Developmental single-cell transcriptomics of hypothalamic POMC neurons reveal the genetic trajectories of multiple neuropeptidergic phenotypes

Hui Yu¹*, Marcelo Rubinstein¹,²,³*, Malcolm J Low¹*

¹Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA

²Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina

³Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina

* Co-corresponding Authors

Address correspondence to:
Malcolm J Low, MD, PhD, Department of Molecular & Integrative Physiology, University of Michigan Medical School, North Campus Research Complex, Bldg 25, Rm.25-3680, 2800 Plymouth Rd., Ann Arbor, MI 48109-2800. Email: mjlow@umich.edu

Marcelo Rubinstein, PhD, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires, Argentina. Email: mrubins@dna.uba.ar

Hui Yu, PhD, Department of Molecular & Integrative Physiology, University of Michigan Medical School, North Campus Research Complex, Bldg 25, Rm.25-3634, 2800 Plymouth Rd., Ann Arbor, MI 48109-2800. Email: huiyuz@umich.edu
Abstract (164 words)

Proopiomelanocortin (POMC) neurons of the hypothalamic arcuate nucleus are essential to regulate food intake and energy balance. However, the ontogenetic transcriptional programs that specify the identity and functioning of these neurons are poorly understood. Here, we use scRNAseq to define the transcriptomes characterizing Pomc-expressing cells in the developing hypothalamus and TRAP-seq to analyze the subsequent translatomes of mature POMC neurons. Our data showed that Pomc-expressing neurons give rise to multiple developmental pathways expressing different levels of Pomc and unique combinations of transcription factors. The predominant cluster, featured by high levels of Pomc and Prdm12 transcripts represents the canonical arcuate POMC neurons. Additional cell clusters expressing medium or low levels of Pomc mature into different neuronal phenotypes featured by distinct sets of transcription factors, neuropeptides, processing enzymes, cell surface and nuclear receptors. We conclude that the genetic programs specifying the identity and differentiation of arcuate POMC neurons are diverse and generate a heterogeneous repertoire of neuronal phenotypes early in development that continue to mature postnatally.
Introduction

Proopiomelanocortin (POMC)-expressing neurons located in the arcuate nucleus of the hypothalamus play an essential role in the regulation of food intake by maintaining a melanocortin-dependent anorexigenic tone. The critical importance of hypothalamic melanocortins, is apparent in mice lacking Pomc that develop hyperphagia and early-onset extreme obesity (Bumaschny et al., 2012). This phenotype is closely mirrored in humans carrying biallelic null-mutations in POMC (Krude et al., 1998). In addition, arcuate POMC neurons release the Pomc-encoded opioid peptide β-endorphin, which is critical in mediating normal food intake (Appleyard et al., 2003) and stress-induced analgesia (Rubinstein et al., 1996).

Postmitotic POMC neurons acquire their phenotypic identity in the developing hypothalamus days earlier than any other peptidergic neurons born in the presumptive arcuate nucleus (eg. NPY/AGRP, GHRH, SST, KISSPEPTIN). Pomc mRNA is initially observed in the tuberal portion of the prospective mouse hypothalamus of E10.5 embryos, following the concurrent advent of the essential transcription factors (TFs) ISL1 (Nasif et al., 2015), NKX2-1 (Orquera et al., 2019) and PRDM12 (Hael et al., 2020) that act together in a combinatorial manner. In fact, the early ablation of either Isl1, Nkx2-1 or Prdm12 disrupts the onset of hypothalamic Pomc expression in conditional mutant mouse embryos (Nasif et al., 2015, Orquera et al., 2019, Hael et al., 2020). Given that the number of arcuate neurons coexpressing Nkx2-1, Isl1 and Prdm12 greatly exceeds that of POMC neurons in this area, it is expected that additional and still unknown TFs integrate a core regulatory complex completing the genetic program that specifies the identity of POMC neurons.

