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Abstract11

Collection of high-throughput data has become prevalent in biology. Large datasets allow12

the use of statistical constructs such as binning and linear regression to quantify relationships13

between variables and hypothesize underlying biological mechanisms based on it. We discuss14

several such examples in relation to single-cell data and cellular growth. In particular, we15

show instances where what appears to be ordinary use of these statistical methods leads16

to incorrect conclusions such as growth being non-exponential as opposed to exponential17

and vice versa. We propose that the data analysis and its interpretation should be done in18

the context of a generative model, if possible. In this way, the statistical methods can be19

validated either analytically or against synthetic data generated via the use of the model,20

leading to a consistent method for inferring biological mechanisms from data. On applying21

the validated methods of data analysis to infer cellular growth on our experimental data, we22

find the growth of length in E. coli to be non-exponential. Our analysis shows that in the23

later stages of the cell cycle the growth rate is faster than exponential.24
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1 Introduction25

The last decade has seen a tremendous increase in the availability of high-quality large26

datasets in biology, in particular in the context of single-cell level measurements. Such27

data are complementary to “bulk” measurements made over a population of cells. They28

have led to new biological paradigms and motivated the development of quantitative models29

[1–7]. Nevertheless, they have also led to new challenges in data analysis, and here we30

will point out some of the pitfalls that exist in handling such data. In particular, we will31

show that the commonly used procedure of binning data and linear regression may hint32

at specific functional relations between the two variables plotted that are inconsistent with33

the true functional relations. As we shall show, this may come about due to the “hidden”34

noise sources that affect the binning procedure and the phenomenon of “inspection bias”35

where certain bins have biased contributions. One of our main take home messages is the36

significance of having an underlying model (or models) to guide/test/validate data analysis37

methods. The underlying model is referred to as a generative model in the sense that38

it leads to similar data to that observed in the experiments. The importance of a so-39

called generative model has been beautifully advocated in the context of astrophysical data40

analysis [8], yet biology brings in a plethora of exciting differences: while in physics noise from41

measurement instruments often dominates, in the biological examples we will dwell on here it42

is the intrinsic biological noise that can obscure the mathematical relation between variables43

when not handled properly. In the following, we will illustrate this rather philosophical44

introduction on a concrete and fundamental example, albeit e pluribus unum. We will focus45

on the analysis of the Escherichia coli growth curves obtained via high throughput optical46

microscopy. Nevertheless we anticipate the conceptual points made here – and demonstrated47

on a particular example of interest – will translate to other types of measurements, which48

make use of microscopy but also beyond.49
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Binning corresponds to grouping data based on the value of the x-axis variable, and find-50

ing the mean of the fluctuating y-axis variable for this group. By removing the fluctuations51

of the y-variable, the binning process often aims to expose the “true” functional relation52

between the two variables which can be used to infer the underlying biological mechanism.53

While binning may provide a smooth non-linear relation between variables, linear regression54

is used to find a linear relationship between the variables. In addition to binning, we use55

the ordinary least squares regression where the slope and the intercept of the best linear fit56

line are obtained by minimizing the squared sum of the difference between the dependent57

variable raw data and the predicted value. Here, the best fit/the best linear fit is obtained58

using the raw data and not the binned data. Similar to binning, the assumption underlying59

linear regression is that our knowledge of x-axis variable is precise while the noise is in the60

y-axis variable.61

It is important to discuss the sources of fluctuations in the y-axis variable before we62

proceed. In biology, fluctuations in the variables arise inevitably from the intrinsic variability63

within a cell population. Cells growing in the same medium and environment have different64

characteristics (e.g., growth rate) due to the stochastic nature of biochemical reactions in65

the cell [9]. For example, the division event is controlled by stochastic reactions, whose66

variability leads to cell dividing at a size smaller or larger than the mean. In this paper,67

when modeling the data, we will consider the intrinsic noise as the only source of variability68

and assume that the measurement error is much smaller than the intrinsic variation in the69

population.70

One example of the use of binning and linear regression is shown in Figure 1A where size71

at division (Ld) vs size at birth (Lb) is plotted using experimental data obtained by Tanouchi72

et al. for E. coli growing at 25◦C [10]. In Figure 1A, the functional relation between length at73

division and length at birth for E. coli is observed to be linear and close to Ld = Lb+∆L (see74

Section 5.11.1 for details). The relation obtained allows us to hypothesize a coarse-grained75
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biological model known as the adder model as shown in Figure 1B in which the length at76

division is set by addition of length ∆L from birth [4, 11–16]. This previously discussed77

example demonstrates and reiterates the use of statistical analysis on single-cell data to78

understand the underlying cell regulation mechanisms. Using statistical methods such as79

binning and linear regression, other phenomenological models apart from adder have also80

been proposed in E. coli where the division length (Ld) is not directly “set” by that at birth81

[17–19]. The phenomenological models, in turn, can be related to mechanistic (molecular-82

level) models of cell size and cell cycle regulation [20]. Recent work has shed light on the83

subtleties involved in interpreting the linear regression results for the Ld vs Lb plot where84

seemingly adder behavior in length can be obtained from a sizer model (division occurring85

on reaching a critical size) due to the interplay of multiple sources of variability [21]. This86

issue is similar in spirit to those we highlight here.87

The volume growth of single bacterial cells has been typically assumed to be exponential88

[4, 14, 22–25]. Assuming ribosomes to be the limiting component in translation, growth is89

predicted to be exponential and growth rate depends on the active ribosome content in the90

cell [26–28]. Under the assumption of exponential growth, the size at birth (Lb), the size at91

division (Ld), and the generation time (Td) are related to each other by,92

ln(
Ld
Lb

) = λTd, (1)

where λ is the growth rate. Understanding the mode of growth is important e.g., due to93

its potential effects on cell size homeostasis. Exponentially growing cells cannot employ a94

mechanism where they control division by timing a constant duration from birth but such95

a mechanism is possible in case of linear growth [3, 13, 29]. Linear regression performed96

on ln(Ld
Lb

) vs 〈λ〉Td plot, where 〈λ〉 is the mean growth rate, was used to infer the mode97

of growth in the archaeon H. salinarum [16], and in the bacteria M. smegmatis [30] and98
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C. glutamicum [31], for example. If the best linear fit follows the y=x trend, the resulting99

functional relation might point to growth being exponential. A corollary to this is the100

rejection of exponential growth when the slope and intercept of the best linear fit deviate from101

one and zero respectively [31]. Thus, binning and linear regression applied on single-cell data102

appear to provide information about the underlying biology, in this case, the mode of cellular103

growth. We will test the validity of such inference by analyzing synthetic data generated104

using generative models. We find that linear regression performed on the plot ln(Ld
Lb

) vs105

〈λ〉Td, surprisingly, does not provide information about the mode of growth. Nonetheless,106

we show that other methods of statistical analysis such as binning growth rate vs age plots107

are adequate in addressing the problem. Using these validated methods on experimental108

data, we find that E. coli grows non-exponentially. In later stages of the cell cycle, the109

growth rate is higher than that in early stages.110

2 Statistical methods like binning and linear regression111

should be interpreted based on a model.112

To illustrate the pitfalls associated with binning, we use data from recent experiments on E.113

coli where the length at birth, the length at division and the generation time were obtained114

for multiple cells (see Section 5.1 and [32]). Phase-contrast microscopy was used to obtain115

cell length at equal intervals of time. Note that we consider length to reflect cell size in116

this paper rather than other cell geometry characteristics such as surface area and volume.117

The length growth rate that we elucidate in the paper can be different from the cell volume118

growth rate as shown in Appendix 1 assuming a simple cell morphology and exponential119

growth. Using the same cell morphology, we also find the length growth rate to be identical120

to cell surface growth rate. To investigate if the cell growth was exponential, we plotted121

ln(Ld
Lb

) vs 〈λ〉Td for cells growing in M9 alanine minimal medium at 28◦C (〈Td〉 = 214 min).122
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The linear regression of these data yields a slope of 0.3 and an intercept of 0.4 as shown in123

Figure 2A. The binned data and the best linear fit deviate significantly from the y=x line124

(see Table S2). Additionally, the binned data follows a non-linear trend and flattens out125

at longer generation times. We also found similar deviations in the binned data and best126

linear fit in glycerol medium (〈Td〉 = 164 min) shown in Figure 2- figure supplement 1A, and127

glucose-cas medium (〈Td〉 = 65 min) shown in Figure 2- figure supplement 1B. Qualitatively128

similar results have been recently obtained for another bacterium, C. glutamicum, in Ref.129

[31]. These results might point to growth being non-exponential.130

Next we will approach the same problem but with a generative model. We will first131

show that the ln(Ld
Lb

) vs 〈λ〉Td binned plot could not distinguish exponential growth from132

non-exponential growth. For that purpose, we use a previously studied model [16] which133

considers growth to be exponential with the growth rate distributed normally and indepen-134

dently between cell cycles with mean growth rate 〈λ〉 and standard deviation CVλ〈λ〉. CVλ135

is thus the coefficient of variation (CV) of the growth rate and is assumed to be small. To136

maintain a narrow distribution of cell size, cells must employ regulatory mechanisms. In137

our model, we assume that, barring the noise due to stochastic biochemical reactions, cells138

attempt to divide at a particular size Ld given size at birth Lb. Keeping the model as generic139

as possible, we can write Ld as a function of Lb, f(Lb) which can be thought of as a coarse-140

grained model for the regulatory mechanism. Ref. [13] provides a framework to capture the141

regulatory mechanisms by choosing f(Lb) = 2L1−α
b Lα0 . L0 is the typical size at birth and α,142

which can take values between 0 and 2, reflects the strength of regulation strategy. α = 0143

corresponds to the timer model where division occurs on average after a constant time from144

birth, and α = 1 is the sizer model where a cell divides upon reaching a critical size. α =145

1/2 can be shown to be equivalent to the adder model where division is controlled by addi-146

tion of constant size from birth [13]. In addition to the deterministic function (f) specifying147

division, the size at division is affected by noise ( ζ
〈λ〉) in division timing. We assume it has148
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a Gaussian distribution with mean zero and standard deviation σn
〈λ〉 and that it is indepen-149

dent of the growth rate. Thus, the generation time (Td) can be mathematically written as150

Td = 1
λ

ln( f(Lb)
Lb

) + ζ
〈λ〉 and is influenced by growth rate noise and division timing noise. Note151

that replacing the time additive division timing noise with a size additive division timing152

noise will not affect the results qualitatively (see Sections 5.2 and 5.3 for details and Table153

S1 for variable definitions).154

For perfectly symmetrically dividing cells whose sizes are narrowly distributed, we find155

the trend in the binned data for ln(Ld
Lb

) vs 〈λ〉Td plot to be (see Section 5.4),156

y = x

1 +
1− x

ln(2)

1 + 2
2−α

σ2
n

CV 2
λ ln2(2)

 . (2)

Fixing CVλ = σn = 0.15, we show using simulations in Figure 2C the non-linear trend in the157

binned data even though we assumed exponential growth. Similarly, on performing linear158

regression on the raw data of ln(Ld
Lb

) vs 〈λ〉Td plot, we find that the slope of the best linear159

fit is not equal to one and the intercept is non-zero (see Eqs. 27 and 28 and Figure 2C).160

Eq. 2 shows that the trend in the binned data depends on the ratio of growth rate noise161

and division timing noise. The slope is equal to one and intercept is zero only if the noise162

in growth rate is negligible as compared to the division timing noise. In experiments that is163

rarely the case, hence, the binned data trend and the best linear fit deviate from the y=x164

line even though growth might be exponential. Thus, we cannot rule out exponential growth165

in the E. coli experiments despite the binned data trend being non-linear and the best-fit166

line deviating from the y=x line.167

Why does a non-linear relationship in the binned data for the plot ln(Ld
Lb

) vs 〈λ〉Td arise168

even for exponential growth? According to the model, Ld is determined by a deterministic169

strategy, f(Lb) and a time/size additive division timing noise. The noise component which170

affects Ld and subsequently the quantity ln(Ld
Lb

) is thus the noise in division timing and not171
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the growth rate. The generation time (Td) plotted on the x-axis is influenced by the noise in172

division timing as well as the noise in growth rate. Binning assumes that for a fixed value of173

the x-axis variable, the noise from other sources affects only the y-axis variable (the binned174

variable). Similarly for linear regression, the underlying assumption is that the independent175

variable on x-axis is precisely known while the dependent variable on the y-axis is influenced176

by the independent variable and from external factors other than the independent variable.177

In this case, only 〈λ〉Td plotted on x-axis is influenced by growth rate noise while both 〈λ〉Td178

and ln(Ld
Lb

) are influenced by noise in division time. This does not fit the assumption for179

binning and linear regression and hence, the best linear fit for ln(Ld
Lb

) vs 〈λ〉Td plot might180

deviate from the y=x line even in the case of exponential growth.181

Another way of explaining the deviation from the linear y=x trend is by inspection bias,182

which arises when certain data is over-represented [33]. Cells which have a longer generation183

time than the mean will most likely have a slower growth rate. Thus, in Figure 2A and184

