadian rhythm within the SCN is still unclear, Npas2 has been identified 
in peripheral tissues, possibly as a modulator of peripheral circadian processes (Zhou et al., 1997; 
McNamara et al., 2001; Gilles-GonzalezGonzalezGonzalez, 2004; Yamamoto et al., 2004; Berto-
lucci et al., 2008). Microarray analysis of human skin has also identified Npas2 as one of the upregu-
lated genes associated with aging (Glass et al., 2013).

In this study, we hypothesized that the therapeutic suppression of Npas2 potentiates dermal wound 
healing with attenuated excessive collagen deposition. Through a high-throughput screening (HTS) 
process, we identified a small molecule compound that downregulates Npas2 expression in dermal 
fibroblasts and results in the accelerated healing of dorsal incisional wounds in mice with minimum 
scarring.

Results
Murine dorsal incisional wound model
While the goal of closing a wound surgically with sutures or other material is to facilitate primary 
wound healing and yield the best functional and cosmetic outcome, unpredictable factors such as 
wound infection, dehiscence, or ‘spitting’ of sutures (Kim et  al., 2018) can disrupt wound integ-
rity and lead to healing by secondary intention. This process is characterized by the deposition of 
an excess of granulation tissue and leads to hypertrophic scarring (Azmat and Council, 2020). To 
evaluate the healing of a full-thickness dermal wound by secondary intention, we developed a modi-
fication of a previously described murine model (Ansell et  al., 2014). Two parallel incisions were 
made on the dorsal skin of each experimental subject animal, and full-thickness dermis was excised 
to achieve bilateral defects with uniform dimensions. One suture was placed at the midpoint of each 
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wound to approximate the wound edges, while the anterior and posterior margins of the wound 
remained separated. This model generated two zones in each incisional wound: the center zone, with 
suture-supported tissue approximation, and the open peripheral zones (Figure 1a). We used visual 
analog scale (VAS) scoring (Duncan et al., 2006) to validate the model. Each wound was evaluated 
on a daily basis using photographs of the surgical sites (Figure 1b). VAS values from the left- and 
right-side wounds remained comparable between sides, remaining at the moderate healing level until 
day 6, primarily due to the sustained open wound in the peripheral zones (Figure 1c). Hematoxylin-
eosin (HE) and Masson’s trichrome (MT) staining showed divergent healing patterns in the central 
wound zones compared to the peripheral zones. The center zones showed good approximation 
of the wound edges, indicating successful healing by primary intention. In contrast, the peripheral 
zones formed larger beds of granulation tissue and demonstrated darker MT-stained collagen fibers 
in the dermis of the wound edges (Figure 1d). Quantitative scar index analysis (Zheng et al., 2011) 
showed significantly higher values in the peripheral zones than in the central zones (Figure 1e). Addi-
tionally, segmented color analysis of MT-stained sections (Figure 1—figure supplement 1) revealed 
that collagen fiber density was significantly higher in the peripheral zones than in the central zones 
(Figure 1f). The central zone wound underwent primary intention healing, while the peripheral zone of 
this model demonstrated secondary intention healing. Based on these observations, we are confident 
that the peripheral zone in our model is representative of dermal and subcutaneous wound healing 
and not the morpho-functional influences of deeper muscle layers that have been described in murine 
models (Zomer and Trentin, 2018). Our full-thickness incisional wound was limited to the panniculus 
carnosus (Figure 1d) to minimize the involvement of the muscle layers.

Identification of therapeutic compounds by high-throughput drug 
screening for Npas2 downregulation in dermal Fibroblasts
An HTS system was designed to identify compounds that modulate Npas2 expression using murine 
dermal fibroblasts engineered to carry the reporter gene LacZ in the Npas2 allele. We selected small 
molecule compounds from an FDA-approved drug library (1120 compounds). Reporter gene assays 
are widely used in HTS to identify compounds that modulate target gene expression (Siebring-van 
Olst and van Beusechem, 2018). In this study, we sought to identify small chemical compounds 
that downregulate Npas2 expression. However, we found that some hit compounds that suppressed 
Npas2 were false positives due to cytotoxicity that led to cell death or growth suppression.

To mitigate this problem, we performed a separate HTS using the same compound library to eval-
uate fibroblast migration. Dermal fibroblast migration is an important function that is highly relevant 
to wound healing (Liang et al., 2007). The cell migration HTS was designed with a commercially avail-
able 384-well plate with hydrogels printed in the center of each well. The hydrogels were degraded 
to leave cell-free areas in each well, and fibroblasts migrated at different rates based upon the various 
influences of the applied small molecule compounds. After the incubation period, fibroblasts were 
fluorescently stained with calcein AM for the cytoplasm and Hoechst for the nuclei and imaged by 
Micro Confocal High-Content Imaging System (ImageXpress, Molecular Devices). We developed an 
algorithm to capture the number and morphology of fibroblasts within the cell-free zone created by 
the hydrogel.

The HTS data sets from both assays were subjected to in silico computation. Npas2 expression (Z 
score ≤–2.5) and cell migration (Z score ≥2.5) were co-analyzed, resulting in one ‘hit’ compound that 
demonstrated an optimum effect on fibroblasts according to these specific metrics, that is, suppres-
sion of gene expression and increased migration (Figure 2a). Based on these results, the hit compound 
‘Dwn1’ was identified as the candidate compound for use in subsequent experiments.

