Transcriptional regulation of neural stem cell expansion in adult hippocampus

1Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA. 2Harvard Stem Cell Institute, Cambridge, MA 02138, USA. 3Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA. 4BROAD Institute of Harvard and MIT, Cambridge, MA 02142. 5Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA. 6Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine; Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

These authors contributed equally

Current address is Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P. R. China.

* Corresponding author: Amar Sahay. asahay@mgh.harvard.edu

Abstract

Experience governs neurogenesis from radial-glial neural stem cells (RGLs) in the adult hippocampus to support memory. Transcription factors in RGLs integrate physiological signals to dictate self-renewal division mode. Whereas asymmetric RGL divisions drive neurogenesis during favorable conditions, symmetric divisions prevent premature neurogenesis while amplifying RGLs to anticipate future neurogenic demands. The identities of transcription factors regulating RGL symmetric self-renewal, unlike those that regulate RGL asymmetric self-renewal, are not known. Here, we show in mice that the transcription factor Kruppel-like factor 9 (Klf9) is elevated in quiescent RGLs and inducible, deletion of Klf9 promotes RGL activation state. Clonal analysis and longitudinal intravital 2-photon imaging directly demonstrate that Klf9 functions as a brake on RGL symmetric self-renewal. In vivo translational profiling of RGLs lacking Klf9 generated a molecular blueprint for RGL symmetric self-renewal that was characterized by upregulation of genetic programs underlying Notch and mitogen signaling, cell-cycle, fatty acid oxidation and lipogenesis. Together, these observations identify Klf9 as a transcriptional regulator of neural stem cell expansion in the adult hippocampus.

Introduction
In the adult mammalian brain, radial glial neural stem cells (RGLs) in the dentate gyrus subregion of the hippocampus give rise to dentate granule cells and astrocytes [1-9], a process referred to as adult hippocampal neurogenesis [10-18]. Adult-born dentate granule cells integrate into hippocampal circuitry by remodeling the network and ultimately contribute to hippocampal dependent learning and memory and regulation of emotion [7, 19, 20]. Levels of adult hippocampal neurogenesis are highly sensitive to experience [21, 22] suggesting that neurogenesis may represent an adaptive mechanism by which hippocampal dependent memory functions are optimized in response to environmental demands. Essential to this adaptive flexibility is the capacity of RGLs to balance long-term maintenance with current or future demands for neurogenesis (“anticipatory neurogenesis”) in response to distinct physiological signals [5, 21-24].

Depending on environmental conditions, RGLs make decisions to stay quiescent or self-renew asymmetrically or symmetrically. Whereas enriching experiences (eg: complex environments, exploration, socialization) bias RGLs towards asymmetric divisions to generate astrocytes and neurons [23, 25], unfavorable conditions promote RGL quiescence (eg: chronic stress, aging) or symmetric self-renewal to support neural stem cell expansion at the expense of neurogenesis (eg: social isolation, seizures, aging) [23, 26, 27]. Asymmetric self-renewal of RGLs predominates over symmetric self-renewal division mode in the adult hippocampus and it ensures maintenance of RGL numbers while supporting current neurogenic demands [9, 22]. Conversely, symmetric self-renewal decouples RGL divisions from differentiation and is thought to serve distinct functions. First, symmetric divisions prevent premature differentiation of RGLs in a non-permissive or unhealthy niche, and consequently, avert aberrant integration of adult-born dentate granule cells detrimental to hippocampal functions [27, 28]. As such, RGL amplification anticipates future demands for neurogenesis upon return to favorable conditions. Second, RGL expansion may represent an efficient mechanism to replenish the adult RGL pool after injury. Third, symmetric stem cell divisions maybe more efficient than asymmetric divisions for long-term maintenance since fewer divisions are required to maintain RGL numbers. Furthermore, symmetric divisions may be associated with a lower rate of mutations and reduced replicative aging [29].

Extracellular physiological signals recruit transcription factors (TFs) within adult hippocampal RGLs to execute quiescence-activation decisions and symmetric or asymmetric self-renewal divisions [22, 30, 31]. A growing number of transcriptional regulators of quiescence and asymmetric (neurogenic or astrogenic) stem cell renewal has been identified [32-36]. Deletion of such factors results in loss of RGL quiescence, increased neurogenesis and ultimately, differentiation-coupled depletion of the RGL pool. In sharp contrast, the identities of TFs that regulate RGL expansion have remained elusive. Here, we report that expression of the ubiquitously expressed TF, Kruppel-like factor 9 (Klf9), a regulator of dendritic and axonal plasticity in post-mitotic neurons [37, 38], is elevated in non-dividing RGLs compared to dividing RGLs. Inducible genetic upregulation of Klf9 in RGLs and progenitors decreased activation, whereas conditional cell-autonomous deletion of Klf9 in RGLs promoted an activated state. Clonal lineage tracing and longitudinal two-photon imaging of adult hippocampal RGLs in vivo directly demonstrated a role for Klf9 as a brake on symmetric self-renewal. In vivo translational profiling of RGLs generated a molecular blueprint for RGL expansion in the adult hippocampus: we found that loss of Klf9 in RGLs results in downregulation of a program of quiescence associated factors and upregulation of genetic (mitogen, notch) and metabolic (fatty acid oxidation and lipid signaling) programs underlying RGL symmetric self-renewal. Together, these data identify Klf9 as a transcriptional regulator of neural stem cell expansion in the adult hippocampus. Our study contributes to an emerging framework for how experiential signals may toggle a balance of transcriptional regulators of symmetric and asymmetric self-renewal of RGLs to amplify neural stem cells or asymmetrically divide and generate neurons and astrocytes.

Results

Inducible Klf9 loss promotes RGL activation

To characterize Klf9 expression in RGLs in the adult dentate gyrus, we bred Klf9-LacZ knock-in reporter mice [39] with a Nestin GFP transgenic mouse line in which Nestin+RGLs are genetically labeled with GFP [40]. Quantification of Klf9 expression based on LacZ intensities in Klf9 LacZ+ mice revealed enrichment in quiescent RGLs relative to activated RGLs (MCM2+)(One-way ANOVA, F=17.07, p=0.003)(Figures 1A-B). MCM2 expression captures activated cells that have exited quiescence. To refine this estimation that is based on a surrogate (LacZ) of Klf9 expression within the RGL compartment, we performed Fluorescence in situ hybridization (FISH) using a Klf9 specific riboprobe and
immunohistochemistry for GFP and BrdU on adult hippocampal sections obtained from Klf9 \(^{+/+}\) or LacZ/LacZ; Nestin GFP transgenic mice perfused 2 hours following a BrdU pulse (One-way ANOVA, F=5.6, p=0.04) (Figures 1C-E). No signal was detected with FISH using the Klf9 riboprobe on brain sections from Klf9 LacZ/LacZ mice thus conveying specificity of the riboprobe (Figure 1D). Quantification of Klf9 transcripts using Image J revealed significantly enriched expression in quiescent vs. activated (BrdU+Nestin GFP+) RGLs (Figures 1C and 1E).