Figure 2C, at larger values of 〈λ〉Td or Td, the bin averages are biased by slower growing185

cells, thus making ln(Ld
Lb

) or λTd to be lower than expected. This provides an explanation186

for the flattening of the trend.187

It follows from the previous discussion that if one bins data by ln(Ld
Lb

) then the assumption188

for binning is met. Both of the variables 〈λ〉Td and ln(Ld
Lb

) are influenced by the noise in189

division time but 〈λ〉Td plotted on the y-axis is also influenced by the growth rate noise.190

Thus, the y-axis variable, 〈λ〉Td is determined by the x-axis variable, ln(Ld
Lb

), and an external191

source of noise, in this case, the growth rate noise. Thus, based on our model, we expect192

the trend in binned data and linear regression performed on the interchanged axes to follow193

the y=x trend for exponentially growing cells (see Section 5.4). Indeed, on interchanging the194

axis and plotting 〈λ〉Td vs ln(Ld
Lb

) for synthetic data, we find that the trend in the binned195

data and the best linear fit closely follows the y=x line (Figure 2D). We also find that the196

best linear fit follows the y=x line in the case of alanine (Figure 2B), glycerol (Figure 2-197
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figure supplement 1A) and glucose-cas (Figure 2- figure supplement 1B). A change from198

non-linear behavior to that of linear on interchanging the axes is also observed in a related199

problem where growth rate (λ) and inverse generation time ( 1
Td
) are considered (Figure 2-200

figure supplement 2 and Section 5.10).201

Thus far, we showed for a range of models where birth controls division that the binned202

data trend for ln(Ld
Lb

) as function of 〈λ〉Td is non-linear and dependent on the noise ratio σn
CVλ

203

in the case of exponential growth. On interchanging the axes the binned data trend agrees204

with the y=x line independent of the growth rate and division time noise. However, we will205

show next that this agreement with the y=x trend cannot be used as a “smoking gun” for206

inferring exponential growth from the data.207

To investigate this further, let us consider linear growth, which has also been suggested208

to be followed by E. coli cells [34, 35]. The underlying equation for linear growth is,209

Ld − Lb = λ′Td, (3)

where λ′ is the the elongation speed i.e., dL
dt
. For cells growing linearly, the best linear fit210

for the plot 〈λ〉Td vs ln(Ld
Lb

) is expected to deviate from the y=x line. As before, we fix 〈λ〉211

to be the mean of 1
Td

ln(Ld
Lb

), agnostic of the linear mode of growth. Surprisingly, we found212

that for the class of models where birth controls division by a strategy f(Lb) and cells grow213

linearly, the best linear fit for 〈λ〉Td vs ln(Ld
Lb

) agrees closely with the y=x trend. On carrying214

out analytical calculations based on this model, we obtain the slope and the intercept of the215

〈λ〉Td vs ln(Ld
Lb

) plot to be 3
2

ln(2) ≈ 1.04 and -0.03 respectively, which is very close to that216

for exponential growth (see Section 5.6). This is shown for simulations of linear growth with217

cells following an adder model in Figure 3A. Given no information about the underlying218

model, Figure 3A could be interpreted as cells undergoing exponential growth contrary to219

the assumption of linear growth in simulations. Thus, when handling experimental data,220
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cells undergoing either exponential or linear growth might seem to agree closely with the221

y=x trend. Deforet et al. [36] used the linear binned data trend in case of 〈λ〉Td vs ln(Ld
Lb

)222

plot to infer exponential growth but as we showed in this section, the linear trend does not223

rule out linear growth. This again reiterates our message of having a generative model to224

guide the data analysis methods such as binning and linear regression. For completeness, we225

also test the utility of ln(Ld
Lb

) vs 〈Td〉λ and its interchanged axes plots to elucidate the mode226

of growth (Appendix 2). We find that binning and linear regression applied on these plots227

can not differentiate between exponential and linear growth.228

To conclude the discussion of linear growth, we note that the natural plot for this growth229

regime is 〈λlin〉Td vs ld − lb and the plot obtained on interchanging the axes (see Section 5.5230

and Figure 3- figure supplements 1A, 1B). Here lb, ld and λlin are defined to be quantities231

Lb, Ld and λ′, respectively, normalized by the mean length at birth. For cells growing232

exponentially, the best linear fit for the 〈λlin〉Td vs ld− lb plot is expected to deviate from the233

y=x line. This is indeed what is observed in Figure 3- figure supplement 1C where simulations234

of exponentially growing cells following the adder model are presented (see Section 5.6 for235

extended discussion).236

In all of the cases above, the problem at hand deals with distilling the biologically relevant237

functional relation between two variables. However, the data is assumed to be subjected to238

fluctuations of various sources, and it is important to ensure that the statistical construct we239

are using (e.g. binning) is robust to these. How can we know a priori whether the statistical240

method is appropriate and a "smoking gun" for the functional relation we are conjecturing?241

The examples shown above suggest that performing statistical tests on synthetic data ob-242

tained using a generative model is a convenient and powerful approach. Note that in cases243

such as the ones studied here where analytical calculations may be performed, one may not244

even need to perform any numerical simulations to test the validity of the methods.245
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3 Growth rate vs age plots are consistent with the un-246

derlying growth mode.247

In the last section, we showed that the plots ln(Ld
Lb

) vs 〈λ〉Td and 〈λ〉Td vs ln(Ld
Lb

) are not248

decisive in identifying the mode of growth. Recent works on B. subtilis [37] and fission yeast249

[38] have used differential methods of quantifying growth namely growth rate (= 1
L
dL
dt
) vs250

age plots and elongation speed (=dL
dt
) vs age plots to probe the mode of growth within a251

cell cycle. Here, L denotes the size of the cell after time t from birth in the cell cycle and252

age denotes the ratio of time t to Td within a cell cycle (hence it ranges from 0 to 1 by253

construction within a cell cycle). In this section, using various models of cell growth and254

cell cycle, we test the growth rate vs age method. Note that the growth rate vs age and255

the elongation speed vs age plots are not dimensionless unlike the previous plots. Using the256

growth rate vs age and elongation speed vs age plots, we aim to quantify the growth rate257

changes within a cell cycle. For cells assumed to be growing exponentially, growth rate is258

constant throughout the cell cycle. On averaging over multiple cell cycles, the trend of binned259

data is expected to be a horizontal line with value equal to mean growth rate which is indeed260

what we find in the numerical simulations of the adder and the adder per origin model [17],261

as shown in Figure 3B. The binned data trend in each of the models matches the theoretical262

predictions of growth rate (shown as dotted lines). In contrast, for linearly growing cells, the263

elongation speed is expected to remain constant. We show this constancy using numerical264

simulations of linearly growing cells following the adder model (Figure 3- figure supplement265

3A). In accordance with this result, the growth rate is expected to decrease with cell age as266

λ ∝ 1
1+age

. This is verified in Figure 3B by again using the numerical simulations of linear267

growth with cells following the adder model. The binned data trend for linear growth (green268

squares) matches the theoretical predictions of λ ∝ 1
1+age

(green dotted line).269

Thus, the two growth modes (exponential and linear) could be differentiated using the270
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growth rate vs age plot (for details see Section 5.7). However, the growth rate vs age plots271

can be used to infer the mode of growth beyond the two discussed above. We show this by272

using simulations of cells following the adder model and undergoing faster than exponential273

or super-exponential growth (see Section 5.11.2 for details). In such a case, the growth rate is274

expected to increase. This increase in growth rate is shown in Figure 3B using simulations.275

The binned data trend (red triangles) again matches the growth rate mode used in the276

simulations (red dotted line). Thus, the growth rate vs age plots are a consistent method to277

distinguish linear from exponential and super-exponential growths.278

Using the validated growth rate vs age plots, we obtained the growth rate trend for279

experimental data on E. coli for the three growth conditions studied in this paper (Figures280

4A-4C). We found an increase in growth rate in all growth conditions during the course of281

the cell cycle. One may wonder whether such an increase may be explained by the E. coli282

morphology alone, due to the presence of hemispherical poles. For exponentially growing cell283

volume and considering a geometry of E. coli with spherical caps at the poles, the percentage284

increase in the growth rate of length over a cell cycle is around 3% which is significantly285

smaller than that observed in our experimental data. Considering cell size trajectories (cell286

size, L at time, t data) where cell lengths were tracked beyond the cell division event (by287

considering cell size in both daughter cells), we also found that the growth rate decreases close288

to division (age ≈ 1) and returns to a value nearly equal to that observed at the beginning289

of cell cycle (age ≈ 0) as shown in Figure 4- figure supplements 1A-1C (see Section 5.7 for290

extended discussion).291

The above question of mode of growth within a cell cycle can also be analyzed in relation292

to a specific event. Several studies have pointed to a change in growth rate at the onset of293

constriction [39, 40]. This change in growth rate can be probed using growth rate vs time294

plots where time is taken relative to the onset of constriction as shown in Figure 4- figure295

supplement 2. These plots show a decrease in growth rates at the two extremes of the plot.296
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These decreases are due to inspection bias, where the growth rate trend is affected by the297

biased contribution of cells with a higher than average generation time or equivalently slower298

growth rate (see Section 5.8 for extended discussion). Inspection bias is also observed when299

timing is considered relative to other cell events such as cell birth (see Section 5.8 and Figure300

3- figure supplements 2C, 2D).301

It might not always be possible to obtain growth rate trajectories as a function of time/cell302

age. Godin et al. instead obtained the instantaneous biomass growth speed (dM
dt
) as a303

function of its buoyant mass (M) [22]. On applying linear regression for instantaneous304

mass growth speed vs mass, we expect the slope of the best linear fit obtained to provide305

the average growth rate (〈 1
M

dM
dt
〉) under the assumption of exponential growth while for306

linear growth the intercept provides the average growth speed. Using this method, biomass307

was suggested to be growing exponentially. This method can be applied to study the length308

growth rate within the cell cycle by plotting elongation speed as a function of length [41]. We309

find that the binned data trend and the best linear fit of this plot follow the expected trend310

for linear and exponential growth as shown in Figure 3- figure supplement 3B and Figure 3-311

figure supplement 3D, respectively, for a cell cycle model where division is controlled via an312

adder mechanism from birth. However, the trend obtained appears to be model-dependent313

as shown in Figure 3- figure supplement 3F where the underlying cell cycle model used in314

the simulations is the adder per origin model. For this model, the binned data trend is315

found to be non-linear with the growth rate speeding up at large sizes, despite the synthetic316

data being generated for perfectly exponential growth. This non-linear trend can lead to317

growth rate being misinterpreted as non-exponential within the cell cycle (see Section 5.9318

for details). Thus, an analysis using the elongation speed vs size plot must be accompanied319

with an underlying cell cycle model.320

In summary, we found that the growth rate vs age plot was a consistent method to321

determine the changes in growth rate within a cell cycle. Unlike the growth rate vs age322
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plots, the inference from the growth rate vs size plots was found to be model-dependent.323

Using the growth rate vs age plots, we show that the length growth of E. coli can be faster324

than exponential.325

4 Discussion326

Statistical methods such as binning and linear regression are useful for interpreting data and327

generating hypotheses for biological models. However, we show in this paper that predicting328

the relationships between experimentally measured quantities based on these methods might329

lead to misinterpretations. Constructing a generic model and verifying the statistical analysis330

on the synthetic data generated by this model provides a more rigorous way to mitigate these331

risks.332

In the paper, we provide examples in which ln(Ld
Lb

) vs 〈λ〉Td and 〈λ〉Td vs ln(Ld
Lb

) plots fail333

as a method to infer the mode of growth. The binned data trend and the best linear fit for334

the ln(Ld
Lb

) vs 〈λ〉Td plot was found to be dependent upon the noise parameters in the class335

of models where birth controlled division (Equation 2). We also show that 〈λ〉Td vs ln(Ld
Lb

)336

plot could not differentiate between exponential and linear modes of growth (Figures 2D,337

3A). Thus, we conclude that the best linear fit for the above plots might not be a suitable338

method to infer the mode of growth but they are just one of the many correlations which339

the correct cell cycle model should be able to predict.340

We found growth rate vs age and elongation speed vs age plots to be consistent methods341

to probe growth within a cell cycle. The method was validated using simulations of various342

cell cycle models (such as the adder, and adder per origin model, where in the latter, control343

over division is coupled to DNA replication) and the binned growth rate trend agreed closely344

with the underlying mode of growth for the wide range of models considered (Figure 3B). In345

the case of growth rate vs time plots, it was important to take into consideration the effects346
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of inspection bias. We used cell cycle models to show the time regimes where inspection bias347

could be observed (Figure 3- figure supplement 2). In the regime with negligible inspection348

bias, we could reconcile the growth rate trend obtained using growth rate vs age (Figures 4A-349

4C) and growth rate vs time plots (Figure 4- figure supplement 2). The authors in Ref. [31]350

circumvent inspection bias in the elongation speed vs time from birth plots by focusing their351

analysis on the time period from cell birth to the generation time of the fastest dividing cell.352

