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Abstract: We and others have shown that during odor plume navigation, walking Drosophila 
melanogaster bias their motion upwind in response to both the frequency of their encounters with 
the odor (Demir et al., 2020) and the intermittency of the odor signal, which we define to be the 
fraction of time the signal is above a detection threshold (Alvarez-Salvado et al., 2018). Here, we 
combine and simplify previous mathematical models that recapitulated these data to investigate the 
benefits of sensing both of these temporal features and how these benefits depend on the spatio-
temporal statistics of the odor plume. Through agent-based simulations, we find that navigators that 
only use frequency or intermittency perform well in some environments – achieving maximal perfor-
mance when gains are near those inferred from experiment – but fail in others. Robust performance 
across diverse environments requires both temporal modalities. However, we also find a steep 
trade-off when using both sensors simultaneously, suggesting a strong benefit to modulating how 
much each sensor is weighted, rather than using both in a fixed combination across plumes. Finally, 
we show that the circuitry of the Drosophila olfactory periphery naturally enables simultaneous inter-
mittency and frequency sensing, enhancing robust navigation through a diversity of odor environ-
ments. Together, our results suggest that the first stage of olfactory processing selects and encodes 
temporal features of odor signals critical to real-world navigation tasks.

Editor's evaluation
This article by Jayaram and colleagues uses computational modeling approaches to examine how 
temporal filtering of an odor signal contributes to navigation success in different odor environments. 
The article advances the literature in considering how different algorithms may be optimal for 
different environments. The provided evidence suggests an intriguing trade-off between frequency 
and ‘intermittency’ sensing.

Introduction
The complexity of natural odor plumes makes olfactory navigation a difficult task. Turbulent flows 
produce rapid changes in the local odor concentrations, and instantaneous odor gradients often do 
not point toward the source (Celani et al., 2014; Crimaldi and Koseff, 2001). Encounters between 
the animal and odorized packets of air are intermittent, with durations and frequencies spanning many 
orders of magnitude (Celani et al., 2014). Moreover, distinct flow conditions result in distinct spatio-
temporal statistics: near boundaries and with lower mean wind speeds, odor plumes are smoother, 
with odor concentrations consistently above detectable thresholds (Connor et al., 2018). But rough-
ness in the physical landscape – sands, rough terrain, vegetation – and shifting winds can cause plumes 
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to break up into discrete odor filaments, interspersed with long periods of undetectable concentra-
tions (Cardé and Willis, 2008; Murlis et al., 1992; Riffell et al., 2008). There, encounters with odor 
filaments can occur over a wide range of frequencies from 0.1 Hz (Riffell et al., 2008) to 5 Hz or more 
(Demir et al., 2020).

To navigate plumes exhibiting this degree of temporal complexity, animals must be able to detect 
odor encounters quickly and accurately. Indeed, many organisms have evolved olfactory receptor 
neurons (ORNs) that respond to chemical signals with high temporal precision (Gorur-Shandilya 
et al., 2017; Jacob et al., 2017; Nagel and Wilson, 2011; Szyszka et al., 2014; Szyszka et al., 
2012). ORN firing responses are strongly time-locked to the arrival time of an odor (Gorur-Shandilya 
et al., 2017), and fast synaptic mechanisms (Fox and Nagel, 2021; Martelli et al., 2013) allow this 
information to be passed quickly downstream, within milliseconds, to projection neurons (PNs) in the 
antennal lobe, driving rapid behavioral responses (Bhandawat et al., 2010). Such precision has been 
suggested to allow accurate encoding of temporal features of the odor signal (Nagel et al., 2015), 
such as the frequency of odor arrivals.

In addition to these fast responses, Drosophila ORNs also adapt their firing rates and gain to 
prolonged stimuli (Cao et al., 2016; Gorur-Shandilya et al., 2017; Nagel and Wilson, 2011), priming 
them to accurately encode future odor signals (Kadakia and Emonet, 2019) without losing temporal 
precision as intensity changes (Gorur-Shandilya et  al., 2017; Martelli et  al., 2013). Likewise, in 
honeybees, the temporal resolution of odor pulses increases over time in a pulsed odor environment 
(Szyszka et al., 2014), while in the moth Agrotis ipsilon, ORN responses adjust to optimally encode 
odor signals that occur most frequently in the environment (Levakova et al., 2018). Olfactory neurons 
in insects are thus sensitive to the temporal features of odor signals on both short and long timescales 
(Nagel et al., 2015).

Temporal precision in olfaction extends beyond insects. In mice, plume dynamics as fast as tens of 
milliseconds are encoded downstream in mitral and tufted cells (Ackels et al., 2021). In crustaceans, 
odors are encoded by bursting ORNs (or bORNs), which burst only if odors arrive at some phase 
relative to an intrinsic bursting cycle (Park et al., 2014). These cycles vary over orders of magnitudes 
across the bORN population, providing a natural template to encode the timing between odor arrivals 
(Park et al., 2016).

Naturally, such precisely resolved temporal odor information shapes navigational decisions. When 
tracking pheromones, flying male moths fly faster and straighter upwind when receiving odor hits 
at higher frequencies than lower ones (Mafra-Neto and Cardé, 1994; Vickers and Baker, 1994). 
Walking silkworm moths switch from zigzagging motion to straighter trajectories upwind in higher-
frequency environments (Kanzaki et al., 1992). One model (Vickers and Baker, 1994) has suggested 
that odor hits suppress an otherwise persistent internal counterturning mechanism, allowing moths to 
maintain straight trajectories if odors are frequent or long. Alternatively, flying flies counterturn shortly 
after passing through the odor (Budick and Dickinson, 2006; van Breugel and Dickinson, 2014), 
indicating that counterturning can be also driven by the loss of the plume rather than an internal 
mechanism. In water, crabs navigate successfully in environments with higher-odor intermittency, but 
fail to find odor sources as pulses become more infrequent (Keller and Weissburg, 2004).

Two recent studies in eLife have quantified in great detail, using both experiment and exten-
sive mathematical modeling, the olfactory navigational strategies of walking Drosophila in wind 
tunnels. One of these (Álvarez-Salvado et al., 2018) focused on spatially uniform but temporally 
varying environments, where the odor was presented in spatially uniform pulses lasting anywhere 
from 1 to 10  s. In this environment, walking flies maintained upwind headings and increased 
walking speed over the duration of the odor pulses, albeit with a degree of desensitization over 
time. This suggests that when odor encounters are long and persistent the intermittency of the 
odor signal – which we define to be the percentage of time the odor signal is above threshold – is 
a main driver of navigational decisions. The second study (Demir et al., 2020) instead challenged 
flies to navigate spatiotemporally complex odor plumes that were generated by stochastically 
perturbing a thin ribbon of odor. In this plume, odor encounters were much shorter (~0.1–0.3 s), 
more frequent (~3  Hz), and less predictable. In that study, fly navigation was reproduced by a 
model in which only the frequency of odor encounters controlled upwind orientation, indepen-
dent of their duration or concentration. These two studies used the same organism with the same 
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locomotive repertoire. The two distinct models they uncovered naively suggest that flies are able 
to sense distinct temporal features of odor plumes and use these various inputs to shape naviga-
tional decisions.

Here, we use mathematical modeling and numerical simulations to investigate how and under what 
conditions these two temporal features – odor intermittency and encounter frequency – can enhance 
the navigation of turbulent odor plumes. To examine the contribution to navigation from these two 
temporal features alone, we ignore other sensory modalities, such as concentration gradient sensing, 
bilateral sensing, and vision. We first demonstrate analytically that the dynamical model proposed 
in the first study above picks out (in appropriate limits) odor signal intermittency, while the model in 
the second study responds to the frequency of odor hits. These two temporal features are comple-
mentary and can be varied independently, forming a natural basis of temporal sensing. We devised 
a simple model that incorporates intermittency sensing and frequency sensing in a minimal way, and 
uses these two ‘sensors’ to drive upwind orientations. Using agent-based simulations, we first show 
that this combined model requires both sensors to successfully navigate both measured plumes 
used in the two studies. We then applied the navigational model to simulated plumes, leveraging 
an advecting-diffusing packet framework that mimics odor motion in turbulent flows (Farrell et al., 
2002). We find that to robustly navigate a variety of plumes agents should use both intermittency and 
frequency sensing. However, there is a trade-off in performance when using both temporal features 
simultaneously, which persists across a variety of plumes. This predicts a strong benefit to modulating 
the weight of these two sensors, and we propose simple experiments to test whether flies or other 
insects indeed carry out such adaptation on slower timescales. Finally, we explore how simultaneous 
frequency and intermittency sensing is enabled by the Drosophila olfactory circuit, using previously 
developed models of ORNs and their synaptic connections to PNs (Gorur-Shandilya et al., 2017; 
Nagel et al., 2015). We find that PNs respond independently to both features and enable effective 
navigation through various environments, suggesting that the first stage of olfactory processing is 
appropriately tuned for naturalistic navigation tasks.

