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Abstract Gene expression fundamentally shapes the structural and functional architecture of 
the human brain. Open-access transcriptomic datasets like the Allen Human Brain Atlas provide 
an unprecedented ability to examine these mechanisms in vivo; however, a lack of standardization 
across research groups has given rise to myriad processing pipelines for using these data. Here, 
we develop the abagen toolbox, an open-access software package for working with transcriptomic 
data, and use it to examine how methodological variability influences the outcomes of research 
using the Allen Human Brain Atlas. Applying three prototypical analyses to the outputs of 750,000 
unique processing pipelines, we find that choice of pipeline has a large impact on research findings, 
with parameters commonly varied in the literature influencing correlations between derived gene 
expression and other imaging phenotypes by as much as ρ ≥ 1.0. Our results further reveal an 
ordering of parameter importance, with processing steps that influence gene normalization yielding 
the greatest impact on downstream statistical inferences and conclusions. The presented work and 
the development of the abagen toolbox lay the foundation for more standardized and systematic 
research in imaging transcriptomics, and will help to advance future understanding of the influence 
of gene expression in the human brain.

Editor's evaluation
This paper will be of interest to scientists studying the large-scale transcriptomic organization of 
the human brain, and in particular those who have used or plan to use the Allen Human Brain Atlas 
dataset. The study is well-motivated and novel. The most striking finding is the magnitude of vari-
ability that is introduced by different data processing decisions. The open-source software described 
in this study is comprehensive, well documented, and is an important contribution to the field.

Introduction
Technologies like magnetic resonance imaging (MRI) provide unique insights into macroscopic brain 
structure and function in vivo. Modern research increasingly emphasizes how microscale attributes, 
such as gene expression, influence these imaging-derived phenotypes (Fornito et al., 2019; Arnat-
keviciute et al., 2019; Arnatkevičiūtė et al., 2021). Gene expression is particularly useful as it is a 
fundamental molecular phenotype that can be plausibly linked to the function of biological pathways 
(Whitaker et al., 2016; Seidlitz et al., 2018), protein synthesis (Zheng et al., 2019), receptor distri-
butions (Beliveau et al., 2017; Nørgaard et al., 2021; Shine et al., 2019; Deco et al., 2020; Preller 
et al., 2018), and cell types (Hansen et al., 2021; Anderson et al., 2020b; Anderson et al., 2018; 
Seidlitz et al., 2020; Gao et al., 2020). However, researchers looking to bridge these macro- and 
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microscopic phenotypes must overcome multiple challenges. Although there are numerous technical 
and analytic considerations, one foundational issue is that acquiring high-quality transcriptomic data 
from the human brain is both costly and highly invasive, requiring budgets far greater than most typical 
neuroimaging studies and restrictive access to tissue from post-mortem donors or cranial surgical 
patients. As such, researchers must often rely on freely available repositories of gene expression data.

There exist multiple open-access repositories for gene expression in the human brain, including 
BrainSpan (Miller et al., 2014; Kang et al., 2011) and PsychENCODE (Gandal et al., 2018; Li et al., 
2018; Wang et al., 2018; among others: Sousa et al., 2017; Darmanis et al., 2015; Lake et al., 
2016); however, these datasets generally provide relatively sparse anatomical coverage, limiting the 
types of analyses that can be performed. Thus, researchers who aim to compare transcriptomic expres-
sion with whole-brain imaging-derived phenotypes have primarily relied on the Allen Human Brain 
Atlas (AHBA; Hawrylycz et al., 2012; Hawrylycz et al., 2015). Initially released in 2010, the AHBA 
remains the most spatially comprehensive dataset of its kind. Derived from bulk microarray analysis 
of tissue samples obtained from six donors, the AHBA provides expression data for more than 20,000 
genes across 3702 brain areas in MRI-derived stereotactic space. With its superior resolution, the 
AHBA has significantly contributed to the emergence of the field of imaging transcriptomics (Fornito 
et al., 2019), enabling dozens of studies over the past decade examining relationships between gene 
expression and an array of macroscale imaging attributes, including cortical thickness (Shin et al., 
2018), myelination (Burt et al., 2018), developmental brain maturation (Whitaker et al., 2016; Kirsch 
and Chechik, 2016), structural brain networks (Seidlitz et al., 2018; Romero-Garcia et al., 2018; 
Arnatkevičiūtė et al., 2020), functional brain networks (Richiardi et al., 2015; Krienen et al., 2016; 
Vértes et al., 2016), and human cognition (Fox et al., 2014; Hansen et al., 2021). The AHBA has also 
highlighted the importance of whole-brain gene expression in neurological and psychiatric diseases, 
where it has become increasingly clear that transcriptional pathways play a critical role in shaping the 
broader dynamics of disease progression and emergent symptomatology (Zheng et al., 2019; Shafiei 
et al., 2021; Henderson et al., 2019; Vogel et al., 2020; Rittman et al., 2016; Anderson et al., 
2020a; Romme et al., 2017; McColgan et al., 2018; Morgan et al., 2019).

Since its release, several software toolboxes have been developed to help researchers use tran-
scriptional data from the AHBA (French and Paus, 2015; Gorgolewski et al., 2015; Rittman et al., 
2017; Rizzo et al., 2016); however, these tools often focus primarily on facilitating integration of 
the AHBA with neuroimaging data, offering limited if any functionality for modifying how the data 
are processed prior to analysis. Instead, a recent comprehensive review revealed that many research 
groups have opted to develop their own processing pipelines for the AHBA (Arnatkeviciute et al., 
2019). Unfortunately, as there are no field-accepted standards for processing imaging transcriptomic 
data, the generated pipelines vary substantially across groups.

The extent to which such processing variability affects analytic outcomes from the AHBA remains 
unknown. Indeed, over the past decade neuroimaging research has shown that methodological vari-
ability can have broad influences on analyses using structural MRI (Bhagwat et  al., 2021; Khara-
bian Masouleh et al., 2020), diffusion MRI (Oldham et al., 2020; Maier-Hein et al., 2017; Schilling 
et al., 2019), task fMRI (Carp, 2012; Botvinik-Nezer et al., 2020), and resting-state fMRI (Parkes 
et  al., 2018; Ciric et  al., 2017). Although researchers are beginning to grapple with the conse-
quences of this variability, the lack of baseline gene expression datasets against which to compare 
new results impedes the development of standardized practices. In these situations, some researchers 
have proposed performing ‘multiverse’ analyses (Steegen et  al., 2016; Dragicevic et  al., 2019), 
wherein all possible permutations of data processing are analyzed and the full range of analytic results 
reported. Although such analyses can be computationally intensive, they offer a path to understand 
how processing choices impact statistical inferences and conclusions, and provide a mechanism by 
which to help researchers converge on an optimal pipeline.

Here, we comprehensively investigate how different processing choices influence the results of 
analyses using the AHBA. First, we develop an open-source Python toolbox, abagen, that collates all 
possible processing parameters into a set of turn-key workflows, optimized for flexibility and ease-
of-use. We then use the toolbox to process the AHBA through approximately 750,000 unique pipe-
lines. Across three prototypical imaging transcriptomic analyses, we examine whether and how these 
different processing options modify derived statistical estimates and quantify the relative importance 
of each option. Next, we replicate a curated set of processing pipelines from the literature to assess 
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how previously reported findings compare to the full range of potential outcomes observed across 
all examined pipelines. Finally, we end with a set of recommendations, integrated directly into the 
developed abagen toolbox, to promote standardized use of the AHBA in future work.

Results
We introduce the abagen toolbox, an open-access software package designed to streamline processing 
and preparation of the AHBA for integration with neuroimaging data (Markello et al., 2021c, available 
at https://​github.​com/​rmarkello/​abagen; Markello, 2021b copy archived at swh:1:rev:2aeab5bd0f-
147fa76b488645e148a1c18095378d). Supporting several workflows, abagen offers functionality for 

Table 1. Abagen pipeline options.
Overview of 17 options to be considered when processing the AHBA data. The Choices column 
indicates the number of parameters explored in the current report (numerator) and the total 
number of parameters possible for the given option (denominator). A denominator of ‍n‍ indicates 
a hypothetically near-infinite parameter space. The Description column gives a brief overview of 
the processing choice; for more detail refer to the relevant section in Materials and methods: Gene 
expression pipelines.