Dwn1 downregulates murine dermal fibroblast Npas2 expression and 
increases cell migration in vitro
Based on our HTS results, the hit compound Dwn1 was used to study Npas2 circadian expression 
and fibroblast migration. The gene expression of Npas2 in murine dermal fibroblasts was evaluated 
every 6 hr for 48 hr following synchronization. Npas2 expression was suppressed by Dwn1 (two-way 
ANOVA: treatment p = 0.0346) (Figure 2b). However, the circadian pattern of Npas2 expression was 
not completely diminished (two-way ANOVA: treatment × time p = 0.2664).

https://doi.org/10.7554/eLife.71074
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Figure 1. Linear wound/scar model of murine dorsal skin. (a) Schematic of the animal model. Vertical wounds (10 × 1.5 mm2) on both the left and right 
sides were made with a double-bladed scalpel. One 5–0 nylon suture was placed at the center of the wound. (b) The visual analog scale (VAS) was 
scored every postoperative day until postoperative day 7 using gross images of the wounds (n = 5 per group). (c) Postoperative gross images of the 
wounds/scars with a ruler in units of mm. (d) Histological images of the center (left) and periphery (right) of wounds/scars on postoperative day 7. The 

Figure 1 continued on next page
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The effect of Dwn1 on the migration ability of murine dermal fibroblasts was evaluated by an in 
vitro wound scratch assay. Dwn1 significantly increased fibroblast migration to the scratched area 
(two-way ANOVA: treatment × time p = 0.0045) (Figure 2c).

To test if the effect of Dwn1 required the Npas2 axis, we performed in vitro wound scratch assay 
using dermal fibroblasts derived from Npas2 KO mice (Figure 2d). The cell migration to the scratched 
area by Npas2 KO fibroblasts was faster than wild-type (WT) control fibroblasts but was not affected by 
Dwn1, suggesting that the Dwn1-induced Npas2 downregulation primarily influenced the increased 
fibroblast migration. Taken together, the therapeutic hit compound Dwn1 was validated for further 
evaluation in skin wound healing.

Dwn1 attenuated fibroblast collagen deposition in vitro
Hypertrophic scarring is the clinical manifestation of a dermal fibroproliferative disorder characterized 
by excessive collagen deposition by fibroblasts. Normal skin and hypertrophic scars both contain 
collagen fibers composed of type I and type III collagen molecules; however, hypertrophic scars 
exhibit irregular organization of collagen bundles (Cuttle et al., 2005). Tissue-specific collagen fiber 
organization is regulated in part by the fibril-associated collagen with interrupted triple helices (FACIT) 
minor collagen species. Type XIV collagen is a FACIT molecule found in skin and plays an important 
role in functional dermal collagen fibrogenesis (Castagnola et al., 1992; Berthod et al., 1997). In this 
study, collagen deposition and collagen gene expression were evaluated in murine dermal fibroblasts 
treated with Dwn1. Ascorbic acid-mediated in vitro collagen synthesis was measured by picrosirius 
red staining. The treatment of dermal fibroblast cultures with Dwn1 significantly decreased collagen 
deposition (Figure 3a).

The mechanism of the reduction in collagen deposition by Dwn1 was investigated by studying the 
expression of type I, III, and XIV collagen genes. The expression of Col1a1, Col1a2, and ColI3a1 was 
affected by Dwn1 supplementation (10 µM) (Figure 3b). Type I collagen is composed of two alpha-1 
chains and one alpha-2 chain (Prockop and Kivirikko, 1995; Lu et al., 2019). Although Col1a1 gene 
expression was increased on day 7, a reduction in Col1a2 expression would predict a decrease in 
the formation of type I collagen heterotrimer. Type III collagen is a homotrimer of alpha-1 chains and 
occupies the center of type I collagen fibrils (Keene et al., 1987). We observed a decrease in Col3a1 
expression in cultures treated with Dwn1, which may decrease overall collagen fiber synthesis. In 
contrast, the expression of Col14a1 was significantly increased by Dwn1 in a dose-dependent fashion 
(Figure  3b). Knowing that a lack of type XIV collagen contributes to the abnormally thick type I 
collagen fibrils in skin in null mutation models (Ansorge et al., 2009), the increased FACIT type XIV 
collagen synthesis induced by exposure to Dwn1 may limit collagen fiber thickness and normalize 
dermal collagen fiber organization.

Dwn1 accelerates murine dorsal incisional wound healing with minimal 
scarring
Murine dorsal incisional wounds were treated topically with vehicle (10% DMSO) or Dwn1 (30 µM 
dissolved in 10% DMSO) once a day throughout the observation period. One wound was excluded 
due to postoperative inflammation. Serial photographs depict wound closure at the peripheral zones 
of the incisional wounds in the Dwn1-treated group (Figure 4a). During the first 7 days, VAS scoring 
yielded scores at the moderate healing level (Figure 4b), similar to untreated controls without any 
significant difference (Figure 1b). By comparison, the VAS scores of the Dwn1-treated group gradually 
decreased, and the VAS time course profile was significantly different from that of the vehicle control 

upper two were stained with hematoxylin-eosin (HE). The lower two were stained with Masson’s trichrome (MT). Yellow dotted lines indicate granulation 
tissue. Scale bar is 1000 μm. (e) The scar index was evaluated using HE-stained slices, and a significantly higher scar index was obtained in peripheral 
sections than in center sections (n = 5 per group). (f) The percent area of fibrous tissue in the peripheral section was significantly higher than that in the 
central section (n = 5 for center sections, n = 4 for peripheral sections).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Methods for evaluating the scar index and percent area of fibrous tissue.

Figure supplement 1. Methods for evaluating the scar index and percent area of fibrous tissue.