The authors of Ref. [42], while investigating the division behavior in the cells undergoing353

nutrient shift within their cell cycle, use both models and experimental data from steady-354

state conditions to identify inspection bias. These serve as good examples of using models355

to aid data analysis.356

Statistics obtained from linear regression such as in Figure 1A help narrow down the357

landscape of cell cycle models, but many have potential pitfalls lurking which might lead to358

misinterpretations (Figure 2C, Figure 3A). There are additional issues beyond those concern-359

ing linear regression and binning discussed here. For example, Ref. [43] discusses Simpson’s360

paradox [44] where distinct cellular sub-populations might lead to erroneous interpretation361

of cell cycle mechanisms. Examples of such distinct sub-populations are found in asymmet-362

rically dividing bacteria such as M. smegmatis [30, 45]. Another source of misinterpretation363

could arise from presence of measurement errors. Throughout this work, we deal with in-364

trinsic noise and neglect measurement error. However, when measurement noise affects both365

x-axis and y-axis variables, the slope of the best linear fit is biased towards zero. This can366

lead to potentially related variables being misinterpreted as uncorrelated. Measurement er-367

rors can however be handled based on a model. Using a model which includes measurement368

error as a source of noise, we can guide the binning analysis. Using this methodology, we369

verified that typical measurement errors (≈ 0.02Lb) [31, 46] have negligible effects on the370

growth rate trends obtained from the experimental data used in our work.371

Single cell size in E. coli has been reported to grow exponentially [4, 14, 22–25], linearly372
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[34], bilinearly [47] or trilinearly [39]. These are inconsistent with our observations in Figures373

4A-4C where we find that growth can be super-exponential. The non-monotonic behavior in374

the fastest-growth condition is reminiscent of the results reported in Ref. [37] for B. subtilis.375

The authors of Ref. [37] attribute the increase in growth rate to a multitude of cell cycle376

processes such as initiation of DNA replication, divisome assembly, septum formation. In377

the two slower growth conditions (Figures 4A-4B), we find that the growth rate increase378

starts before the time when the septal cell wall synthesis starts i.e., the constriction event.379

However, in the fastest growth condition (Figure 4C), the timing of growth rate increase380

seems to coincide with the onset of constriction which is in agreement with previous findings381

[39, 40].382

It is important to distinguish between length growth and biomass growth. Ref. [48]383

measures biomass and cell volume and finds the mass-density variations within the cell-cycle384

to be small. In this paper, since we observe the length growth to be non-exponential (Figure385

4), it remains to be seen whether biomass growth also follows a similar non-exponential386

behavior or if it is exponential as previously suggested [22, 48].387

In conclusion, the paper draws the attention of the readers to the careful use of statistical388

methods such as linear regression and binning. Although shown in relation to cell growth,389

this approach to data analysis seems ubiquitous. The general framework of carrying out data390

analysis is presented in Figure 5. It proposes the construction of a generative model based on391

the experimental data collected. Of course, we do not always know whether the model used392

is an adequate description of the system. What is the fate of the methodology described here393

in such cases? First, we should be reminded of Box’s famous quote “all models are wrong,394

some are useful”. The goal of a model is not to provide as accurate a description of a system395

as possible, but rather to capture the essence of the phenomena we are interested in and396

stimulate further ideas and understanding. In our context, the goal of the model is to provide397

a rigorous framework in which data analysis tools can be critically tested. If verified within398
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the model, it is by no means proof of the success of the model and the method itself, and399

further comparisons with the data may falsify it leading to the usual (and productive) cycle400

of model rejection and improvement via comparison with experiments. However, if the best401

model we have at hand shows that the data analysis method is non-informative, as we have402

shown here on several methods used to identify the mode of growth, then clearly we should403

revise the analysis as it provides us with a non-consistent framework, where our modeling is404

at odds with our data analysis. Furthermore, testing the methods on a simplified model is405

still advantageous compared with the option of using the methods without any validation.406

To mitigate the risk of using irrelevant models, in some cases it may be desirable to test the407

analysis methods on as broad a class of models as possible as we have done in the paper, for408

example by our use of a general value of α to describe the size-control strategy within our409

models. Thus, guided by the model, the data analysis methods can be ultimately applied to410

experimental data and underlying functional relationships can be inferred. Reiterating the411

message of the authors in Ref. [8], the data analysis using this framework aims to justify412

the methods being used, thus, reducing arbitrariness and promoting consensus among the413

scientists working in the field.414

5 Methods415

5.1 Experimental methods416

Strain engineering: STK13 strain (∆ftsN::frt-Ypet-FtsN, ∆dnaN::frt-mCherry-dnaN) is417

derivative of E. coli K12 BW27783 (CGSC#: 12119) constructed by λ-Red engineering [49]418

and by P1 transduction [50]. For chromosomal replacement of ftsN with fluorescence deriva-419

tive, we used primers carrying 40nt tails with identical sequence to the ftsN chromosomal420

locus and a plasmid carrying a copy of ypet preceded by a kanamycin resistance cassette421

flanked by frt sites (frt-kanR-frt-Ypet-linker) as PCR template (a kind gift from R. Reyes-422
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Lamothe McGill University, Canada; [51]). The resulting PCR product was transformed by423

electroporation into a strain carrying the λ-Red-expressing plasmid pKD46. Colonies were424

selected by kanamycin resistance, verified by fluorescence microscopy and by PCR using425

primers annealing to regions flanking ftsN gene. After removal of kanamycin resistance by426

expressing the Flp recombinase from plasmid pCP20 [52], we transferred the mCherry-dnaN427

gene fusion (BN1682 strain; a kind gift from Nynke Dekker from TUDelft, The Nether-428

lands, [53]) into the strain by P1 transduction. To minimize the effect of the insertion on429

the expression levels of the gene we removed the kanamycin cassette using Flp recombinase430

expressing plasmid pCP20.431

Cells growth, preparation, and culturing E. coli in mother machine microflu-432

idic devices: All cells were grown and imaged in M9 minimal medium (Teknova) supple-433

mented with 2 mM magnesium sulfate (Sigma) and corresponding carbon sources at 28◦C.434

Three different carbon sources were used: 0.5% glucose supplemented by 0.2% casamino435

acids (Cas) (Sigma), 0.3% glycerol (Fisher) and 0.3% alanine (Fisher) supplemented with 1x436

trace elements (Teknova).437

For microscopy, we used mother machine microfluidic devices made of PDMS (poly-438

dimethylsiloxane). These were fabricated following to previously described procedure [54].439

To grow and image cells in microfluidic device, we pipetted 2-3 µl of resuspended concen-440

trated overnight culture of OD600 ∼ 0.1 into main flow channel of the device and let cells to441

populate the dead-end channels. Once these channels were sufficiently populated (about 1442

hr), tubing was connected to the device, and the flow of fresh M9 medium with BSA (0.75443

µg/ml) was started. The flow was maintained at 5 µl/min during the entire experiment by444

an NE-1000 Syringe Pump (New Era Pump Systems, NY). To ensure steady-state growth,445

the cells were left to grow in channels for at least 14 hr before imaging started.446

Microscopy: A Nikon Ti-E inverted epifluorescence microscope (Nikon Instruments,447

Japan) with a 100X (NA = 1.45) oil immersion phase contrast objective (Nikon Instru-448
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ments, Japan), was used for imaging the bacteria. Images were captured on an iXon DU897449

EMCCD camera (Andor Technology, Ireland) and recorded using NIS-Elements software450

(Nikon Instruments, Japan). Fluorophores were excited by a 200W Hg lamp through an451

ND8 neutral density filter. A Chroma 41004 filtercube was used for capturing mCherry im-452

ages, and a Chroma 41001 (Chroma Technology Corp., VT) for Ypet images. A motorized453

stage and a perfect focus system were utilized throughout time-lapse imaging. Images in all454

growth conditions were obtained at 4 min frame rate.455

Image analysis: Image analysis was carried out using Matlab (MathWorks, MA) scripts456

based on Matlab Image Analysis Toolbox, Optimization Toolbox, and DipImage Toolbox457

(https://www.diplib.org/). Cell lengths were determined based on segmented phase contrast458

images. Dissociation of Ypet-FtsN label from cell middle was used to determine the exact459

timing of cell divisions.460

Further experimental details can also be found in Ref. [32].461

5.2 Model462

Consider a model of cell cycle characterized by two events: cell birth and division. In our463

model, we assume that, barring the noise, cells tend to divide at a particular size vd given464

size at birth vb, via some regulatory mechanism. Hence, we can write vd as a function of465

vb, f(vb). Ref. [13] provides a framework to capture the regulatory mechanisms by choosing466

f(vb) = 2v1−α
b vα0 . v0 is the typical size at birth and α captures the strength of regulation467

strategy. α = 0 corresponds to the timer model where division occurs after a constant time468

from birth, and α = 1 is the sizer where a cell divides on reaching a critical size. α = 1/2 can469

be shown to be equivalent to an adder where division is controlled by addition of constant470

size from birth [13]. From here on, we would be using the length of the cell (Lb, Ld, etc.) as471

a proxy for size (vb, vd, etc.). To reiterate, the length growth is not the same as cell volume472

growth as shown in Appendix 1. All of the variable definitions are summarized in Table S1.473
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We also define lb = Lb
〈Lb〉

and ld = Ld
〈Lb〉

. Using this, we can write the division strategy f(lb)474

to be ld = f(lb) = 2 l1−αb . The total division size obtained will be a combination of f(lb) and475

noise in the division timing, the source of which could be the stochasticity in biochemical476

reactions controlling division.477

We will assume that division is perfectly symmetric i.e., size at birth in the (n + 1)th478

generation (ln+1
b ) is half of size at division in the nth generation (lnd ). Using the size additive479

division timing noise (ζs(0, σbd)) and f(lb) specified above, we obtain,480

xn+1 = (1− α)xn + ln

(
1 +

ζs(0, σbd)

2(1 + xn)1−α

)
, (4)

where xn = ln(lnb ). Size at birth (Lb) is narrowly distributed, hence lb ≈ 1 and we can write481

x = ln(lb) = ln(1 + δ) where δ is a small number. We obtain x� 1 and,482

x ≈ δ = lb − 1. (5)

The size additive noise, ζs(0, σbd) is assumed to be small and has a normal distribution with483

mean 0 and standard deviation σbd. Note that σbd is a dimensionless quantity. Since ζs(0, σbd)484

is assumed to be small and xn � 1, we can Taylor expand the last term of Equation 4 to485

first order,486

xn+1 ≈ (1− α)xn +
ζs(0, σbd)

2
. (6)

Equation 6 shows a recursive relation for cell size and it is agnostic of the mode of growth.487

We will show later for exponential growth that replacing the size additive noise with time488

additive noise does not change the structure of Equation 6.489
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5.3 Exponential growth490

Next, we will try to obtain the generation time (Td) in the case of exponentially growing491

cells. For exponential growth, the time at division Td is given by,492

Td =
1

λ
ln(

Ld
Lb

). (7)

For simplicity, we will assume a constant growth rate (λ) within the cell-cycle. Growth rate493

is fixed at the start of the cell-cycle and is given by λ = 〈λ〉 + 〈λ〉ξ(0, CVλ), where 〈λ〉 is494

the mean growth rate and ξ(0, CVλ) is assumed to be small with a normal distribution that495

has mean 0 and standard deviation CVλ. CVλ denotes the coefficient of variation (CV) of496

the growth rate. This captures the variability in growth rate within cells arising from the497

stochastic nature of biochemical reactions occurring within the cell.498

5.3.1 Size additive noise499

Here we will calculate the generation time using the division strategy f(lb) and a size additive500

division timing noise (ζs(0, σbd)) as described previously. On substituting Ld = (f(lb) +501

ζs)〈Lb〉 into Equation 7 we obtain,502

Td =
1

〈λ〉+ 〈λ〉ξ(0, CVλ)
ln(

2l1−αb + ζs(0, σbd)

lb
), (8)

where the size additive noise (ζs(0, σbd)) is Gaussian with mean 0 and standard deviation503

σbd.504

The noise ζs(0, σbd) is assumed to be small, and we obtain to first order,505

Td ≈
1

λ

(
ln(2)− αxn +

ζs(0, σbd)

2(1 + xn)1−α

)
. (9)

22



Since xn � 0, on Taylor expanding 1
(1+xn)1−α

to first order,506

Td ≈
1

λ

(
ln(2)− αxn +

ζs(0, σbd)

2
(1 + (1− α)xn)

)
. (10)

Assuming noise in growth rate to be small and expanding to first order, we obtain,507

Td ≈
1

〈λ〉

(
ln(2)− αxn − ln(2)ξ(0, CVλ) +

ζs(0, σbd)

2

)
. (11)

Equation 11 gives the generation time for the class of models where birth controls division508

under the assumption that growth is exponential.509

5.3.2 Time additive noise510

Next, we ensure that the recursive relation for size at birth and the expression for the511

generation time given by Equations 6 and 11, respectively, are robust to the nature of noise512

assumed. In this section, the generation time is obtained using the division strategy f(lb) as513

described previously along with a time additive division timing noise ( ζ
〈λ〉). In such a case,514

Td is obtained to be,515

Td =
1

λ
(ln(2)− αxn) +

ζ(0, σn)

〈λ〉
. (12)

The time additive noise, ζ(0,σn)
〈λ〉 , is assumed to be small and has a normal distribution with516

mean 0 and standard deviation σn
〈λ〉 . Note that σn is a dimensionless quantity.517

Assuming noise in growth rate to be small, we find Td to first order to be,518

Td ≈
1

〈λ〉
(ln(2)− αxn − ln(2)ξ(0, CVλ) + ζ(0, σn)) . (13)