Option Choices Description

Volumetric or surface atlas 2/2
Whether to use a volumetric or surface 
representation of the atlas

Individualized or group atlas 1/2
Whether to use individualized donor-
specific atlases or a group-level atlas

Use non-linear MNI coordinates 2/2

Whether to use updated MNI 
coordinates provided by alleninf 
package

Mirror samples across L/R hemisphere 3/4
Whether to mirror (i.e., duplicate) 
samples across hemisphere boundary

Update probe-to-gene annotations 2/2 Whether to update probe annotations

Intensity-based filtering threshold 3/‍n‍
Threshold for intensity-based filtering 
of probes

Inter-areal similarity threshold 1/‍n‍
Threshold for removing samples with 
low inter-areal correspondence

Probe selection method 6/8
Method by which to select which 
probe(s) should represent a given gene

Donor-specific probe selection 3/3
How specified probe selection should 
integrate data from different donors

Missing data method 2/3
How to handle when brain regions are 
not assigned expression data

Sample-to-region matching tolerance 3/‍n‍
Distance tolerance for matching tissue 
samples to atlas brain regions

Sample normalization method 3/10
Method for normalizing tissue samples 
(across genes)

Gene normalization method 3/10
Method for normalizing genes (across 
tissue samples)

Normalize only matched samples 2/2
Whether to perform gene normalization 
for all versus matched samples

Normalizing discrete structures 2/2
Whether to perform gene normalization 
within structural classes

Sample-to-region combination method 2/2
Whether to aggregate tissue samples in 
regions within or across donors

Sample-to-region combination metric 2/2
Metric for aggregating tissue samples 
into atlas brain regions
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an array of analyses and has already been used in several peer-reviewed publications and preprints 
(Shafiei et al., 2020; Hansen et al., 2021; Shafiei et al., 2021; Brown et al., 2021; Park et al., 
2021; Valk et al., 2021; Zhao et al., 2020; Benkarim et al., 2020; Ding et al., 2021; Park et al., 
2020; Lariviere et al., 2020; Martins et al., 2021). The primary workflow, used to generate regional 
gene expression matrices, integrates 17 distinct processing steps that have previously been employed 
by research groups throughout the published literature (Table  1). We refer to each unique set of 
processing choices and parameters as a ‘pipeline’. The following results use abagen to investigate 
how variable application of these processing steps can impact analyses of AHBA data.

Processing choices influence transcriptomic analyses
To understand how choices made during the processing of AHBA data impact downstream analyses, 
we enumerated 17 decision points (i.e. processing steps or options) that have been modified and used 
in the literature (Table 1). From these 17 steps we implemented 746,496 distinct processing pipelines, 
where each pipeline parcellated microarray expression from the AHBA with the Desikan-Killiany atlas 
(Desikan et al., 2006) to generate a unique brain region-by-gene expression matrix.

Analyses of expression data from the AHBA can be grouped into one of three broad classes (Fornito 
et al., 2019): correlated gene expression analyses, gene co-expression analyses, and regional gene 
expression analyses. Correlated gene expression analyses examine the correlation between brain 
regions across genes, yielding a symmetric region × region matrix (similar to a functional connectivity 
matrix). Gene co-expression analyses, on the other hand, examine the correlation between genes 
across brain regions, yielding a symmetric gene × gene matrix. Finally, regional gene expression 
analyses examine the expression patterns of specific genes or gene sets in relation to other imaging-
derived phenotypes.

To examine how differences in processing choices may impact both the expression matrices gener-
ated from the different pipelines and derived statistical estimates we ran one analysis from each of 
these classes on the matrices generated by each processing pipeline. Notably, these analyses are 
either direct reproductions or variations of analyses that have been previously published (Arnat-
keviciute et al., 2019; Oldham et al., 2008; Hawrylycz et al., 2012; Burt et al., 2018). Although 
there is no ground truth for any of these analyses, findings from previous work offer some context 
for interpreting the observed results (i.e. data from other species and other modalities; Lau et al., 
2021). Nonetheless, we primarily focus on highlighting the potential variability resulting from different 
processing pipelines.

Correlated gene expression (CGE)
First, we separately correlated the rows of each expression matrix to generate symmetric region × 
region ‘correlated gene expression’ matrices, indicating the similarity of gene expression profiles 
between different brain regions (Figure 1a). Previous work in other species has reliably observed that 
transcriptional similarity in the brain decays with increasing separation distance (Fulcher et al., 2019; 
Lau et al., 2021). This distance-dependent relationship is an expected feature due to the functional 
specialization of brain regions, and is consistent with other imaging-derived phenotypes in humans 
(Roberts et al., 2016; Goulas et al., 2019; Betzel and Bassett, 2018; Mišić et al., 2014; Shafiei 
et al., 2020; Horvát et al., 2016). We assessed this relationship by extracting the upper triangle of 
the correlated gene expression matrices and correlating them with the upper triangle of a regional 
distance matrix, derived by computing the average Euclidean distance between brain region centroids 
in the Desikan-Killiany atlas (Figure 1a, left panel). Although previous work has highlighted that this 
relationship is exponential (Arnatkeviciute et al., 2019), we computed the Spearman correlation as 
both statistics should exhibit similar variability across pipelines and the latter is less computationally 
expensive.

Gene co-expression (GCE)
For the second type of analysis we separately correlated the columns of each expression matrix to 
generate gene × gene ‘co-expression’ (GCE) matrices, indicating the similarity in spatial expression 
patterns between all pairs of genes (Figure 1a). A significant body of research has shown that genes 
tend to form functional communities, exhibiting synchronized expression patterns across space and 
time (Oldham et al., 2008), such that gene co-expression patterns tend to be more similar within than 
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Figure 1. Processing choices influence transcriptomic analyses. (a) Examples of the three analyses used to assess differences in gene expression 
matrices generated by transcriptomic pipelines. First row: a depiction of the region-by-gene expression matrix generated from one of the 746,496 
tested processing pipelines. Second row, left: we compute the correlation between rows of each matrix to generate a symmetric region × region CGE 
matrix. We then compute the correlation between the upper triangle of this CGE matrix and the upper triangle of a regional distance matrix to examine 
the degree to which CGE decays with increasing distance between regions (Arnatkeviciute et al., 2019). Second row, middle: we compute the 
Euclidean distance between columns of each matrix to generate a gene × gene GCE matrix. We use previously defined functional gene communities 
(Oldham et al., 2008) to compute a silhouette score for this GCE matrix to investigate whether genes within a module have more similar patterns of 
spatial expression than genes between modules. Second row, right: the first principal component is extracted from the RGE matrix. We compute the 
correlation between this principal component and the whole-brain T1w/T2w ratio (Burt et al., 2018) to understand how closely these maps covary 
across the brain. (b) The full statistical distributions from each of the three analyses for all 746,496 pipelines. Left panel: Spearman correlation values, 

‍ρ‍, from the CGE analyses. Middle panel: silhouette scores from the GCE analyses. Right panel: Spearman correlation coefficients, ‍ρ‍, from the RGE 
analyses. CGE: correlated gene expression; GCE: gene co-expression; RGE: regional gene expression.

https://doi.org/10.7554/eLife.72129
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between such communities. Here, we obtained a set of gene community assignments derived for the 
brain from a previously studied human transcriptomic dataset (Oldham et al., 2008). We used these 
community assignments to calculate a silhouette score (Rousseeuw, 1987) for the gene co-expression 
matrices generated by each pipeline, measuring how well these communities represented the derived 
co-expression patterns (Figure 1a, middle panel).