Figure 1 continued

https://doi.org/10.7554/eLife.71074
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Figure 2. Selection and evaluation of the candidate compound Dwn1 for Npas2 suppression in dermal fibroblasts in vitro. (a) A scatter plot of the high-
throughput drug screening assay in vitro using the FDA-approved compound library at Molecular Screening Shared Resource (MSSR) at University of 
California Los Angeles (UCLA). A high absolute value of a negative Npas2 Z score indicates that Npas2 expression was highly downregulated (X axis). A 
high cell viability Z score indicates that fibroblasts had high viability (Y axis). A candidate compound (Dwn1) was selected based on the highest absolute 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.71074
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(two-way ANOVA: treatment p = 0.0075). On day 14, there was no significant difference in VAS scores 
between the vehicle control and the Dwn1-treated group (t-test: p = 0.6889) (Figure 4b).

Histological cross-sections of the peripheral incisional wound zones demonstrated that smaller 
amounts of granulation tissue were formed in the Dwn1-treated group than in the vehicle group 
(Figure  4c). The scar index of Dwn1-treated wounds was significantly lower than that of vehicle-
treated wounds (Figure 4d), indicating that granulation tissue formation was downregulated by Dwn1 
treatment. Collagen fiber density within the granulation tissue bed and the wound edge dermis was 
also lower in Dwn1-treated wounds than in vehicle-treated wounds. The difference in the granulation 
tissue reached statistical significance (Figure 4e).

We have devised a mechanical tensile strength test of murine dorsal incisional wounds. The vehicle 
control dermal wound tissue and the Dwn1-treated dermal wound tissue were harvested 7 and 
14 days of healing and prepared as a standardized dermal strip including the incisional wound in the 
center. The maximum load (N) to tear the dermal strip was measured as the tensile strength of the 
wounds (Figure 4f, left). The vehicle-treated dermal wound showed minimal tensile strength at 7 days 
after wounding, which was increased in 14 days after wounding. By contrast, the tensile strength of 
Dwn1-treated dermal wound was significantly larger than vehicle control dermal wound on both 7 
and 14 days after wounding. On day 14, the tensile strength of Dwn1-treated dermal wound nearly 
reached that of intact skin (Figure 4f, right). The vehicle control dermal wound was further exam-
ined for 21 days after wounding, which showed significantly less tensile strength than that of intact 
skin (t-test, p = 0.0048) (Figure 4—figure supplement 1). The tensile strength in the vehicle control 
dermal wound (2.61 ± 0.91) was not significantly increased from that on day 14 (2.04 ± 0.48) (t-test, 
p = 0.1418), suggesting that this murine dorsal incisional wound model reaches healing 14 days post-
operatively, after which recovery of mechanical properties equivalent to intact skin is not expected.

Dwn1 attenuates collagen gene expression and myofibroblast-related 
gene expression in the wound edge dermis
To examine lesion-specific gene expression within the incisional wound, granulation tissue (G) and 
wound edge dermal tissue (W) were separately isolated by laser capture microdissection (LCM) 
(Figure  5a). The isolated RNA was evaluated for the steady-state expression of collagen genes 
(Col1a1, Col1a2, Col3a1, and Col14a1). There was no significant difference in the gene expression 
of any of these collagen genes between the granulation tissue of Dwn1-treated and vehicle-treated 
wounds, although Dwn1 treatment minimized the size of granulation tissue, as noted above. The 
expression of Col1a1, Col1a2, and Col3a1 was suppressed in the wound edge dermis, while Col14a1 
gene expression was maintained by Dwn1 treatment (Figure 5b).

We also evaluated the expression of the myofibroblast-related genes Tgfb1 and smooth muscle α2 
actin (α-SMA/Acta2). Dwn1 treatment significantly decreased the expression of Tgfb1 and Acta2 in 
the wound edge dermis, whereas no effect occurred in the granulation tissue. Immunohistochemical 
staining demonstrated abundant α-SMA-positive fibroblasts in the wound edge dermis of the vehicle 
control group. In contrast, Dwn1 treatment virtually eliminated α-SMA-positive fibroblasts (Figure 5c), 
suggesting that Dwn1 prevents myofibroblast differentiation. Collectively, the data supported the 
therapeutic effect of Dwn1 in the prevention of hypertrophic scar formation.

Discussion
Scarring is often problematic for patients, especially on exposed parts of the body, such as the cranio-
facial region or extremities. Surgical approximation of open wound tissues has been traditionally 

value of the negative product of the Npas2 Z score and highest viability. (b) Circadian Npas2 expression in murine dermal fibroblasts treated with or 
without Dwn1 was evaluated (n = 3). The p value (0.0346) in the graph represents the subject of treatment. (c) The cell migration of murine dermal 
fibroblasts treated with Dwn1 was evaluated. The number of cells that migrated toward the central area was counted (n = 5). The p value (0.0045) in the 
graph represents the subject of treatment and time. (d) The cell migration of Npas2 knockout (KO) fibroblasts treated with Dwn1 was evaluated. The cell 
migration to the scratched area by Npas2 KO fibroblasts was not affected by Dwn1.

The online version of this article includes the following source data for figure 2:

Source data 1. Selection and evaluation of the candidate compound Dwn1 for Npas2 suppression in dermal fibroblasts in vitro.