We next asked what happens when we delete Klf9 in adult hippocampal RGLs. To address this question, we engineered Klf9 conditional mutant mice (Klf9\(^{f/f}\)) to cell-autonomously delete Klf9 in RGLs. We first validated our Klf9\(^{f/f}\) mouse line by crossing it with the POMC-Cre mouse line that drives recombination in the dentate gyrus. ISH on hippocampal sections from POMC-Cre: Klf9\(^{f/f}\) revealed salt and pepper expression of Klf9 in the dentate gyrus consistent with the established pattern of POMC-Cre dependent recombination in the dentate gyrus [41]. No signal was detected by in situ hybridization using the Klf9 riboprobe on brain sections from Klf9 LacZ/LacZ mice thus conveying specificity of the riboprobe (Figure 1-figure supplement 1). We bred Klf9\(^{f/f}\) mice with (GLI-Kruppel family member 1) Gli1\(^{CreERT2}\) to recombine Klf9 (deletion of exon1) in hippocampal RGLs (Figures 1F-G). We chose the Gli1\(^{CreERT2}\) driver line because population-based lineage tracing and chronic in vivo imaging suggests that Gli1\(^{CreERT2}\) labeled RGLs contribute to long-term maintenance and self-renewal [3, 42]. We next generated Klf9\(^{f/f}\) or \(^{+/+}\) mice harboring a Gli1\(^{CreERT2}\) allele and a Cre-reporter allele (Ai14, B6;129S6-Gt(RosA)26Sor\(^{tm1(CAG-tdTomato)Hze/J}\))[43] to indelibly label Gli1-positive RGLs and their progeny (Figure 1F). By analysis of Klf9 transcript associated fluorescence intensity in Gli1-positive tdTomato labeled RGLs we estimated the recombination frequency of Klf9 (i.e. reduction in Klf9 associated signal) to be approximately 32% in Gli1-positive tdTomato labeled RGLs (Figure 1-figure supplement 2). We induced Klf9 recombination and tdTomato expression in RGLs of adult (2 months old) Gli1\(^{CreERT2}\); Klf9\(^{f/f}\) or \(^{+/+}\); Ai14 mice and processed brain sections for Nestin, tdTomato, and MCM2 immunohistochemistry 7 days post injection (7dpi) to quantify activated RGLs (Figures 1F-G). We found that conditional deletion of Klf9 in Gli1\(^{CreERT2}\) targeted adult hippocampal RGLs significantly increased the fraction of activated RGLs (% of MCM2+tdTomato+RGLs)(Figure 1G)(Unpaired t-tests, Figure 1G p<0.0001). Complementing these results, we demonstrated that genetic overexpression of Klf9 in activated hippocampal neural stem cells and progenitors of adult Sox1 tTA; tet0 Klf9 mice [38, 44] significantly decreased the fraction of activated and dividing cells (Figure 1-figure supplement 3). Together, these data demonstrate that Klf9 expression is enriched in quiescent RGLs and that loss of Klf9 expression in RGLs either promotes or maintains an activated state of RGLs in the adult hippocampus.

Klf9 deletion in RGLs produces supernumerary RGL clones

We next asked how Klf9 loss of function in RGLs affects self-renewal division mode. Population level lineage tracing experiments at short-term chase time points suggested that Klf9 loss in Gli1+ RGLs increased RGL numbers (data not shown). However, analysis of neural stem cell dynamics at the population level is encumbered by changes in numbers of labeled progeny overtime [5, 42]. The challenges of interpreting population-level analysis are exacerbated because Klf9 is also expressed in immature adult-born neurons and mature dentate granule cells. As such, changes in numbers of labeled descendants following loss of Klf9 in RGLs makes population-level lineage tracing difficult to interpret. Therefore, to directly investigate whether loss of Klf9 in RGLs results in neural stem cell expansion at a single clone level, we performed in vivo clonal analysis in adult Gli1\(^{CreERT2}\); Klf9\(^{f/f}\) or \(^{+/+}\); Ai14 mice shortly after low dose Tamoxifen administration. Single dose of TAM at 50mg/Kg body weight permitted sparse labeling of single tdTomato+RGLs and visualization of labeled single RGL clones and their individual constituents. Analysis of clonal composition at 7dpi revealed a significantly greater fraction of multi-RGL containing clones and a smaller fraction of single RGL containing clones (Figures 2A-D, Figure 2-figure supplement 1, Figure2-Videos 1-8)(Figure 2B Two-way ANOVA, Genotype X Cell-type p<0.0001, Bonferroni post hoc Klf9 \(^{+/+}\) vs. Klf9\(^{f/f}\). 1RGL n.s., 2+RGLs p<0.0001, 1RGL+ p<0.0001, No RGL n.s. Figure 2D, left panel, Two-way ANOVA, Genotype X Cell-type p<0.0001, Bonferroni post hoc Klf9 \(^{+/+}\) vs. Klf9\(^{f/f}\). 2+RGLs p=0.09, 2RGLs+P+A p=0.0001, 2RGLs+P n.s. Figure 2D, right panel, Two-way ANOVA, Genotype X Cell-type p=0.09, Bonferroni post hoc Klf9 \(^{+/+}\) vs. Klf9\(^{f/f}\) 1RGL n.s., 1RGL+P+A p=0.01, 1RGLs+P p=0.01). Many of the multi-RGL containing clones also comprised of neural progenitors and astrocytes suggesting that loss of Klf9 biases RGL expansion but does not prevent RGL differentiation into progeny (Figure 2D). To corroborate these findings and address any potential confound introduced by...
Klf9 functions as a brake on symmetric self-renewal of RGLs

To unequivocally establish clonal origin of labeled progeny and directly test the hypothesis that Klf9 inhibits symmetric self-renewal of RGLs in vivo, we performed longitudinal two-photon imaging [46] of RGLs for up to two months and tracked symmetric and asymmetric division patterns (Figures 3A-B; Figure 3-figure supplement 1, Figure 3-Videos 1-4). We implanted Gli1CreERT2, Klf9f/+ or +/+;Ai14 mice with a hippocampal window over CA1 for long term imaging. After allowing 2 weeks for recovery from surgery, we injected mice with a single dose of tamoxifen (150 mg/kg) to induce Cre recombination and tdTomato expression in Gli1+ RGLs (as shown in Figure 1-figure supplement 2). This resulted in sparse labeling that allowed us to image and track individual cells and their processes. Imaging sessions started 2 days post tamoxifen injection (dpi) and were repeated daily up to 6 dpi in order to locate isolated labeled RGLs which were clearly identifiable by their tufted radial process. Astrocytes were occasionally labelled but were readily distinguishable from RGLs due to their lack of polar morphology and were disregarded.

Post-hoc histology analysis of morphological features and immunoreactivity for GFAP in brain sections was performed to corroborate our initial in vivo identification of a subset of RGLs (Figure S3). After 6 dpi we track individual RGLs to quantify their first division event: we revisited each previously identified, RGL-containing field-of-view every three days and compared it with previous timepoints in order to quantify the first cell division and classify it as symmetric or asymmetric. As previously described [9], asymmetric divisions resulted in motile daughter cells that migrated away from their progenitors within 1-2 imaging sessions (3-6 days) and exhibited shorter and less stable processes, often undergoing further divisions and differentiation (Figure 3B)(Video 1). Conversely, and as shown previously [9], symmetric divisions resulted in the appearance of a faint radial process of a single static daughter cell that remained adjacent to its mother cell (Figure 3B)(Videos 3-4). Over time the cell body of the daughter RGL emerged. For our analysis of cell division, we only considered the first division event from an identified RGL, disregarding subsequent divisions of the daughter cells and analysis of RGL derived lineage trees.

Deletion of Klf9 in RGLs resulted in a significantly greater number of symmetric cell divisions (39 symmetric, 38 asymmetric, 10 mice) compared to Klf9f/+ RGLs (18 symmetric, 47 asymmetric, 8 mice) (Figure 3C). We made sure to have a similar number of division events across both genotypes so that we were confident that the differences in the mode of division are not due to under/over sampling each experimental group (N= 8 control mice, 65 divisions, mean 8.125 divisions per mouse; 10 experimental mice, 77 divisions, mean 7.7 divisions per mouse) (Figure 3D). These data provide definitive evidence for Klf9 functioning as a brake on symmetric self-renewal of RGLs in the adult hippocampus.