Regional gene expression (RGE)
For the third type of transcriptomic analysis, we focused on regional correlations between gene 
expression measures and an MRI-derived phenotype. Our regional expression measure was defined 
by computing the first principal component of the region-by-gene expression matrix, representing 
the axis of maximum spatial variation of gene expression in the brain observed under a given AHBA 
processing pipeline. As gene expression fundamentally shapes the structure and function of the 
human brain, it is likely that this principal component may exhibit similar spatial variability to other 
imaging-derived measures. Recent work has highlighted that the T1w/T2w ratio is a robust pheno-
type that exhibits patterns of regional variation consistent with other microstructural and functional 
properties (Gao et al., 2020; Burt et al., 2018; Demirtaş et al., 2019; Fulcher et al., 2019). We 
therefore correlated the first principal component of gene expression with the whole-brain T1w/T2w 
ratio (Figure 1a, right panel), measuring the extent to which these values covary across the cortex.

Pipeline distributions
Results from these three analyses reveal that choice of processing pipeline dramatically influences 
derived statistical estimates (i.e. the CGE-distance correlation, the gene co-expression silhouette 
score, and the spatial correlations between gene PC1 and whole-brain T1w/T2w ratio; Figure 1b). 
We observe that all three of the generated distributions of statistical estimates across the 746,496 
pipelines have wide ranges (correlated gene expression: [-0.51,–0.13]; gene co-expression: [-0.78,–
0.18]; regional gene expression: [0.00, 0.90]) and are either bimodal (Figure 1b, left/middle panels) or 
heavily skewed (Figure 1b, right panel).

Since there is no ground truth for these analyses we cannot quantitatively assess whether some 
pipelines are more or less accurate than others. However, there is strong qualitative evidence to 
suggest that correlated gene expression should be lower between brain regions that are farther apart 
(Arnatkeviciute et al., 2019; Krienen et al., 2016; Richiardi et al., 2015; Fulcher et al., 2019; Lau 
et al., 2021). It is notable, then, that the distribution of distance-dependent estimates is so strongly 
bimodal (splitting at ‍r ≈ −0.4‍), suggesting two very different perspectives on the size of this effect 
(Figure 1a and b, left panels). As increasingly-detailed single-cell transcriptional data become avail-
able (e.g. Yao et al., 2021) we may be able to use these estimates to determine accuracy; for now, 
we simply note that even for this estimate with strong biological priors we see considerable variability.

Similar variability can be observed for the other two analyses. While all the pipelines demonstrate 
relatively poor fit of gene communities to the derived gene co-expression matrices (refer to Materials 
and methods: Analytic approaches for information on why this is not unexpected), we observe that 
a portion of the pipelines yield far worse correspondence (Figure 1a and b, middle panels). More-
over, while the correlations between gene PC1 and whole-brain T1w/T2w ratio are largely consistent 
across pipelines, there are a small group of pipelines that yield correlations that deviate by ‍ρ ≈ 1.0‍. 
Notably, the parameter choices for these pipelines are not pathological—that is, their use could be 
justified—and, as we discuss later (see Results: Variability in parameter importance), modifying just 
one parameter setting can yield changes in effect sizes within this range.

Collectively, we find that for all three of these analyses there is substantial variability in the statis-
tical estimates generated by different processing pipelines, and this variability is large enough that, 
across pipelines, it has a meaningful difference in the potential inferences and conclusions that can 
be drawn.

Variability in parameter importance
Next, we quantified the relative importance of different processing steps and parameters on our three 
derived statistical estimates. While researchers must ultimately make choices for each of the steps 
individually when processing AHBA data, we wanted to investigate whether unique choices have 
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distinct influences. Moreover, which parameters are most important may differ based on the type of 
analysis performed.

We investigated parameter importance by calculating a distribution of difference scores for each 
parameter, measuring the extent to which changing each parameter—holding all other parameters 
constant—influences the derived statistical metrics from each of the three analyses. For example, 
given a processing parameter with two choices this procedure yielded a distribution of ‍N/2‍ difference 
scores per analysis, where ‍N ‍ is the total number of pipelines (i.e. ‍746, 496/2 = 373, 248‍). We averaged 
these distributions separately for each analysis to generate a single, summary ‘impact score’ for each 
processing step, which we then rank-ordered independently for each analysis.

We find considerable agreement in which parameters are the most impactful across analyses 
(Figure 2a): the most influential processing steps often involve procedures that influence the gene 
normalization process in some way (e.g. gene normalization method, normalizing only matched 
samples; Figure 2b). On the other hand, among the least impactful parameters are choices concerning 
donor-specific probe selection and handling of missing data. It is worth noting that of the probe selec-
tion methods tested in the current manuscript (i.e. max intensity, correlation intensity, correlation vari-
ance, differential stability, RNAseq correlation, and averaging), three of the six all render the choice of 
donor-specific probe selection redundant. In other words, these three methods are mutually exclusive 
with choice of donor-specific probe selection, potentially confounding our ability to measure the real 

Figure 2. Parameter choice differentially impacts statistical estimates. (a) Rank of the relative importance for each parameter (‍y‍-axis) across all three 
analyses (‍x‍-axis). Warmer colors indicate parameters that have a greater influence on statistical estimates. (b) Statistical distributions from the three 
analyses, shown as kernel density plots, separated by choice of gene normalization method (the most impactful parameter as shown in panel a). (c) 
Density plots of the statistical estimates for all 746,496 pipelines shown along the first two principal components, derived from the 746,496 (pipeline) 
x 3 (statistical estimates) matrix, representing how different the statistical estimates from each of the three analyses are relative to other pipelines. Left 
panel: pipelines are colored based on choice of gene normalization method, where each color represents 1/3 of the pipelines. Here, the pipelines in 
which no normalization was applied (purple) are distinguished from those in which some form of normalization was applied (blue and brown). Right 
panel: pipelines are colored based on whether gene normalization was performed within (True, red) or across (False, purple) structural classes (i.e. 
cortex, subcortex/brainstem, cerebellum; see Materials and methods: Gene expression pipelines for more information).

https://doi.org/10.7554/eLife.72129
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influence of this parameter. We also highlight that choice of atlas may influence the impact of missing 
data handling: since the Desikan-Killiany atlas is a relatively low-resolution atlas (68 nodes), expres-
sion matrices generated from the tested pipelines are missing, at most, data for two brain regions. 
It is possible that handling of missing data may be more important when higher-resolution parcella-
tions are employed. That is, while some parameters do not appear to affect our results in aggregate, 
there are potentially specific research questions where these parameters could play an important and 
impactful role.

To investigate those parameters that did play an influential role in the current analyses, we visu-
alized their impact by examining the statistical distributions from each analysis separated by the 
different parameter choices (shown in Figure 2b for gene normalization method). Dividing the distri-
butions in this way highlights how strongly parameter choice can influence the outcomes of the anal-
yses: for example, when no gene normalization is employed the resulting estimates are dramatically 
shifted from those generated by pipelines that employed some form of normalization (Figure 2b; no 
normalization: purple distribution). Indeed, the bimodality and skew observed in the full statistical 
distributions for the analyses (Figure 1b) is almost entirely explained by this single parameter choice.

To investigate more qualitative differences in how parameter choice influences the processing 
pipelines we performed a principal component analysis (PCA) on the matrix of statistical estimates 
from the three analyses (i.e. the ‍746, 496 × 3‍ pipeline-by-analysis matrix). We extracted the first two 
principal components from the statistical estimate matrix (variance explained: PC1 = 70%, PC2 = 26%) 
and examined how pipeline scores were distributed along these axes (Figure 2c). Delineating the 
distribution of pipelines based on parameter choice underscores how these options impact the sepa-
rability of resulting statistical estimates. Reinforcing results presented above, we find that the choice 
of gene normalization method distinguishes the one-third of pipelines with no normalization (purple) 
from the remaining two-thirds that applied some form of normalization (blue and brown; Figure 2c, 
left). It is clear from the distribution of pipelines, however, that other processing choices interact with 
this parameter. For example, plotting the pipelines by whether the gene normalization was performed 
separately on samples within each structural class (i.e. cerebral cortex, subcortex, cerebellum) rather 
than across all tissue samples further delineates the pipelines that applied gene normalization into two 
distinct clusters (Figure 2c, right).