Figure 2 continued

https://doi.org/10.7554/eLife.71074
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Figure 3. Effects of Dwn1 on collagen synthesis in murine dermal fibroblasts in vitro. (a) Gross and microscopic images of picrosirius red staining of 
murine dermal fibroblasts treated with various doses of Dwn1 on days 3 and 7. The right graph represents a quantitative measurement of picrosirius red. 
(n = 3) AA: L-ascorbic acid. OD: optical density. CTRL: fibroblasts treated with control medium without AA. (b) Gene expression of collagen type Iα1 
(Col1a1), Iα2 (Col1a2), IIIα1 (Col3a1), and XIV (Col14a1) in fibroblasts treated with various doses of Dwn1 on days 3 and 7 (n = 3).

Figure 3 continued on next page

https://doi.org/10.7554/eLife.71074
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performed to minimize scarring (Welshhans and Hom, 2017). Currently, surgical skin incisions are 
routinely closed by suturing; however, the surgical closure of a dermal wound does not guarantee 
adequate approximation of the entire length of the wound. For example, cleft lip scars develop after 
surgical closure regardless of the corrective techniques used (Bartkowska and Komisarek, 2020) or 
the type or severity of the cleft lip (Marston et al., 2019). The prevalence of problematic scar forma-
tion has been reported to be between 8% and 47% in pediatric cleft lip patients (Marston et al., 
2019; Soltani et al., 2012). Even in simple facial laceration repair, surgical wounds are not always 
optimally closed (Lee et  al., 2015), and small full-thickness dermal gaps in surgical wounds may 
lead to problems with both form and function. The resultant scarring can lead to numerous psycho-
social consequences for patients (Tebble et al., 2004), resulting in decreased satisfaction with life, 
an altered perception of body image, and higher rates of posttraumatic stress disorder, alcoholism, 
imprisonment, unemployment, or marital discord (Levine et al., 2005). There is an acute need to 
improve surgical wound care.

The surgical incisional wound with the placement of suture heals by the primary closure, or first 
intension wound healing. However, the surgical incisional wound may result in premature dehiscence 
or hypertrophic scarring. Ansell et al., 2014 compared the time course healing of 10 mm long inci-
sional wound and 6 mm diameter excisional punch wound in mice and reported that the incisional 
wound healed less consistently than the excisional wound. While the excisional wound progressively 
closed, the incisional wound initially enlarged before wound margin approximation. Zheng et  al., 
2011 refined the mouse incisional wound model by creating 10 × 3 mm2 full-thickness skin wound 
to ensure the excision of underlying panniculus carnosus muscle. The present study used this refined 
mouse incisional wound model with an additional central suture, mimicking the wound dehiscence.

The present incisional wound models including ours have certain limitations. After 2  weeks of 
wounding, the present incisional wound healed either through the primary closure at the sutured area 
or the secondary closure. Therefore, this incisional wound model did not develop chronic unhealed 
wound. Skin is the largest barrier tissue protecting the internal homeostasis from environmental insults. 
Once injured, the wound healing process initiates the recovery of the barrier function. However, the 
skin wound healing may be disturbed by various factors such as diabetes to develop unhealed chronic 
wound. To investigate the mechanism and therapeutic intervention of unhealed chronic wound, mouse 
excisional skin wound models have been utilized. Sullivan et al., 2004, reported a chronic wound 
model of 6 mm diameter excisional punch wound in diabetic mice. Recently, (Wu and Landen, 2020), 
recommended to create 4  mm diameter excisional punch wound in mice as a standard protocol. 
However, rodent skin excisional wound (Chen et al., 2015a) heals essentially by tissue contraction, 
whereas human skin wound heals by re-epithelialization. To address this issue, Wang et al., 2013, 
proposed that the mouse excisional wound of 5  mm diameter would be splinted to prevent the 
rodent-specific wound contraction for the investigation of chronic wound healing relevant to humans. 
The effect of Dwn1 on the chronic wound must be separately investigated using the splinted exci-
sional wound model.

Our study convincingly demonstrated that Dwn1 treatment significantly improved surgical wound 
healing by secondary intention (Figure 4). The open wounds in the peripheral zones of our surgical 
incisional wound model were quantitatively depicted by the VAS system. Dwn1 treatment resulted 
in smaller amounts of granulation tissue, as indicated by lower scar index scores, and less collagen 
ECM density, as measured by color segmentation analysis of MT-stained histological sections. These 
observations strongly indicate that Dwn1 facilitates surgical incisional wound healing and results in 
minimal scarring.

The mechanism of hypertrophic scarring has not been fully elucidated. During the early inflam-
mation phase, cytokines and chemokines, including TGFβ1, promote the recruitment of fibroblasts 
to initiate wound repair. A hallmark of hypertrophic scar formation is the perturbation of collagen 
production, resulting in disorganized bundles of collagen ECM (Hinz et al., 2019). In the present 
study, Dwn1 supplementation decreased collagen deposition by dermal fibroblasts in vitro (Figure 3) 
and in murine skin incisional wounds in vivo (Figure 4). Type I and III collagen genes downregulated 

The online version of this article includes the following source data for figure 3:

Source data 1. Effects of Dwn1 on collagen synthesis in murine dermal fibroblasts in vitro.

