1	Distinguishing different modes of growth using
2	single-cell data - Supplementary Information
3	Prathitha Kar ^{1,2} , Sriram Tiruvadi-Krishnan ³ , Jaana Männik ³ , Jaan Männik ^{*3} ,
4	and Ariel $\operatorname{Amir}^{\dagger 1}$
5	¹ School of Engineering and Applied Sciences, Harvard University, Cambridge,
6	MA 02134, USA
7	² Department of Chemistry and Chemical Biology, Harvard University,
8	Cambridge, MA 02138, USA
9	³ Department of Physics and Astronomy, University of Tennessee, Knoxville,
10	TN 37996, USA

^{*}Corresponding author- email: jmannik@utk.edu; phone: +1 (865) 974 6018 [†]Corresponding author- email: arielamir@seas.harvard.edu; phone: +1 (617) 495 5818

Variables	Description			
L_b	Length of the cell at birth and also a proxy for size at birth			
L_d	Length of the cell at division and also a proxy for size at			
	division			
l_b	$\frac{L_b}{\langle L_b \rangle}$, where $\langle L_b \rangle$ is mean size at birth			
l_d	$\frac{L_d}{\langle L_b \rangle}$, where $\langle L_b \rangle$ is mean size at birth			
$f(l_b)$	Mathematical function which captures the regulation strategy			
	determining division given size at birth. $f(l_b) = 2l_b^{1-\alpha}$			
T_d	Generation time			
σ_t	Standard deviation of generation time			
x_n or x	$x_n = \ln(l_b^n)$. Since $l_b \approx 1$, $x_n \approx l_b^n - 1$			
σ_x	Standard deviation of x_n			
$f_1(x_n)$	Gaussian describing the distribution of x_n . $f_1(x_n) =$			
	$\frac{1}{\sqrt{2\pi\sigma_x^2}}\exp\left(-\frac{x_n^2}{2\sigma_x^2}\right)$			
$\langle \lambda angle$	Mean growth rate			
CV_{λ}	Coefficient of variation of growth rate			
$\xi(0, CV_{\lambda})$	Normally distributed growth rate noise. Growth rate is de-			
	$ ext{fined as } \lambda = \langle \lambda angle + \langle \lambda angle \xi(0, CV_\lambda)$			
$f_2(\xi)$	Gaussian describing the distribution of random variable			
	$\xi(0, CV_{\lambda}). \ f_2(\xi) = \frac{1}{\sqrt{2\pi CV_{\lambda}^2}} \exp\left(-\frac{\xi^2}{2CV_{\lambda}^2}\right)$			
$rac{\zeta(0,\sigma_n)}{\langle\lambda angle}$	Normally distributed time additive division timing noise with			
	mean 0 and standard deviation $\frac{\sigma_n}{\langle \lambda \rangle}$			

Table S1: Variable definitions.