Equation 13 is same as Equation 11, if the time additive noise term, ζ(0, σn), in Equation519
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12 is replaced by ζs(0, σbd)/2. Using Equation 13, the variance in Td (σ2
t ) is,520

σ2
t =

1

〈λ〉2

(
ln2(2)CV 2

λ +
2σ2

n

2− α

)
. (14)

For exponential growth, we also find,521

ln(
Ld
Lb

) = xn+1 − xn + ln(2) = λTd. (15)

On substituting Equation 12 into Equation 15 we obtain to first order,522

xn+1 ≈ (1− α)xn + ζ(0, σn). (16)

On replacing the time additive noise term, ζ(0, σn), in Equation 16 with ζs(0, σbd)/2, we523

recover the recursive relation for size at birth obtained in the case of size additive noise524

shown in Equation 6. Hence, the model is insensitive to noise being size additive or time525

additive with a simple mapping for going from one noise type to another in the small noise526

limit.527

At steady state, x has a normal distribution with mean 0 and variance σ2
x whose value is528

given by,529

σ2
x =

σ2
n

α(2− α)
. (17)

We note that some of the derivations above have also been presented in Ref. [16], but are530

provided here for completeness.531
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5.4 Predicting the results of statistical constructs applied on ln(Ld

Lb
)532

vs 〈λ〉Td and 〈λ〉Td vs ln(Ld

Lb
)533

5.4.1 Obtaining the best linear fit534

Next, we calculate the equation for the best linear fit for the choice of ln(Ld
Lb

) as y-axis and535

〈λ〉Td as x-axis and vice versa. For simplicity, in this section, we will consider time additive536

division timing noise. However, the results obtained here will hold for size additive noise as537

well because the model is robust to the type of noise added as shown in the previous section.538

First, we calculate the correlation coefficient (ρexp) for ln(Ld
Lb

) and time of division Td,539

ρexp =
〈(ln(Ld

Lb
)− 〈ln(Ld

Lb
)〉)(Td − 〈Td〉)〉

σlσt
, (18)

where σl is the standard deviation in ln(Ld
Lb

). Using Equations 15 and 16 we obtain,540

ln(
Ld
Lb

) ≈ ln(2)− αxn + ζ(0, σn). (19)

Substituting Equations 13 and 19 into the numerator of Equation 18,

〈(ln(
Ld
Lb

)− 〈ln(
Ld
Lb

)〉)(Td − 〈Td〉)〉

= 〈(−αxn + ζ(0, σn))
(−αxn − ln(2)ξ(0, CVλ) + ζ(0, σn))

〈λ〉
〉. (20)

As the terms ζ(0, σn), ξ(0, CVλ) and xn are independent of each other, 〈ξ(0, CVλ)ζ(0, σn)〉 =541

0, 〈ξ(0, CVλ)xn〉 = 0 and 〈xnζ(0, σn)〉 = 0. Equation 20 simplifies to,542

〈(ln(
Ld
Lb

)− 〈ln(
Ld
Lb

)〉)(Td − 〈Td〉)〉 = (α2σ2
x + σ2

n)
1

〈λ〉
. (21)
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The variance of ln(Ld
Lb

) obtained using Equation 19 is,543

σ2
l = α2σ2

x + σ2
n =

2σ2
n

2− α
. (22)

Inserting Equations 14, 21 and 22 into Equation 18, we get,544

ρexp =

√√√√ 1

1 +
(1−α

2
) ln2(2)CV 2

λ

σ2
n

. (23)

The slope of a linear regression line is given by,545

m = ρ
σy
σx
, (24)

where σx, σy and ρ are the standard deviation of the x-variable, the standard deviation of546

the y-variable and the correlation coefficient of the (x,y) pair, respectively. The intercept is,547

c = 〈y〉 −m〈x〉. (25)

On the x-axis, we plot 〈λ〉Td and the y-axis is chosen as ln(Ld
Lb

). The slope for this choice548

(mtl) can be calculated by,549

mtl = ρexp
σl

σt〈λ〉
. (26)

On substituting the values we get,550

mtl =
1

1 +
(1−α

2
) ln2(2)CV 2

λ

σ2
n

. (27)

Only for CVλ � σn we would expect a slope close to 1.551
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The intercept (ctl) for the ln(Ld
Lb

) vs 〈λ〉Td plot is given by,552

ctl = 〈ln(
Ld
Lb

)〉 −mtl〈〈λ〉Td〉 = ln(2)

1− 1

1 +
(1−α

2
) ln2(2)CV 2

λ

σ2
n

 . (28)

However, if we choose the x-axis as ln(Ld
Lb

) and the y-axis is chosen as 〈λ〉Td, we obtain the553

slope mlt,554

mlt = ρexp
σt〈λ〉
σl

. (29)

On substituting the values we obtain mlt = 1 independent of the noise parameters and find555

that the intercept is zero.556

5.4.2 Non-linearity in binned data557

In the Main text, for the plot ln(Ld
Lb

) vs 〈λ〉Td, we find the binned data to be non-linear (see558

Figure 2C of the Main text). In this section, we explain the non-linearity observed using the559

model developed in the previous sections.560

Binning data based on the x-axis means taking an average of the y-variable conditioned561

on the value of the x-variable. Mathematically, this amounts to calculating E[y | x] i.e.,562

the conditional expectation of the y-variable given that x is fixed. In our case, we need to563

calculate E[ln(Ld
Lb

) | 〈λ〉Td]. ln(Ld
Lb

) = λTd by definition of exponential growth, hence,564

E[ln(
Ld
Lb

) | 〈λ〉Td] = E[λTd | 〈λ〉Td]. (30)

Since Td is fixed, this is equivalent to calculating E[λ | Td]. Using Equation 13,565

E[λ | Td] =

∫∞
−∞

∫∞
−∞

∫∞
−∞ λp(x, ξ, ζ) δ(Td − ( ln(2)

〈λ〉 − α
x
〈λ〉 −

ln(2)ξ
〈λ〉 + ζ

〈λ〉) dx dξ dζ∫∞
−∞

∫∞
−∞

∫∞
−∞ p(x, ξ, ζ) δ(Td − ( ln(2)

〈λ〉 − α
x
〈λ〉 −

ln(2)ξ
〈λ〉 + ζ

〈λ〉) dx dξ dζ
. (31)

p(x, ξ, ζ) is the joint probability distribution of x and noise parameters ξ and ζ. Since, they
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are independent of each other, the joint distribution is product of the individual distributions

f1(x), f2(ξ) and f3(ζ), the distributions being Gaussian with mean 0 and standard deviation

σx, CVλ and σn, respectively. σx, σn are related by Equation 17. Since x, ξ, and ζ are

narrowly distributed around zero, the contribution from large positive or negative values is

extremely small. This ensures that Td is also close to its mean and non-negative despite the

limits of the integral being −∞ to ∞. Using λ = 〈λ〉+ 〈λ〉ξ(0, CVλ) in Equation 31,

E[λ | Td]

= 〈λ〉

(
1 +

∫∞
−∞

∫∞
−∞

∫∞
−∞ ξf1(x)f2(ξ)f3(ζ) δ(Td − ( ln(2)

〈λ〉 − α
x
〈λ〉 −

ln(2)ξ
〈λ〉 + ζ

〈λ〉)) dx dξ dζ∫∞
−∞

∫∞
−∞

∫∞
−∞ f1(x)f2(ξ)f3(ζ) δ(Td − ( ln(2)

〈λ〉 − α
x
〈λ〉 −

ln(2)ξ
〈λ〉 + ζ

〈λ〉)) dx dξ dζ

)
.

(32)

On evaluating the integrals, we obtain,566

E[λ | Td] = 〈λ〉

1 +
1

1 + 2
2−α

σ2
n

CV 2
λ ln2(2)

−
〈λ〉Td
ln(2)

1 + 2
2−α

σ2
n

CV 2
λ ln2(2)

 . (33)

Thus, the trend of binned data is found to be,567

E[ln(
Ld
Lb

) | 〈λ〉Td] = 〈λ〉Td

1 +
1

1 + 2
2−α

σ2
n

CV 2
λ ln2(2)

−
〈λ〉Td
ln(2)

1 + 2
2−α

σ2
n

CV 2
λ ln2(2)

 . (34)

In the regime CVλ � σn , the last two terms on the RHS of Equation 34 vanish and the568

binned data follows the trend y=x.569

For the 〈λ〉Td vs ln(Ld
Lb

) plot, we need to calculate E[〈λ〉Td | ln(Ld
Lb

)]. Using Equations 13570

and 19, we obtain,571

〈λ〉Td = ln(
Ld
Lb

)− ln(2)ξ(0, CVλ). (35)
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ln(Ld
Lb

) is independent of ξ(0, CVλ). Using this, we can write E[〈λ〉Td | ln(Ld
Lb

)] as,

E[〈λ〉Td | ln(
Ld
Lb

)]

=

∫∞
−∞

∫∞
−∞(〈λ〉Td) f2(ξ) f4(ln(Ld

Lb
)) δ

(
〈λ〉Td − (ln(Ld

Lb
)− ln(2)ξ)

)
d(〈λ〉Td) dξ

f4(ln(Ld
Lb

))
. (36)

Note that the integral over 〈λ〉Td goes from −∞ to ∞ although 〈λ〉Td cannot be negative.572

As before, this is not an issue because we assume 〈λ〉Td to be tightly regulated around ln(2)573

and the contribution to the integral from −∞ to 0 is negligible. f4(ln(Ld
Lb

)) denotes the574

probability distribution for ln(Ld
Lb

), the distribution being Gaussian with mean ln(2), and575

standard deviation σl which is calculated in Equation 22. Putting the Gaussian form of576

f2(ξ) into the integral and simplifying we get,577

E[〈λ〉Td | ln(
Ld
Lb

)] = ln(
Ld
Lb

). (37)

The trend of binned data to first order in noise and x is E[〈λ〉Td | ln(Ld
Lb

)] = ln(Ld
Lb

). This is578

shown in Figure 2D of the Main text where the binned data follows the y=x line.579

5.5 Linear growth580

In this section, we will focus on finding the equation of the best linear fit for relevant plots581

in the case of linear growth. The time at division for linear growth is given by,582

Td =
Ld − Lb
λ′

. (38)

Note that λ′ has units of [length/time] and is defined as the elongation speed. This is583

different from the exponential growth rate which has units [1/time]. Here, we will work with584
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the normalized length at birth (lb) and division (ld),585

Td =
ld − lb
λlin

. (39)

Consider the normalized elongation speed to be λlin = 〈λlin〉 + 〈λlin〉ξlin(0, CVλ,lin), where586

〈λlin〉 is the mean normalized elongation speed for a lineage of cells and ξlin(0, CVλ,lin) is587

normally distributed with mean 0 and standard deviation CVλ,lin. Thus, the CV of elongation588

speed is CVλ,lin. The regulation strategy which the cell undertakes is equivalent to that in589

previous sections and is given by g(lb) = 2 + 2(1− α)(lb − 1). Note that we can obtain g(lb)590

by Taylor expanding f(lb) around lb = 1. Using the regulation strategy g(lb) and adding a591

size additive noise ζs(0, σbd) which is independent of lb, we find,592

Td =
2 + 2(1− α)(lnb − 1) + ζs(0, σbd)− lnb

〈λlin〉(1 + ξlin(0, CVλ,lin))
. (40)

Note that we chose size additive division timing noise (ζs(0, σbd)) for convenience in this593

section. However, it can be shown as done previously that the model is robust to the noise594

in division timing being size additive or time additive. Assuming that the noise terms595

ξlin(0, CVλ,lin) and ζs(0, σbd) are small, we obtain to first order,596

Td ≈
(1− 2α)(lb − 1) + 1 + ζs(0, σbd)− ξlin(0, CVλ,lin)

〈λlin〉
. (41)

The terms lb, ζs(0, σbd) and ξlin(0, CVλ,lin) are independent of each other. The standard597

deviation of Td (σt) can be calculated to be,598

σ2
t =

(1− 2α)2σ2
b + σ2

bd + CV 2
λ,lin

〈λlin〉2
. (42)
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Assuming perfectly symmetric division and using lnd = g(lnb )+ζs(0, σbd), we find the recursive599

relation for lnb to be,600

lnd − lnb = 2ln+1
b − lnb = (1− 2α)lnb + 2α + ζs(0, σbd). (43)

Note that Equation 43 is the same as Equation 6 under the approximation xn = lnb − 1. At601

steady state, the standard deviation of lb is denoted by σb and using Equation 43 its value602

is obtained to be,603

σ2
b =

σ2
bd

4α(2− α)
. (44)

Similarly, the standard deviation of ld-lb, or equivalently λlinTd, denoted by σl,lin, is calculated604

to be,605

σ2
l,lin =

4α + 1

4α(2− α)
σ2
bd. (45)

For linear growth, a natural plot is ld-lb vs 〈λlin〉Td (reminiscent of the ln(Ld
Lb

) vs 〈λ〉Td plot606

for exponential growth). To calculate the slope of the best linear fit, we have to calculate607

the correlation coefficient ρlin given by,608

ρlin =
〈(ld − lb − 〈ld − lb〉) (〈λlin〉Td − 〈〈λlin〉Td〉)〉

〈λlin〉σl,linσt
. (46)