Figure 3 continued

https://doi.org/10.7554/eLife.71074
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Figure 4. Effects of Dwn1 on the murine dorsal incisional wound model. (a) Gross images on days 0, 2, 5, 7, and 14 (D0, D2, D5, D7, and D14, 
respectively) after the surgery and starting topical daily application of the vehicle (10% DMSO) or Dwn1 on the wounds. Veh: vehicle. (b) Visual analog 
scale (VAS) of the wounds treated with vehicle (n = 5) or Dwn1 (n = 6). During the first 7 days, the p value (0.0075) in the graph represents the subject of 
treatment. There was a significant effect on time (p < 0.0001). The interaction time and treatment had no significant effect (p = 0.3539). On day 14, there 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.71074
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by Dwn1 in vitro and in vivo may suggest how Dwn1 regulates the attenuation of fibrosis. In addition, 
type XIV collagen, a member of the FACIT family that has been reported to contribute to normal 
physiological ECM organization (Castagnola et al., 1992; Berthod et al., 1997), was upregulated 
in Npas2 KO murine fibroblasts in vitro (Sasaki et al., 2020). Here, we demonstrated Dwn1 dose-
dependent upregulation of the expression of type XIV collagen (Figure  3b), suggesting a further 
mechanism by which Dwn1 contributes to normal ECM organization (Young et al., 2000; Marchant 
et al., 2002).

It is widely known that myofibroblasts that secrete excessive collagen into the ECM are involved 
in the pathogenesis of hypertrophic scars (Shirakami et al., 2020; Tracy et al., 2016). TGFβ1 acts as 
a major profibrotic cytokine that induces the differentiation of myofibroblasts and the deposition of 
excessive collagen ECM (Darby et al., 2014). In this study, the myofibroblast markers Tgfβ1 and α-SMA 
were significantly decreased in the Dwn1-treated wounded dermis (Figure 5). The Dwn1-mediated 
decrease in myofibroblasts at the wound edge may represent yet another mechanism by which this 
small compound exerts positive effects on wound healing and prevents hypertrophic scarring.

Our target molecule, NPAS2, is a basic-helix-loop-helix transcription factor dimerized with BMAL1. 
NPAS2 is a functional ortholog of CLOCK, and in fact, the CLOCK-BMAL1 dimer plays a predomi-
nant role in the SCN of the hypothalamus for maintaining the circadian rhythm. Bmal1 and Clock null 
mutant mice develop severe pathological phenotypes such as early aging (Kondratov et al., 2006) 
and abnormal bone metabolism (Song et al., 2018), respectively. Alterations in circadian rhythms 
increase the risk of developing fibrosis in the liver (Chen et al., 2010), lungs (Dong et al., 2016), and 
kidneys (Chen et al., 2015b). The role of NPAS2 in skin hypertrophic scar has not been reported. 
However, Yang et al., 2019, reported the upregulation of NPAS2 in hepatic stellate cells contributing 
to liver fibrosis. In addition, Morinaga et al., 2019, demonstrated that the upregulation of Npas2 in 
bone marrow mesenchymal stem cells was induced by the exposure to surface roughened titanium 
biomaterial resulted in the formation of a thin but dense collagen layer between bone tissue and 
titanium implant. Thus, we propose that the increased NPAS2 expression by dermal fibroblasts may 
contribute to increased collagen deposition potentially leading to hypertrophic scarring.

Npas2 KO mice demonstrated a relatively limited alteration in circadian behaviors (Wu et al., 2010; 
Franken et al., 2006) and liver metabolism (O’Neil et al., 2013) and did not exhibit developmental 
and physiological abnormalities (Morinaga et al., 2019). NPAS2-BMAL1 dimers exhibit a high affinity 
for a cis-acting E-box sequence of not only circadian clock genes but also other clock-controlled genes 
(Takahashi, 2017). The mechanism by which the therapeutic suppression of NPAS2 improves surgical 
wound healing is currently unknown. Because the genetic and therapeutic suppression of Npas2 main-
tained dermal fibroblast-specific type XIV collagen expression and prevented myofibroblast differenti-
ation, we speculate that increased NPAS2 may be involved in the cellular phenotype alteration leading 
to abnormal scar formation.

Conclusion
This study demonstrated that the small molecule compound Dwn1, identified through HTS using 
Npas2 as the molecular target, enhanced wound healing in a murine incisional wound model. Dwn1 
treatment reduced collagen deposition and accelerated wound closure. Our animal model was 
designed to mimic a less ideal surgical outcome in incisional wound healing, specifically the develop-
ment of granulation tissue, which is the precursor to hypertrophic scarring. We identified a possible 

was no significant difference (p = 0.6889) in VAS scores between the vehicle control (n = 8) and the Dwn1-treated group (n = 4). (c) Histological images of 
peripheral wounds treated with vehicle or Dwn1 on day 7 postoperatively. Yellow dotted lines indicate granulation tissue. Left images were stained with 
hematoxylin-eosin (HE), and right images were stained with Masson’s trichrome (MT). Scale bar is 1000 μm. (d) The scar index of wounds treated with 
vehicle or Dwn1 was evaluated (n = 5). (e) The percentage area of fibrous tissue was evaluated using MT-stained slices (n = 5). (f) (Left) Representative 
force-displacement curve of a dermal strip. Inserted images represented the dermal strips at the beginning and termination of the tensile strength test. 
(Right) The maximum load to tear the dermal strip including the incisional wound at the center treated with vehicle or Dwn1. The tensile strength of 
Dwn1-treated dermal strips (n = 8) were significantly larger than vehicle-treated dermal strips on both 7 and 14 days after wounding.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. The tensile strength in the vehicle control dermal wound on day 21.

Figure supplement 1. The tensile strength in the vehicle control dermal wound on day 21.