Klf9 regulates a genetic program of RGL activation and expansion

To understand how Klf9 regulates RGL division mode, we performed in vivo molecular profiling of RGLs lacking Klf9. We generated Gli1CreERT2, Rpl22HAf/+;Klf9f/+ or +/+ (B6N.129-Rpl22tm1.1Psam/J mice (Ribotag) mice [47] to genetically restrict expression of a hemagglutinin (HA) epitope-tagged ribosomal subunit exclusively in Gli1+ RGLs (Figure 4A). Four days following TAM injections to induce HA expression and Klf9 recombination in a sufficient number of Gli1+RGLs and progeny arising from first division, we dissected the dentate gyrus subregion, biochemically isolated actively translated transcripts, generated cDNA libraries and performed Illumina sequencing (Figures 4A-C). Analysis of the resulting data and gene ontology annotation (ggOSI, https://biit.cs.ut.ee/gprofiler/gost) of differentially expressed genes (DEGs)(Supplementary File 1) broadly categorized signaling pathways and molecular programs associated with neural stem cell activation and quiescence [32, 34, 48-52] (Figure 4C; Figure 4-figure...
supplement 1, Supplementary Files 2 and 3). Functional categories enriched among upregulated DEGs (276) included phospholipase activity (Pla2g7, Pla2g4e, Gpld1), mitogen growth factor signaling (Egfr, Fgfr3, Ntrk2, Lfng) and ligand-gated ion channels (Gabra1, Chrn7, Grin2C, P2rx7). Additionally, our analysis revealed elevation of metabolic programs sustaining energy production and lipogenesis through generation of Acetyl-CoA: CoA- and fatty acid- ligase activity (Acs2, Acs6, Acs5, Acsbg1) and oxidoreductase and aldehyde dehydrogenase activity (Acacl2, Acox1, Ak1b10, Aldh3b1, Aldh4a1) (Supplementary File 2). A complementary set of modules over-represented in the downregulated gene set (462 DEGs) were quiescence growth factor signaling (Bmp2, Bmp4), extra-cellular matrix binding (Itga3, Itga10, Lgfb3, 6, 7), cell adhesion (eg: Emb, Itga3, Itga5), actin binding (Iqgap1), transcription factors (NeuroD4, Zic3) and voltage-gate potassium channel activity (Kcnj8, Kcnq1) (Supplementary File 3).

For validation of DEGs previously linked with neural stem cell quiescence and activation [32, 34, 49, 50, 56], we performed qRT-PCR on an independent replicate of biochemically isolated mRNAs from this population of Gli1+RGLs in vivo. We first confirmed downregulation of Klf9 in RGLs. Next, we validated downregulation of canonical quiescence signaling factors (Bmp4) and upregulation of genes involved in lipid metabolism (Pla2g7), cell cycle (Ccn1a), mitogen signaling (epidermal growth factor receptor, Egfr), and Notch signaling (Lunatic fringe, Lfng) (Figure 4D). Consistent with Lfng-mediated potentiation of Notch1 signaling through cleavage of the Notch1 intra-cellular domain (NICD), we observed significantly elevated levels of NICD in Gli1+ RGLs lacking Klf9 (Figure 4E) [51, 57]. We infer from our loss-of function data that high levels of Klf9 in RGLs induce BMP4 expression and repress gene modules specifying mitogen signaling, fatty acid oxidation, RGL differentiation and cell-cycle exit to inhibit RGL expansion.

Discussion

Central to experience-dependent regulation of neurogenesis is the ability of RGLs to constantly balance demands for neurogenesis and astrogensis or RGL expansion with self-preservation through regulation of quiescence. Since interpretation of the external world is dependent on integration and convergence of physiological extracellular signals upon TFs in RGLs, enriching and adverse experiences are likely to modulate the balance between transcriptional programs that regulate RGL division modes supporting amplification or asymmetric self-renewal [22]. However, in contrast to our knowledge of TFs that regulate asymmetrical self-renewal of RGLs in the adult hippocampus [32-36], the identities of transcriptional regulators of symmetric self-renewal of RGLs have remained elusive. By combining conditional mouse genetics with in vivo clonal analysis and longitudinal two-photon imaging of RGLs, we demonstrated that Klf9 acts as a transcriptional brake on RGL activation state and expansion through inhibition of symmetric self-renewal (Figure 5).

That Klf9 expression is higher in non-dividing RGLs than in activated RGLs is consistent with gene expression profiling of quiescent adult hippocampal RGLs [42, 52] (Jaeger and Jessberger, personal communication) and other quiescent somatic stem cells such as satellite cells [58] and neural stem cells in the subventricular zone [49, 59, 60]. Loss of Klf9 in Gli1+ RGLs resulted in increased RGL activation. Based on our clonal analysis of RGL output and in vivo translational profiling, we think that this increased RGL activation reflects maintenance of an activated or cycling state (also discussed later) to support increased symmetric self-renewal [6].

Our current knowledge of TFs that regulate symmetric self-renewal in the adult hippocampus can only be extrapolated from studies on hippocampal development [61]. Clonal analysis of Gli1-targeted RGLs revealed multi RGL containing clones with progeny. This potentially reflects competition between TFs that dictate balance between symmetric and asymmetric divisions, compensation by downstream effectors of Klf9 or constraints on RGL expansion imposed by availability of niche factors. Such compensatory mechanisms may also explain why constitutive deletion of Klf9 does not overtly affect size of the dentate gyrus [39].

Studies on adult hippocampal neural stem and progenitor cells have relied on assays that induce quiescence and activation in vitro [52], unbiased single cell profiling of neurogenesis [50, 51] or FACS sorting of neural stem and progenitor cells in vivo [34]. Because asymmetric self-renewal is the predominant mode of division, it is most certainly the case that the RGL activation profile inferred from these studies is biased towards asymmetric, rather than symmetric, self-renewal. In contrast, our in vivo translational profiling of long-term self-renewing Gli1+RGL population following cell-autonomous
deletion of Klf9 allowed us to infer how changes in gene expression relate to RGL symmetric division mode and create an exploratory resource for the neural stem cell research community. While ribosomal profiling does not allow us to isolate transcripts from single RGLs, it offers other advantages such as minimizing stress response associated with cell dissociation [62]. Since Gli1CreERT2 specifically targets RGLs and astrocytes (but not progenitors) and we performed biochemical profiling at 4 days post-recombination when we first observe RGL derived progeny, our analysis largely reflects changes in the RGL population, progeny arising from first division and astrocytes. That we observe an enrichment of genes expressed exclusively in RGLs permits us to link gene expression with changes in RGL numbers driven by division mode. Analysis of Klf9 levels by qRT-PCR suggests greater than 50% recombination efficiency of Klf9 in targeted cell populations. Our genome-wide expression analysis suggests that Klf9 functions as an activator or repressor depending on cellular context, although repression appears to be the dominant mode of gene regulation [63, 64]. Validation of specific DEGs in biochemically isolated transcripts from RGLs suggests that Klf9 may activate BMP4 expression in RGLs to suppress activation in vivo [48]. Additionally, Klf9 suppresses RGL proliferation through repression of mitogen signaling receptor tyrosine kinases (EGFR), lipidogenesis (Pla2g7) and cell-cycle (CyclinA1). Pla2g7, interestingly, is expressed only in RGLs and astrocytes in the DG [50, 51] and as such may represent a novel marker of activated RGLs. Given the dual roles of Notch signaling in regulation of active and quiescent RGLs [65], we validated that Lfng is significantly upregulated in RGLs lacking Klf9. Lfng is exclusively expressed in RGLs, promotes Notch1 signaling through glycosylation of Notch1 and generation of NICD following ligand binding, and dictates RGL activation in a ligand dependent manner [66]. Genetic overexpression of Lfng in T cell progenitors sustained Notch1 mediated self-renewal and clonal expansion at expense of differentiation [67]. Consistent with Lfng upregulation in RGLs, we observed elevated levels of NICD in Gli1+ RGLs lacking Klf9 indicative of enhanced Notch1 signaling.

Bioinformatics analysis of our data identified enhanced fatty acid β-oxidation (FAO), a substrate for energy production and lipogenesis as a metabolic program recruited to sustain RGL expansion (Figure 5). In fact, lineage tracing studies on embryonic neocortical neural stem cells has demonstrated a role for FAO in maintenance of neural stem cell identity and proliferation[53]. Specifically, inhibition of Tmlhe (a carnitine biosynthesis enzyme) and carnitine-dependent long-chain fatty acid β-oxidation (carnitine palmitoyltransferase I, CPT1, which catalyzes the rate-limiting reaction in this process) resulted in a marked increase in symmetric differentiating divisions at expense of both symmetric and asymmetric self-renewal of neural stem cells [55]. Inhibition of FAO prevented hematopoietic stem cell maintenance and promoted symmetric differentiating divisions of hematopoietic stem cells [68]. High levels of FAO are directly linked to intestinal stemness[69] and persistence of proliferative capacity across cancers[70]. In sharp contrast to these findings, it has been suggested that high levels of FAO are important for maintaining RGL quiescence. Specifically, deletion of Cpt1a (and inhibition of FAO) in adult hippocampal neural stem cell and progenitors impaired expansion and reduced numbers of RGLs. However, it could not be determined if this was due to death and/or inhibition of symmetric self-renewal of RGLs [54]. Based on our data, we propose that neural stem cells, like other somatic stem cells and progenitors, require high levels of FAO for symmetric self-renewal or expansion.