Results
Two experimentally constrained models implicate distinct odor signal 
features in olfactory navigation
Our study is motivated by two models recently extracted from experimental observations of walking 
Drosophila navigating odor plumes (Álvarez-Salvado et  al., 2018; Demir et  al., 2020). Here, we 
examine how they each respond to distinct temporal features of the odor concentration. We focus on 
temporal changes in odor concentration rather than odor flux (which depends also on air speed) as 
Drosophila melanogaster ORN responses are invariant to air speed (Zhou and Wilson, 2012). In the 
first model (Figure 1A; Álvarez-Salvado et al., 2018), the instantaneous odor concentration ‍odor

(
t
)
‍ is 

first compressed into the range 0–1 using an adaptive Hill function:
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This mimics the gain adaptation of ORNs to the mean signal (Cao et al., 2016; Gorur-Shandilya 
et al., 2017). At the onset of a sudden increase in odor concentration, the compressed signal ‍C

(
t
)
‍ 

increases instantaneously before relaxing back to  ~0.5 with timescale ‍τA = 9.8‍ s. The compressed 
signal ‍C

(
t
)
‍ is then exponentially filtered into an ‘ON’ function,
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which drives odor-elicited behavioral actions. When ‍ON
(
t
)
‍ is high, the fly accelerates and biases 

its heading upwind; when ‍ON
(
t
)
‍ is low, the fly’s orientation randomizes and drifts downwind and its 
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walking speed reduces (Álvarez-Salvado et al., 2018). We show analytically (Materials and methods) 
that the value of ‍ON

(
t
)
‍ – and therefore the navigational actions – is largely determined by the inter-

mittency of the odor signal, defined as the percentage of time an odor signal is present. Thus, we refer 
to this model as the intermittency model.

In the second model (Figure 1A; Demir et  al., 2020), a detection threshold is used to detect 
when the odor arrives. This results in a binary time series ‍w

(
t
)
‍ , which spikes as a ‍δ‍-function each time 

the odor concentration crosses the threshold from below, and is 0 otherwise. The frequency of odor 
encounters is then estimated by filtering ‍w

(
t
)
‍ with an exponential:

	﻿‍
F
(
t
)

=
ˆ t

0
e

t′−t
τF w

(
t′
)

dt′.
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(4)

Thus, ‍F
(
t
)
‍ rises by 1 at each threshold crossing, before decaying exponentially with timescale ‍tw‍ 

until the next odor hit. In this model, ‍F
(
t
)
‍ plays a similar role as ‍ON

(
t
)
‍ in the previous model, in that 

it drives behavioral response to odors. When ‍F
(
t
)
‍ increases, flies increase their bias upwind and stop 

less frequently and for a shorter time (Demir et al., 2020). Since ‍F
(
t
)
‍ is effectively a running average 

of the frequency of odor hits, we refer to this model as the frequency model.
To illustrate how each of these two sensory modalities respond to the temporal features of odor 

signals, we plotted the output of each filter in response to square-wave odor pulses of given frequency 
and intermittency (Figure 1B). These two features can be independently tuned – an odor signal can be 
high frequency and high intermittency if the whiffs (periods above threshold) are interrupted frequently 
with blank periods that are very short (region 1 in Figure 1B), while it can have high intermittency but 
low whiff frequency if whiffs are interrupted with short blank periods occurring more sparsely (region 
2 in Figure 1B). In the first two regions of the signal, where intermittency is high, the response of the 

‍ON
(
t
)
‍ model approaches a high value after an initial transient, while it drops to a lower steady state in 

region 3 where the signal intermittency is lower. The steady-state response of ‍ON
(
t
)
‍ is sensitive to the 

ON(t)
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Figure 1. Filters extracted from experiment capture distinct temporal features of odor signals. (A) Two 
experimentally informed models (Álvarez-Salvado et al., 2018; Demir et al., 2020) of Drosophila olfactory 
navigation transform odor signals in distinct ways. Left column: the intermittency model compresses the odor 
signal with an adaptive nonlinearity into a representation ‍C

(
t
)
‍ , bounded between 0 and 1. ‍C

(
t
)
‍ is then 

exponentially filtered with timescale ‍τON = 0.72s‍ to generate ‍ON
(
t
)
‍ . Right column: the frequency model 

thresholds the odor signal (dashed line in top plot) into a binary representation ‍w
(
t
)
‍ , which is then passed 

through an exponential filter with timescale ‍τF = 2s‍ to generate ‍F
(
t
)
‍ . (B) Response of each of the models 

(bottom two plots) to a binary odor signal (top plot) of high intermittency, high frequency (region 1), high 
intermittency, low frequency (region 2), and low intermittency, high frequency (region 3). The intermittency model 
is sensitive to the intermittency of the signal – in regions 1 and 2, it approaches a high value asymptotically, but 
a low value when intermittency is low, even if the frequency remains high (region 3). The asymptotic values of the 
intermittency model (dashed lines) are ‍

I
1+I ‍, where I is signal intermittency (Materials and methods). Conversely, the 

frequency model exhibits sensitivity to the frequency of encounters, tending asymptotically towards ‍f · τF ‍, where ‍f ‍ 
is the signal frequency (dashed line). The frequencies in the three regions are 2 Hz, 0.5 Hz, and 2 Hz, the encounter 
durations are 0.45 s, 1.8 s, and 0.1 s, and the intermittencies are thus 0.9, 0.9, and 0.1.
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signal intermittency, but is independent of the whiff frequency, as indicated by the average response 
asymptote ‍

I
1+I ‍, which monotonically increases with intermittency (Materials and methods). In contrast, 

the frequency model responds strongly in regions 1 and 3, where whiff frequency is high, consistent 
with its asymptotic response ‍f · τF‍ (Materials and methods). This happens irrespective of the disparity 
in signal intermittency between these regions (Figure 1B, bottom trace). Note that both models are 
sensitive to the temporal characteristics of the signal, but not absolute concentration.

Though these two models were extracted from the same model organism with the same locomo-
tive repertoire – fruit files walking in a 2D arena – the experiments were performed in very different 
odor and flow conditions. The intermittency model was first extracted from flies navigating a uniformly 
odorized region of odor within a laminar airflow (Álvarez-Salvado et al., 2018). Using simulations, 
the model was then shown to qualitatively recapitulate navigational behavior in a measured near-bed 
turbulent plume (Connor et al., 2018; Figure 2A), which we call the high-intermittency plume, in 
which the odor signal was ever-present and varied on relatively long timescales of several seconds or 
more (Figure 2B). In contrast, the frequency model was fit to trajectories of flies navigating a plume 
with a high degree of spatial complexity (Figure 2D) generated by perturbing a fast laminar flow 
with stochastic lateral jets, which we call the high-frequency plume. In that experiment, odor whiffs 
occurred frequently (2–5 Hz) (Figure 2E and F) and were much shorter (~100 ms) (Figure 2E). The two 
navigational models these experiments informed were clearly shaped by the plumes’ natural features: 
in the first, odor intermittency reached as high as 100% and whiff frequencies rarely surpassed 1 Hz 
(Figure 2C), whereas in the latter, the signal had intermittency mostly below 30% but whiff frequencies 
of several Hz (Figure 2F). Together, these two experiments and corresponding models suggest that 
flies use both odor frequency and intermittency to navigate upwind in different environments. This 
prompted us to ask how this dual-sensing capability might enhance the efficacy and robustness of 
navigation in different conditions.
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Figure 2. The differing temporal statistics of odor plumes. (A) Snapshot of measured high-intermittency plume, 
reproduced from data in Connor et al., 2018. Colored dots: locations corresponding to odor series in (B). (B) 
Odor concentration time series at different locations in high-intermittency plume. (C) Intermittency versus whiff 
frequency for 10,000 uniformly distributed points in the high-intermittency plume. Statistics were calculated over 
the length of the full video. We see a range of intermittencies and many points with high intermittencies but 
relatively low frequencies. (D, E) High-frequency plume and representative time series, reproduced from data in 
Demir et al., 2020. (F) Analogous to (C) for the high-frequency plume. Data is clustered within a higher range of 
frequencies but low intermittencies.
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Dual intermittency and frequency sensing enhances navigation 
robustness in distinct environments
To next investigate how these dual-sensing capabilities – odor intermittency sensing and frequency 
sensing – shape navigational performance in distinct odor landscapes, we incorporated them into 
a combined navigational model. It is known that odor signals influence many behavioral actions, 
including accelerating, turning, and stopping (Álvarez-Salvado et  al., 2018; Baker and Vickers, 
1997; Demir et al., 2020; Mafra-Neto and Cardé, 1994; Vickers and Baker, 1994). Given the near-
universal response of insects to turn upwind or bias their turns upwind in the presence of odor (Baker 
et al., 2018), here we assumed agents walk at a constant speed unless they are turning and focused 
on signal-driven changes in orientation. Turns occur randomly at a Poisson rate ‍λturn‍, and turn magni-
tudes are sampled from a normal distribution ‍N

(
30o, 8o)

‍ as found before (Demir et al., 2020). Turn 
directions (sign of the orientation change) are modeled as

	﻿‍ p
(
turn upwind

�� turning) = 1
1+e−gION−gFF .‍� (5)

Thus, the likelihood that a turn is directed upwind (versus downwind) increases sigmoidally with 
a linear combination of ‍F

(
t
)
‍ and ‍ON

(
t
)
‍. In the absence of signal, upwind and downwind turns are 

equally likely: ‍P
(
upwind|turn

)
= 0.5‍. To allow frequency sensing to be adaptive, we set the detection 

threshold for ‍F
(
t
)
‍ to be variable and equal to ‍

1
2 A

(
t
)
‍, where ‍A

(
t
)
‍ is defined in Equation 2. The ‘sensor 

gains’ ‍gI ‍ and ‍gF‍ were set to 3.9 and 0.2, respectively, by comparing to experimental data (Mate-
rials and methods). For now, we hold the gains fixed at these ‘base’ values ‍gI0 = 3.9‍ and ‍gF0 = 0.2‍; 
below, we investigate the performance of different ‍gI ‍ and ‍gF‍. Finally, we define intermittency-only and 
frequency-only sensing models by setting ‍gF‍ and ‍gI ‍ to 0, respectively.