Figure 4 continued

https://doi.org/10.7554/eLife.71074
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Figure 5. Molecular biological effects of Dwn1 on the murine dorsal incisional wound model. (a) A typical post-laser capture microdissection (LCM) 
image. Slides were briefly stained with hematoxylin and eosin before LCM. G: granulation tissue, W: wounded tissue. (b) Gene expression of collagen 
type Iα1 (Col1a1), Iα2 (Col1a2), IIIα1 (Col3a1), XIV (Col14a1), Tgfβ1, and α-SMA (Acta2) in granulation tissue (G) and wounded tissue (W) on day 7 
postoperatively. Gapdh was used as an internal control. Gene expression of collagen type Iα1, Iα2, IIIα1, Tgfβ1, and α-SMA in the wounded tissue 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.71074
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approach to the treatment of problematic wounds based on the role of the circadian clock in wound 
healing and the development of small molecule therapy for improved surgical wound outcomes.

Materials and methods

treated with Dwn1 was significantly increased versus those treated with the vehicle (n = 5 per group). (c) Immunohistochemical staining of α-SMA in 
wounds treated with vehicle or Dwn1 on postoperative day 7. Yellow dotted lines indicate granulation tissue. Scale bar is 100 μm.

The online version of this article includes the following source data for figure 5:

Source data 1. Molecular biological effects of Dwn1 on the murine dorsal incisional wound model.

Figure 5 continued

Key resources table 

Reagent type (species) or 
resource Designation Source or reference Identifiers Additional information

Cell line (Homo sapiens) Dermal fibroblast (normal, Adult) ATCC CCD-1122Sk RRID: CVCL_2360

Antibody Rabbit anti-α-SMA Abcam ab32575 1/500

Other
Oris Pro Cell Migration Assay 384-well 
plate Platypus Technologies PRO384CMA1

Other Masson’s trichrome Polysciences, Inc 25088–1

Other Picrosirius red staining kit Polysciences, Inc 24901

Other Taqman Gene Expression Assays Thermo Fisher Scientific Mm00801666_g1 Col1a1

Other Taqman Gene Expression Assays Thermo Fisher Scientific Mm00483888_m1 Col1a2

Other Taqman Gene Expression Assays Thermo Fisher Scientific Mm00802300_m1 Col3a1

Other Taqman Gene Expression Assays Thermo Fisher Scientific Mm00805269_m1 Col14a1

Other Taqman Gene Expression Assays Scientific Mm01178820_m1 Tgfb1

Other Taqman Gene Expression Assays Scientific Mm01546133_m1 Acta2

Software, algorithm ImageJ NIH http://imagej.nih.gov/ij/ RRID:SCR_003070

Software, algorithm GraphPad Prism GraphPad Software https://graphpad.com RRID:SCR_002798

Animal care
All protocols for animal experiments were approved by the University of California Los Angeles 
(UCLA) Animal Research Committee (ARC# 2003–009) and followed the Public Health Service Policy 
for the Humane Care and Use of Laboratory Animals and the UCLA Animal Care and Use guidelines. 
C57Bl/6J WT mice and Npas2 KO mice (B6.129S6-Npas2tm1Slm/J) (Jackson Laboratory) were used in 
this study. The animals were fed a regular rodent diet and were provided water ad libitum. They 
were maintained in regular housing conditions with 12 hr light/dark cycles in the Division of Labora-
tory Animal Medicine at UCLA. The sample size was set based on a previously published manuscript 
(Sasaki et al., 2020).

Murine dorsal incisional wound healing model
Female WT mice (8–12 weeks of age, approximately 20–25 g) were used. General inhalation anes-
thesia was obtained using isoflurane (1182097, Henry Schein, Inc) delivered via vaporizer (Somni 
19.1, Somni Scientific). The dorsal skin was shaved, and two parallel 10 × 1.5  mm2 full-thickness 
dermal wounds were created using a double-bladed scalpel (S1190D, DoWell Dental Products, Inc). 
A single 5-0 nylon stitch was placed at the midpoint of each dermal defect, creating partially open 
wounds that mimicked cutaneous surgical wounds without appropriate wound edge approxima-
tion (Figure 1a). Photographs and measurements of the wounds were taken every day for 1 week 
following surgery using a Nikon D40 digital single lens reflex (D-SLR) camera (Nikon, Inc, Tokyo, 
Japan).

https://doi.org/10.7554/eLife.71074
https://identifiers.org/RRID/RRID:CVCL_2360
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VAS assessment of incisional wound healing
Gross visual wound assessments were performed by three examiners who were blinded to the type 
of treatment (control or experimental) each wound received. Sequential postoperative photographs 
of healing wounds were reviewed by three independent examiners. Scar severity was rated according 
to a VAS scoring system previously described for use in evaluating human dermal scars.(Tracy et al., 
2016; Castagnola et al., 1992) The examiners were asked to assess the wounds on a scale, with a 
score of zero indicating a completely healed dermal wound and a score of 10 indicating very poor 
healing.

Histological Examination
All animals were euthanized on postoperative day number 7 using carbon dioxide inhalation. For each 
animal, the entire full-thickness dorsal dermal unit, including both incisional wounds, was harvested 
and immediately fixed with 10% neutral buffered formalin for 24 hr. Paraffin sections (4 µm) were made 
perpendicular to the incisional wounds and stained with standard HE or Masson’s trichrome (MT). The 
stained histological sections were examined under a microscope (LMD 7000, Leica Microsystems) 
equipped with a digital camera (DFC295, Leica Microsystems). Relevant images from the specimens 
were captured and analyzed using imaging software (Leica LMD software version 8.0.0.6043, Leica 
Microsystems).

Scar index analysis
The total scar area of each wound was normalized to the average dermal thickness, as previously 
described (Zheng et al., 2011). The dermal thickness of each dermal section was recorded as the 
distance from the epidermal-dermal junction to the panniculus carnosus. Four points were used on 
each sample to calculate the average dermal thickness: two located 200 μm from either wound edge 
and two located 700 μm from either wound edge. Measurements were taken from the same site on 
each harvested wound specimen. Scar area was measured on all images. The scar index was calculated 
as the scar area (μm2) divided by the average dermal thickness (μm). (Figure 1—figure supplement 
1a). Statistical analysis of the measured scar index values was performed using the Mann-Whitney test.