How does Klf9 function as a brake on RGL symmetric self-renewal? We propose that Klf9 co-represses a suite of genes associated with maintenance of RGLs in symmetric division mode. Pioneering studies have implicated Notch signaling in sustaining symmetric divisions of neuroepithelial cells [71], expansion of putative neural stem cells and progenitors [72] and maintenance of radial glial cell like identity through inhibition of differentiation and cell-cycle exit [73, 74]. Importantly, genetic gain-of-function of Notch1 signaling in RGLs in the adult DG maintains RGLs at the expense of hippocampal neurogenesis [75]. Klf9 may also directly suppress a pro-neurogenic program in RGLs (for eg: NeuroD4, downregulated DEG, Supplementary File 3)[76] or indirectly via competitive interactions with TFs that regulate RGL asymmetric self-renewal. Taken together, loss of Klf9 in RGLs drives expansion through enhanced mitogen and cell-cycle signaling [77], prevention of RGL differentiation, and elevation of lipogenic and FAO metabolic programs (Figure 5).

Our findings stimulate discussion on how experiential signals regulate RGL activation and expansion. To date, GABA(A) R signaling and PTEN signaling (by inhibiting PI3K-Akt pathway) have been shown to promote quiescence and suppress RGL amplifying divisions [5, 25]. It is plausible that Klf9 participates in these signaling pathways as a downstream actuator. Klf9 expression is reduced in neural stem cells lacking FoxO3 [60]. Thus, Akt dependent regulation of neural stem cell activation through
inactivation of FoxO3 [31] may require Klf9 downregulation. Since some of the identified Klf9 target
genes are also regulated by other TFs (e.g., inhibition of EGFR and cyclinA1 by Notch2 [34], activation of
Pla2g7 by FoxO3 [60]), we infer that these factors do not compensate each other, but instead, confer
flexible integration of diverse physiological signals in RGLs to regulate activation. Inhibition of pulsatile
glucocorticoid receptor signaling has also been shown to promote RGL quiescence [24]. Because Klf9
expression is regulated by steroid hormone signaling and neural activity [39, 78, 79] and Klf9 represses
gene expression through recruitment of a mSin3A co-repressor complex [80], Klf9 may support an
epigenetic mechanism for reversible, experiential regulation of NSC decision making.

Our genome-wide dataset serves as a general exploratory community resource in several ways. First, it catalyzes further enquiry into mechanisms underlying neural stem cell quiescence and expansion. By way of example, candidate genes such as the cell adhesion molecule Embigin (downregulated DEG) regulates quiescence of hematopoietic stem/progenitor cells [81] whereas the alpha7 nicotinic receptor (upregulated DEG), ChrnA7, has been shown to be required for maintaining RGL numbers [82]. Second, numerous genes identified in our blueprint are implicated in driving tumorigenesis and as such may guide differentiation-based strategies to block tumor proliferation [83]. Third, our work motivates assessment of how Klf9 may link extracellular, physiological signals with genetic and metabolic programs in RGLs. Fourth, our findings may guide investigation of functional significance of Klf9 enrichment in other quiescent neural (SVZ)[49, 59, 60] and somatic stem cell populations [58].

Our study enables a more holistic assessment of how competing transcriptional programs in RGLs
mediate decision making by including regulators of symmetric and asymmetric self-renewal. A deeper
understanding of Klf9-dependent regulation of RGL homeostasis may guide genetic and metabolic
strategies to replenish the RGL reservoir and restore neurogenesis following injury or expand the NSC
pool in anticipation of future neurogenic demands to support hippocampal dependent memory processing
and emotional regulation [19, 20, 38].
Materials and Methods

Animals were handled and experiments were conducted in accordance with procedures approved by the Institutional Animal Care and Use Committee at the Massachusetts General Hospital and Albert Einstein College of Medicine in accordance with NIH guidelines. Mice were housed three to four per cage in a 12 hr (7:00 a.m. to 7:00 p.m.) light/dark colony room at 22°C–24°C with ad libitum access to food and water.

Mouse lines

The following mouse lines were obtained from Jackson Labs: Klf9-lacZ knock-in (Stock No: 012909), Gli1CreERT2 (Stock No: 007913), Ai14 (Stock No: 007908), mT/mG (Stock No: 007676), B6N.129-Rpl22tm1.1Psam/J (RiboTag)(Stock No: 011029), POMC-Cre (Stock No. 010714), Sox1TTA transgenic mice[44] were obtained from Dr. Robert Blelloch (University of California, San Francisco). Klf9LacZ/LacZ mice were obtained from Dr. Yoshiaki Fujii-Kuriyama (University of Tsukuba and is also available from Jackson Labs, Stock No: 012909). tetO Klf9/Klf9 knock-in mice were generated by us previously [38]. Nestin GFP mice [40] were obtained from Dr. David Scadden at MGH. Klf9 conditional knockout mice were generated through homologous gene targeting using C57BL/6 ES cells by Cyagen. F0s were bred with C57BL/6J mice to generate F1s with germline transmission and mice were backcrossed with C57BL/6J mice for 5+ generations. A set of primers (Forward: CATTGCTAAATGGCGCAGCTTTT; Reverse: CCATCCATTCCTTCATCAGTCTCC) was used to genotype Klf9+/+ or f/f mice to amplify 363 bp mutant band and 240 bp wildtype band. Gli1CreERT2: Klf9+/+ or f/f; mT/mG+/-, were generated by crossing Gli1CreERT2 mice with mT/mG or Ai14 and Klf9+/+ or f/f mice in a C57BL/6J background.

BrdU administration

For analysis of cell proliferation in dentate gyrus, mice were injected with BrdU (200 mg/kg body weight, i.p.) and sampled 2 hours later. For analysis of long-term retaining cells in dentate gyrus, mice were given daily injection of BrdU (25 mg/Kg body weight, i.p.) for 14 days and sampled 24 hours after the last injection.

Tamoxifen administration

Tamoxifen (20 mg/ml, Sigma, T5648) was freshly prepared in a 10% ethanol of corn oil (Sigma C8267). For population analysis, a dose of 150 mg/kg or 250 mg/Kg was intraperitoneally injected into 8 weeks old male and female mice (Figure 1F). For clonal analysis, a dose of 50mg/Kg and 100mg/Kg were used in reporter lines of Ai14 and mT/mG respectively (Figure 2A and Figure 2E). Mice were sampled 7 or 28 days post-tamoxifen injection. For two-photon imaging (Figure 3A), one dose of 150 mg/kg Tamoxifen was given 2 days prior to in vivo imaging. For ribosomal profiling, a dose of 250 mg/kg body weight was intraperitoneally injected into 2-3 months mice every 12 hours for 3 times. Mice were sampled 4 days after the last injection (Figure 4A).