To examine how frequency and intermittency contribute to navigational performance in this 
combined model, we simulated ‍N ‍ agents navigating both the high-intermittency and high-frequency 
plumes. The initial position and orientations of the agents were randomized uniformly. Performance 
was quantified as the fraction of agents that reach within 15 mm of the source in the presence of an 
odor signal, ‍

Ns
N ‍ , minus the fraction of agents, ‍

Nc
N ‍ , that reach the source by chance, that is, when no 

signal is present. Individual trajectories of successful flies in either plume look similar: when oriented 
away from the source, agents are quickly able to reorient within the plume region and navigate to 
the source with relatively straight trajectories combined with occasional corrective kinks (Figure 3B). 
Overall, agents navigated successfully in both plumes (Figure 3C), and performance was relatively 
robust to initial angle and position (Figure 3D). However, when either frequency sensing ‍gF = 0‍ or 
intermittency sensing ‍gI = 0‍ was removed, performance degraded (Figure 3D) in one of the plumes 
and became more sensitive to initial conditions. Though not wholly surprising that removing sensors 
degrades performance, this suggests that a simple linear combination robustly navigates two dispa-
rate odor plumes, without exhibiting any obvious failure modes due to interference between sensors.

Our upwind bias function (Equation 5), though phenomenological, is a natural choice in that it 
allows an increased upwind response to both the ‍ON ‍ and ‍F‍ filters. In fact, it very closely approxi-
mates a logical OR gate for the two filters (Materials and methods; Equations 34-35). This raises the 
question of whether this particular logical operation is ideal. We similarly investigated an AND gate 
implementation, finding clear failure modes (Materials and methods).

We expect that the two sensors do not contribute equally at all times to the navigation and that the 
relative contribution of either sensor may depend on plume statistics or on the location within a plume 
(Rigolli et al., 2021). For example, in the high-frequency plume, the intermittency sensor is likely to 
also be active near the plume centerline, where the signal is more likely to be present, while in the 
high-intermittency plume the frequency sensor is likely to be active on the edges where the presence 

of odor is less certain. To quantify this, we measured the relative weight of each sensor 
‍
gION

(
t
)
−gFF

(
t
)

gION
(

t
)

+gFF
(

t
)
‍
 

, which interpolates between pure intermittency sensing (+1) and pure frequency sensing (–1). As 
expected, the intermittency sensor dominates in the high-intermittency plume, whereas the frequency 
sensor dominates in the high-frequency plume (Figure 3E). Still, this dominance is not absolute. For 
example, frequency sensing plays a role near the conical boundary of the high-intermittency plume. 
Likewise, intermittency contributes along the centerline of the high-frequency plume.

These modest but significant contributions led us to next wonder how the sensors might be rela-
tively weighted to optimize navigational performance and how this weighting might change in different 
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plumes. Therefore, for tractability, we constructed a simpler model that eliminated some parameters. 
Firstly, we retained the frequency sensor ‍F

(
t
)
‍ (Equation 4), but used a fixed odor detection threshold 

K rather than an adaptive threshold as before. Secondly, we replaced the ‍ON
(
t
)
‍ function with:

	﻿‍
I
(
t
)

= 1
2
·
ˆ t

0

1
τI

· e
t′−t
τI ·Θ

(
odor

(
t′
)
− K

)
dt′.

‍�
(6)

where ‍Θ‍ is the Heaviside step function. The primary change from ‍ON
(
t
)
‍ is the replacement of 

adaptive odor compression with a fixed binarizing odor threshold. The factor of ½ is kept for ease of 
comparison between ‍I

(
t
)
‍ and ‍ON(t)‍, so that both filters asymptotically approach ½ in the presence of 

continuous odor (Materials and methods). Filtering timescales were set at ‍τI = τF = 2s‍ for both ‍I
(
t
)
‍ 

and ‍F
(
t
)
‍ . While these changes do affect some quantities, like the relative filter weight in the two 

environments, the overall effect on navigational success is minimal (Figure 3—figure supplement 1). 
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Figure 3. Sensing both intermittency and frequency enables navigation across diverse plumes. (A) Our model 
linearly combines an intermittency sensor (red) and whiff frequency sensor (blue) to bias upwind motion. For 
both sensors, the odor signal is transformed using an adaptive compression step ‍A

(
t
)
‍ (Álvarez-Salvado et al., 

2018) before being converted into a turning bias. Following (Demir et al., 2020), turns occur stochastically 
at a constant Poisson rate ‍λturn‍ , while the sensor output B biases the likelihood that turns are upwind. Turn 
magnitudes are chosen from a normal distribution with mean 30° and SD 8° (Demir et al., 2020). (B) Example 
successful trajectories in the high-intermittency and high-frequency plume (Figure 2). (C) Percentage of agents 
that reach within 15 mm of the source when signal is present minus same percentage when signal is absent, for the 
model with only intermittency sensing (‍gF = 0‍; red), only frequency sensing (‍gI = 0‍; blue), or both (‍gF, gI ‍ nonzero; 
purple), in the high-intermittency plume (top) and high-frequency plume (bottom). Error bars: SEM calculated 
by bootstrapping the data 1000 times (Materials and methods). (D) Distribution of initial downwind position x 
(first column), crosswind position y (second column), and orientation (third column) for successful agents for the 
high-intermittency (top row) and high-frequency (bottom row) plumes. Colors correspond to same models as in 
(C). Upwind heading is 180°, and shaded regions represent SEMs obtained from bootstrapping (Materials and 
methods) (E) Time-averaged relative filter weight ‍

gION−gFF
gION+gFF ‍ for different points in the two plumes.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Fixed-threshold navigation model produces results similar to navigation model with 
adaptive intensity compression.

https://doi.org/10.7554/eLife.72415
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Thus, to study the effect of various model parameters in detail, we used this simplified model for all 
further investigations.

Optimal performance requires distinct weighting of frequency and 
intermittency in different environments
Upwind bias, and therefore navigation performance, depends on the sensor gains (Equation 5), which 
up to now we have fixed to experimentally informed values (the ‘base’ gains). To investigate the influ-
ence of relative sensor weight in navigation, we quantified navigational performance as a function of 
both the sensor weights ‍gI ‍ and ‍gF‍ and the plume’s spatiotemporal complexity. To remove constraints 
due to the limited spatial and temporal resolution of the recorded plume videos, and to easily investi-
gate a wide range of environments, we switched to simulated plumes using a simple dispersion model 
(Farrell et al., 2002). Gaussian packets of odor are released from a source at a fixed Poisson rate ‍λ‍ 
and advected by a velocity field composed of a uniform downwind velocity ‍U ‍. Normally distributed 
random perturbations ‍ηx‍ and ‍ηy‍ are added to the packet positions in the crosswind and downwind 
directions, respectively, at each time step, to account for the effects of turbulent diffusivity. The turbu-
lent diffusivity models the effects of turbulent eddies as a diffusive process, but with diffusion constant 
‍κ‍ that can greatly exceed molecular diffusivity. In addition, the Gaussian packets grow in size with an 
effective diffusivity ‍D‍ to account for the combined effects of molecular diffusion and smaller eddies 
in the wind flow (Figure 4A and B). Varying ‍U ‍ and ‍D‍ allowed us to generate plumes with diverse 
temporal statistics. ‍U = 36 mm/s‍ and ‍D = 52 mm2/s‍ resulted in a plume with longer whiff durations and 
high intermittency (Figure 4C and E). Increasing the wind speed to ‍U = 300‍ mm/s and decreasing 
effective diffusivity to ‍D = 10 mm2/s‍ resulted instead in a high-frequency plume with much shorter 
whiffs (Figure 4D and F). In each plume, we simulated 10,000 agents with uniformly distributed initial 
position and heading angle, where each agent navigated with a fixed set of gains ‍gI ‍ and ‍gF‍ . We 
investigated various choices of ‍gI ‍ and ‍gF‍ , from 0 to 50× the base gains.