Quantitative analysis of collagen fiber density on MT-stained slides
Collagen deposition within wounds was quantified on images of MT-stained sections according to a 
previously reported method with minor modifications (Kubinova et al., 2017; Ying Chen and Xu, 
2017). To evaluate each wound, we randomly selected two images: one from the area of granula-
tion tissue and one from the wounded dermis. These images were obtained with a 40× objective 
lens using a microscope (Labophot-2, Nikon) equipped with a digital camera (AxioCam, Zeiss) and 
software (AxioVision Rel. version 4.7, Zeiss). Image analysis was performed using ImageJ (imagej.nih.​
gov). The split channels function was used to split the original RGB image into red, blue, and green 
channels. The red channel image was then subtracted from the blue channel image, and a standard 
threshold range was set for all specimens analyzed. Epithelial and subcutaneous layers and epithelial 
appendages such as hair follicles and sebaceous glands were eliminated manually. The percentage 
of collagen density in the tissue area was determined (Figure 1—figure supplement 1b). Statistical 
analysis was performed using the Mann-Whitney test.

High-throughput drug screening
At the Molecular Screening Shared Resource (MSSR) at UCLA, a drug library of 1120 FDA-approved 
compounds was screened with two different assays to identify hit compounds with wound healing 
properties. First, hit compounds involved in the modulation of murine dermal fibroblast Npas2 expres-
sion were identified using HTS. Dermal fibroblasts were isolated from mice engineered to carry the 
LacZ reporter gene in the Npas2 allele. LacZ reporter gene activity has previously been shown to 
correlate accurately with endogenous Npas2 expression (Sasaki et al., 2020). The cells were cultured 
in growth medium containing Dulbecco’s modified Eagle’s medium (DMEM) (11995065, Life Technol-
ogies Corp.) with 10% fetal bovine serum (FBS) (1600004, Life Technologies Corp.) and 1% penicillin/
streptomycin (15140122, Life Technologies Corp.). Each well in 384-well plates (781906, Greiner Bio-
One) was filled with 25 μL of non-phenol red DMEM (31053036, Life Technologies Corp.) containing 
10% FBS and 1% PS and 50  nL of FDA-approved compounds (final concentration: 1  μM) using a 

https://doi.org/10.7554/eLife.71074
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pin tool (Biomek FX, Beckman Coulter). Cells were added to each well (1500 cells/25 μL) and incu-
bated at room temperature for 1 hr, followed by incubation at 37°C and 5% carbon dioxide for 48 hr. 
To measure Npas2-LacZ expression, β-galactosidase activity was measured using a Beta-Glo Assay 
System (E4720, Promega). The Npas2-LacZ expression data were uploaded to an online data analysis 
tool (CDD Vault, Collaborative Drug Discovery Inc), on which data were normalized and the Z-factor 
was calculated.

Separately, the same compound library was screened for human dermal fibroblast migration. A 
commercially available human dermal fibroblast cell line (CCD-1122Sk, ATCC) (3000 cells/25 µL) was 
applied to an Oris Pro Cell Migration Assay 384-well plate (PRO384CMA1, Platypus Technologies), 
which contains a water-soluble biocompatible gel that creates a center cell-free detection zone for cell 
migration in each well. After the cells were plated, the plates were centrifuged at 200× g for 5 min. 
After 1 hr of incubation at room temperature for cell attachment, the compounds were added using a 
250 nL pin tool and incubated at 37°C in a carbon dioxide incubator. After 48 hr of incubation, 25 µL 
of staining solution (Calcein-AM and Hoechst, Life Technologies Corp.) was added to each well. After 
another period of centrifugation at 200× g for 5 min, the plates were incubated for 20 min at room 
temperature, and each well was imaged by the Micro Confocal High-Content Imaging System (Imag-
eXpress, Molecular Devices). The cells that migrated into the detection zone were counted using a 
customized computer program (CDD Vault, Collaborative Drug Discovery, Burlingame, CA), and the 
Z-factor was calculated.

Npas2 gene expression in murine dermal fibroblasts treated with Dwn1
Primary dermal fibroblasts derived from WT mice were harvested as previously reported (Glass et al., 
2013) and cultured as described above. Fibroblast cultures were treated with 10  μM Dwn1, a hit 
compound identified via the high-throughput drug screening process, to modulate Npas2 expression 
and fibroblast migration. After synchronization using 10 nM dexamethasone, total RNA from the fibro-
blasts cultured with 10 μM Dwn1 was extracted every 6 hr from hours 24 to 48 (RNeasy Plus Mini Kit, 
Qiagen), followed by cDNA synthesis (SuperScript VILO cDNA Synthesis Kit, Thermo Fisher Scientific). 
TaqMan-based qRT-PCR was performed using a primer/probe mix, Npas2 (Mm01239312_m1, Thermo 
Fisher Scientific), with mouse Gapdh endogenous control mix (4352339E, Thermo Fisher Scientific). 
Statistical analysis was performed by two-way ANOVA.