Again using the independence of terms lb, ζs(0, σbd) and ξlin(0, CVλ,lin) from each other, we609

get,610

ρlin =
(1− 2α)2σ2

b + σ2
bd

〈λlin〉σl,linσt
=

σl,lin
〈λlin〉σt

. (47)

The slope of best linear fit for the plot ld − lb vs 〈λlin〉Td is given by,611

mtl,lin = ρlin
σl,lin
〈λlin〉σt

=
1

1 +
CV 2

λ,lin4α(2−α)

σ2
bd(4α+1)

. (48)
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The intercept ctl,lin is found to be,612

ctl,lin = 〈ld − lb〉 −mtl,lin〈〈λlin〉Td〉 = 1− 1

1 +
CV 2

λ,lin4α(2−α)

σ2
bd(4α+1)

. (49)

On flipping the axis, the slope (mlt,lin) for the plot 〈λlin〉Td vs ld − lb is obtained to be,613

mlt,lin = ρlin
〈λlin〉σt
σl,lin

= 1. (50)

The intercept clt,lin is found to be,614

clt,lin = 〈〈λlin〉Td〉 −mlt,lin〈ld − lb〉 = 0. (51)

The best linear fit for the 〈λlin〉Td vs ld − lb plot follows the trend y=x.615

Simulations of the adder model for linearly growing cells were carried out. The deviation616

of the best linear fit for the ld − lb vs 〈λlin〉Td plot from the y=x line is shown in Figure 3-617

figure supplement 1A, while in Figure 3- figure supplement 1B, the best linear fit for the plot618

〈λlin〉Td vs ld − lb is shown to agree with the y=x line.619

5.6 Differentiating linear from exponential growth620

In this section, we explore the equation for the best linear fit of 〈λlin〉Td vs ld − lb plot in621

the case of exponential growth and 〈λ〉Td vs ln(Ld
Lb

) plot for linear growth. Intuitively, we622

expect the best linear fit in both cases to deviate from the y=x line. In this section, we will623

calculate the best linear fit explicitly. Surprisingly, we will find that, in the case of linear624

growth, the best linear fit for the 〈λ〉Td vs ln(Ld
Lb

) plot follows the y=x line closely.625

Let us begin with exponential growth with growth rate, λ = 〈λ〉 + 〈λ〉ξ(0, CVλ) as626

defined previously. Again, ξ(0, CVλ) has a normal distribution with mean 0 and standard627
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deviation CVλ, it being the CV of the growth rate. The time at division is given by Equation628

7. The average growth rate 〈λ〉 = 〈 ln(2)
Td
〉 ≈ ln(2)

〈Td〉
. For exponential growth, we will plot629

〈λlin〉Td vs ld− lb. As previously defined, 〈λlin〉 is the mean normalized elongation speed and630

〈λlin〉 = 〈 1
Td
〉 ≈ 1

〈Td〉
. 〈λlin〉 is related to 〈λ〉 by,631

〈λlin〉 =
〈λ〉

ln(2)
. (52)

ld − lb can be calculated by using the regulation strategy f(lb) introduced in Section 5.2 and632

a normally distributed size additive noise ζs(0, σbd). Note that we have chosen the noise in633

division timing to be size additive. However, the model is robust to the choice of type of634

noise as we showed in Section 5.3. Using Equations 5 and 6 we obtain,635

lnd − lnb ≈ 1 + (1− 2α)xn + ζs(0, σbd). (53)

Using Equation 11, 〈λlin〉Td is obtained to be,636

〈λlin〉Td = 1− αx

ln(2)
− ξ(0, CVλ) +

ζs(0, σbd)

2 ln(2)
. (54)

To calculate the expression formlt,lin, the slope of the best linear fit for 〈λlin〉Td vs ld−lb plot,637

we first calculate ρlin given by Equation 46. The expression for σl,lin (standard deviation of638

ld − lb) and σt (standard deviation of Td) are found to be,639

σ2
l,lin = (1− 2α)2σ2

x + σ2
bd, (55)

640

σ2
t =

1

〈λlin〉2

(
(
ασx
ln(2)

)2 + CV 2
λ + (

σbd
2 ln(2)

)2

)
. (56)

σx is related to σn via Equation 17. In Section 5.3, we also showed that σn = σbd
2
. Using641
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these, we can write,642

σ2
x =

σ2
bd

4α(2− α)
. (57)

Now using the expressions for σt, σl,lin and the fact that x, ξ(0, CVλ) and ζs(0, σbd) are643

independent of each other, we get,644

ρlin =

(2α−1)ασ2
x

ln(2)
+

σ2
bd

2 ln(2)

〈λlin〉σl,linσt
. (58)

For the plot 〈λlin〉Td vs ld − lb, the slope mlt,lin is given by,645

mlt,lin = ρlin
σt〈λlin〉
σl,lin

=

(2α−1)ασ2
x

ln(2)
+

σ2
bd

2 ln(2)

σ2
l,lin

. (59)

Inserting Equation 55 into Equation 59 and substituting σ2
x given by Equation 57, we obtain,646

mlt,lin =
1

ln(2)

3α

4α + 1
. (60)

The intercept clt,lin is found to be,647

clt,lin = 〈〈λlin〉Td〉 −mlt,lin〈ld − lb〉 = 1− 1

ln(2)

3α

4α + 1
. (61)

For the adder model (α = 1
2
), we get the value of slope mlin,lt = 1

2 ln(2)
≈ 0.7213 and intercept648

clin,lt = 1 − 1
2 ln(2)

≈ 0.279. This is different from the best linear fit obtained for same649

regulatory mechanism controlling division in linearly growing cells where we found that the650

best linear fit follows the y=x line. Intuitively, we expect the best linear fit of 〈λlin〉Td vs651

ld−lb plot to deviate from y=x line in the case of exponential growth. We showed analytically652

that for a class of models where birth controls division, it is indeed the case. This is also653

shown using simulations of the adder model in Figure 3- figure supplement 1C.654
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In Section 5.4.1, we found the best linear fit for 〈λ〉Td vs ln(Ld
Lb

) plot to follow the y=x655

line for exponentially growing cells where division is regulated by birth event via regulation656

strategy f(lb). Next, we calculate the equation for the best linear fit of 〈λ〉Td vs ln(Ld
Lb

)657

plot given growth is linear. The model for division control will be same as that in Section658

5.5 i.e., the regulation strategy for division is given by g(lb) = 2 + 2(1 − α)(lb − 1) which659

is also equivalent to f(lb). The linearly growing cells grow with elongation speed λlin =660

〈λlin〉(1+ ξlin(0, CVλ,lin)). As discussed before, ξlin(0, CVλ,lin) has a normal distribution with661

mean 0 and standard deviation CVλ,lin, it being the CV of the elongation speed. Using662

Equations 5 and 6, we get,663

ln(
Ld
Lb

) = ln(2)− αxn +
ζs(0, σbd)

2
. (62)

Using Equations 5 and 52, we obtain from Equation 41,664

〈λ〉Td = ln(2) + (1− 2α) ln(2)x+ ln(2)ζs(0, σbd)− ln(2)ξlin(0, CVλ,lin). (63)

Since x, ξlin(0, CVλ,lin) and ζs(0, σbd) are uncorrelated, the standard deviation of ln(Ld
Lb

) and665

Td denoted by σl and σt respectively are calculated to be,666

σ2
l = α2σ2

x +
σ2
bd

4
, (64)

667

σ2
t =

ln2(2)

〈λ〉2
((1− 2α)2σ2

x + σ2
bd + CV 2

λ,lin). (65)

We calculate the correlation coefficient for the pair (ln(Ld
Lb

), 〈λ〉Td). Since the correlation668

coefficient is unaffected by multiplying one of the variables with a positive constant, we can669

calculate the correlation coefficient for the pair (ln(Ld
Lb

), Td) or ρexp as given by Equation 18.670
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Using the independence of terms x, ξlin(0, CVλ,lin) and ζs(0, σbd),671

ρexp =
ln(2)(σ2

x(2α− 1)α +
σ2
bd

2
)

〈λ〉σlσt
. (66)

For the plot 〈λ〉Td vs ln(Ld
Lb

), the slope mlt of the best linear fit is given by,672

mlt = ρexp
σt〈λ〉
σl

=
ln(2)(σ2

x(2α− 1)α +
σ2
bd

2
)

σ2
l

. (67)

Inserting Equation 64 into Equation 67 and using Equation 57, we get,673

mlt =
3

2
ln(2) ≈ 1.0397. (68)

Similarly the intercept (clt) for the plot 〈λ〉Td vs ln(Ld
Lb

) is found to be,674

clt = 〈〈λ〉Td〉 −mlt〈ln(
Ld
Lb

)〉 = ln(2)(1− 3

2
ln(2)) ≈ −0.0275. (69)

This is very close to y=x trend obtained for the same regulatory mechanism controlling675

division in exponentially growing cells (Figure 3A).676

5.7 Growth rate vs age and elongation speed vs age plots.677

In the previous sections, we found that binning and linear regression on the plot ln(Ld
Lb

) vs678

〈λ〉Td, and the plot obtained by interchanging the axes, were inadequate to identify the mode679

of growth. In this section, we try to validate the growth rate vs age plot as a method to680

elucidate the mode of growth.681

In addition to cell size at birth and division and the generation time, cell size trajectories682

(cell size, L vs time from birth, t) were obtained for multiple cell cycles. In our case, the cell683

size trajectories were collected either via simulations (in Figure 3B) or from experiments (for684
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Figures 4A-4C) at intervals of 4 min. Note that if the measurements were to be carried out685

at equal length intervals instead of time, the results discussed in the paper would still remain686

unchanged. For each trajectory, growth rate at time t or age t
Td

is calculated as 1
L(t)

L(t+∆t)−L(t)
∆t

687

where ∆t is the time between consecutive measurements. To obtain elongation speed vs688

age plots, the formula before needs to be replaced with L(t+∆t)−L(t)
∆t

. The growth rate is689

interpolated to contain 200 points at equal intervals of time for each cell trajectory. The690

growth rate trends appear to be robust with regards to a different number of interpolated691

points (from 100 to 500 points). To obtain the growth rate trend as a function of cell age, we692

use the method previously applied in Ref. [37]. In this method, growth rate is binned based693

on age for each individual trajectory (50 bins) and the average growth rate is obtained in694

each of the bins. The binned data trend for growth rate vs age is then found by taking the695

average of the growth rate in each bin over all trajectories. Binning the growth rate for each696

trajectory ensures that each trajectory has an equal contribution to the final growth rate697

trend so as to avoid inspection bias. This step is especially important when data collected698

at equal intervals of time is analyzed. In such a case, cells with larger generation times699

have a greater number of measurements than cells with smaller generation times. Obtaining700

the growth rate trend without binning growth rate for each trajectory would have biased701

the binned data trend for the growth rate vs age plot to a smaller value because of over-702

representation by slower-growing cells (or equivalently cells with longer generation time).703

This bias towards lower growth rate values in the growth rate vs age plots is an instance of704

inspection bias.705

In Figures 4A-4C, we find the growth rate obtained from E. coli experiments to change706

within the cell cycle. In the two slower growth media (Figures 4A, 4B), the growth rate is707

found to increase with cell age while for the fastest growth media (Figure 4C) the growth708

rate follows a non-monotonic behaviour similar to that observed in Ref. [37] for B. subtilis.709

Abrupt changes in growth rate are reported at constriction in Refs. [39, 40]. We find that the710
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growth rate changes start before constriction in the two slower growth conditions considered.711

One possibility is that this increase is due to preseptal cell wall synthesis [55]. Preseptal cell712

wall synthesis does not require activity of PBP3 (FtsI) but instead relies on bifunctional713

glycosyltransferases PBP1A and PBP1B that link to FtsZ via ZipA. One hypothesis that714

can be tested in future works is that at the onset of constriction, activity from PBP1A715

and PBP1B starts to gradually shift to the PBP3/FtsW complex and therefore no abrupt716

change in growth rate is observed. In the fastest growth condition (glucose-cas medium), we717

find that the increase in growth rate approximately coincides with onset of constriction, in718

agreement with the previous findings [39, 40].719

In Figures 4A-4C, the growth rate trends are not obtained for age close to one. This720

is because growth rate at age = 1 is given by 1
L(Td)

L(Td+∆t)−L(Td)
∆t

and this requires knowing721

the cell lengths beyond the division event (L(Td + ∆t)). To estimate growth rates at age722

close to one, we approximate L(Td + ∆t) to be the sum of cell sizes of the two daughter723

cells. In order to minimize inspection bias, we considered only those cell size trajectories724

which had L(t) data for 12 min after division (corresponding to an age of approximately725

1.1). However, the growth rate trends in all three growth media were robust with regards to726

a different time for which L(t) was considered (4 min to 20 min after division). We use the727

binning procedure discussed before in this section. To validate this method, we applied it728

on synthetic data obtained from the simulations of exponentially growing cells following the729

adder and the adder per origin model. Cells were assumed to divide in a perfectly symmetric730

manner and both of the daughter cells were assumed to grow with the same growth rate,731

independent of the growth rate in the mother cell. The growth rate trends for the two732

models considered (adder and adder per origin) are expected to be constant even for cell age733

> 1. We found that the growth rate trends were indeed approximately constant as shown in734