These results reveal how different processing steps are grouped in terms of their importance to 
analyses of the AHBA, with some groups demonstrating greater potential impact. Broadly, parame-
ters modifying normalization are the most important, followed by parameters influencing how tissue 
samples are matched to brain regions, and finally parameters impacting probe selection. Moreover, 
we find that choices within each processing step do not all have an equivalent impact on derived esti-
mates (i.e. performing no gene normalization has a much greater influence than choosing between 
the two other forms of normalization tested).

Reproducing published analyses
The previous subsections demonstrate variability across the complete range of reasonable processing 
pipelines; however, many of these pipelines have not yet been used in practice. To investigate whether 
the subset of pipelines that have already been implemented in the published literature display similar 
variability, we used abagen to reproduce the processing procedures from nine peer-reviewed articles 
that (1) are highly-cited within the field, (2) highlight a wide range of processing options, and (3) 
sufficiently describe their processing pipelines such that they could be reproduced. We explored how 
different the gene expression values and statistical outcomes generated by these published pipelines 
were (Hawrylycz et al., 2015; French and Paus, 2015; Whitaker et al., 2016; Krienen et al., 2016; 
Anderson et al., 2018; Burt et al., 2018; Romero-Garcia et al., 2018; Anderson et al., 2020b; 
Liu et al., 2020). To ensure comparability, we standardized the choice of brain parcellation across 
pipelines, using the Desikan-Killiany atlas in all instances. The pipelines were used to generate nine 
region-by-gene expression matrices, which were then subjected to the same three analyses described 
previously.

In reproducing the pipelines we note important differences in processing parameter selection 
(Figure  3a), and find that this variability results in slight discrepancies between gene expression 
values generated by the pipelines. For example, looking at the distribution of cortical somatostatin 
(SST), a gene discussed heavily in Anderson et al., 2020b where it used as a proxy for somatostatin 

https://doi.org/10.7554/eLife.72129
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interneuron density (Fulcher, 2019), we observe some variation between pipelines (Figure 3b and 
c). Although we find moderate consistency in the statistical estimates generated by the pipelines, 
there are important differences (ranges: correlated gene expression [-0.49,–0.28], gene co-expression 
[-0.70,–0.24], regional gene expression [0.34, 0.88]; Figure 3c). One outlier is the single pipeline that 
did not appear to implement any form of gene normalization (French and Paus, 2015), supporting 
earlier results demonstrating the importance of this processing step on downstream expression esti-
mates. This is potentially notable as the processed expression data from this pipeline were made 
openly available and have been used in analyses by other researchers (e.g. Sepulcre et al., 2018; 
Beliveau et al., 2017).

Given that imaging transcriptomics is still relatively new and there has been limited work addressing 
best practices in the field (Arnatkeviciute et al., 2019), these results stress the importance of stan-
dardization in use of the AHBA among research groups. Although variation in processing can osten-
sibly lead to similar inferences in specific analyses, even minor differences in processing choices 

Figure 3. Reproducing published pipelines. (a) Parameter choices used in the reproduction of published pipelines. Processing steps with categorical 
choices (e.g., gene normalization) were converted to numerical choices for display purposes only. These choices reflect the range of choices 
enumerated in Table 1. (b) Relative expression values of cortical somatostatin (SST) generated by each of the reproduced pipelines. Value ranges vary 
based on pipeline processing options. (c) The Pearson correlation between the cortical somatostatin (SST) maps generated by the nine pipelines shown 
in panel (b). (d) Statistical estimates from the three analyses described in Materials and methods: Analytic approaches applied to expression data from 
each of the published pipelines.

https://doi.org/10.7554/eLife.72129
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consistently yield measurable discrepancies in derived expression data. Without proper standardiza-
tion, these differences will compound and become more problematic as the field continues to grow.

Standardized processing and reporting with the abagen toolbox
Across all of our analyses we find that choice of processing steps and parameters can have a strong 
influence on the statistical outcomes of research with the AHBA. Here, we briefly highlight features 
that we have integrated into the abagen toolbox to facilitate standardization in future research.

The abagen toolbox supports two use-case driven workflows: (1) a workflow that accepts an atlas 
and returns a parcellated, preprocessed regional gene expression matrix (Figure 4a); and, (2) a work-
flow that accepts a mask and returns preprocessed expression data for all tissue samples within the 

Figure 4. Workflows and features in the abagen toolbox. (a) The primary workflow of abagen, used in the reported analyses, accepts a brain atlas and 
returns a parcellated brain-region-by-gene expression matrix. (b) An alternative abagen workflow accepts a regional mask and returns a processed 
tissue-sample-by-gene expression matrix, for all tissue samples from the six AHBA donors that fall within boundaries of the mask. (c) Examples of 
selected features from the abagen workflows and additional toolbox functionality. Top left: examples of some commonly-used atlases that can be 
employed with the parcellation workflow shown in panel (a). Bottom left: abagen can accept either standard atlases (i.e. in MNI space) or atlases defined 
in the space of the six individual donors from the AHBA. Top right: an additional workflow available in abagen can be used to generate densely-
interpolated expression maps from AHBA data using a k-nearest neighbors interpolation algorithm. Bottom right: using high-resolution atlases in the 
parcellation workflow (panel a) may result in some parcels being assigned no expression data; abagen supports two methods for assigning values to 
such regions.

https://doi.org/10.7554/eLife.72129
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mask (Figure 4b). Workflows can be called via a single line of code from either the command line or 
Python terminal, and take approximately one minute to run with default settings using the Desikan-
Killiany atlas. The main output of abagen is a single brain region (or tissue sample) × gene expression 
matrix. Changing the parameters may modify the shape of the matrix (e.g. different atlases will yield 
different numbers of regions or samples) or different values (e.g. different processing choices may 
yield different numbers of genes), but not the structure. The outputs of these workflows can be used 
generally to examine the three prototypical research questions enabled by the AHBA: correlated gene 
expression, gene co-expression, and regional expression of genes of interest more broadly (Fornito 
et al., 2019). Beyond its primary workflows, abagen has additional functionality for post-processing 
the AHBA data (e.g. removing distance-dependent effects from expression data, calculating differ-
ential stability estimates; Hawrylycz et al., 2015), and for accessing data from the companion Allen 
Mouse Brain Atlas (e.g. providing interfaces for querying the Allen Mouse API; https://​mouse.​brain-​
map.​org/; Lein et al., 2007).

Although these workflows support the entire range of processing options that we assessed in 
the current manuscript (Figure 4c), we have set the default options for all steps based on best prac-
tice recommendations developed in Arnatkeviciute et al., 2019 and further informed by the results 

Figure 5. Annotated example abagen report. Example of an automatically generated methods section report from the abagen toolbox. Processing 
steps are shown on the left and the relevant methods text—which is updated when these steps are modified—is shown in the same font color on the 
right. Reports also include a formatted reference section and relevant equations; these are not shown here for conciseness. Note that some processing 
steps (e.g. normalizing within structures, missing data handling) are omitted here because they are not run by default (see Supplementary file 1).

https://doi.org/10.7554/eLife.72129
https://mouse.brain-map.org/
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presented above (see Supplementary file 1 for a full list). We believe the default settings in abagen 
will provide a reasonable starting point for researchers beginning to work with the AHBA; however, as 
we have continually noted, the appropriate choices for some parameters will vary based on research 
question. As such, to make it easier for researchers to report exactly what parameters they use, we 
have integrated an automated reporting mechanism into the abagen workflows (Figure 5). The gener-
ated reports provide manuscript-ready step-by-step documentation describing all the processing 
done to the AHBA data in the workflow, and are licensed CC0 (https://​creativecommons.​org/​share-​
your-​work/​public-​domain/​cc0/) so that they can be freely used without restriction.