Tissue processing and immunostaining

35 μm cryosections obtained from perfused tissue were stored in PBS with 0.01% sodium azide at 4°C. For immunostaining, floating sections were washed in PBS, blocked in PBS containing 0.3% Triton X-100 and 10% normal donkey serum and incubated with primary antibody overnight at 4 °C overnight (Rockland, rabbit anti RFP, 1:500; Millipore, chicken anti-GFAP, 1:2000; goat anti-GFP, Novus, 1:500; Santa Cruz, sc-8066, Goat anti-DCX, 1:500). The Mcm2 (BD Biosciences, mouse anti-Mcm2; 1:500), GFP (Abcam, Chicken anti-GFP, 1:2000), LacZ (Promega, Mouse anti-beta Galactosidase, 1:2000) and Nestin (Aves lab, chicken anti-Nestin, 1:400) antigens were retrieved by incubating brain sections in Citric buffer in pressure cooker (Aprum, 2100 retriever) for 20 min, followed by 60 min cooling to room temperature. BrdU antigen was retrieved by incubating brain sections in 2N HCl for 30 min at 37°C following 15 mins fixation in 4% PFA on previously processed fluorescent signal. On the next day, sections were rinsed three times for 10 min in PBS and incubated for 90 min with Fluorescent-label-coupled secondary antibody (Jackson ImmunoResearch, 1:500). Sections were rinsed three times for 10 min each in PBS before mounting onto glass slides (if applicable) and coverSlipped with mounting media containing DAPI (Fluoromount with DAPI, Southern Biotech). NICD (rabbit anti-cleaved Notch1, Assay Biotech Cat# L0119 RRID:AB_10687460 at 1:100) immunostaining was performed as described [66].
Klf9 in situ hybridization

We used a transgenic mouse line that expresses GFP under the control of the Nestin promoter to label the cell bodies[40]. Mice were sacrificed 2 hours after a single BrdU injection (200 mg/Kg). *Klf9* expression was detected by fluorescent in situ hybridization (FISH) using a *Klf9* antisense probe complementary to Exon 1 (530-1035bp) of *Klf9* mRNA. Briefly, in situ hybridization (ISH) was performed using dioxigenin-labeled riboprobes on 35 μm cryosections generated from perfused tissue as described [38]. Premixed RNA labeling nucleotide mixes containing dioxigenin-labeled UTP (Roche Molecular Biochemicals) were used to generate RNA riboprobes. *Klf9* null mice were used as a negative control and to validate riboprone specificity. Riboprobes were purified on G-50 Microspin columns (GE Healthcare). Probe concentration was confirmed by Nanodrop prior to the addition of formamide. Sections were mounted on charged glass (Superfrost Plus) slides and postfixed for 4% paraformaldehyde (PFA). Sections were then washed in DEPC-treated PBS, treated with proteinase K (40 μg/ml final), washed again in DEPC-treated PBS, and then acetylated. Following prehybridization, sections were incubated with riboprobe overnight at 60°C, washed in decreasing concentrations of SSC buffer, and immunological detection was carried out with anti-DIG peroxidase antibody (Roche) at 4°C overnight and were visualized using Cy3-conjugated Tyramide Signal Amplification system (Perkin-Elmer) at room temperature. In situ hybridization was followed by immunostaining for GFP (Goat anti-GFP, Novus, 1:500), and BrdU (Rat anti-BrdU, Biorad, 1:500) incubated at 4°C overnight and followed by incubation of 488- and Cy5-conjugated secondary antibodies (Jackson ImmunoResearch, 1:500) for 2 hours at room temperature. *Klf9* in situ hybridization was performed on *POMC-Cre;Klf9*+/+ and +/+ mice using *Klf9* exon1 probe to validate the *Klf9* conditional knockout mice. Immunological detection was carried out with anti-DIG antibody conjugated with alkaline phosphatase (Roche). Color reaction was conducted with NBT/BCIP. *Klf9* null mice were used as a negative control.

Estimation of Klf9 recombination frequency in Gli1-positive tdTomato labeled RGLs.

Gli1CreERT2:Klf9+/-;Ai14 and *Gli1CreERT2;Klf9+/+;Ai14* mice were given one dose of Tamoxifen (150mg/kg) IP and were then perfused with DEPC-treated PBS and fixed with 4% PFA. 35 μm cryosections sections were mounted on the same slides. After hybridization with *Klf9* riboprobe, slides were washed and blocked with NUN buffer for 1 hr at RT. The following antibodies were used for immunostaining: anti-DIG peroxidase antibody (mouse, 1/8000, Roche); anti-RFP (rabbit, 1/500, Rockland). Slides were washed and coverslipped with mounting medium (Southern biotech). *Klf9* fluorescence intensity within the cell body was recorded.

Images acquisition and analysis

Images were obtained from one set of brain sections (6 sets generated for each brain) for each immunostaining experiment (set of antigens). Stained sections were imaged at 20X or 40x on a Nikon A1R Si confocal laser, a TiE inverted research microscope or a Leica SP8 confocal microscope. All of analysis were performed by an experimenter blind to group identity.

LacZ intensity quantification. We used mice carrying a LacZ allele knocked into the endogenous *Klf9* allele (*Klf9Lac/Z+/-;Nestin-GFP* mice)[39]. *Klf9Lac/Z+/-;Nestin-GFP* mice were crossed with Nestin GFP mice to generate *Klf9Lac/Z+/-;Nestin-GFP* mice. These mice were used to quantify LacZ expression levels in quiescent RGLs (GFP+MCM2+ with radial process), activated RGLs (GFP+MCM2+ with radial process), and NPCs (GFP+MCM2+ without radial processes). The distinction between RGLs and NPCs was determined through morphological analysis. Images (1024 resolution) were acquired as 7 Z-stacks with a step size of 1 μm. 2-4 stacks of images from each mouse were selected for further quantification. Since the LacZ gene had been knocked into the endogenous *Klf9* locus, mean intensity of LacZ expression, assessed by fluorescent signal with LacZ immunostaining using ImageJ software in each GFP+ cell body, was used as a surrogate for *Klf9* expression in *Klf9Lac/Z+/-;Nestin-GFP* mice. Mean background intensity was obtained from LacZ negative regions being divided from the calculations in the same section. *Klf9* FISH signal quantification. Images (2048 resolution) were acquired by a Leica SP8 confocal microscope as 30 Z-stacks with a step size of 0.5 μm. Representative images were generated by exporting stacked confocal images at full resolution for three-dimensional visualization using Imaris. The distinction between neural progenitor cells (NPCs) and neural stem cells (NSCs) was determined through morphological analysis with GFP staining. Activated RGLs were differentiated from quiescent RGLs through BrdU antibody staining (cell proliferation markers). Analysis and quantification of *Klf9* signal...
Intensity in each GFP+ cell body was conducted using automatic counting with ImageJ software. Images were converted into 1-bit images. Then Klf9 puncta were counted within GFP+ cell body boundaries through particle analysis allowing for number and average size of puncta to be recorded. Klf9 null mice crossed with Nestin GFP mice were used as a negative control.

Clonal lineage analysis
Clonal analysis was conducted with sparse labeling after optimizing dose of Tamoxifen as previously described[5]. Ai14 and mTmG reporter mice were used to visualize the recombined cells. Serial coronal sections were generated and immunostained for GFAP, RFP or GFP antigens. Images acquisition and analysis were restricted to entire dentate gyri ~2000 μm along the dorsal-ventral axis. RGLs were classified as cells that were located in the subgranular zone, had radial projections that extended into the granule cell layer, and were co-labeled with GFAP and RFP or GFP. Cells with GFAP labeling without radial processes but exhibiting a bushy morphology were identified as astrocytes. Recombined GFP+ or RFP+ cells without GFAP labeling in close spatial proximity to other cells were identified as neuronal progeny cells. A ring with a radius of 50 μm from the center of the RGL was used to determine the clone composition. A single cell (astrocyte or neuron) was not counted as a clone. Images (1024 resolution) were acquired using a Leica SP8 confocal microscope as 20-25 Z-stacks with a step size of 1.5 μm. Mice with less than 2 clones per hemisection on average were determined as standard for sparse labeling and were selected for clonal analysis. Except for the single RGL clone category, all the labeled cells within one clone were in close spatial proximity to each other. Clones were categorized according to the presence or absence of an RGL and the type of progeny. For imaris image analysis, Z-series confocal images were processed for all the channels. The intensity of each channel was adjusted and representative images were used to generate a TIFF file by taking a ‘screen snapshot’.