The ‍gI ‍ and ‍gF‍ maximizing performance in our simulated high-intermittency plume was reason-
ably constrained, with a clear maximum occurring around the experimentally derived base gain 
(Figure 4—figure supplement 1). However, in the simulated high-frequency plume, a variety of gains 
led to similarly maximal performance (Figure 4—figure supplement 1), including some with values 
an order of magnitude larger than the base gains. Performance was largely independent of ‍τI ‍ over 
nearly two orders of magnitude (unchanged even for a null algorithm that drives upwind orientation 
whenever odor is present, i.e., ‍τI = 0‍) and scaled with ‍τF‍ in a way that could be absorbed into the ‍gF‍, 
(Figure 4—figure supplement 2; Materials and methods), so these trends were fundamentally due 
to the sensor gains rather than other model features. On the other hand, models with extreme gain 
factors could compound the effects of noise, leading to a lack of robustness in natural conditions. We 
therefore added Gaussian noise to the I and F filters – noise amplitude was 5% of the average value of 
I (F) in the center of the simulated high-intermittency (high-frequency) plume. This removed maxima 
at high gains but retained clear maxima at lower gains (Figure 4G and H). Interestingly, the unique 
maxima sat fairly close to the base gain values (values of 1 in Figure 4G and H), suggesting a degree 
of tuning within the biological fly olfactory circuit. Finally, the optimal gains for the simulated high-
intermittency and high-frequency plumes had ‍gF = 0‍ and ‍gI = 0‍, respectively, indicating that optimal 
performance in either plume requires silencing the nonrelevant sensors. This inherent trade-off illus-
trates that simply augmenting the sensory capability can at times degrade performance. This suggests 
a benefit for sensor specialization in distinct environments.

Performance trade-off between intermittency sensing and frequency 
sensing in different environments
To get a better understanding of how navigational performance in these two simulated plumes 
depends on the sensor weights, we did a tighter sweep of gains near the performance maxima 
(Figure 4G and H) for each plume. For each set of gains, we then plotted performance in the high-
intermittency plume against that in the high-frequency plume. For comparison, we also plotted the set 
of gains ‍

(
g∗I , g∗F

)
‍ that maximized the geometric mean of normalized success in both plumes (indicated 

in Figure 4I). The resulting scatterplot quantifies the performance in the two plumes for different 
navigational models, where each model is parameterized by its sensor weights ‍gI ‍ and ‍gF‍ . In general, 
the scatterplot fills out a region near the origin, bounded by a curve that forms a ‘Pareto front’ of 

https://doi.org/10.7554/eLife.72415
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navigational performance. This Pareto front reveals a performance trade-off for the different models: 
combinations of ‍gI ‍ and ‍gF‍ that are weighted toward I do better in the high-intermittency plume, while 
combinations weighted toward F outperform in the high-frequency plume (Figure 4I). There was no 
fixed set of gains that performs optimally in both plumes. Importantly, the apparent concavity of the 
Pareto front illustrates a somewhat steep trade-off and suggests that flies might be better off modu-
lating gains and switching between using intermittency and frequency sensors to bias upwind motion, 
as opposed to using both simultaneously.

We then wondered how this trade-off manifests across a more diverse spectrum of plumes. The 
computational simplicity of the turbulent plume model allowed us to study a wide array of turbu-
lent plumes differing in their temporal statistics. We fixed the gains to the values that optimized the 
geometric mean between the high-intermittency and high-frequency plumes, ‍

(
g∗I , g∗F

)
‍, and then varied 
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Figure 4. Performance trade-off between intermittency and frequency sensing in two diverse turbulent plumes. (A) 
Example of a simulated odor plume, following the framework in Farrell et al., 2002. Gray circles denote Gaussian 
odor packets. (B) Example trajectory of a single-odor packet in these simulations and illustration of its growth. (C) 
Same as Figure 2C but for the simulated high-intermittency plume. (D) Same as (C) but for the simulated high-
frequency plume. (E) Example odor concentration time series in a simulated high-intermittency plume. (F) Same 
as (C), for a high-frequency plume. (G) Normalized success percentage ‍S‍ within the simulated high-intermittency 
plume after adding noise to I and F. ‍S‍ is computed by first calculating the success percentage as in Figure 3C for 
each pair of gains ‍

(
gI, gF

)
‍ and then normalizing by the maximum success percentage over all ‍

(
gI, gF

)
‍ . Gains are 

measured in multiples of the base gains, defined in Materials and methods. (H) Same as (G), but for the simulated 
high-frequency plume. (I) ‍S‍ in the simulated high-intermittency plume versus ‍S‍ in the simulated high-frequency 
plume, where each dot represents a different ‍

(
gI, gF

)
‍ . Points are colored by the relative weighting of the two 

sensors (see Materials and methods for calculation details). Note here that a finer set of gains was considered 
than in (G) and (H) and normalization was done with respect to these gains. The pair ‍

(
gI, gF

)
‍ that maximized the 

geometric mean of normalized success percentage across the two plumes is indicated as optimal. The concavity of 
the front suggests a sharp trade-off in performance in one plume versus the other.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Performance of different sets of gains without filter noise.

Figure supplement 2. The effect of changing filter timescales on navigation success.

https://doi.org/10.7554/eLife.72415


 Research advance﻿﻿﻿﻿﻿﻿ Neuroscience | Physics of Living Systems

Jayaram, Kadakia, et al. eLife 2022;11:e72415. DOI: https://​doi.​org/​10.​7554/​eLife.​72415 � 10 of 23

the environmental parameters ‍U ‍ and ‍D‍ to smoothly interpolate between the high-frequency and 
high-intermittency plumes investigated above. Success was roughly uniform in the different environ-
ments (Figure 5A). However, removing the frequency sensor (‍gF = 0‍) significantly improved perfor-
mance in the slowly advecting and highly diffusive plumes (low U; high D), which tend to be smoother 
in their concentration profiles. The reverse was true when we removed intermittency sensing (‍gI = 0‍), 
exemplifying a trade-off in navigational performance that persists across this wide range of odor 
environments. Together with the results presented above (Figure 3), this suggests that while a naïve 
summation of temporal sensors may be beneficial in some cases, in general, navigation can always be 
improved by some degree of specialization.

Biophysical neural filtering of odor signals enables independent 
frequency and intermittency sensing and aids in navigation
Our results so far suggest that dual sensing of two complementary odor signal features, intermittency 
and frequency, aids navigation across a diversity of odor plumes, albeit with a trade-off. To what 
extent is this dual-sensing capability enabled by the Drosophila olfactory circuit? Prior experimental 
and modeling work has shown that synaptic and circuit mechanisms in the olfactory periphery allow 
for accurate signal transmission across a range of frequencies (Martelli and Fiala, 2019; Nagel et al., 
2015), while fast ORN adaptation allows signals to be encoded without saturation (Gorur-Shandilya 
et al., 2017). These various mechanisms suggest that the natural structure of the fly olfactory circuit 
may be well-primed for robust encoding of multiple temporal features of the odor signal.

We thus combined prior models (Gorur-Shandilya et al., 2017; Nagel et al., 2015) into a single 
model of odor binding, ORN firing, and PN response, and fed this naively into a behavioral module 
to investigate navigational performance. At the first stage of processing, odors bind an olfactory 
receptor/co-receptor (Or/Orco) complex, which can be active (ion channel open) or inactive (closed). 
Assuming fast binding dynamics, the average activity ‍a‍ of the complex is

	﻿‍
a =

(
1 + eϵ ·

1+ C
Koff

1+ C
Kon

)−1

‍�
(7)

where C is the odor concentration, ‍ϵ‍ is the free energy difference between the active and inactive 
states when unbound, and where the dissociation constant between odorant and the complex in the 
inactive state, ‍Koff ‍ , is much higher than that for the active state, ‍Kon‍ . To model adaptation, receptor 
activity feeds back into ‍ϵ‍ via
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Figure 5. Simultaneous intermittency and frequency sensing maintains steady performance across a spectrum of 
odor environments, but does not allow for optimal performance. Normalized success percentage for a frequency 
and intermittency-sensing model (A), only intermittency-sensing model (B), and only frequency-sensing model 
(C) for a range of simulated odor plumes. Success percentage is normalized such that the best performance of 
the three models is set to 1 for each environment. Gains for (A) were chosen to optimize the geometric mean of 
performance in the simulated high-intermittency and high-frequency plumes. Gains in (B) and (C) were chosen by 
taking the gains in (A) and then setting gF (A) and gI (C) to 0.

https://doi.org/10.7554/eLife.72415
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	﻿‍
dϵ
dt = β

(
a − a0

)
‍� (8)

where ‍β‍ is an adaptation rate and ‍a0‍ is a baseline activity. ORN firing rate is then obtained by 
passing ‍a‍ through a linear filter and static nonlinearity (Figure 6A; see Materials and methods). Finally, 
‍ϵ‍ is bounded from below (‍ϵ > ϵL‍) so that ORNs shut off with sufficiently weak odor.