Creation of the toolbox has followed best-practices in software development, including version 
control, continuous integration testing, and modular code design. To encourage further use by new 
research groups we provide comprehensive documentation on installing and working with the abagen 
toolbox online (https://​abagen.​readthedocs.​io/).

Discussion
In the present report, we introduced the abagen toolbox, an open-source Python library for processing 
transcriptomic data. Using abagen, we conducted a comprehensive analysis examining whether and 
how different processing options modify statistical estimates derived from analyses using the AHBA. 
We investigated how processing pipelines used in the literature compare to those we tested, and 
provide recommendations for improving standardization and reporting of analyses using the AHBA, 
highlighting how the abagen toolbox can facilitate future developments in this space.

Testing nearly 750,000 unique processing pipelines, we find that choice of processing parameters 
can strongly influence statistical estimates derived from analyses of the AHBA, and that these choices 
interact with the type of analysis performed (Figure 1). We observe significant variability with regard 
to which parameters are most influential, finding that procedures modifying gene expression normal-
ization have a far greater impact on downstream analyses than other processing steps (Figure 2). 
Looking to the literature, we reproduce nine pipelines from published articles and find that, despite 
notable inconsistencies in their processing choices, there is moderate consistency in their produced 
statistical estimates (Figure 3). We demonstrate, however, that these summary estimates may obscure 
meaningful differences in gene expression values derived by the pipelines, cautioning researchers to 
be aware of how analytic choices may impact their findings.

Altogether, the present report provides a comprehensive assessment of how processing variability 
can impact analyses in the field of imaging transcriptomics. Our results demonstrate how researcher 
choices (or ‘researcher degrees of freedom’; Simmons et al., 2011) can play a meaningful role in anal-
yses of the AHBA. However, these findings are not necessarily limited to the AHBA. Indeed, increasing 
reliance on open-access datasets has begun to reveal unique challenges associated with data reuse 
(Thompson et al., 2020). Improved standardization and reporting among research groups using (and 
re-using) openly available datasets may help to mitigate some of these challenges. We believe that 
functionality in the abagen toolbox can support future researchers in overcoming these pitfalls and 
improve reproducibility in processing and analyzing AHBA data.

Our results also show that not all processing choices are equal: that is, we find a hierarchy of 
processing parameters, wherein procedures modifying gene normalization have the greatest impact 
on analyses, followed by steps more broadly influencing the matching of tissue samples to brain 
regions and finally by parameters that determine probe selection. Furthermore, we find that within 
processing steps certain parameter choices may lead to more reasonable statistical estimates. In 
particular, applying some form of gene normalization tends to improve the behavior of processed 
expression data when compared to instances in which no normalization is applied (Figure 1), but 
there appear to be limited differences in the type of normalization used. Although we only considered 
cortical tissue samples in the current analyses, we expect that including non-cortical samples would 
further reinforce these results (Arnatkeviciute et al., 2019) known differences in microarray expres-
sion values between cortex and subcortical structures will likely emphasize the impact of different 
normalization procedures across pipelines. Critically, these findings largely agree with previous 
recommendations developed by Arnatkeviciute et al., 2019, and we have chosen default parameter 
choices for abagen workflows accordingly.

Note that there are some processing steps that should be performed in a specific sequence, and 
others whose order could potentially be interchanged. For example, intensity-based filtering of probes 

https://doi.org/10.7554/eLife.72129
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must always be performed before probe selection—reversing the order of these operations would, 
in the majority of cases, be problematic because it would potentially result in the selection of noisy 
probes to be carried through to analysis. However, the order of other steps (i.e. sample versus gene 
normalization) could arguably be reversed with no ostensible detriment. This procedural ambiguity is 
a salient example of the need to standardize workflows.

More broadly, this work builds on increasing efforts to examine the importance of methodological 
choices and analytical flexibility in human neuroimaging research (Bhagwat et al., 2021; Kharabian 
Masouleh et al., 2020; Oldham et al., 2020; Maier-Hein et al., 2017; Schilling et al., 2019; Carp, 
2012; Botvinik-Nezer et al., 2020; Parkes et al., 2018; Ciric et al., 2017). Thankfully, emerging 
technical solutions have begun to tackle these issues via the development of tools that aim to abstract 
away sources of variation (e.g. fMRIPrep, Esteban et al., 2019; QSIPrep, Cieslak et al., 2020). While 
results from the present study reinforce the importance of methodological choices in research, abagen 
draws significant inspiration from these software packages in providing a set of tools designed to 
overcome such concerns when working with the AHBA.

While the AHBA dataset remains the only one of its kind, the abagen toolbox is designed to be used 
more broadly as similar datasets become available. That is, the preprocessing functions in abagen can 
be applied to other microarray expression datasets assuming, for example, availability of stereotactic 
coordinates. As new imaging transcriptomic datasets are developed and become more widely used, 
abagen functionality for creating standardized processing pipelines will only become more important. 
By developing the toolbox openly on GitHub (https://​github.​com/​rmarkello/​abagen), it is our hope 
that abagen can serve as a foundational, community tool for use in imaging transcriptomics research.

One consideration for future work on this topic is that the pipelines tested cover only a portion 
of the potential variability possible when processing AHBA data (Table 1). For example, a growing 
body of research has begun to examine how choice of brain parcellation may impact imaging analyses 
(e.g. Craddock et al., 2012; Thirion et al., 2014; Messé, 2020; Markello and Misic, 2021). While 
we only assessed processing pipelines using the Desikan-Killiany atlas, many other atlases have been 
used with the AHBA and it remains unclear how this variation may impact research findings. We also 
did not investigate whether donor-specific parcellations may impact analyses, a processing choice 
used in several published research findings (Anderson et al., 2020b; Romero-Garcia et al., 2018; 
Burt et al., 2018). Although there is significant evidence suggesting inter-individual variability in brain 
region definition (e.g. Gordon et  al., 2017; Kong et  al., 2019; Dickie et  al., 2018), the process 
of generating individualized brain parcellations is fraught with methodological choices and requires 
careful data processing. Given the quality of the MRI data provided alongside the transcriptomic 
data in the AHBA—including important differences in scanning protocol and procedures between 
donors—creating donor-specific parcellations may be a large source of variability between pipelines.

Another limitation of the presented results is that we are unable to make categorical statements 
about which processing options are ’best’ for the AHBA. First, there is no ground truth against which 
one can assess what the optimal set of processing parameters. One potential solution to this could be 
to examine the robustness of pipelines based on a leave-one-donor-out strategy (e.g. Arnatkeviciute 
et al., 2019; Vogel et al., 2020), wherein analyses are repeated six times, omitting one donor each 
time, to ensure that none of the donors are unduly influencing analytic estimates. This approach is 
likely to become more useful as data from more individuals becomes available, but at present may be 
a worthwhile approach for assessing whether chosen processing parameters are appropriate. More-
over, the optimal set of processing parameters may vary based on research question. For instance, in 
most applications gene normalization is appropriate, as it ensures that downstream analyses are not 
driven by a small subset of highly expressed genes. However, in other applications it may be desirable 
to retain the variance contributed by genes to accurately reflect their relative expression levels. For 
example, many genes in AHBA are not brain-specific, so normalization will amplify their expression 
patterns, potentially obscuring more relevant expression information. This can be avoided by sub-
selecting genes in a hypothesis-driven manner and skipping the normalization step altogether.