Two-photon imaging of Gli1+ Klf9+/+ or f/f RGLs division modes in vivo
12-16 weeks old Gli1CreERT2.Klf9+/+ or f/f;Ai14 mice were used for intravital 2P imaging of RGLs.
Window Implantation: We followed an established protocol to implant a cranial window over the right hemisphere of the dorsal hippocampus [9]. Briefly, we drilled a ~3 mm wide craniotomy, removed the underlying dura mater and aspirated the cortex and corpus callosum. A 3-mm diameter, 1.3-mm deep titanium implant, with a glass sealed to the bottom was then placed above the hippocampus. The implant and a titanium bar (29 x 3.8 x 1.3 mm) were held in place with dental cement. A titanium bar was used in order to secure the animal to the microscope stage. Mice were given a single dose of dexamethasone (1 mg/Kg, i.p.) before surgery to reduce brain swelling, and carprofen (5mg/Kg, i.p.) for inflammation and analgesic relief after surgery completion. Implanted animals were given two weeks to recover from surgery and allow any inflammation to subside.
Two-photon imaging of aRGL divisions: In vivo imaging was done on a custom two-photon laser scanning microscope (based on Thorlabs Bergamo) using a femtosecond-pulsed laser (Coherent Fidelity 2, 1075 nm) and a 16x water immersion objective (0.8 NA, Nikon). We imaged mice under isoflurane anesthesia (~1% isoflurane in O2, vol/vol) and head-fixed to the microscope stage via a titanium bar implant while resting on a 37° C electrical heating pad (RWD ThermoStar). Expression of the tdTomato fluorescent label in Gli1+ RGLs was induced with a single injection of Tamoxifen (150ul/mg) two weeks after window implantation. Imaging began two days after tamoxifen injection (2 dpi) and continued every day until 6 dpi in order to locate sparse labeled RGLs. Afterwards, mice were imaged every 3 days, whenever possible and were imaged up to 60 days. Using a coordinate system, we marked locations of RGLs for recurrent imaging of the same cell. At each time point, we acquired a three-dimensional image stack of each field-of-view containing tdTomato-expressing cells and annotated their location so that the same cell could be imaged again in the following session.
Cell division classification: Cell divisions were analyzed by two different experimenters blinded to genotype. We first compiled all z-stacks into a single sum-projected image for each time point, and then we used FIJI-ImageJ to analyze the images. Only the first recorded cell division for a given clone was included in the analysis. We defined RGL symmetric division as a new RGL generated from the mother RGL, characterized by the development of a stable radial process and static behavior of cell bodies for at least 6 days after birth. We defined asymmetric division as new neural progenitor cell(s) generated from the mother RGL that exhibited shorter and less stable processes. These NPCs often began to migrate away within 1-2 imaging sessions (3-6 days).
Ribotag isolation of mRNAs from Gli1+RGLs

We used Gli1CreERT2:Rpl22HAf/+:Klf9f/+ mice which enables expression of haemagglutinin (HA)-tagged ribosomal protein RPL22 (RPL22–HA) following Cre recombination in Gli1+ Klf9f/+ or +/+ RGLs. Ribotag immunoprecipitation and RNA extraction were performed 4 days after last TAM injection following the original protocol with minor modifications [47]. 6 dentate gyri from 3 mice were pooled per sample and homogenized with a dounce homogenizer in 900 ul cycloheximide-supplemented homogenization buffer.

Homogenates were centrifuged and the supernatant incubated on a rotator at 4°C for 4 hours with 9ul anti-HA antibody (CST Rb anti-HA #3724, 1:100) to bind the HA-tagged ribosomes. Magnetic IgG beads (Thermo Scientific Pierce #88847) were conjugated to the antibody-ribosome complex via overnight incubation on a rotator at 4°C. RNA was isolated by RNeasy Plus Micro kit (Qiagen 74034) following the manufacturer’s protocol. Eluted RNA was stored at -80°C. For enrichment analysis, 45ul of homogenate (pre-anti-HA immunoprecipitation) was set aside after centrifugation, kept at -20°C overnight, and purified via RNeasy Micro kit as an ‘input’ sample, and used to determine NSC enrichment. RNA quantity and quality were measured with a Tape Station (Agilent) and Qubit fluorimeter (Thermo Fisher Scientific).

Sequencing libraries were prepared using Ultra Low Input RNA Kit (Clontech).

RNA-seq analysis

NGS libraries were constructed from total RNA using Clontech SMARTer v4 kit (Takara), followed by sequencing on an Illumina HiSeq 2500 instrument, resulting in 20-30 million 50 bp reads per sample. The STAR aligner [84] was used to map sequencing reads to transcriptome in the mouse mm9 reference genome. Read counts for individual genes were produced using the unstranded count function in HTSeq v.0.6.0 [85], followed by the estimation of expression values and detection of differentially expressed transcripts using EdgeR [86] and including only the genes with count per million reads (CPM) > 1 for one or more samples [87]. Differentially expressed genes were defined by at least 1.2-fold change with p< 0.05. NCBI GEO accession number GSE164889.

qRT-PCR

mRNA was biochemically pooled and isolated as described above for Ribosomal profiling. The first-stranded complementary DNA was generated by reverse transcription with SuperScript IV first-strand synthesis system (Thermo Fisher Scientific). For quantification of mRNA levels, aliquoted cDNA was amplified with specific primers and PowerUp SYBR Master Mix (BioRad) by CFX384 Touch Real-Time PCR detection system (BioRad). Primers were optimized and designed to hybridize with different exons. Primers are listed here (name and sequence 5’ -> 3’ are indicated).

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward Primer</th>
<th>Reverse Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>pla2g7</td>
<td>TCAAACTGACGGGCCCTTTTTC</td>
<td>AGTACAAACGCACGAAGACG</td>
</tr>
<tr>
<td>Egfr</td>
<td>GCCATCTGGGCCCAAGATACC</td>
<td>GTCTTCGCAATGAATAGGCCAAT</td>
</tr>
<tr>
<td>Lfng</td>
<td>AAAGATGGCTGGAGGTATGACC</td>
<td>TCATTTGCTGGCTGCTGATC</td>
</tr>
<tr>
<td>Ccn1a</td>
<td>GATACCTGCTGGGGAAGAGAG</td>
<td>GCATTGGGAAACTGTGTTGA</td>
</tr>
<tr>
<td>Klf9</td>
<td>AAACACGCCTCCGAAAAGAG</td>
<td>AACTGCTTTTCCCCAGTGTG</td>
</tr>
<tr>
<td>Bmp4</td>
<td>GACCAATGTCCTATTCAGCTTTC</td>
<td>AAAACGACCACGACGATCGG</td>
</tr>
<tr>
<td>Actb</td>
<td>CATTTGGGACAGGATGCAGAAG</td>
<td>TGCTGGAAGGTGGGACAGTGTG</td>
</tr>
</tbody>
</table>

Statistical Analysis

Statistical analysis was carried out using GraphPad Prism software. Both data collection and quantification were performed in a blinded manner. Data in figure panels reflect several independent experiments performed on different days. An estimate of variation within each group of data is indicated using standard error of the mean (SEM). Comparison of two groups was performed using two-tailed student’s unpaired t-test unless otherwise specified. Comparison of one group across time was performed using a one-way ANOVA with repeated measure. Comparison of two groups across treatment condition or time was performed using a two-way repeated measure ANOVA and main effects or interactions were followed by Bonferroni post-hoc analysis. In the text and figure legends, “n” indicates number of mice per group.
Detailed statistical analyses can be found in Supplementary File 4. For statistical analysis of DEGs, please see RNA-seq analysis section for details.

Two-photon imaging: In order to compare differences in the modes of RGL division between the two genotypes, we used the R statistical analysis software to fit a generalized linear mixed effects (LME) model to the division numbers across different mice, using genotype as a fixed effect, and including animal identity as a random effect in order to account for differences between individual animals

\[\text{DivisionType}\sim\text{Genotype}+(1|\text{MouseIdentity}) \]. p-values were calculated with a Likelihood-Ratio Test (LRT) comparing our model to a null model with no genotype information and identical random effects