ORN firing rate is converted into a PN membrane potential through a postsynaptic conductance 
with two timescales (Nagel et al., 2015). Conductances are weakened over time via synaptic depres-
sion, also with two timescales (Figure  6A). This depression is modeled by a scaling factor of the 
conductance, ‍Afast

(
t
)
‍ (analogously for ‍Aslow

(
t
)
‍):

	﻿‍
dAfast

dt = −rfasts
(
t
)

Afast
(
t
)

+ 1−Afast
(

t
)

τAfast ‍� (9)

where ‍s‍ is the ORN firing rate, ‍rfast‍ is the rate that ‍A‍ decays with increased firing rate, and ‍τAfast‍ is 
the timescale it takes for ‍Afast‍ to relax back to 1. This scaling factor then affects the synaptic conduc-
tance via

	﻿‍
dqfast

dt = kfasts
(
t
)
· Afast

(
t
)
− qfast

(
t
)

τgfast ‍� (10)

where ‍qfast‍ is the fast conductance (analogous for the slow conductance). The fast and slow conduc-
tances are summed to give a total synaptic conductance ‍qsyn‍ . The PN membrane potential ‍V

(
t
)
‍ then 

obeys

	﻿‍
dV
dt = −V
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)
−Eleak+qsyn
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Figure 6. A biophysical signal transduction model allows for simultaneous frequency and intermittency sensing 
and performs similarly to a combined model. (A) A schematic for how we combine the models of Gorur-Shandilya 
et al., 2017 and Nagel et al., 2015 to convert odor signals to projection neuron (PN) membrane potentials. (B) 
Time-averaged PN membrane potentials in square-wave environments of different frequency and intermittency. 
Responses were simulated for 30 s and last 20 s were averaged. (C) Performance of different navigation models 
considered in the simulated high-intermittency plume. Success was computed as in Figures 3 and 4. (D) Same as 
(C) but for the simulated high-frequency plume. Note that in (C) and (D) no noise was added to the filter outputs 
for any of the models.
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where ‍Eleak, Esyn‍ are the reversal potential for leak and synaptic currents, respectively, ‍Rm‍ is the 
resistance of the membrane, and ‍τm‍ is the timescale of the membrane. For parameter values, see 
Materials and methods and Nagel et al., 2015.

We first looked to see how the PN membrane potential responds to environments of different 
temporal statistics. As in Figure 1, we simulated the potential in square-wave environments of varying 
frequencies and intermittencies. We find that average membrane potential increases with frequency 
and intermittency independently (Figure  6B). This suggested that this membrane potential could 
be used to navigate environments where only one of intermittency or frequency is high. To test this, 
we considered a navigator that used the difference between the membrane potential and its resting 
potential (i.e., ‍Eleak‍) to generate an upwind bias:

	﻿‍
p
(
turn upwind

�� turning) = 1
1+e−gPN

(
V−Eleak

)
‍� (12)

where ‍gPN ‍ is the base gain for this model chosen analogously to the other base gains (see Materials 
and methods). While the circuit-inspired model was outperformed by the single-sensor models when 
these were used in matching environments (i.e., the F model in the high-frequency plume and the I 
model in the high-intermittency plume) (Figure 6C and D), it performed better than the individual F 
and I models when those were used in suboptimal environments. Thus, the dual-sensing capability of 
the ORN-PN circuit translates directly to more effective navigation across diverse plumes. Of course, 
as our results above showed, some degree of modulation of the gains could further enhance perfor-
mance (Figures 4I and 6C and D, purple) – say by amplifying frequency sensing in certain plumes. It 
would be interesting to investigate whether any such modulation is enacted by the insect olfactory 
circuit.

Discussion
In this work, we used numerical simulations to explore the value of two temporal features of the 
signal – odor intermittency and encounter frequency – in navigating naturalistic odor plumes span-
ning a range of spatial and temporal complexity. These two features are a natural set in that they 
can be varied independently to create a variety of odor signals (Figure 1). Other complementary 
and complete quantities could be used, such as whiff and blank duration (Rigolli et al., 2021), but 
we focused on these since they are directly implicated by various experiments in walking D. mela-
nogaster. The navigation model we proposed reduces two experimentally informed models of fly 
olfactory navigation into elementary transformations that separately extract odor intermittency and 
encounter frequency, and then uses these two ‘sensors’ to bias the agent upwind. Our model is 
phenomenological, exploring the utility of different odor signal features in different environments, 
and so does not necessarily implicate any particular neural architectures. An interesting finding here 
is that the optimal agent in the two simulated plumes assigned weights to the sensors that resembled 
the weights inferred from experiment (Demir et al., 2020; Figure 4G and H, Materials and methods). 
This suggests that the manner in which temporal features are extracted and processed within the 
Drosophila olfactory circuit may already be adapted to natural plume environments.

Our work explores normative strategies, so our results have no bearing on whether such adap-
tation actually occurs. There is, however, evidence that such adaptation may exist at the level of 
individual neurons: for example, moth ORNs adjust their encoding efficiency to the local statistics 
of pheromones (Levakova et al., 2018). Additionally, upwind orientation was found to be indepen-
dent of intermittency for fixed frequencies (Demir et al., 2020), suggesting that such adaptation of 
sensor weight may actually be present in walking Drosophila. Our work suggests future experiments, 
based on simple modifications of existing experimental paradigms, that could be used to quantify 
this slower-scale adaptation. One could present the complex odor plumes we generated in our recent 
work (Demir et al., 2020), while modulating the overall statistics on a slower scale via the speed or 
strength of the upwind lateral perturbations, the wind speed, or both, and record how upwind orien-
tation depends on frequency or intermittency. Additionally, in general, flying flies are more likely to 
experience more complex, high-frequency odor environments than walking flies due to flying flies 
being far from solid boundaries (Connor et  al., 2018). Thus, if such modulation of sensor weight 
occurs, flying flies might naturally assign more weight to frequency sensing, which could be tested 
experimentally in wind tunnels for flight (van Breugel and Dickinson, 2014).

https://doi.org/10.7554/eLife.72415
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A key finding here is that the known circuitry of the Drosophila olfactory periphery, namely, in 
ORNs (Gorur-Shandilya et al., 2017; Nagel et al., 2015) and PNs (Nagel et al., 2015), responds 
to both odor intermittency and frequency, aiding robust navigation across many odor environments. 
This suggests that the known neural circuitry at the first stages of olfactory processing is tuned, to 
some degree, to naturalistic navigation tasks. In our simulations, this model is still suboptimal, and 
performance might be improved by including the effect of lateral inhibition, which has been shown to 
modulate the frequency range encoded by PNs (Nagel et al., 2015), as well as further processing in 
later stages of the circuit (Rapp and Nawrot, 2020). Also, we did not include much slower adaptive 
components (~10 s) of synaptic depression that modulate activity of Drosophila PNs (Martelli and 
Fiala, 2019). Given that this timescale is similar to that of the behavioral adaptation found by Álvarez-
Salvado et al., 2018, it is plausible that this modulation could improve navigation. It has also been 
shown that knockdown of the priming factor unc13A impedes fast components of ORN-PN synaptic 
transmission in Drosophila (Fulterer et  al., 2018; Pooryasin et  al., 2021) and affects behavioral 
responses to signals at higher frequencies (Fox and Nagel, 2021). It would be illuminating to test how 
unc13A knockdown affects navigation in complex plumes of different frequency content.

In the latter half of this study, we simulated a variety of odor plumes using a simple drift-diffusion 
model (Farrell et al., 2002). A more precise approach would be to numerically integrate the Navier–
Stokes equations describing the wind flow, together with advective-diffusive scalar transport describing 
the dispersion of a scalar concentration field (Rigolli et al., 2021). In such simulations, resolving odor 
concentrations to the viscous scale is very computationally expensive. This would likely preclude the 
investigation over more than a handful of distinct odor plumes, as our simplified model allowed us 
to explore here. On the other hand, such detailed simulations show that even in a single plume the 
statistics of the odor change significantly with distance from the source, and therefore animals may 
benefit from modulating sensory strategies during navigation (Rigolli et al., 2021). This is consistent 
with our finding that frequency sensing contributes more near the edges of the plume than it does 
near the centerline, and vice versa for intermittency sensing.

There are several aspects of olfactory navigation not considered in this work. In particular, we 
have neglected the role of bilateral sensing between the two antennae. In insects, bilaterally resolved 
concentration sensing has been demonstrated in flies (Gaudry et al., 2013) and implicated in navi-
gation of laminar ribbons (Duistermars et al., 2009). Bilateral sensing has also been demonstrated in 
mice (Rajan et al., 2006), sharks (Gardiner and Atema, 2010), and even humans (Wu et al., 2020), 
and has been implicated in effective navigation in aquatic environments (Michaelis et  al., 2020). 
Spatially resolved information has been shown theoretically to provide more information about an 
agent’s position relative to the source of the odor (Boie et al., 2018) and aid olfactory navigation 
strategies, even in plumes with elements of stochasticity and turbulence (Hengenius et al., 2021). For 
very closely spaced antennae as in flies (<1 mm), these gradients are very difficult to resolve and so are 
often not useful for navigation (Celani et al., 2014; Crimaldi and Koseff, 2001; Shraiman and Siggia, 
2000). Nonetheless, it would be interesting to consider the effect of bilateral comparisons of inter-
mittency and frequency, particularly when modeling the navigation of species with larger antennae.

