Supplementary file 2—source code 1. Python script to identify unique polymerase sequences and number of reads for each from a sequenced round of evolution.
import sys
import string
if len(sys.argv) != 2:
 sys.stderr.write("Usage: readcnts.py fastqFile\n")
 sys.exit(-1)
Translation table for reverse complement.
rvtable = string.maketrans("ACGTNacgtn","TGCANtgcan")
reads = {}
readcnt = 0
othercnt = 0
Read the lines of the FASTQ file.
fp = open(sys.argv[1])
while True:
 line1 = fp.readline()
 line2 = fp.readline()
 line3 = fp.readline()
 line4 = fp.readline()
 if not line1:
 break
 if not (line1.startswith("@") and line3.startswith("+") and len(line2) == len(line4)):
 sys.stderr.write("Error: Invalid line: %s\n" % line1)
 sys.exit(-1)
 readcnt += 1
 if readcnt % 1000000 == 0:
 sys.stderr.write(" -> %d (%d other)\n" % (readcnt, othercnt))
 # Extract the read and make its reverse complement.
 read = line2.rstrip("\n")[1:-1]
 rev = read[::-1].translate(rvtable)
 # Currently, just check the first and last four bases to see if the original read
 # or its reverse complement should be used in the counting. This could be refactored
 # if those bases don't correspond well enough to the actual sequences.
 if read.startswith("GACT"):
 theRead = read
 elif read.startswith("TCAG"):
 theRead = rev
 elif read.endswith("AGTC"):
 theRead = rev
 elif read.endswith("CTGA"):
 theRead = read
 else:
 othercnt += 1
 continue
 # Build a dictionary of the reads, keeping track of the read count for each distinct
 # read sequence.
 if theRead not in reads:
 reads[theRead] = 1
 else:
 reads[theRead] += 1
fp.close()
Put the reads and their counts into a list, then sort them by count, and print them.
l = [(reads[x], x) for x in reads]
l.sort(reverse=True)
for t in l:
 sys.stdout.write(">%d\n%s\n" % (t[0], t[1]))