Figure 4- figure supplement 1D. We also considered linear growth with division controlled via735

an adder model. The daughter cells were assumed to grow with the same elongation speed,736
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independent of the elongation speed in the mother cell. In this case, we expect the elongation737

speed trend to be constant for cell age > 1. This is indeed what we observed as shown in the738

inset of Figure 4- figure supplement 1D. We used this method on E. coli experimental data739

and found that the growth rate trends obtained for the three growth conditions (Figure 4-740

figure supplements 1A-1C) were consistent with that shown in Figures 4A-4C in the relevant741

age ranges. For cell age close to one, we found that the growth rate decreased to a value742

close to the growth rate near cell birth (age ≈ 0) for all three growth conditions considered.743

In summary, we find that the growth rate vs age plots are a consistent method to probe744

the mode of cell growth within a cell cycle.745

5.8 Growth rate vs time from specific event plots are affected by746

inspection bias747

To probe the growth rate trend in relation to a specific cell cycle event, for example cell birth,748

growth rate vs time from birth plots are obtained for simulations of exponentially growing749

cells following the adder model. In the growth rate vs time from birth plot, the rate is found750

to stay constant and then decrease at longer times (Figure 3- figure supplement 2C) even751

though cells are exponentially growing. Because of inspection bias (or survivor bias), at later752

times, only the cells with larger generation times (or slower growth rates) “survive”. The753

average generation time of the cells averaged upon in each bin of Figure 3- figure supplement754

2C is shown in Figure 3- figure supplement 2D. The decrease in growth rate in Figure 3-755

figure supplement 2C occurs around the same time when an increase in generation time is756

observed in Figure 3- figure supplement 2D. Thus, the trend in growth rate is biased towards757

lower values at longer times. The problem might be circumvented by restricting the time on758

the x-axis to the smallest generation time of all the cell cycles considered [31].759

To check for growth rate changes at constriction, we used plots of growth rate vs time760
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from constriction (t−Tn). Growth rate trends obtained from E. coli experimental data show761

a decrease at the edges of the plots (Figure 4- figure supplements 2A, 2C, and 2E). These762

deviate from the trends obtained using the growth rate vs age plots (Figures 4A-4C). To763

investigate this discrepancy, we use a model which takes into account the constriction and764

the division event. Currently it is unknown how constriction is related to division. For the765

purpose of methods validation, we use a model where cells grow exponentially, constriction766

occurs after a constant size addition from birth, and division occurs after a constant size767

addition from constriction. Note that other models where constriction occurs after a constant768

size addition from birth while division occurs after a constant time from constriction, as well769

as a mixed timer-adder model proposed in Ref. [40], lead to similar results. We expect the770

growth rate trend to be constant for exponentially growing cells. However, we find using771

numerical simulations that it decreases at the plot edges both before and after the constriction772

event (Figure 3- figure supplement 2A). This decrease can be attributed to inspection bias.773

The average growth rate in time bins at the extremes are biased by cells with smaller growth774

rates. This is shown in Figure 3- figure supplement 2B where the average generation time775

for the cells contributing in each of the bins of Figure 3- figure supplement 2A is plotted.776

The time at which the growth rate decreases on both sides of the constriction event is close777

to the time at which the average generation time increases. For example, in alanine medium,778

the generation time for each of the bins is plotted in Figure 4- figure supplement 2B. The779

average generation time for the cells contributing to each of the bins is almost constant for780

the timings between -80 min to 20 min. Thus, for this time range the changes in growth rate781

are not because of inspection bias but are a real biological effect. The behavior of growth782

rate within this time range in Figure 4- figure supplement 2A is in agreement with the trend783

in growth rate vs age plot of Figure 4A. On accounting for inspection bias, the growth rate784

vs age plots agree with the growth rate vs time from constriction plots in other growth media785

as well (Figure 4- figure supplement 2C, Figure 4- figure supplement 2E). Thus, growth rate786
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vs time plots are also a consistent method to probe growth rate modulation in the time range787

when avoiding the regimes prone to inspection bias.788

5.9 Results of elongation speed vs size plots are model-dependent.789

Cells assumed to undergo exponential growth have elongation speed proportional to their790

size. In the case of exponential growth, the binned data trend of the plot elongation speed vs791

size is expected to be linear with the slope of the best linear fit providing the value of growth792

rate and intercept being zero. In this section, we use the simulations to test if binning and793

linear regression on the elongation speed vs size plots are suitable methods to differentiate794

exponential growth from linear growth [41].795

To test the method, we generate cell size trajectories using simulations of the adder model796

with a size additive division timing noise and assuming exponential growth. Elongation speed797

at size L(t) is calculated for each trajectory as L(t+∆t)−L(t)
∆t

where ∆t is the time between798

consecutive measurements (= 4 min in our case). Each trajectory is binned into 10 equally799

sized bins based on their cell sizes and the average elongation speed is obtained for each bin.800

The final trend of elongation speed as a function of size is then obtained by binning (based801

on size) the pooled average elongation speed data of all the cell cycles.802

We find that the binned data trend is linear with the slope of the best linear fit close to the803

average growth rate considered in the simulations (Figure 3- figure supplement 3D). This is804

in agreement with our expectations for exponential growth. In order to check if this method805

could differentiate between exponential growth and linear growth, we used simulations of806

the adder model undergoing linear growth to generate cell size trajectories for multiple cell807

cycles. For linear growth, elongation speed is expected to be constant, independent of its808

cell size. The binned data trend for the elongation speed vs size plot is also obtained to be809

constant for the simulations of linearly growing cells (Figure 3- figure supplement 3B). The810

intercept of the best linear fit obtained is close to the average elongation speed considered in811
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the simulations. The binned data trend for linear and exponential growth are clearly different812

as shown in Figure 3- figure supplement 3B and Figure 3- figure supplement 3D, respectively,813

and this result holds for a broad class of models where the division event is controlled by814

birth and the growth rate (for exponential growth)/elongation speed (for linear growth) is815

distributed normally and independently between cell-cycles.816

Next, we consider the adder per origin cell cycle model for exponentially growing cells817

[17]. In this model space, the cell initiates DNA replication by adding a constant size per818

origin from the previous initiation size. The division occurs on average after a constant time819

from initiation. For exponentially growing cells, the binned data trend is still expected to be820

linear as before. Instead, we find using simulations that the trend is non-linear and it might821

be misinterpreted as non-exponential growth (Figure 3- figure supplement 3F).822

Thus, the results of binning and linear regression for the plot elongation speed vs size is823

model-dependent.824

5.10 Interchanging axes in growth rate vs inverse generation time825

plot might lead to different interpretations.826

So far, our discussion was focused on the question of mode of single-cell growth. A related827

problem regards the relation between growth rate (λ) and the inverse generation time ( 1
Td
).828

On a population level, the two are clearly proportional to each other. However, single-cell829

studies based on binning showed an intriguing non-linear dependence between the two, with830

the two variables becoming uncorrelated in the faster-growth media. [25, 56]. Within the831

same medium, the binned data curve for the plot λ vs 1
Td

flattened out for faster dividing832

cells. The trend in the binned data was different from the trend of y= ln(2)x line as observed833

for the population means. A priori one might speculate that the flattening in faster dividing834

cells could be because the faster dividing cells might have less time to adapt their division835
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rate to transient fluctuations in the environment. Kennard et al. [56] insightfully also plotted836

1
Td

vs λ and found a collapse of the binned data for all growth conditions onto the y = 1
ln(2)

x837

line. These results are reminiscent of what we previously showed for the relation of ln(Ld
Lb

)838

and 〈λ〉Td.839

In the following, we will elucidate why this occurs in this case using an underlying model840

and predicting the trend based on it. We use simulations of the adder model undergoing841

exponential growth. The parameters for size added in a cell cycle and mean growth rates842

are extracted from the experimental data. CV of growth rate is assumed lower in faster-843

growth media as observed by Kennard et al. Using this model, we could obtain the same844

pattern of flattening at faster-growth conditions that is observed in the experiments (Figure845

2- figure supplement 2A). The population mean for λ and 1
Td

follows the expected y=ln(2)x846

equation (shown as black dashed line) as was the case in experiments. Intuitively, such a847

departure from the expected y=ln(2)x line for the single cell data can again be explained by848

determining the effect of noise on variables plotted on both axes. As previously stated Td is849

affected by both growth rate noise and noise in division timing while growth rate fluctuates850

independently of other sources of noise. This does not agree with the assumption for binning851

as noise in division timing affects the x-axis variable rather than the y-axis variable. In such852

a case, the trend in the binned data might not follow the expected y=ln(2)x line. However,853

on interchanging the axes, we would expect the assumptions of binning to be met and the854

trend to follow the y= 1
ln(2)

x line (Figure 2- figure supplement 2B).855

5.11 Data and simulations856

5.11.1 Experimental data857

Experimental data obtained by Tanouchi et al. [10] was used to plot Ld vs Lb shown in858

Figure 1A. E. coli cells were grown at 25◦C in a mother machine device and the length at859
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birth and division were collected for multiple cell cycles. Ld vs Lb plot was obtained using860

these cells and linear regression performed on it provided a best linear fit.861

Data from recent mother machine experiments on E. coli was used to make all other862

plots. Details are provided in Section 5.1 and Ref. [32]. The experiments were conducted at863

28◦C in three different growth conditions - alanine, glycerol and glucose-cas (also see Section864

5.1). Cell size trajectories were collected for multiple cell cycles and all of the data collected865

were considered while making the plots in the paper.866

5.11.2 Simulations867

MATLAB R2021a was used for simulations. Simulations of the adder model for exponentially868

growing cells were carried out over a single lineage of 2500 generations (Figures 2C, 2D,869

Figure 3- figure supplement 1C). The mean length added between birth and division was870

set to 1.73 µm in line with the experimental results for alanine medium. Growth rate was871

variable and sampled from a normal distribution at the start of each cell cycle. The mean872

growth rate was set to ln(2)
〈Td〉

, where 〈Td〉 = 212 min and coefficient of variation (CV) = CVλ873

= 0.15. The noise in division timing was assumed to be time additive with mean 0 and874

standard deviation σn
〈λ〉 , where σn = 0.15. The binning data trends and the best linear fits875

obtained using these simulations could be compared with the analytical results obtained in876

Sections 5.4.2 and 5.6.877

For simulations of linear growth (Figures 3A-3B, Figure 3- figure supplements 1A, 1B, 3A,878

3B, Figure 4- figure supplement 1D), the mean growth rate was set to 〈Ld−Lb〉〈Td〉
, with the values879

of 〈Ld − Lb〉 and 〈Td〉 used as mentioned previously. The noise in division timing was size880

additive with standard deviation = 0.15〈Lb〉. Noise was also considered to be size additive881

with the same standard deviation for the simulations of exponentially growing cells shown882

in Figure 3B, Figure 3- figure supplements 2C, 3C, 3D, and Figure 4- figure supplement 1D.883

In the simulations of super-exponential growth carried over a single lineage of 2500 gen-884
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erations (Figure 3B), the cells initially grew exponentially but in the later stages of the cell885

cycle, the growth rate increased as,886

dλ

dt
= 2k(t− tc), (70)

where k was fixed to be 2
T 3
d
and tc was the time from birth at which the growth rate changed887

from exponential to super-exponential growth. tc was fixed to be half of the generation time888

of the cell or equivalently an age of 0.5. The division size was set by the adder model with a889

time additive noise with similar parameters as before for exponential growth simulations. The890

exponential growth rate at the start of each cell cycle was drawn from a normal distribution891

with mean set to ln(2)
242

min−1 and CV = 0.15.892

For Figure 3B, Figure 3- figure supplements 3E, 3F, Figure 4- figure supplement 1D,893

simulations were carried out over a lineage of 2500 generations for exponentially growing cells894

following the adder per origin model. In the simulations, the time increment is 0.01 min.895

The initial condition for the simulations is that cells are born and initiate DNA replication896

at time t=0 but the results are independent of initial conditions. The number of origins is897

also tracked throughout the simulations beginning with an initial value of 2. Cells divide898

into two daughter cells in a perfectly symmetrical manner (no noise in division ratio), and899

one of the daughter cells is discarded for the next cell cycle. In simulations, the growth rate900

was fixed within a cell cycle but varied between different cell cycles. On division, the growth901

rate for that cell cycle was drawn from a normal distribution with mean 〈λ〉 and coefficient of902

variation (CVλ) whose values were fixed using the experimental data from alanine medium.903

The total length at which the next initiation happens is determined by,904

Ltot,nexti = Li +O∆ii, (71)

where ∆ii is the length added per origin and O is the number of origins. To determine905
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Ltot,nexti , ∆ii was drawn on reaching initiation length from a normal distribution. The mean906

and CV of ∆ii was obtained from experiments done in alanine medium. In the adder per907

origin model, division happens after a C+D time from initiation. The division length (Ld)908

is obtained to be,909

Ld = Lie
λ(C+D). (72)

In the simulations, once the initiation length was reached, the corresponding division oc-910

curred a time C+D after initiation. C+D timings for each initiation event were again drawn911

from a normal distribution with the same mean and CV as that of the experiments in alanine912

medium.913

For Figure 3- figure supplement 2A, cells were assumed to grow exponentially in the914

simulations. The constriction length (Ln) was set to be,915

Ln = Lb + ∆bn. (73)