\[\text{DivisionType}\sim1+(1|\text{MouseIdentity}) \].
<table>
<thead>
<tr>
<th>Antibodies</th>
<th>Source</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat anti-BrdU</td>
<td>Bio-Rad</td>
<td>Cat# MCA2483T, RRID:AB_1055584</td>
</tr>
<tr>
<td>Rabbit anti-GFAP</td>
<td>Millipore</td>
<td>Cat# AB5804, RRID:AB_2109645</td>
</tr>
<tr>
<td>Chicken anti-Nestin</td>
<td>Aves lab</td>
<td>Cat# NES, RRID:AB_2314882</td>
</tr>
<tr>
<td>Rabbit anti-RFP</td>
<td>Rockland</td>
<td>Cat# 600-401-379, RRID:AB_2209751</td>
</tr>
<tr>
<td>Chicken anti-GFAP</td>
<td>Millipore</td>
<td>Cat# AB5541, RRID:AB_177521</td>
</tr>
<tr>
<td>Goat anti-GFP</td>
<td>Novus</td>
<td>NB100-1770, RRID:AB_10128178</td>
</tr>
<tr>
<td>Goat anti-DCX</td>
<td>Santa Cruz Biotechnology</td>
<td>Cat# sc-8066, RRID:AB_2088494</td>
</tr>
<tr>
<td>Mouse anti-beta Galactosidase</td>
<td>Promega</td>
<td>Cat# Z3781, RRID:AB_430877</td>
</tr>
<tr>
<td>Chicken anti-GFP</td>
<td>Abcam</td>
<td>Cat# ab13970, RRID:AB_300798</td>
</tr>
<tr>
<td>Mouse anti-Mcm2</td>
<td>BD Biosciences</td>
<td>Cat# 610700, RRID:AB_2141952</td>
</tr>
<tr>
<td>NICD, rabbit anti-cleaved Notch1</td>
<td>Assay Biotech</td>
<td>Cat# L0119, RRID:AB_10687460</td>
</tr>
<tr>
<td>Rabbit anti-HA</td>
<td>Cell Signaling</td>
<td>Cat# 3724, RRID:AB_1549585</td>
</tr>
<tr>
<td>Anti-Digoxigenin Fab fragments</td>
<td>Roche</td>
<td>Cat# 11207733910, RRID:AB_514500</td>
</tr>
<tr>
<td>Antibody, POD Conjugated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Digoxigenin Fab fragments</td>
<td>Roche</td>
<td>Cat# 11093274910, RRID:AB_514497</td>
</tr>
<tr>
<td>Antibody, AP Conjugated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexa Fluor® 488-, Cy3-, or Cy5-</td>
<td>Jackson ImmunoResearch</td>
<td>N/A</td>
</tr>
<tr>
<td>conjugated donkey secondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goat anti-RFP</td>
<td>Siegen</td>
<td>Cat# AB1140-100, RRID:AB_2877097</td>
</tr>
</tbody>
</table>

Competing interests: The authors declare no competing interests

Data and materials availability: Mouse lines generated in this study are available from the Lead Contact with a completed Materials Transfer Agreement. RNA sequencing data was submitted to NCBI GEO database for public access and is being processed (accession number GSE164889).

Acknowledgements

We wish to thank members of Sahay and Goncalves labs for input on this work. N.G received support from Department of Psychiatry, MGH. KM is a trainee in the Einstein Training Program in Stem Cell Research, supported by the Empire State Stem Cell Fund through New York State Department of Health Contract C34874GG. Y.S is recipient of a MGH ECOR Fund for Medical Discovery (FMD) Fundamental Research Fellowship Award. D.G, C.H, J.C and A.Z are recipients of HSCI summer internship fellowships. A.S. acknowledges NINDS R56NS117529, Ellison Family Philanthropic support and the James and Audrey Foster MGH Research Scholar Award for supporting this work. J.T.G. acknowledges support from US National Institutes of Health NINDS R56NS117529 and the Whitehall Foundation. A.S thanks L. M. S. Sahay for proof reading manuscript.
Figure 1. Klf9 is elevated in non-dividing RGLs and loss of Klf9 promotes RGL activation

(A-B) Klf9 expression inferred from LacZ expression intensity in quiescent RGLs, qRGL (GFP+MCM2- with radial process, arrows), activated RGL, aRGL (GFP+MCM2+ with radial process, arrowheads) and activated neural progenitors, aNPCs (GFP+MCM2+ without a radial process) in Klf9 LacZ/+;Nestin GFP transgenic. qRGLs exhibit higher Klf9 expression than aRGLs and aNPCs. n=3 mice/group.

(C-E) Fluorescence in situ hybridization using a Klf9 specific riboprobe and immunohistochemistry for GFP and BrdU on adult hippocampal sections obtained from Klf9 LacZ/+ or LacZ/LacZ; Nestin GFP transgenic mice. (D) Specificity of riboprobe established by detection of Klf9 expression in dentate gyrus of Klf9 +/- but not in Klf9 LacZ/LacZ mice. (C, E) Klf9 is expressed in qRGLs but not in dividing (BrdU+) RGLs or aNPCs. n=3 mice/group.

(F-G) Inducible deletion of Klf9 in Gli1+ RGLs in adult mice (Gli1CreERT2:Klf9+/+::Ai14 vs. Gli1CreERT2:Klf9fl/fl:Ai14) results in increased RGL activation (percentage of MCM2+tdTomato+Nestin+RGLs). n=3, 4 mice/group.

Data are represented as mean ± SEM. * p<0.05, ** p<0.01, **** p<0.0001. Scale Bar Figures 1B, 1F: 50 μm, Figure 1D 250 μm, Figure 1E 20 μm.

See also corresponding Figure 1-figure supplements 1-3.
Figure 1-figure supplement 1.

Generation and characterization of Klf9 conditional mutant mouse line.

(A) Schematic of wild-type and modified Klf9 alleles.

(B) PCR on tail DNA showing expected bands conveying wild-type and conditional alleles.

(C) (Left) Klf9 *in situ* hybridization on hippocampal sections from 4 months old POMC Cre: Klf9^+/+ or ff mice showing expected salt and pepper pattern of recombination in dentate gyrus that is characteristic of POMC Cre recombination pattern in dentate gyrus. (Right) Klf9 *in situ* hybridization on hippocampal sections from adult Klf9^-/- mice conveying specificity of Klf9 riboprobe. Scale bar: 500 µm
Figure 1-figure supplement 1
Estimation of Klf9 recombination frequency in Gli1-positive tdTomato labeled RGLs.

(A) Representative low magnification images of Klf9 FISH signal (Klf9 transcripts) in dentate gyrus sections obtained from Gli1CreERT2:Klf9^{CreERT2}:Ai14 and Gli1CreERT2:Klf9^{CreERT2}:Ai14 mice following TAM mediated induction of Klf9 recombination in Gli1-positive RGLs. (B) High magnification images of Klf9 FISH signal (Klf9 transcripts) in Gli1-positive tdTomato labeled RGLs in Gli1CreERT2:Klf9^{CreERT2}:Ai14 and Gli1CreERT2:Klf9^{CreERT2}:Ai14 mice. (C) Quantification of Klf9 transcript associated fluorescence intensity in Gli1-positive RGLs in Gli1CreERT2:Klf9^{CreERT2}:Ai14 and Gli1CreERT2:Klf9^{CreERT2}:Ai14 mice following TAM mediated induction of recombination. RGLs (n=23 Klf9^{CreERT2}, n=24 Klf9^{CreERT2}) were analyzed from 2 mice/group.

Scale bar: 100 µm (A) 20 µm (B). Data are represented as mean ± SEM. * p<0.05
Figure 1-figure supplement 2
Inducible overexpression of Klf9 in activated neural stem and progenitors promotes quiescence.

(A-B) Two cohorts of Adult Sox1tTA: tetO Klf9 mice were used. Klf9 induction in neural stem and progenitors following 3 weeks off Dox significantly reduced the fraction of activated RGLs (%MCM2+Nestin+RGLS, n=6 and 4 mice/group). Representative images shown in bottom panel. (C-D) A second cohort of mice was given BrdU pulses during the Off Dox window when Klf9 is upregulated. Analysis of BrdU+Nestin+ RGLs (n=3 mice/group) revealed a significant reduction in total numbers of dividing RGLs. Representative images shown here. Unpaired t-tests, Panel B: p=0.0003, Panel D: p=0.005. Data are represented as mean ± SEM. ** p<0.01, *** p<0.001 Scale bar: 100 µm (top), 50 µm (C)
Figure 1-figure supplement 3
Figure 2. \textit{Klf9} deletion in RGLs produces supernumerary RGL clones

(A-D) Clonal analysis of sparsely labeled Gli1+RGLs in adult \textit{Gli1}^{CreERT2:Klf9}^{+/+or f/f}.Ai14 mice at 7dpi. (A, C) Representative images of labeled RGL clones and descendants. For example, A top: single RGL (white arrow), A bottom: 2 RGLs. Identification was based on tdTomato+ morphology and GFAP immunohistochemistry. (B) Statistical representation of clones for specified compositions for both genotypes expressed as fraction of total clones quantified. (D) Breakdown of clones into 2RGL+ (2 or more RGL containing clones and progeny) and single RGL+ clones (clones containing only 1 RGL and progeny). Loss of Klf9 in Gli1+ RGLs results in statistically significant overrepresentation of 2 or more RGL containing clones and significant reduction in “1 RGL containing clones” suggestive of \textit{Klf9} repressing RGL expansion. n=4 mice/group.