To this end, it has already been shown that bilateral comparisons of frequency allow agents to track 
the edges of some turbulent odor plumes (Michaelis et al., 2020). Additionally, recent work (Rigolli 
et al., 2021) has shown that odor intensity and temporal statistics are more useful in the central and 
outer regions of a turbulent plume, respectively, for predicting distance to the source. It is possible 
that in high-intermittency plumes organisms might use frequency to track the edges of odor plumes 
or even execute offset responses, such as those detailed in Álvarez-Salvado et al., 2018. Moreover, 
it has recently been shown that flies can use bilateral information to detect the direction of motion 
of odor signals (Kadakia et al., 2021), and that this information is particularly relevant in turbulent 
environments. In more diffuse and smooth plumes, odor velocity is less well-defined, and might be of 
more limited use. An interesting extension would be investigating how odor velocity could be incor-
porated optimally with odor intermittency and frequency in effective navigation.

For the sake of simplicity, we considered a model where agents move with a constant speed and 
only change orientation through a discretized turning paradigm, suggested by Demir et al., 2020. 
However, more diverse actions such as stopping and walking (Demir et al., 2020), speed modula-
tion (Álvarez-Salvado et al., 2018; Mafra-Neto and Cardé, 1994), continuous heading modulation 
(Álvarez-Salvado et al., 2018), and casting/counter-turning behavior Álvarez-Salvado et al., 2018; 

https://doi.org/10.7554/eLife.72415
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Budick and Dickinson, 2006; Mafra-Neto and Cardé, 1994; Pang et al., 2018; Vickers and Baker, 
1994 have also been observed in insect olfactory navigation. In future work, it will be worth inves-
tigating the role of intermittency and frequency in modulating behaviors such as these in different 
environments.

Finally, we have not explored the role of learning. The frequency and intermittency filters we used 
had no timescale longer than a few seconds, precluding history-dependent behavioral effects over 
longer timescales. History dependence in navigational decisions has been observed in flying fruit flies 
(Pang et al., 2018), where the magnitude of fly turns decreased with the number of signal encounters, 
in desert ants (Buehlmann et al., 2015), where ants used the existence of previously learned olfactory 
cues to navigate in a new environment, and in mice (Gire et al., 2016), where gradient climbing was 
abandoned for foraging when mice were sufficiently conditioned on known odor locations. Theoret-
ical strategies such as infotaxis, where agents navigate by using cues to learn an internal probabilistic 
representation of their environment (Vergassola et al., 2007), also have some support in experiment 
(Calhoun et al., 2014; Pang et al., 2018). We find that robust navigation is enhanced by modulating 
intermittency and frequency sensing in time, and incorporating history dependence in our models 
could be done straightforwardly, with a few added parameters. Pairing this with behavioral experi-
ments of the type suggested above would provide a fruitful direction for future study.

Materials and methods
Simulating ON and F responses to square waves
The frequency response function is defined as the convolution between the whiff onset time series 

‍w
(
t
)
‍ and an exponential filter with decay timescale ‍τF‍ where the whiff time series is a sum of delta 

functions occurring at the onset of each whiff. Thus, we have

	﻿‍ F
(
t
)

=
´ t
−∞ w

(
t − s

)
e

−s
τF ds =

∑
k
´ t
−∞ δ

(
t − tk − s

)
e

−s
τF ds =

∑
k e

−t−tk
τF ‍� (13)

where ‍k‍ enumerates the whiffs. Note that ‍F
(
t + ∆t

)
= F

(
t
)

e
−∆t
τF ‍ . Therefore, in discrete time steps 

we have ‍w
(
t + ∆t

)
= 1‍ if ‍odor

(
t
)

< K ‍ and ‍odor
(
t + ∆t

)
≥ K ‍ and 0 otherwise and ‍F

(
t + ∆t

)
= F

(
t
)
· e

−∆t
τF ‍ 

if ‍w
(
t + ∆t

)
= 0‍ and ‍F

(
t + ∆t

)
= F

(
t
)
· e

−∆t
τF + 1‍ if ‍w

(
t + ∆t

)
= 1‍.

For ‍ON
(
t
)
‍ , we use Euler’s method to numerically integrate Equation 2 to obtain ‍A

(
t
)
‍ and then 

similarly integrate the following equation:

	﻿‍
dON

dt = 1
τON

(
C
(
t
)
− ON

(
t
))

‍� (14)

where ‍C
(
t
)
‍ is defined in Equation 1, and the above equation is equivalent to Equation 3. ‍τF‍ was 

set to 2 s (Demir et al., 2020) while ‍τA‍ and ‍τON ‍ were set to 9.8 s and 0.72 s, respectively (Álvarez-
Salvado et al., 2018). The detection threshold was assumed to be below the signal amplitude, and ‍kd‍ 
was set to be 1% of the signal amplitude.

Calculation of ON, I, and F responses to square waves
To illustrate how the ON and F filters respond to the frequency and duration of odor signals, we 
consider their response to square-wave odor pulses of given frequency ‍f ‍, duration ‍D‍, and amplitude 

‍S0‍ . We first consider the ON response. To understand the ON response, we first calculate ‍A
(
t
)
‍ . From 

Equation (2), we have

	﻿‍
dA
dt = 1

τA
·
(
odor − A

)
‍� (15)

Let ‍An‍ denote the value of ‍A‍ at the offset of the ‍nth‍ pulse of signal and ‍A∗
n‍ denote the value of ‍A‍ 

at the onset of the ‍nth‍ pulse. We wish to obtain a recursive relation for ‍An‍, which will allow us to solve 
for ‍An‍ and from there obtain the value of ‍A‍ at all times. At the offset of a pulse, ‍odor = 0‍ and ‍A‍ will 
exponentially decay with time scale ‍τA‍ until the onset of the next pulse. This time of decay is given by 

‍
1
f − D‍. Hence at the onset of the next pulse, ‍A

∗
n+1 = An · e−

(
1
τA

·
(

1
f −D

))

‍ . At this point, for a time period 

‍D‍, that is, until the offset of the ‍
(
n + 1

)
th‍ pulse, ‍A‍ obeys the equation

https://doi.org/10.7554/eLife.72415
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	﻿‍
dA
dt = 1

τA
·
(
S0 − A

)
‍� (16)

with initial value ‍A
∗
n+1‍ . Hence,

	﻿‍
´ An+1

A∗
n+1

dA
S0−A = D

τA ‍� (17)

and therefore, after substituting ‍A
∗
n+1 = An · e−

(
1
τA

·
(

1
f −D

))

‍

	﻿‍
An+1 = Ane

−1
fτA + S0

(
1 − e

−D
τA

)

‍�
(18)

One can thus see that

	﻿‍
An = A0e

−n
fτA + S0

(
1 − e

−D
τA

)∑n−1
k=0 e

−k
fτA

‍�
(19)

	﻿‍
= A0e

−n
fτA + S0

(
1 − e

−D
τA

)
· 1−e

−n
fτA

1−e
−1
fτA

.
‍�

(20)

Once the number of pulses ‍n‍ is much greater than ‍fτA‍ , that is, ‍t ≫ τA‍ , we get

	﻿‍
An ≈

S0

(
1−e

−D
τA

)

1−e
−1
fτA

.
‍�

(21)

Since this is the value of ‍A
(
t
)
‍ at the end of a pulse, it will be the maximum value of ‍A

(
t
)
‍ over one 

period. Ultimately, however, we are interested in computing ‍ON
(
t
)

,‍ which obeys the equation

	﻿‍
dON

dt = 1
τON

·
(

odor
odor+kd+A

(
t
) − ON

)
.
‍� (22)

To understand the response of ‍ON ‍, we can consider three different signal timescales. If the signal 
fluctuates quickly with respect to ‍τA‍, that is, ‍D‍ and ‍

1
f − D‍«‍τA‍ , then for ‍t ≫ τA‍ one can approximate 

‍A
(
t
)
‍ with its average value over one period, which is given by

	﻿‍

f ·




ˆ 1
f −D

0

S0

(
1 − e

−D
τA

)

1 − e
−1
fτA

· e
−t
τA dt +

ˆ D

0

S0

(
1 − e

−D
τA

)

1 − e
−1
fτA

e
−

(
1
f −D

)

τA · e
−t
τA S0 ·

(
1 − e

−t
τA

)
dt


‍�

(23)

	﻿‍ = S0 · f · D‍� (24)

Notice ‍f · D = I ‍, the intermittency of the signal. Hence in this limit, and assuming ‍S0 ≫ kd‍, when 
the signal is present, we have

	﻿‍
dON

dt = 1
τON

·
(

1
1+I − ON

)
‍� (25)

Thus, ‍ON
(
t
)
‍ obeys the same dynamics as ‍A

(
t
)
‍ , except that it adapts to a square wave of amplitude 

‍
1

1+I ‍ instead of ‍S0‍ and with a different timescale. Thus by the same reasoning as for ‍A
(
t
)
‍ , the maximum 

value of ‍ON
(
t
)
‍ over one period (once ‍t ≫ τA, τON ‍) is approximately 

‍
1

1+I ·
1−e

−D
τON

1−e
−1

fτON ‍
, and the average 

value over one period is ‍I ·
1

1+I ‍ .
If instead ‍τA ≈ D‍ or ‍τA ≪ D‍, then ‍A

(
t
)
≈ odor

(
t
)
‍, and we get

	﻿‍
dON

dt = 1
τON

·
(

1
2 − ON

)
‍� (26)

and the average value of ‍ON
(
t
)
‍ becomes ‍I/2‍ . (The maximum value would be 

‍
1
2 · 1−e

−D
τON

1−e
−1

fτON ‍
.)
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Finally, we can consider the case where ‍τA ≫ D‍ and 
‍
τA ≪

(
1
f − D

)
‍
 . In this case, ‍A

(
t
)
≈ 0‍ and 

‍ON
(
t
)
‍ adapts to a square wave with amplitude ≈ 1. The average value of ‍ON

(
t
)
‍ is ‍I ‍ (and the maximum 

value would be 
‍
1−e

−D
τON

1−e
−1

fτON ‍
).