The length added (∆bn) was assumed to have a normal distribution with the mean length916

added between birth and constriction set to 1.18 µm and the CV = 0.23, in line with the917

experimental results for alanine medium. The length at division was set as,918

Ld = Ln + ∆nd. (74)

The length added (∆nd) was also assumed to have a normal distribution with the mean919

length added set to 0.53 µm and the CV = 0.26, again in line with the experimental results920

for alanine medium.921

For Figure 3B, Figure 3- figure supplements 2A-2D, 3A-3F, Figure 4- figure supplement922

1D, the cell sizes are recorded within the cell cycle at equal intervals of 4 min, similar to923

that in the E. coli experiments of Ref. [32].924
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For simulations shown in Figure 4- figure supplement 1D, the cell size trajectories are925

obtained at intervals of 4 min beyond the current cell-cycle. The size after the division event926

is said to be the sum of the sizes of the daughter cells. It is also further assumed that927

the daughter cells are equal in size (perfectly symmetric division) and they both grow with928

the same growth rate (for exponential growth) or elongation speed (for linear growth). The929

growth rates/elongation speeds for the daughter cells are sampled from a normal distribution930

with a mean and CV as discussed before. The cell size trajectories are recorded for 80 min931

after the division event in the current cell cycle.932

In Figure 2- figure supplement 2, simulations of the adder model for exponentially growing933

cells were carried out until a population of 5000 cells was reached. The parameters for size934

added in a cell cycle and mean growth rates were extracted from the experimental data [56].935

The value of σn used in all growth conditions was 0.17 while CVλ decreased in faster growth936

conditions (0.2 in the three slowest growth conditions, 0.12 and 0.07 in the second fastest937

and fastest growth conditions respectively).938
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1099

Figure 1: Utility of binning and linear regression: A. Length at division (Ld) vs length
at birth (Lb) is plotted using data obtained by Tanouchi et al. [10]. Raw data is shown as
blue dots. We find the trend in binned data (red) to be linear with the underlying best
linear fit (yellow) following the equation, Ld = 1.09Lb + 2.24µm. This is close to the adder
behavior with an underlying equation given by Ld = Lb + ∆L, where ∆L is the mean size
added between birth and division (shown as black dashed line). B. A schematic of the adder
mechanism is shown where the cell grows over its generation time (Td) and divides after
addition of length ∆L from birth. This ensures cell size homeostasis in single cells.
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1109

Figure 2: Plots that could potentially lead to misinterpreting exponential growth:
A, B. Data is obtained from experiments in M9 alanine medium (〈Td〉 = 214 min, N = 816
cells). A. ln(Ld

Lb
) vs 〈λ〉Td plot is shown. The blue dots are the raw data, the red correspond

to the binned data trend, the yellow line is the best linear fit obtained by performing linear
regression on the raw data and the black dashed line is the y=x line. A priori, non-linear
trend in binned data might point to growth being non-exponential. B. 〈λ〉Td vs ln(Ld

Lb
)

plot is shown for the same experiments. C, D. Simulations of exponentially growing cells
following the adder model are carried out for N = 2500 cells. The parameters used are
provided in Section 5.11.2. C. ln(Ld

Lb
) vs 〈λ〉Td plot is shown. The trend in binned data

shown in red is non-linear and the best linear fit of raw data (yellow) deviates from the y=x
line (black dashed line). The black dotted line is the expected trend obtained from theory
(Equation 2). For parameters used in the simulations here, the black dotted line follows
ln(Ld

Lb
) = 1.26〈λ〉Td − 0.38(〈λ〉Td)2. D. 〈λ〉Td vs ln(Ld

Lb
) plot is shown with binned data in

red and the best linear fit on raw data in yellow closely following the expected trend of y=x
line (black dashed line). The theoretical binned data trend (black dotted line) is expected
to follow the y=x trend. In all of these plots, the binned data is shown only for those bins
with more than 15 data points in them.
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1128

Figure 3: Differentiating linear growth from exponential growth: A. 〈λ〉Td vs ln(Ld
Lb

)
plot is shown for simulations of linearly growing cells following the adder model for N = 2500
cell cycles. The binned data (red) and the best linear fit on raw data (yellow) closely follows
the y=x trend (black dashed line) which could be incorrectly interpreted as cells undergoing
exponential growth. B. The binned data trend for growth rate vs age plot is shown as
purple circles for simulations of N= 2500 cell cycles of exponentially growing cells following
the adder model. We observe the trend to be nearly constant as expected for exponential
growth (purple dotted line). Since the growth rate is fixed at the beginning of each cell cycle
in the above simulations, we do not show error bars for each bin within the cell cycle. Also
shown as green squares is the growth rate vs age plot for simulations of N= 2500 cell cycles of
linearly growing cells following the adder model. As expected for linear growth, the binned
growth rate decreases with age as λ ∝ 1

1+age
(green dotted line). The binned growth rate

trend (shown as magenta diamonds) is also found to be nearly constant as expected (shown
as magenta dotted line) for the simulations of exponentially growing cells following the adder
per origin model. We also show that the binned growth rate trend (red triangles) increases
for simulations of the adder model with the cells undergoing faster than exponential growth.
The trend is in agreement with the underlying growth rate function (shown as red dotted
line) used in the simulations of super-exponential growth. Thus, the plot growth rate vs
age provides a consistent method to identify the mode of growth. Parameters used in the
above simulations of exponential, linear and super-exponential growth are derived from the
experimental data in alanine medium. Details are provided in the Section 5.11.2.
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1151

Figure 4: Growth rate vs age obtained from experiments: Growth rate vs age plots
are shown for E. coli experimental data. The red dots correspond to the binned data trends
showing the variation in growth rate. The medium in which the experiments were conducted
are A. Alanine (〈Td〉 = 214 min) B. Glycerol (〈Td〉 = 164 min) C. Glucose-cas (〈Td〉 = 65
min). The error bars show the standard deviation of the growth rate in each bin scaled by

1√
N
, where N is the number of cells in that bin. The dashed vertical lines mark the age at

initiation of DNA replication (left line) and the start of septum formation (right line). In
case of glucose-cas, the initiation age is not marked as it occurs in the mother cell.
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1161

Figure 5: A flowchart of the general framework proposed in the paper to carry out data
analysis.
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8 Appendix 1: Comparing length, surface area and vol-1165

ume growth rate1166

In the paper, we use cell length to represent cell size. However, other cell size characteristics1167

such as cell surface area and cell volume could also be used to denote cell size. How does1168

the growth rate vary with our choice of cell length, cell surface area, or cell volume to be the1169

cell size?1170

To study this, we assume a cell morphology as shown in Figure 1A-Appendix 1. We1171

assume that E. coli cells are cylindrical with hemispherical poles. The total length of the1172

cell is L with a radius R. The cell volume (V ) is then,1173

V = πR2L− 2

3
πR3. (1-A1)

The morphology of the cell after constriction is also shown in Figure 1A-Appendix 1. The1174

volume in this case is,1175

V = πR2L− 4

3
πR3 + 2πR2h− 2πh2R +

2

3
πh3. (2-A1)

If we make the assumption that cell biomass grows exponentially and the total cell surface1176

area is coupled to the biomass [48], then cell surface area grows exponentially with time.1177

Using the morphology in Figure 1A-Appendix 1, the total surface area (S) before and after1178

constriction is,1179

S = 2πRL. (3-A1)

Surprisingly, this is independent of h. Since the surface area is proportional to the cell1180

length (Equation 3-A1), the length growth is also exponential with an identical growth rate1181

as surface area growth, assuming the width of the cell is constant. The exponential growth1182
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of cell length is shown in Figure 1B-Appendix 1 using simulations where the cell surface is1183

assumed to grow exponentially. So, for this model of cell growth and morphology, the length1184

and the surface growth rates are found to be identical.1185

Figure 1-Appendix 1: Length growth rate vs volume and surface area growth rate:
A. Cell morphology of E. coli used in the model is shown. The E. coli cells are assumed
to be cylindrical with hemispherical end caps. Before constriction, the cell elongates with
constant width (2R). However, after onset of constriction, the septum starts forming at the
mid-cell. B. Length growth rate as a function of age assuming that the total cell surface
area growth is exponential, and the radius is constant (R = 0.35 µm). C. Length growth
rate as a function of age assuming that the volume growth is exponential, radius is constant
(R = 0.35 µm) and septum surface grows at a constant rate.

Next, we compare length growth rate to volume growth rate considering the same cell1186

morphology as that in Figure 1A-Appendix 1. In this model, the volume growth is assumed to1187

be exponential. The volume before and after the onset of constriction are given by Equations1188

1-A1 and 2-A1, respectively.1189

Before constriction, the volume grows only by an increase in length of the cylindrical1190

part of the cell while the width stays constant. However, after the constriction at mid-cell1191
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starts, the volume grows by an increase in length as well as by adding a septum surface at1192

the mid-cell. We assume that the septum wall surface grows at a constant rate (c1) [39]. We1193

can obtain c1 in terms of cell morphology variables to be,1194

c1 = −4πR
dh

dt
. (4-A1)

We can solve for h(t) using the following boundary conditions,1195

h(t = Tn) = R, h(t = Td) = 0, (5-A1)

where Tn is the time from birth at which constriction starts. Using Equations 4-A1 and1196

5-A1, we can obtain c1 in terms of cell cycle variables R, Tn and Td,1197

c1 =
4πR2

Td − Tn
(6-A1)

Under these assumptions, for exponential volume growth, we obtain the length growth via1198

simulations. The length growth rate is shown in Figure 1C-Appendix 1. The growth rate,1199

the length at birth, the time at constriction from birth and the generation time parameters1200

used in the simulations are obtained from experimental data in alanine growth medium. The1201

width of the cells is assumed to be 0.35 µm. We find that before constriction, the length1202

growth rate increases to a small extent (≈ 6%). However, after constriction there is a rapid1203

increase in length growth rate. The mode of growth in length and volume are not identical.1204
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9 Appendix 2: Linear regression on ln(LdLb
) vs 〈Td〉λ plot1205

and its interchanged axes plot1206

In Section 2, we found that binning and linear regression on the plots ln(Ld
Lb

) vs 〈λ〉Td and1207

its interchanged axes were not a suitable method to identify the underlying mode of growth.1208

In this section, we explore binning and linear regression on similar plots ln(Ld
Lb

) vs 〈Td〉λ1209

plot and its interchanged axes. We test the usability of these plots to elucidate the mode of1210

growth using the methodology proposed in the paper.1211

Assuming exponential growth, λ for a cell cycle can be calculated as 1
Td

ln(Ld
Lb

). On plotting1212

ln(Ld
Lb

) vs 〈Td〉λ (Figures 1A-Appendix 2-1C-Appendix 2) and 〈Td〉λ vs ln(Ld
Lb

) (Figures 1F-1213

Appendix 2-1H-Appendix 2) for the experimental data, we obtain the slope of the best linear1214

fit to be close to zero (values shown in Table 1-Appendix 2). Next, using the methodology1215

of the paper, we interpret these results using an underlying model. We consider a model in1216

which cells grow exponentially with the division determined by birth. In the model, growth1217

rate is fixed at the beginning of each cell cycle and is independent of size at birth. The1218

model predicts that ln(Ld
Lb

) will be independent of the growth rate (Equation 19 in main1219

text). Thus, we would expect the slope to be zero for both of the plots ln(Ld
Lb

) vs 〈Td〉λ1220

and 〈Td〉λ vs ln(Ld
Lb

). This is also shown using simulations of the adder model in Figures1221

1D-Appendix 2 and 1I-Appendix 2 where the slope of the plots is close to zero. In order1222

to differentiate between exponential growth and linear growth, the best linear fit in case of1223

linear growth for these plots must deviate from y= constant line. However, we find for the1224

simulations of the adder model where cells grow linearly that the slope of the best linear fit1225

for both of the above plots is still zero (Figures 1E-Appendix 2 and 1J-Appendix 2). Note1226

that λ in the case of linear growth is still calculated as 1
Td

ln(Ld
Lb

). A slope of zero in case of1227

linear growth can be explained using Equation 62 of the main text. Using the equation, we1228

find that ln(Ld
Lb

) is independent of the underlying growth rate for linear growth. Thus, the1229
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Figure 1-Appendix 2: ln(Ld
Lb

) vs 〈Td〉λ and its flipped axes plots: A-E. ln(Ld
Lb

) vs 〈Td〉λ
are shown for A. Experimental data in alanine medium. B. Experimental data in glycerol
medium. C. Experimental data in glucose-cas medium. D. Simulations of the adder model
where cells grow exponentially, carried out for N=2500 cells. E. Simulations of the adder
model where cells grow linearly, carried out for N=2500 cells. F-J. For the same order of
the above experimental conditions and simulations, 〈Td〉λ vs ln(Ld

Lb
) plots are shown. In all

of the plots, blue represents the raw data, red represents the binned data, and the yellow
line represents the best linear fit obtained by applying linear regression on the raw data. In
all of the plots, the slope of the best linear fit is close to zero. Thus, we find that these plots
are not a suitable method to differentiate between linear and exponential growth as they
provide a similar best linear fit.