Nonetheless, we offer two alternative solutions for researchers who want to continue using the 
AHBA data. First, similar to the current report, researchers can conduct a comprehensive analysis 
with the AHBA, running multiple processing pipelines and showing the entire distribution of gener-
ated statistical estimates; however, this process can be computationally prohibitive and may impair 
researchers’ abilities to interpret their findings (Steegen et al., 2016). A less costly alternative, then, 
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is for the imaging transcriptomic research community to converge on a set of data-driven processing 
pipeline for the AHBA that can be used across research groups. We believe the abagen toolbox—
with its comprehensive workflows, well-informed default parameter choices, and detailed documen-
tation—can facilitate this process. While we acknowledge that some research groups may have strong 
reasons for wanting to use specific (i.e. non-default) processing choices, in these instances we urge 
clear and detailed reporting of the methods used—such as via the automated reporting functionality 
from the abagen toolbox.

Altogether, the current report highlights the problem of processing variability in analyses using 
the AHBA, impacting many research studies in the burgeoning field of imaging transcriptomics. We 
demonstrate how different processing options can influence statistical estimates of analyses relating 
data from the AHBA to imaging-derived phenotypes, and present the abagen toolbox as a promising 
potential solution to this issue.

Materials and methods
Code and data availability
All code used for data processing, analysis, and figure generation is available on GitHub (https://​
github.​com/​netneurolab/​markello_​transcriptome; Markello, 2021a copy archived at swh:1:rev:3abb-
c85596a5baacd93e5e9e56c906c9dbb080f3)and directly relies on the following open-source Python 
packages: IPython (Perez and Granger, 2007), Jupyter (Kluyver et al., 2016), Matplotlib (Hunter, 
2007), NiBabel (Brett et al., 2019), NumPy (Oliphant, 2006; van der Walt et al., 2011; Harris et al., 
2020), Pandas (McKinney, 2010), PySurfer (Waskom et al., 2020), Scikit-learn (Pedregosa et al., 
2011), SciPy (Virtanen et al., 2020), and Seaborn (Waskom et al., 2018).

Data
Allen human brain atlas
The Allen Human Brain Atlas (AHBA) is an open-access online resource containing whole-brain 
microarray gene expression data obtained from post-mortem tissue samples of six adult human 
donors (https://​human.​brain-​map.​org; Allen Institute for Brain Science, 2013; Hawrylycz et  al., 
2012). Expression data for over 20,000 genes were sampled from 3702 distinct tissue samples across 
the six donors (one female, ages 24–57), providing the most spatially comprehensive assay of gene 
expression in the human brain. Normalized microarray expression data were downloaded for all six 
donors; RNAseq data were downloaded for the two donors with relevant data.

Human connectome project
Group-averaged T1w/T2w (a proxy for intracortical myelin) data were downloaded from the S1200 
release of the Human Connectome Project (HCP; Van Essen et al., 2013) and used without further 
processing.

Brain parcellations
All analyses were performed with the Desikan-Killiany atlas (DK; 68 cortical nodes), an anatomical 
parcellation generated by delineating regions based on gyral boundaries (Desikan et al., 2006). To 
explore the impact of volumetric- versus surface-based parcellations we used a version of the DK atlas 
in (1) volumetric MNI152, and (2) surface fsaverage5 space; both versions are provided directly with 
the abagen toolbox. To facilitate comparison between volumetric- and surface-based parcellations, 
samples from the cerebellum, subcortex and brainstem were omitted.

The abagen toolbox
Source code for abagen is available on GitHub (https://​github.​com/​rmarkello/​abagen) and is provided 
under the three-clause BSD license (https://​opensource.​org/​licenses/​BSD-​3-​Clause). We have inte-
grated abagen with Zenodo, which generates unique digital object identifiers (DOIs) for each new 
release of the toolbox (e.g. https://​doi.​org/​10.​5281/​zenodo.​3451463). Researchers can install abagen 
as a Python package via the PyPi repository (https://​pypi.​org/​project/​abagen/), and can access 
comprehensive online documentation via ReadTheDocs (https://​abagen.​readthedocs.​io/).
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https://github.com/rmarkello/abagen
https://opensource.org/licenses/BSD-3-Clause
https://doi.org/10.5281/zenodo.3451463
https://pypi.org/project/abagen/
https://abagen.readthedocs.io/


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Markello et al. eLife 2021;10:e72129. DOI: https://​doi.​org/​10.​7554/​eLife.​72129 � 15 of 27

Gene expression pipelines
Most neuroimaging analyses using the AHBA must first convert the ‘raw’ data into a pre-processed 
brain region-by-gene expression matrix. To investigate the extent to which different processing proce-
dures might impact downstream analyses, we used abagen to modify 17 distinct processing steps in 
the generation of region-by-gene matrices from the original AHBA data. Each unique set of these 17 
processing choices and parameters constitutes a pipeline, yielding 746,496 unique pipelines. Here, 
we describe in detail the 17 processing steps and respective methods for each option that we exam-
ined in our analyses (refer to Table 1 for a summary overview of these choices or refer to the abagen 
documentation for implementation details; https://​abagen.​readthedocs.​io).

Volumetric or surface atlas
Aggregation of tissue samples from the AHBA into discrete brain regions requires researchers to 
supply an atlas (or parcellation). There are many brain atlases available for use; however, they typically 
exist in one of two forms: defined (1) in 3D ‘volumetric’ space, or (2) in ‘surface’ space on a 2D repre-
sentation of the cortical sheet. Many atlases can exist in both of these formats and so beyond the 
choice of parcellation, researchers must select which representation to use when processing AHBA 
samples. Choice of atlas may impact how many and which samples are matched to brain regions. In 
the current manuscript, we examined a volume- and surface-based representation of the Desikan-
Killiany atlas (see Materials and methods: Data; Desikan et al., 2006). Note that both versions of the 
atlas used in the reported analyses are included with the abagen software distribution.

Individualized or group-level atlas
There is growing recognition that brain parcellations derived at the group level tend to obscure indi-
vidual differences in anatomy or function (e.g. Gordon et al., 2017; Kong et al., 2019; Dickie et al., 
2018). Researchers working with the AHBA have thus begun to generate donor-specific parcellations, 
using individualized atlases to match tissue samples to brain regions. The individualization process 
can vary dramatically depending on whether researchers are using volumetric or surface atlases and 
whether they are operating in ‘native’ or standard (i.e. group) space. Because of the immense vari-
ability inherent to the individualization process itself, we opted not to explore this parameter in the 
current manuscript.

Use non-linear MNI coordinates
With its initial release the AHBA provided stereotactic coordinates for each tissue sample in MNI 
space (Fonov et al., 2009; Fonov et al., 2011; Collins et al., 1999); however, two of the six donor 
brains were scanned in cranio and coordinates were derived using affine registrations to the MNI 
template, while the remaining four were scanned ex vivo and a non-linear registration was used to 
generate coordinates. More recently, Gorgolewski et al., 2014 used ANTS (Avants et al., 2011) to 
perform a standardized, manually corrected non-linear diffeomorphic registration of all the donor 
brains to MNI space. Analyses collating tissue samples into distinct brain regions often rely on MNI 
coordinates to match samples to regions, and researchers must choose whether to use the original 
coordinates provided with the AHBA or the newer, non-linearly generated coordinates. In the current 
manuscript, we assessed the impact of using (1) the original MNI coordinates and (2) the updated 
coordinates from Gorgolewski et al., 2014.

Mirror samples across left-right hemisphere
Only the first two donors included in the AHBA had tissue samples taken from the right hemisphere. 
Preliminary analyses of these data revealed minimal lateralization of microarray expression, and so 
samples were collected exclusively from the left hemisphere for the following four donors (Hawrylycz 
et al., 2012; Hawrylycz et al., 2015). This irregular sampling resulted in limited spatial coverage of 
expression in the right hemisphere; to resolve this, some researchers have opted to mirror existing 
tissue samples across the left-right hemisphere boundary (Romero-Garcia et al., 2018). Researchers 
must decide whether to perform sample mirroring, and, if so, whether they should mirror unilaterally 
(i.e. only right-to-left or left-to-right) or bilaterally (i.e. both right-to-left and left-to-right). In the current 
manuscript, we assessed (1) no mirroring, (2) left-to-right mirroring, and (3) bilateral mirroring. The 
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option for mirroring right-to-left was omitted as this is only useful when analyses selectively consider 
the left hemisphere, not the whole brain.