In summary, we see that in all these cases the average value of ‍ON ‍ depends only on the intermit-
tency and increases monotonically with intermittency.

For ‍F‍, it is easiest to consider ‍Fn‍ as the value of ‍F‍ just after the onset of the ‍nth‍ pulse. Since ‍F‍ 
increases by 1 at the onset of each pulse and then decays exponentially with timescale ‍τF‍ until the 
onset of the next pulse, one has

	﻿‍ Fn+1 = Fn · e
−1
fτF + 1.‍� (27)

Hence,

	﻿‍
Fn = F0 · e

−
(

n−1
)

fτF + 1−e
−n
fτF

1−e
−1
fτF ‍�

(28)

where ‍F0‍ is the value of ‍F‍ right before the onset of the first pulse. For ‍t ≫ τF‍, we have ‍n ≫ fτF‍ and 

‍
Fn ≈ 1

1−e
−1
fτF ‍

 . Since ‍F‍ jumps at the onset of a pulse and then decays, this is the maximum value of ‍F‍. 

The average value of ‍F‍ over one period is thus

	﻿‍
1

1−e
−1
fτw

· f ·
´ 1

f
0 e

−t
τw dt = f · τw

‍�
(29)

Hence, the average value of ‍F‍ is linearly proportional to the frequency of the signal.
In a square wave, the ‍I

(
t
)
‍ filter obeys the exact same dynamics as ‍A

(
t
)
‍ , except with a pre-factor of 

‍1/2‍ (assuming the amplitude of the wave is above the detection threshold) and thus has an asymptotic 
average response of ‍I/2‍ .

Connection of navigation model to logical gates
We claim that Equation 5 is very similar to an OR gate in the variables ‍gION ‍ and ‍gFF‍. To see this, let 
us first define what we mean by an OR gate. Normally, an OR gate in two binary variables A and B 
returns a 1 if any one of A, B is nonzero. This results in the following ‘truth table’:

Standard OR gate

A B Output

0 0 0

1 0 1

0 1 1

1 1 1

and can be expressed algebraically as ‍A + B − AB‍. In our case, however, we want a null output to 
result in ½ since this should be the probability of turning upwind when no signal is present. Similarly, 
our variables of interest are ‍gION ‍ and ‍gFF‍, which are nonbinary and in principle unbounded. Since in 
general we will want null outputs to be ½ and full outputs to be 1, it is natural instead to consider as 
variables A and B sigmoidal transformations of ‍gION ‍ and ‍gFF‍. Thus, we can define for our purposes

	﻿‍ A = 1
1+e−gION ‍� (30)

	﻿‍ B = 1
1+e−gFF ‍� (31)

Then the truth table of an OR gate would look like the following table:

https://doi.org/10.7554/eLife.72415
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Navigation model OR gate

A B Output

1/2 1/2 1/2

1 1/2 1

1/2 1 1

1 1 1

We then wish to determine an algebraic combination of A and B that will result in this output. Like 
in the case of a standard OR gate, it is easy to see we must go to second-order expressions in A and 
B. Due to the symmetry of the output in A and B, we need only consider symmetric second-order 
expressions:

	﻿‍
output = a0 + a1

(
A + B

)
+ a2

(
A · B

)
+ a3

(
A2 + B2

)
‍� (32)

This gives us four equations with four unknowns (one equation for each row of our table), but one 
can see that the middle two equations are redundant and thus we have a free variable. One can thus 
set ‍a3 = 0‍ and get as an OR gate in our case:

	﻿‍ output = −1 + 2
(
A + B

)
− 2AB‍� (33)

In other words, for a full logical OR function we would have

	﻿‍
p
(
turn upwind

�� turning) = −1 + 2
(

1
1+e−x + 1

1+e−y

)
− 2 · 1

1+e−x · 1
1+e−y ‍� (34)

where we have defined ‍x = gION ‍ and ‍y = gFF‍. With this definition, Equation 5 then reads

	﻿‍
p
(
turn upwind

�� turning) = 1
1+e−

(
x+y

)
‍� (35)

Comparing the two expressions, one can show numerically that they differ by at most 0.025, 
meaning for any ‍ON ‍ and ‍F‍ values, ‍p

(
turn upwind

�� turning)‍ for a true OR gate and for our model will 
differ by at most 2.5%. Hence, we claim that our model is a simple expression that well-approximates 
an OR gate. One can analogously compute what an AND gate would look like in our framework, 
giving

	﻿‍ p
(
turn upwind

�� turning) = 1 + 2AB −
(
A + B

)
‍� (36)

We simulated agents in the video plumes using this strategy as well, and unsurprisingly, they 
performed poorly in both plumes. The performance in the high-frequency plume was slightly worse 
than the performance of the intermittency-only model in that plume, and the performance in the high-
intermittency plume was slightly worse than that of the frequency-only model in that plume.

Agent-based simulation in recorded odor plumes
The first plume recording we used is the same as used in Álvarez-Salvado et al., 2018. We call this 
plume the high-intermittency plume. The odor detection threshold of the agents was set by analyzing 
the signal in a region outside the plume. In this region, pixel values of 0 were removed and nonzero 
values were fit to a Gaussian. The detection threshold was then set to be the 3 standard deviations 
above the mean of this fit. 10,000 agents were initialized with uniformly distributed starting position, 
where the x-position was between 50 mm and 300 mm from the source and the y-position went from 
80 mm below the source to 80 mm above the source. The initial heading angle was uniformly distrib-
uted from 0 to 360°. The simulation was run for the length of the video (240 s), and the discrete time 
step was set to be the reciprocal of the frame rate (1/15 s).

The second plume recording we used was taken from Demir et al., 2020. We call this the high-
frequency plume. The odor detection threshold of each agent was set the same way it was in Demir 
et  al., 2020. Again 10,000 agents were initialized with uniformly distributed initial position and 

https://doi.org/10.7554/eLife.72415
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heading. The initial x-position was between 38.45 mm and 288.45 mm, and the initial y-position was 
between –74 mm and 86 mm. Initial heading was uniformly distributed from 0 to 360°. The simulation 
was run for 123.3 s, starting from the 600th frame of the video to the last frame, at 89.94 frames/s, 
corresponding to the frame rate used in Demir et al., 2020. The first 600 frames were dropped so 
that the plume had expanded to full size when the simulations began.

In both simulations, odor signal was computed by averaging over an elliptical antenna-sensing 
region in front of the agent, as in Demir et  al., 2020. The length of the region’s major axis was 
1.5 mm, and the length of the minor axis was 0.5 mm. The ellipse was centered 1 mm in front of the 
agent. For all models, odor values below the detection threshold described above were set to 0 to 
minimize the effect of camera shot noise. When computing the ‍ON ‍ filter, the ‍kd‍ value was also set 
at this detection threshold value. If agents went outside the frame region, then they were allowed 
to continue but received zero signal in those regions. Thus, there were no walls in these simulations.

For these simulations, ‍F‍ was computed as for the square-wave pulses, with a detection threshold 
as described above, but we also enforced that the whiff time series ‍w

(
t
)
‍ could not register two whiffs 

less than 40 ms apart to capture the idea that the time resolution of individual whiffs is not arbitrarily 
precise and to avoid spurious detections due to the random fluctuations in the signal, as suggested 
by Demir et al., 2020.

Determination of base gains from experiment
The base gains, ‍gI0‍ and ‍gF0‍ , which were used for the simulations in Figure 3, and in multiples of which 
the gains in Figures 4 and 5 are reported, were determined the following way. Demir et al., 2020 
experimentally extracted a sigmoidal turning bias, as in Equation 6, except only using the ‍F‍ filter 
and reported a gain of 0.242. We thus set ‍gF0 = 0.242‍. ‍gI0‍ was set so that the contribution from ‍I ‍ in 
the high- intermittency plume would be roughly the same size as the contribution from ‍F‍ in the high-
frequency plume. So defining ‍I0‍ and ‍F0‍ to be typical ‍I ‍ and ‍F‍ values in the high-intermittency and high-
frequency plumes, respectively, we have ‍gI0I0 = gF0F0‍ . We thus determined a ‍gI0‍ of 1.936. For the PN 
model, we considered ‍V0‍ to be the average value of the membrane potential in a high-intermittency 
environment and then set ‍gPN

(
V0 − Eleak

)
= gF0F0‍ , where ‍Eleak‍ was set to –70 mV (see below). We 

thus determined ‍gPN ‍ to be 0.057 /mV. Finally, for the parameters dictating the navigational actions, 
the turn rate was set to 1.3 /s, walking speed to 10.1 mm/s, and filter decay timescale ‍τ ‍ to 2 s, all in 
accordance with the findings of Demir et al., 2020. Note that the same timescale was used for the ‍I ‍ 
and ‍F‍ filters.