(E-F) Clonal analysis of sparsely labeled Gli1+RGLs (white arrow) in adult \textit{Gli1}^{CreERT2:Klf9}^{+/+or f/f}.mTmG mice at 7dpi. Inducible deletion of \textit{Klf9} in Gli1+ RGLs results in statistically significant overrepresentation of multiRGL containing clones (2 or more RGLs, 2RGL+) and a significant reduction in single RGL containing clones (1RGL+). Identification was based on GFP+ morphology and GFAP immunohistochemistry. Representative images (E) and corresponding quantification in (F). n=4 and 5 mice/group.

P: Progenitor(s), A: Astrocyte. Data are represented as mean ± SEM. * \textit{p}<0.05, *** \textit{p}<0.001, ****\textit{p}<0.0001. Scale Bar Figures 2A, 2C and 2E 20 \textmu m.

See also corresponding Figure 2-figure supplement 1 and Figure 2-Videos 1-8.
Figure 2
Figure 2-figure supplement 1

Analysis of clonal composition in Figure 2C. Representative images of labeled RGL clones and descendants. Identification was based on tdTomato+ morphology and GFAP immunohistochemistry. Z-series of confocal images in Figure 2C were processed using Imaris software. Scale bar: 15 um.

Also see Figure 2-Videos 1-8.

Figure 2-Videos 1-8

3D images of representative RGL clonal compositions depicted in Figure 2C

Figure 2-figure supplement 1
Figure 3. Klf9 functions as a brake on symmetric self-renewal of RGLs

(A) Diagram of experimental design for in vivo 2-photon imaging experiments. Inset is a high magnification image of a sparsely labeled single RGL in an adult Gli1CreERT2:Klf9^+/^-Ai14 mouse.

(B) Representative series of longitudinal imaging from four fields of view showing RGL symmetric and asymmetric divisions. Row 2: Control. Rows 1, 3, 4: Experimental. Arrows point to mother cell and arrowheads point to daughter cells. Scale bars: 20 µm.

(C) Quantification of RGL symmetric and asymmetric divisions showing an increase in symmetric divisions in Gli1CreERT2:Klf9^+/^-Ai14 mice. n=8 Gli1CreERT2:Klf9^+/^-Ai14 mice, 65 divisions; n=10 Gli1CreERT2:Klf9^+/^-Ai14 mice, 77 divisions. Odds of symmetric division are 2.7x higher in Gli1CreERT2:Klf9^+/^-Ai14 mice, p=0.015 Likelihood-Ratio Test.

(D) Similar number of divisions were recorded for each group to avoid biased assessment of division mode (n=8 and 10 mice/group).

See also corresponding Figure 3-figure supplement 1 and Figure 3-Videos 1-4.
Figure 3
Figure 3-figure supplement 1

Representative images of RGL divisions captured using 2-photon imaging in vivo

(A) Representative 2-photon images of RGL cells R1 and R2 in vivo and their respective post-hoc fluorescence image. (B) Confocal immunofluorescence images of the same GFAP+/tdTomato+ cells at different depths, confirming their RGL identity. (C) Imaris deconvolution of tdTomato labeled RGLs in B. Scale bars: 20 µm.

Also see Figure 3-Videos 1-4: In vivo two-photon imaging of Gli1-positive RGLs

Figure 3-Video 1: Narrated example of longitudinal imaging of asymmetric NSC divisions. Two-photon imaging across days showing two examples of asymmetric division of NSCs (red arrows).

Figure 3-Video 2: Narrated example of longitudinal imaging of symmetric cell divisions. Two-photon imaging across days showing two examples of symmetric division of NSCs (blue arrows).

Figure 3-Video 3: 3-dimensional reconstruction of RGL cells imaged in vivo before undergoing symmetric division. Field of view corresponds to second row of Figure 3B at 18 dpi.

Figure 3-Video 4: 3-dimensional reconstruction of RGL cells imaged in vivo after undergoing symmetric division. Field of view corresponds to second row of Figure 3B at 30 dpi.
Figure 4. *Klf9* regulates genetic programs underlying RGL expansion

(A) Schematic of experimental workflow to biochemically isolate and sequence translated mRNAs from Gli1+RGLs (*Gli1*^CreERT2^:*Rpl22HA^Δ^:Klf9^Ef/ or +/- mice). n=3 mice, 6 dentate gyri/sample, 3 samples per group.

(B) Principal component analysis (PCA) plot of translational profiles of *Gli1*^CreERT2^ targeted *Klf9*^+/+ or *Ef* RGLs. First two principal components are shown with the corresponding fractions of variance.

(C) Left: Heatmap of expression values for differentially expressed genes. Middle: Volcano plot of statistical significance (-log10 P-value) vs. magnitude of change (log2 of fold change) of gene expression. Differentially expressed genes are marked in red. Upregulated genes in *Klf9*^Ef* RGLs are on the right and downregulated genes in *Klf9*^Ef* RGLs are on the left. Right: Piechart of numbers of upregulated and downregulated genes in *Gli1*^CreERT2^ targeted *Klf9*^Ef* RGLs.

(D) qRT-PCR on biochemically isolated mRNAs from *Gli1*^CreERT2^:*Rpl22HA^Δ^:Klf9^Ef/ or +/- mice validating candidate differentially expressed genes. n=3 samples, 6 dentate gyri/sample, 3 samples per group.

(E) Immunostaining and quantification of NICD in RGLs of *Gli1*^CreERT2^: Klf9^Ef/ or +/- mice. Deletion of Klf9 results in increased NICD levels in RGLs consistent with Lnfg dependent potentiation of Notch1 signaling (Cartoon, top left). n=3 mice/group. Data are represented as mean ± SEM. * p<0.05, ** p<0.01, *** p<0.001. Scale bar: 10 um.

See also corresponding Figure 4-figure supplement 1 and Supplementary Files 1-3.
Figure 4
Figure 4-figure supplement 1. Annotation of upregulated and downregulated DEGs in Gli1+RGLs following Klf9 deletion

Gene ontology annotation (gGOSt, https://biit.cs.ut.ee/gprofiler/gost) of differentially expressed genes (DEGs) in Gli1+RGLs following Klf9 deletion.

Also see Supplementary File 1 Complete lists of differentially expressed genes (DEGs) in Gli1+RGLs following Klf9 deletion. DEGs were defined by at least 1.2-fold change with FDR < 0.05.

Supplementary File 2 Gene ontology annotation (gGOSt, https://biit.cs.ut.ee/gprofiler/gost) of differentially upregulated genes in Gli1+RGLs following Klf9 deletion.

Supplementary File 3 Gene ontology annotation (gGOSt, https://biit.cs.ut.ee/gprofiler/gost) of differentially downregulated genes in Gli1+RGLs following Klf9 deletion.
Figure 4-figure supplement 1
RGLs integrate extracellular, experiential signals to exit quiescence, the dominant state, and become activated. *Klf9* expression is elevated in quiescent RGLs. Low levels of *Klf9* in RGLs is associated with increased activation. Once activated, RGLs lacking *Klf9* are biased towards symmetric self-renewal and RGL expansion. Translational profiling of RGLs reveals how loss of *Klf9* results in downregulation of a program of quiescence and activation of genetic (mitogen, notch) and metabolic (fatty acid oxidation and lipid signaling) programs underlying RGL symmetric self-renewal. Candidate differentially expressed upregulated (orange) and downregulated genes (blue) in RGLs following *Klf9* deletion are shown here. Genes in bold indicates validation by qRT-PCR.