Update probe-to-gene annotations
The 60-base-pair probes used to assess microarray expression in the AHBA were annotated with 
their corresponding gene (or lack thereof) when the data were publicly released. However, as the 
human reference genome is updated these annotations become increasingly out-of-date. Thus, when 
researchers choose to use the AHBA data they must decide whether to use the original gene annota-
tions or more recently-generated annotations. In the current manuscript, we assessed using both the 
original annotations and those generated by Arnatkeviciute et al., 2019.

Intensity-based filtering threshold
Data from the AHBA are provided with information indicating whether the expression of each microarray 
probe exceeds the expression levels of background signal. Using this information, researchers can 
choose to perform an intensity-based filtering procedure wherein probes are only considered if their 
expression levels are greater than background across a specified percentage of tissue samples. In the 
current manuscript, we considered three degrees of intensity-based filtering: (1) no filtering (all probes 
used), (2) 25 % filtering (probes used if they exceeded background for more than 25 % of all samples), 
and (3) median filtering (probes used if they exceeded background for more than 50 % of all samples).

Inter-areal similarity threshold
The expression value of some tissue samples in the AHBA differ markedly from all other samples in the 
dataset. While this could be driven by real spatial variability in expression values throughout the brain, 
it is also possible that this variability is artifactual. Researchers can opt to assess the inter-areal simi-
larity of tissue samples, quantifying those that differ from the rest by a given threshold, and remove 
them from consideration. To our knowledge, this processing step has only been implemented in a 
single research study (Burt et al., 2018), and as such we do not consider it in the current manuscript.

Probe selection method
The probes used to measure microarray expression levels in the AHBA are often redundant; that is, 
there are frequently several probes indexing the same gene. Thus, at some point researchers must 
transition from measuring probe expression levels to measuring gene expression levels. Effectively, 
this means selecting from or condensing the redundant probes for each gene. There have been at 
least eight methods proposed in the literature for this process, including selecting a single probe with 
the (1) max intensity across samples, (2) max variance across samples, (3) highest loading on the first 
principal components across samples, (4) highest correlation to other probes (or max intensity across 
samples when only two probes exist), (5) highest correlation to other probes (or max variance across 
samples when only two probes exist), (6) highest differential stability across donors, (7) highest fidelity 
to simultaneously-acquired RNAseq data, or (8) simply averaging all probes indexing the same gene. 
In the current manuscript we only consider six of the most commonly-applied methods (i.e. 1, 4, 5, 6, 
7, and 8); the other methods (i.e. 2 and 3) have only been reported in a single research study (Negi 
and Guda, 2017 and Parkes et al., 2017, respectively) and as such we do not consider them.

Donor-specific probe selection
Probe selection (described above) often requires applying some selection criterion to gene expres-
sion levels across tissue samples. For these methods, the specified criterion can be measured across 
donors (i.e. aggregating tissues samples from donors) or independently for each donor. The latter 
case—performing probe selection independently for each donor—allows for two additional options: 
(1) using whichever probe is chosen for each donor, even if it differs from the other donors, or (2) 
using the most-commonly selected probe for all donors. In the current manuscript, we considered all 
three of these options: (1) aggregating samples across donors, (2) performing probe selection inde-
pendently for each donor, and (3) using the most commonly-selected probe across donors.

https://doi.org/10.7554/eLife.72129
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Missing data method
Due to the irregular spatial sampling of data in the AHBA some brain regions may not be assigned 
any corresponding microarray expression data. Researchers can opt to simply omit these regions from 
subsequent analyses; however, in some cases, this is not desirable as the spatial distribution of the 
missing samples may not be random and discarding them may bias resulting estimates. Two options 
for handling missing data have been proposed in the literature, including filling missing regions with 
expression data from nearby regions (i.e. nearest-neighbors interpolation; Whitaker et al., 2016), or 
interpolating data in missing regions based on nearby samples (i.e. linear interpolation; Burt et al., 
2018). In the current manuscript, we tested two options: (1) omit brain regions with missing data 
entirely from subsequent analyses, and (2) fill missing data with expression values using nearest-
neighbors interpolation. Linear interpolation has been sparingly used in the published literature 
(e.g. Burt et al., 2018; Romero-Garcia et al., 2018) and carries an increase in computational cost 
(approximately an order of magnitude higher than nearest neighbors interpolation); as such, we do 
not consider it in the current manuscript.

Sample-to-region matching tolerance
Volumetric atlases
While most tissue samples from the AHBA will fall directly within the brain regions delineated by 
most parcellations, some samples may fall outside the boundaries of these regions. Researchers can 
nonetheless choose to permit assigning these nearby samples to a given region, but will often set a 
distance threshold beyond which samples cannot be assigned. In the current manuscript, we consid-
ered three distance tolerances: 0 mm (i.e. samples must fall exactly within a region), 1 mm, and 2 mm.

Surface atlases
Because tissue samples from the AHBA are defined in volumetric space, matching them to parcels 
defined on a surface-based atlas requires different considerations than with volumetric atlases. 
Notably, all samples will have non-zero distances from surface vertices; therefore, when matching 
to surface atlases distance thresholds are generally considered in terms of standard deviations (Burt 
et al., 2018; Anderson et al., 2020b). In this way, all samples are matched to the surface and then 
those that are more than the specified standard deviation(s) above the mean away from the surface 
are excluded. In the current manuscript we tested three standard deviation distance tolerances: 0 s.d. 
(i.e. all samples farther than the average distance are excluded), 1 s.d., and 2 s.d.

Sample normalization method
Prior to aggregating microarray expression data across donors, researchers can optionally normalize 
the microarray expression data for each tissue sample across all represented genes (i.e., perform row-
wise normalization). This procedure can account for between-sample differences in gene expression 
potentially driven by measurement errors. There is a number of techniques that have been proposed 
to normalize expression values; however, in the current manuscript, we considered three normaliza-
tion methods: (1) no normalization, (2) a z-score transform, and (3) a scaled robust sigmoid transform 
(Fulcher et al., 2013).

Gene normalization method
Prior to aggregating microarray expression data across donors, researchers can optionally normalize 
the microarray expression data for each represented gene across tissue samples (i.e. perform column-
wise normalization). This procedure can account for inter-individual (donor-specific) differences in 
gene expression data, which remain present in the AHBA despite batch corrections performed by the 
Allen Institute prior to releasing the data. In the current manuscript, we considered three normaliza-
tion methods: (1) no normalization, (2) a z-score transform, and (3) a scaled robust sigmoid transform 
(Fulcher et al., 2013).

Normalizing only matched samples
Due to choices in other processing steps (e.g. Volume- or surface-based atlas, Sample-to-region 
matching tolerance) some tissue samples from the AHBA may not be assigned to any region in a 
given brain atlas. During gene normalization, where expression from each gene is normalized across 
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tissue samples, researchers must decide whether to use (1) only those tissue samples matched to 
brain regions, or (2) the entire corpus of tissue samples, irrespective of whether they will be included 
in the final, processed regional expression matrix. In the current manuscript we consider both of these 
options.

Normalizing discrete structures
There is known variation in gene expression values between tissue samples taken from distinct struc-
tural classes (i.e. samples taken from neocortex may have different expression values than those from 
the brainstem). When performing gene normalization researchers can opt to normalize (1) across all 
samples irrespective of the structure from which they derive or (2) independently for samples taken 
from different brain structures. Although the brain atlas used in the current manuscript represents only 
cortical parcels, this processing choice can interact with Normalizing only matched samples to impact 
resulting expression values and we therefore test both options.