In vitro wound healing scratch assay
Murine dermal fibroblasts derived from either WT or Npas2 KO mice were seeded into a six-well plate 
with or without 10 µM Dwn1 supplementation. After 2 hr, the cells were scratched with a 20 μL plastic 
pipette, and the debris was washed out with medium. The scratched regions were imaged every 12 hr 
by time-lapse photomicrography (LAX S, Leica Microsystems). The number of cells that migrated into 
the scratched regions was counted at hours 0, 12, 24, 36, and 48. Statistical analysis was performed 
by two-way ANOVA.

Collagen synthesis by murine dermal fibroblasts in vitro
Fibroblasts were cultured in growth medium and L-ascorbic acid 2-phosphate (Sigma-Aldrich Corp.) 
with either 0, 1, or 10 μM Dwn1 supplementation to evaluate collagen synthesis. Control fibroblast 
cultures were also performed using growth medium only. Picrosirius red staining was performed using 
a commercially available kit (24901, Polysciences, Inc) at day 3 and day 7, according to the manu-
facturer’s protocol. Gross images were acquired with a Nikon D40 D-SLR camera (Nikon, Inc, Tokyo, 
Japan). Collagen deposition was quantified by analyzing absorbance of 550 nm with a plate reader 
(SYNERGY H1, BioTek). Statistical analysis was performed by Dunnett’s multiple comparison test at 
each time point.

Collagen gene expression by murine dermal fibroblasts in vitro
The gene expression of collagen types I, III, and XIV was determined at day 3 and day 7 of culture. Using 
isolated RNA, TaqMan-based qRT-PCR was performed with primer/probe sets: Col1a1 (Mm00801666_
g1), Col1a2 (Mm00483888_m1), Col3a1 (Mm00802300_m1), and Col14a1 (Mm00805269_m1). Gapdh 
was used as an internal control. Statistical analysis was performed by Dunnett’s multiple comparison 
test at each time point.

https://doi.org/10.7554/eLife.71074
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Evaluation of wound healing by Dwn1 using a murine dorsal incisional 
wound model
Two parallel full-thickness dorsal incisional wounds were placed on female WT mice (8–12 weeks of 
age, approximately 20–25 g) as described above. Following surgery, 20 µL of 10% DMSO (Sigma-
Aldrich Corp.) was applied every day to one wound as a control, and 20 µL of 30 µM Dwn1 dissolved 
in 10% DMSO was applied to the other wound. Standardized digital photographs and measurements 
of all wounds were taken daily postoperatively.

Daily visual wound assessments were performed to evaluate the effects of Dwn1 on wound healing 
using the VAS scoring system described above. Statistical analysis was performed by two-way ANOVA. 
In addition, the collagen fiber density in the granulation tissue and the tissue surrounding the wound 
was measured as described above. Statistical analysis was performed by the Mann-Whitney test.

Animals were euthanized by carbon dioxide inhalation on postoperative day 7, 14, and 21 for the 
harvesting of dorsal skin. After the samples were harvested, the dorsal skin tissues were cut out to 
prepare identical dermal strips (15 mm long and 5 mm wide) standardized perpendicularly to the inci-
sion with the incisional wound at the center, using a surgical scalpel blade. The dermal strips were then 
mounted in metal clamps with pneumatic grips on Instron 5564 materials testing machine (Instron, 
Canton, MA). A load was applied at a constant tension rate of 5  mm/min until the dermal strips 
failure and force-displacement curves were recorded. The maximum load (N) to tear dermal strips was 
measured as the tensile strength of the wounds.

LCM of the dermal samples on formalin-fixed paraffin-embedded (FFPE) blocks was performed 
with an LMD 7000 (Leica Microsystems) according to the manufacturer’s protocol, including brief HE 
staining of slides. RNA extraction was performed with an RNeasy FFPE Kit (Qiagen GmbH) followed by 
cDNA synthesis. TaqMan-based qRT-PCR was performed to evaluate the gene expression of collagen-
related genes as well as Tgfb1 (Mm01178820_m1) and α-SMA (Acta2: Mm01546133_m1). Gapdh 
was used as an internal control. LCM samples contain a small number of cells, and RNA degradation 
has been reported to contribute to the large variation (Frost et al., 2001; Clément-Ziza et al., 2008; 
Ståhlberg and Kubista, 2014; Cai et al., 2014). In this study, Z scores (Mowbray et al., 2019; Roden 
et al., 2014) were utilized to identify outliers that had scores with absolute values of 1.25 or greater 
for each Ct value in the statistical evaluation of RT-qPCR results. Statistical analysis was performed by 
the Mann-Whitney test.

To perform immunohistochemistry of α-SMA, histological sections were deparaffinized and rehy-
drated through graded ethanol. Endogenous peroxidase activity was blocked with 3% hydrogen 
peroxide in methanol for 10 min. Heat-induced antigen retrieval was carried out for all sections in 
AR6 buffer (AR6001KT, PerkinElmer), pH = 6.00, using a BioCare Decloaker at 95°C for 25 min. The 
slides were then stained with rabbit anti-α-SMA (ab32575, Abcam) at 1/500 dilution for 1 hr at room 
temperature. The signal was detected using the Dako Envision + System Labeled Polymer HRP anti 
rabbit (K4003, Agilent). All sections were visualized with the diaminobenzidine reaction and coun-
terstained with hematoxylin. Images were acquired with a 2× objective lens from each slide using a 
microscope (Labophot-2, Nikon) equipped with a digital camera (AxioCam, Zeiss) and AxioVision Rel 
software, version 4.7 (Zeiss).

Statistical information
In vitro experiments were performed in biological triplicate. For biological replicates, each experi-
ment was performed with two technical replicates. All raw data are represented in the graphs, unless 
otherwise specified in each section. Statistical analyses were performed as described above for each 
separate experiment.
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