$f_3(\zeta)$	Gaussian describing the distribution of random variable				
	$\zeta(0,\sigma_n). \ f_3(\zeta) = \frac{1}{\sqrt{2\pi\sigma_n^2}} \exp\left(-\frac{\zeta^2}{2\sigma_n^2}\right)$				
$\zeta_s(0,\sigma_{bd})$	Normally distributed size additive division timing noise with				
	mean 0 and standard deviation σ_{bd}				
σ_l	Standard deviation of $\ln(\frac{L_d}{L_b})$				
$f_4\left(\ln\left(\frac{L_d}{L_b}\right)\right)$	Gaussian describing the distribution of $\ln(\frac{L_d}{L_b})$. $f_4\left(\ln(\frac{L_d}{L_b})\right)$				
	$= \frac{1}{\sqrt{2\pi\sigma_l^2}} \exp\left(-\frac{\left(\ln\left(\frac{L_d}{L_b}\right) - \ln(2)\right)^2}{2\sigma_l^2}\right)$				
$ ho_{exp}$	Correlation coefficient of the pair $(\ln(\frac{L_d}{L_b}), \langle \lambda \rangle T_d)$				
m_{tl}	Slope of the best linear fit for $\ln(\frac{L_d}{L_b})$ vs $\langle \lambda \rangle T_d$ plot				
c_{tl}	Intercept of the best linear fit for $\ln(\frac{L_d}{L_b})$ vs $\langle \lambda \rangle T_d$ plot				
m_{lt}	Slope of the best linear fit for $\langle \lambda \rangle T_d$ vs $\ln(\frac{L_d}{L_b})$ plot				
c_{lt}	Intercept of the best linear fit for $\langle \lambda \rangle T_d$ vs $\ln(\frac{L_d}{L_b})$ plot				
$\langle \lambda_{lin} angle$	Mean normalized elongation speed				
$CV_{\lambda,lin}$	Coefficient of variation of normalized elongation speed				
$\xi_{lin}(0, CV_{\lambda, lin})$	Normally distributed normalized elongation speed noise. Nor-				
	malized elongation speed is defined as $\lambda_{lin} = \langle \lambda_{lin} \rangle$ +				
	$\langle \lambda_{lin} \rangle \xi_{lin}(0, CV_{\lambda, lin})$				
$\sigma_{l,lin}$	Standard deviation of $l_d - l_b$				
$ ho_{lin}$	Correlation coefficient of the pair $(l_d - l_b, \langle \lambda_{lin} \rangle T_d)$				
$m_{tl,lin}$	Slope of the best linear fit for $l_d - l_b$ vs $\langle \lambda_{lin} \rangle T_d$ plot				
$c_{tl,lin}$	Intercept of the best linear fit for $l_d - l_b$ vs $\langle \lambda_{lin} \rangle T_d$ plot				
m _{lt,lin}	Slope of the best linear fit for $\langle \lambda_{lin} \rangle T_d$ vs $l_d - l_b$ plot				
C _{lt,lin}	Intercept of the best linear fit for $\langle \lambda_{lin} \rangle T_d$ vs $l_d - l_b$ plot				
L_i	Cell size at the start of DNA replication (initiation)				

$L_i^{tot,next}$	Total cell size of the daughter cells at the start of DNA repli-				
	cation				
Δ_{ii}	Size added per origin between initiations				
0	Number of origins just after initiation				
C+D	Time between initiation and division				
T_n	Timing of start of septum formation/onset of constriction				
L_n	Cell size at time T_n				

Table S2: The slope and the intercept of the best linear fit along with their 95% confidence intervals (CI) obtained on performing linear regression on experimental data. The data is collected for cells growing in M9 alanine, glycerol and glucose-cas media [S1].

	l'a Na a C		$\ln(rac{L_d}{L_b}) ~\mathrm{vs}~ \langle \lambda angle \mathrm{T_d}~\mathrm{plot}$		$\langle \lambda angle { m T_d} ~{ m vs}~{ m ln}(rac{L_d}{L_b})~{ m plot}$	
Media	cells	$\operatorname{I_d}(\min)$	Slope (with	Intercept	Slope (with	Intercept
			95% CI)	(with 95%	95% CI)	(with 95%
				CI)		CI)
Alanine	816	214	0.34 (0.31,	0.44 (0.42,	1.06 (0.98,	-0.01 (-0.07,
			0.36)	0.46)	1.14)	0.04)
Glycerol	648	164	0.34 (0.32,	0.43 (0.41,	1.26 (1.16,	-0.13 (-0.20,
			0.37)	0.44)	1.35)	-0.07)
Glucose-	737	65	0.31 (0.28,	0.42 (0.40,	0.91 (0.83,	0.09 (0.03,
cas			0.34)	0.44)	1.00)	0.15)

¹¹ References

- 12 S1. Tiruvadi Krishnan, S., Männik, J., Kar, P., Lin, J., Amir, A., and Männik, J. (2021).
- Replication-related control over cell division in *Escherichia coli* is growth-rate depen-
- dent. bioRxiv, 10.1101/2021.02.18.431686.