Note that in the abagen toolbox structural classes are operationalized as: (1) cortex, (2) subcortex 
and brainstem, (3) cerebellum, and (4) white matter. Subcortex and brainstem are considered as one 
class because neuroanatomical delineation between these regions are widely contested and expres-
sion values in these regions tend to be more similar to one another than to other regions (i.e. data-
driven clustering of samples tends to assign subcortical and brainstem samples together).

Sample-to-region combination method
Once tissue samples have been assigned to brain regions they need to be combined to generate a 
single expression profile; however, due to sampling differences between donors, some donors may 
have more tissue samples assigned to a given brain region than others. Thus, researchers must decide 
whether to aggregate samples (1) within each brain region independently for each donor and then 
across donors, or (2) simultaneously across all donors. In the latter case, donors with a higher number 
of samples matched to a region will contribute more to the expression profile of a given region (Arnat-
keviciute et al., 2019). In the current manuscript, we test both of these options.

Sample-to-region combination metric
When aggregating tissue samples into brain regions researchers must decide what aggregation metric 
they want to use. Although any statistical estimate could be considered, in practice an estimate of 
central tendency such as the mean expression values across tissue samples is most applicable. In the 
current manuscript, we test aggregation with both the (1) mean and (2) median.

Analytic approaches
Prototypical analyses relying on parcellated microarray expression data from the AHBA fall into three 
broad categories (Fornito et al., 2019):

1.	 Correlated gene expression: Examining the correlation between distinct brain regions across 
genes (i.e. using the region-by-region correlation matrix);

2.	 Gene co-expression: Examining the correlation between gene expression profiles across brain 
regions (i.e. using the gene-by-gene correlation matrix); or,

3.	 Regional gene expression: Examining the expression profile of one (or more) genes across brain 
regions (i.e. using selected columns of the region-by-gene expression matrix).

In order to examine the interaction between processing options and analytic method, we performed 
one analysis from each of these three categories, described below, for every output of the 746,496 
processing pipelines.

Correlated gene expression
Researchers have reliably found a relationship between correlated gene expression in the brain and 
the distance between brain regions: that is, brain regions that are farther away from one another tend 
to have less similar gene expression profiles (Richiardi et al., 2015; Richiardi et al., 2017; Krienen 
et al., 2016; Vértes et al., 2016; Arnatkeviciute et al., 2019). In order to examine the impact of 
processing choices on this relationship, we computed the Spearman correlation between the upper 
triangle of the regional distance matrix (Euclidean distance between brain regions) and the upper 
triangle of each correlated gene expression matrix (Figure 1a, left). Brain regions for which no gene 
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expression data were available (dependent on pipeline options) were not included in the correlation. 
Note that this relationship is likely exponential (Arnatkeviciute et al., 2019); however, we calculated 
the Spearman coefficient as it is more computationally tractable and it should exhibit similar variability 
across pipelines.

Gene co-expression
Researchers have previously shown that gene expression in the brain tends to organize into function-
ally defined communities or modules (Oldham et al., 2008; Hawrylycz et al., 2012). We examined 
the extent to which functional gene modules derived from a separate transcriptomic dataset (Oldham 
et al., 2008) mapped onto the gene co-expression matrices generated from the different processing 
pipelines. For each gene-by-gene matrix, we calculated the silhouette score (Rousseeuw, 1987) of 
the gene modules on a modified version of gene co-expression matrix (calculating Euclidean distance 
between genes instead of gene correlations; Figure 1a, middle) via:

	﻿‍ s = 1
N
∑N

i=1
b(i)−a(i)

max{a(i),b(i)}‍�

where ‍a(i)‍ is the average distance of a data point ‍‍ to all other data points in the same cluster, ‍b(i)‍ is 
the mean distance of data point ‍‍ to the nearest neighboring cluster, and N is the total number of data 
points. The final silhouette score ‍s‍ ranges from –1 to +1, where positive values indicate assortative and 
negative values indicate disassortative clusters.

Note that the original gene modules were defined using a weighted gene co-expression network 
analysis (WGCNA), which generally requires performing additional processing steps on the gene 
co-expression matrix. Since we used the raw gene co-expression matrix in the current analysis, we 
expect lower silhouette scores than those reported in the initial manuscript where the gene commu-
nities were initially defined; however, the variance in scores between pipelines should not be signifi-
cantly impacted by this choice.

Regional gene expression
Researchers recently highlighted how the principal component of gene expression in the brain closely 
mirrors the spatial variation observed in MRI-derived T1w/T2w measurements (typically used as a 
proxy for myelination; Burt et al., 2018). We examined whether this relationship was present across 
the outputs of the different pipelines, measuring the Spearman correlation between the T1w/T2w ratio 
and the first principal component of the regional gene expression matrix (Figure 1a, right). Regional 
gene expression matrices were mean-centered prior to extraction of the principal component.

Assessing pipeline impact
In order to examine the impact of each processing option on the resulting analyses, we calculated 
a difference score, measuring the extent to which changing each option—holding all other options 
constant—influenced the derived metrics (i.e. correlation, silhouette score). When there were only two 
choices for a given option the impact was calculated as the absolute value of the difference between 
the two choices. When there were more than two choices and choices were ordinal (e.g. sample-to-
region matching tolerance) the impact was calculated as the average of the absolute value of the 
difference between adjacent choices. When there were more than two choices and the choices were 
categorical (e.g. probe selection method) the impact was calculated as the average of the absolute 
value of the difference between all combinations of choices. These calculations yielded a distribution 
of ‘impact’ estimates (i.e. change scores) for each processing option; we represented the final impact 
score for each processing option as the average of these distributions, taken independently for each 
of the three analyses. Impact estimates were rank-ordered (where the most impactful parameter was 
given a rank of one, the second most impactful a rank of two, and so on) to enable direct comparison 
across the different statistical estimates derived from the three analyses.

Pipeline dimensionality reduction
To investigate qualitative differences between the processing pipelines we performed a principal 
components analysis (PCA) on the matrix of estimates from the three statistical analyses (i.e. the 
746,496 × 3 matrix). We mean-centered the columns of the matrix and extracted the first two principal 
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components, examining how pipeline scores were distributed along these two components in relation 
to different processing options. These principal component highlight the closeness of the estimate 
generated by each pipeline along the dimensions of maximum statistical variation; that is, two pipe-
lines that are closer together in the reduced-dimension space yielded more similar statistical estimates 
than two pipelines that are farther apart.

Reproducing pipelines from the literature
Although all the processing options explored in the current manuscript are reasonable or viable 
choices that researchers could make when preparing the AHBA for analysis, in reality these have not 
all been used in the published literature. In order to examine how pipelines used in the literature 
compared to those that we assessed, we selected nine articles that relied on data from the AHBA to 
support a primary research finding and reproduced their processing pipelines in abagen (Hawrylycz 
et al., 2015; French and Paus, 2015; Whitaker et al., 2016; Krienen et al., 2016; Anderson et al., 
2018; Burt et al., 2018; Romero-Garcia et al., 2018; Anderson et al., 2020b; Liu et al., 2020). Note 
that these articles used a variety of parcellations and so to ensure comparability across pipelines we 
standardized this parameter, using the Desikan-Killiany atlas in all instances. One parameter that we 
did not assess in the pipelines explored in the current manuscript—whether to use individualized, 
donor-specific parcellations or a group-level atlas—was frequently varied in the published pipelines. 
Thus, when reproducing pipelines that called for individualized volumetric atlases we relied on the 
donor-specific Desikan-Killiany parcellations provided by Arnatkeviciute et al., 2019; when repro-
ducing pipelines with individualized surface atlases we relied on the donor-specific Desikan-Killiany 
parcellations provided by Romero-Garcia et al., 2018.

As not all of the original manuscripts detailed the processing choices for each of the 17 steps in 
the abagen workflow, when specific parameter choices were omitted we either: (1) used the default 
setting if the parameter was required (e.g. using the mean for the ‘sample-to-region combination 
metric’, since all pipelines must combine samples to regions), or (2) omitted the processing step 
entirely if it is an optional step (e.g. not performing any gene normalization).
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