64



best linear fit for both plots have a slope of zero in the case of linear growth. This indicates1230

that binning and linear regression on the ln(Ld
Lb

) vs 〈Td〉λ and its interchanged axes plots are1231

unsuitable for elucidating the mode of growth.1232

Table 1-Appendix 2: The slope and the intercept of the best linear fit along with their 95%
confidence intervals (CI) obtained on performing linear regression on experimental data. The
data is collected for cells growing in M9 alanine, glycerol and glucose-cas media [Sriram et
al. (2021)].

Media No. of Td

ln(Ld

Lb
) vs 〈Td〉λ plot 〈Td〉λ vs ln(Ld

Lb
) plot

cells (min) Slope (with

95% CI)

Intercept

(with 95%

CI)

Slope (with

95% CI)

Intercept

(with 95%

CI)

Alanine 816 214 0.04 (-0.01,

0.09)

0.65 (0.62,

0.69)

0.05 (-0.01,

0.12)

0.67 (0.63,

0.72)

Glycerol 648 164 -0.12 (-

0.16, -0.07)

0.75 (0.71,

0.79)

-0.19 (-

0.27, -0.11)

0.83 (0.78,

0.89)

Glucose-

cas

737 65 0.11 (0.06,

0.16)

0.55 (0.52,

0.58)

0.16 (0.09,

0.23)

0.56 (0.51,

0.61)
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10 Supplementary Figures and Tables1233

Table S1: Variable definitions.

Variables Description

Lb Length of the cell at birth and also a proxy for size at birth

Ld Length of the cell at division and also a proxy for size at

division

lb
Lb
〈Lb〉

, where 〈Lb〉 is mean size at birth

ld
Ld
〈Lb〉

, where 〈Lb〉 is mean size at birth

f(lb) Mathematical function which captures the regulation strategy

determining division given size at birth. f(lb) = 2l1−αb

Td Generation time

σt Standard deviation of generation time

xn or x xn = ln(lnb ). Since lb ≈ 1, xn ≈ lnb − 1

σx Standard deviation of xn

f1(xn) Gaussian describing the distribution of xn. f1(xn) =

1√
2πσ2

x

exp
(
− x2n

2σ2
x

)
〈λ〉 Mean growth rate

CVλ Coefficient of variation of growth rate

ξ(0, CVλ) Normally distributed growth rate noise. Growth rate is de-

fined as λ = 〈λ〉 + 〈λ〉ξ(0, CVλ)

f2(ξ) Gaussian describing the distribution of random variable

ξ(0, CVλ). f2(ξ) = 1√
2πCV 2

λ

exp
(
− ξ2

2CV 2
λ

)
ζ(0,σn)
〈λ〉 Normally distributed time additive division timing noise with

mean 0 and standard deviation σn
〈λ〉
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f3(ζ) Gaussian describing the distribution of random variable

ζ(0, σn). f3(ζ) = 1√
2πσ2

n

exp
(
− ζ2

2σ2
n

)
ζs(0, σbd) Normally distributed size additive division timing noise with

mean 0 and standard deviation σbd

σl Standard deviation of ln(Ld
Lb

)

f4

(
ln(Ld

Lb
)
)

Gaussian describing the distribution of ln(Ld
Lb

). f4

(
ln(Ld

Lb
)
)

= 1√
2πσ2

l

exp

(
−

(
ln(

Ld
Lb

)−ln(2)
)2

2σ2
l

)
ρexp Correlation coefficient of the pair (ln(Ld

Lb
), 〈λ〉Td)

mtl Slope of the best linear fit for ln(Ld
Lb

) vs 〈λ〉Td plot

ctl Intercept of the best linear fit for ln(Ld
Lb

) vs 〈λ〉Td plot

mlt Slope of the best linear fit for 〈λ〉Td vs ln(Ld
Lb

) plot

clt Intercept of the best linear fit for 〈λ〉Td vs ln(Ld
Lb

) plot

〈λlin〉 Mean normalized elongation speed

CVλ,lin Coefficient of variation of normalized elongation speed

ξlin(0, CVλ,lin) Normally distributed normalized elongation speed noise. Nor-

malized elongation speed is defined as λlin = 〈λlin〉 +

〈λlin〉ξlin(0, CVλ,lin)

σl,lin Standard deviation of ld − lb

ρlin Correlation coefficient of the pair (ld − lb, 〈λlin〉Td)

mtl,lin Slope of the best linear fit for ld − lb vs 〈λlin〉Td plot

ctl,lin Intercept of the best linear fit for ld − lb vs 〈λlin〉Td plot

mlt,lin Slope of the best linear fit for 〈λlin〉Td vs ld − lb plot

clt,lin Intercept of the best linear fit for 〈λlin〉Td vs ld − lb plot

Li Cell size at the start of DNA replication (initiation)
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Ltot,nexti Total cell size of the daughter cells at the start of DNA repli-

cation

∆ii Size added per origin between initiations

O Number of origins just after initiation

C+D Time between initiation and division

Tn Timing of start of septum formation/onset of constriction

Ln Cell size at time Tn

Table S2: The slope and the intercept of the best linear fit along with their 95% confidence
intervals (CI) obtained on performing linear regression on experimental data. The data is
collected for cells growing in M9 alanine, glycerol and glucose-cas media [32].

Media No. of Td

ln(Ld

Lb
) vs 〈λ〉Td plot 〈λ〉Td vs ln(Ld

Lb
) plot

cells (min) Slope (with

95% CI)

Intercept

(with 95%

CI)

Slope (with

95% CI)

Intercept

(with 95%

CI)

Alanine 816 214 0.34 (0.31,

0.36)

0.44 (0.42,

0.46)

1.06 (0.98,

1.14)

-0.01 (-0.07,

0.04)

Glycerol 648 164 0.34 (0.32,

0.37)

0.43 (0.41,

0.44)

1.26 (1.16,

1.35)

-0.13 (-0.20,

-0.07)

Glucose-

cas

737 65 0.31 (0.28,

0.34)

0.42 (0.40,

0.44)

0.91 (0.83,

1.00)

0.09 (0.03,

0.15)
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1234

Figure 2- figure supplement 1: Experimental data: ln(Ld
Lb

) vs 〈λ〉Td (left) and 〈λ〉Td vs
ln(Ld

Lb
) plot (right) is shown for, A. Cells growing in glycerol medium (〈Td〉 = 164 min, N =

648 cells). B. Cells growing in glucose-cas medium (〈Td〉 = 65 min, N = 737 cells). Binned
data (red), and the best linear fit (yellow) obtained by performing linear regression on the
raw data deviate from the y=x line (black dashed line) in the case of ln(Ld

Lb
) vs 〈λ〉Td plots in

both media. However, both binned data and the best linear fit are in close agreement with
the y=x line (black dashed line) on interchanging the axes. In all of these plots, the binned
data is shown only for those bins with more than 15 data points in them.
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1244

Figure 2- figure supplement 2: Binned data trend in growth rate (λ) and inverse
generation time ( 1

Td
) plots: A-B. Simulations of the adder model for exponentially

growing cells were carried out at multiple growth rates for N = 2500 cells. The size added
between birth and division and the mean growth rates were extracted from Kennard et al.,
[56]. The CV of growth rates was greater for cells growing in slower-growth media. See
Section 5.11.2 for the parameter values. For these simulations, we show A. λ vs 1

Td
plot. B.

1
Td

vs λ plot. The smaller circles show the trend in binned data within a growth medium.
Different colors correspond to different growth media. Population means are shown as larger
markers. The population means agree with the expected y=ln(2)x line (black dashed line)
in Figure 2- figure supplement 2A but the trend within a single growth medium is non-linear
and deviates from the y=ln(2)x line. However, in Figure 2- figure supplement 2B, population
means across growth conditions and the trend in binned data within a single growth medium
follow the expected y= 1

ln(2)
x line (black dotted line).
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1259

Figure 3- figure supplement 1: Predicting statistics based on a model of linear
growth: A-B. Simulations of linearly growing cells following the adder model are car-
ried out for N = 2500 cell cycles. A. ld− lb vs 〈λlin〉Td plot is shown. The raw data is shown
as blue dots. The binned data (in red) and the best linear fit on raw data (in yellow) deviate
from the y=x line (black dashed line). Such a deviation can be predicted based on a model
as discussed in detail in Section 5.5. B. 〈λlin〉Td vs ld− lb plot is shown. The binned data (in
red) and the best linear fit on raw data (in yellow) agree with the y=x line (in black). C.
Simulations of exponentially growing cells following the adder model are carried out for N =
2500 cell cycles. 〈λlin〉Td vs ld− lb plot is shown. The binned data (in red) and the best linear
fit on raw data (in yellow) deviate from the y=x line (in black) as expected for exponential
growth. Parameters used in the simulations above are provided in Section 5.11.2.
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1272

Figure 3- figure supplement 2: Inspection bias in the growth rate vs time plots
obtained from simulations: A. The binned growth rate trend as a function of time
from the onset of constriction (t-Tn) is shown in red. Time t-Tn = 0 corresponds to onset of
constriction. The plot is shown for simulations of exponentially growing cells carried out over
N = 2500 cell cycles. Constriction length is determined by a constant length addition from
birth and division occurs after a constant length addition from constriction. B. The average
generation time for the cells present in each bin of Figure 3- figure supplement 2A is shown.
C. For simulations of exponentially growing cells following the adder model (N=2500), the
binned growth rate (in red) vs time from birth plot is shown. D. The average generation
time for the cells present in each bin of Figure 3- figure supplement 2C is shown. The vertical
dashed lines show the time range in which the generation times are approximately constant
and hence, the effects of inspection bias are negligible. Within that time range, the growth
rate trend is found to be constant, consistent with the assumption of exponential growth.
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Figure 3- figure supplement 3: Differential methods of quantifying growth: A-B.
Simulations of linearly growing cells following the adder model are carried out for N = 2500
cell cycles. Cell size (L) data is recorded as a function of time within the cell cycle. A.
The red dots show the binned data for elongation speed as a function of age. The trend is
almost constant in agreement with the linear growth assumption. B. Elongation speed is
also constant with cell size as expected for linear growth. The intercept value of the best
linear fit on raw data (in yellow) provides the average elongation speed. C-D. Simulations of
exponentially growing cells following the adder model are carried out for N = 2500 cell cycles.
C. Elongation speed trend (in red) increases with age in agreement with the exponential
growth assumption. D. Elongation speed trend (in red) increases linearly with size. The
slope of the best linear fit on raw data (in yellow) is equal to the average growth rate. E-F.
Simulations of exponentially growing cells following the adder per origin model are carried
out for N = 2500 cell cycles. E. Again, the elongation speed trend (in red) increases with
age in agreement with the exponential growth assumption. F. Elongation speed trend (in
red) and the best linear fit on raw data (in yellow) deviates from the expected linear trend
(black dashed line). This could be misinterpreted as non-exponential growth. Thus, we find
that the binned data trend for the plot elongation speed vs size is model-dependent.
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Figure 4- figure supplement 1: Growth rate vs age curves extended beyond the
division event: A,B,C. The binned growth rate trend is shown in red as a function of
age for E. coli experimental data. The trends are obtained using the cell size trajectories
extending beyond the division event (age>1). The plots are shown for A. Alanine medium
(N = 720 cells) B. Glycerol medium (N = 594 cells). C. Glucose-cas medium (N = 664
cells). The error bars in all three plots represent the standard deviation of the growth rate
in each bin scaled by 1√

N
, where N is the number of cells in that bin. The growth rate trend

appears to be periodic in each of the growth media i.e., λ at age ≈ 1 is close to λ at age ≈
0. These trends agree with that of Figure 4 in the appropriate age ranges. D. Simulations
are carried out for N= 2500 cell cycles. The cell size trajectories are collected beyond the
division event (age>1). The binned data trend for growth rate vs age plot is shown as purple
circles for exponentially growing cells following the adder model. We observe the trend to
be nearly constant as expected for exponential growth. The binned growth rate trend is also
found to be nearly constant for the simulations of exponential growing cells following the
adder per origin model (shown as magenta diamonds). (Inset) Shown as green squares is
the elongation speed vs age plot for simulations of N= 2500 cell cycles of linearly growing
cells following the adder model. As expected for linear growth, the binned elongation speed
trend remains approximately constant with age. The growth rate trends for the models with
exponential growth agree with that of Figure 3B. The elongation speed trend (inset) also
agrees with the trend in Figure 3- figure supplement 3A.
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Figure 4- figure supplement 2: Inspection bias in the growth rate vs time from
constriction plots obtained from experiments: A,C,E. The binned growth rate trend
is shown in red as a function of time from the onset of constriction (t-Tn). Time t-Tn = 0
corresponds to the onset of constriction for all cells considered. The plots are shown for A.
Alanine medium. C. Glycerol medium. E. Glucose-cas medium. The error bars in all three
plots represent the standard deviation of the growth rate in each bin scaled by 1√

N
, where N

is the number of cells in that bin. B,D,F. The average generation time for the cells present
in each bin of B. Alanine medium (Figure 4- figure supplement 2A) D. Glycerol medium
(Figure 4- figure supplement 2C) F. Glucose-cas medium (Figure 4- figure supplement 2E)
are shown. The vertical dashed lines represent the time range within which the average
generation time remains approximately constant. The growth rate trends within this time
range are consistent with that in Figure 4 for the respective growth condition as there is
negligible inspection bias.
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