Statistical methods
Error bars for success rates (Figure 3C) were computed by bootstrapping data from a simulation of 
10,000 flies – 1000 resamples were used with each resample size being equal to 10,000. Similarly, for 
the histograms of successful initial conditions, the data was resampled 1000 times, where each resa-
mple size was the size of the original data and means and standard deviations were computed and 
used for each histogram bin.

Agent-based simulation in simulated odor plumes
The simulated odor plumes were created using the strategy laid out by Farrell et al., 2002. Plumes 
consisted of growing Gaussian packets of odor concentration, released as a Poisson process with rate 
‍λ‍, that were advected by a uniform mean wind velocity and perturbed by turbulent diffusivity. The 
concentration at a point ‍

(
x, y

)
‍ due to a packet centered at ‍

(
xi, yi

)
‍ was computed as

	﻿‍
odori

(
x, y

)
= C0

π
(

R2
0+4Dti

)exp
(

−r2
i(

R2
0+4Dti

)
)

,
‍�

(37)

where ‍r
2 =

(
x − xi

)2 +
(
y − yi

)2
‍ , ‍R0‍ is the initial packet radius, ‍ti‍ is the time since the release of this 

particular packet, ‍D‍ is a diffusivity that governs the packet growth, meant to account for molecular 
diffusivity and the effects of small eddies ,and ‍C0‍ sets the initial concentration amplitude. The total 

‍odor
(
x, y, t

)
‍ is then the sum over all packets that have been released up to time ‍t‍. The packet center 

was computed the following way:

https://doi.org/10.7554/eLife.72415
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	﻿‍ xi
(
t + ∆t

)
= xi

(
t
)

+ U∆t + η1‍� (38)

	﻿‍ yi
(
t + ∆t

)
= yi

(
t
)

+ η2,‍� (39)

where ‍U ‍ denotes the mean wind velocity, and ‍η1‍ and ‍η2‍ are Gaussian white noise perturbations 
with mean 0 and standard deviation ‍

√
2κ∆t‍ , representing the effects of turbulent dispersion with 

eddy diffusivity ‍κ‍.
In general, parameters were chosen to be physically realistic and also give concentration time 

series and odor plumes that were qualitatively similar to those in the videos. To set ‍C0‍ , we defined the 
detection threshold to be 1 and enforced that an agent more than 1.6 standard deviations away from 
an initial packet would not be able to detect its presence. See the following table:

Parameter Explanation Value

‍U ‍ Wind speed ‍36−300 mm/s‍

‍D‍ Packet growth diffusivity ‍10−52 mm2/s‍

‍κ‍ Eddy diffusivity ‍1000 mm2/s‍

‍λ‍ Packet release rate ‍5 Hz‍

‍R0‍ Initial packet radius ‍10 mm‍

‍C0‍ Initial packet intensity ‍3827.24
(
a.u.

)
‍

‍K ‍ Odor detection threshold ‍1
(
a.u.

)
‍

The order of magnitude for ‍D‍ was set by the fact that attractive odorants for D. melanogaster tend 
to have molecular diffusivities of around ‍10 mm2/s‍ , for example, ethyl acetate. The eddy diffusivity ‍κ‍ 
was set in accordance with Drivas et al., 1996. The release rate and initial size were chosen to be 
similar to those in Farrell et al., 2002. The wind speed was chosen to be similar to those used exper-
imentally in Demir et al., 2020 and (Álvarez-Salvado et al., 2018).

Additionally, to improve computational efficiency, packets were no longer tracked once their ‍x‍ 
position was so large that even if all released packets were at that position, the sum of their contribu-
tions would still be less than the detection threshold.

10,000 agents were initialized with uniformly distributed initial position and angle, with ‍x‍ between 
50 mm and 400 mm, ‍y‍ between –110 mm and 110 mm, and ‍0◦ < θ < 360◦‍, where ‍x‍ and ‍y‍ positions are 
defined relative to the source location, as in Figure 3. Plumes were simulated for enough time steps 
so that the expected ‍x‍ position of a packet released at time 0 would be equal to the maximum initial ‍x‍ 
for navigating agents, before navigating agents were introduced and simulated for 120 s. Once again, 
a trajectory’s success was defined by whether it got within 15 mm of the source location.

To define the antenna-sensing region, space was discretized into ‘pixels’ with 0.154 mm as the 
pixel width, matching the spatial resolution of the high-frequency plume. The concentration was 
then computed by averaging over the pixels in an elliptical region, with the region defined as in the 
previous section.

To set the level of noise added to the ‍I ‍ and ‍F‍ filters, we first computed a characteristic ‍I ‍ value in 
the simulated high-intermittency plume, ‍I0‍ , by averaging ‍I ‍ values over a region ‍192 mm < x < 205 mm‍ 
and ‍0 mm < y < 9 mm‍ and then averaging over the length of the simulation. We did the same for ‍F‍ 
values in the simulated high-frequency plume to obtain ‍F0‍ . The values we obtained were ‍I0 = 0.388‍ 
and ‍F0 = 3.14‍. We then used 5% of these values as the standard deviation for Gaussian white noise to 
be added to the output of the ‍I ‍ and ‍F‍ filters, respectively, at each time step. We also used ‍I0‍ and ‍F0‍ 
as representative ‍I ‍ and ‍F‍ values in order to assign a single relative filter weight with which to color 
each set of gains in Figure 4G.

Investigating the role of filter timescales
To understand how performance depended on the filter timescales ‍τI ‍ and ‍τF‍ , we varied the two 
timescales independently, and for each pair of timescales simulated 10,000 flies in the two simulated 
plumes explored thus far. No noise was added to the sensor outputs, and gains were set at the base 
gains. Given that the average response of the intermittency filter is independent of the filtering times-
cale, it is unsurprising that for the fixed ‍τF‍ performance does not change significantly for values of ‍τI ‍ 
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nearly two orders of magnitude apart and only starts to degrade once the timescale gets on the order 
of 10 s (Figure 4—figure supplement 2A and B). This degradation is also expected: at very long 
timescales, it requires significant time for the ‍I ‍ filter to reach an appreciable value, even in the case 
of constant odor. There was also no significant difference in performance in either plume between 
an ‍I ‍-only model with an infinitely fast (‍τI = 0‍) timescale (and thus flat response power spectrum) and 
an ‍I ‍-only model with a 2 s timescale. This is to be expected as even with an infinitely fast timescale 
such a model has an upwind bias if and only if the signal is present and thus is only responding to 
the intermittency of the signal. We also see that performance is impacted by varying ‍τF‍ (Figure 4—
figure supplement 2A and B) but that this is largely equivalent to fixing ‍τF‍ but varying ‍gF‍ instead 
(Figure 4—figure supplement 2C), as predicted by Equation 29.

ORN and PN circuit model
ORN firing rates were computed from Equations 7 and 8. Once odor activity ‍a‍ was obtained, it was 
convolved with a normalized sum of two gamma distributions, ‍N ·

(
Γ1 − 0.5 · Γ2

)
‍ , where the times-

cales for the two gamma distributions were 6 ms and 8 ms, respectively (Gorur-Shandilya et  al., 
2017), and the shape parameters 2 and 3, respectively, giving the shape seen in Figure 6A. This 
convolution was then multiplied by 300 Hz to get a firing rate. Since the model is only valid in regions 
where ‍Kon < odor < Koff ‍ , we set any odor less than ‍Kon‍ to 0. In the simulated plumes, ‍Kon‍ was set to 1 
and ‍Koff ‍ was set to 400. ‍a0‍ was set to 0.15 in order to get a baseline firing rate of about 40 Hz in the 
presence of continuous odor. In order to ensure the activity would go to 0 once there was no signal, 
‍ϵ‍ was bounded below by ‍ϵL‍ and ‍ϵL‍ was set to be greater than the steady-state ‍ϵ‍ when no signal is 

present, which is given by 
‍
ln
(

1
a0

− 1
)
≈ 1.73

‍
. Thus, ‍ϵL‍ was set to 2.5 and activity less than ‍

1
1+eϵL ‍ was 

set to 0. ‍β‍ was set to 0.8 /s, in accordance with Gorur-Shandilya et al., 2017.
Once the ORN firing activity was obtained, PN membrane voltages were obtained using Equa-

tions 9–11. All parameters in Equations 9–11 were taken from Nagel et al., 2015. Since the fastest 
timescales were around 5 ms, responses were calculated through Euler integration with a timescale 
of 0.5 ms.
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