Other molecular markers of arcuate POMC neurons such as transporters, receptors, channels and co-transmitters exhibit great variability indicating that a heterogeneous pool of
diverse subpopulations of these neurons are involved in multiple circuits and functions. In fact, previous studies have suggested that subsets of arcuate POMC-expressing neurons may act as precursors of terminally differentiated neurons of alternative neuropeptidergic phenotypes such as NPY/AGRP and KISSPEPTIN/NEUROKININ-B/DYNORPHIN (KNDY) neurons in the adult hypothalamus (Padilla et al., 2010, Sanz et al., 2015). Initial attempts to characterize the transcriptome of adult POMC neurons at the single-cell level confirmed the heterogeneous nature of arcuate POMC neurons and revealed the existence of distinct clusters including those co-expressing the aforementioned neuropeptide genes (Campbell et al., 2017, Chen et al., 2017, Lam et al., 2017, Huisman et al., 2020). However, the molecular signatures of the various hypothalamic POMC-expressing lineages are still lacking.

Here, we track the origin and maturation of arcuate POMC neurons in the developing and early postnatal hypothalamus by performing single-cell RNA-seq transcriptomics of fluorescently labeled cells taken from POMC-TdDiscomaRed-Sv40PolyA (POMC-TdDsRed) transgenic mice at different embryonic (E11.5, E13.5, E15.5 and E17.5) and early postnatal (P5 and P12) ages. Our data indicate that POMC neurons give rise to distinct transcriptional trajectories and show that a heterogeneous population of POMC-expressing neurons is established early in the developing arcuate nucleus. Combining translating ribosome affinity purification with RNA-sequencing (TRAP-seq) of POMC-eGFPL10a transgenic mice at P12 and P60, we identified transcriptional programs that emerge from distinct populations of early embryonic POMC neurons that later mature into fully functional POMC neurons. We believe that these datasets provide a valuable resource for comprehensively understanding the genetic bases underlying the ontogeny and development of POMC neurons as well as for the rational design of further functional studies of brain circuits involving POMC neurons.

Results
Cluster analysis of gene expression in Pomc positive hypothalamic cells integrated across six development ages

We captured the single cell transcriptomes of hypothalamic Pomc-expressing cells at four embryonic days (E11.5, E13.5, E15.5 and E17.5) and two early postnatal days (P5 and P12) when the maturing neurons already develop axons and innervate key target nuclei distal to the Arc (Bouret et al., 2004a, Bouret et al., 2004b, Bouret et al., 2012). Medial basal hypothalami from mice that express the reporter transgene Pomc-TdDsRed selectively in POMC cells were pooled from multiple embryos or postnatal pups at the indicated ages. Dissociated single cell suspensions were sorted for DsRed fluorescence and used for library preparation with the 10X genomics platform (Figure 1A). After a rigorous screening procedure to remove substandard scRNA sequencing data (see Methods), we used a combination of computational platforms to analyze the transcriptomes of 13,962 cells that had Pomc counts of ≥ 1 unique molecular identifiers (UMI).

A Seurat analysis of all cells integrated across the six-time points revealed 11 distinct cell clusters projected onto a UMAP plot (Figure 1B). The same data are represented in a heat map corresponding to the top 30 expressed genes per cluster (Figure1-figure supplement 1). Clusters 1-8 (10,828 cells) were all highly enriched for a panel of three neuronal marker gene transcripts. The embedded table in Figure 1B lists the number of neurons of each cluster at each developmental age. The other three clusters (3,134 cells) were enriched in transcripts characteristic of either microglia, vascular leptomeningeal cells (VLMC) or astrocytes (Figure 1C). GO ontology analyses for biological processes further confirmed the neuronal or non-neuronal identities of the 11 individual clusters (data not shown).

By definition, all cells in the neuronal and non-neuronal clusters contained Pomc transcripts (UMI ≥ 1), however there were significant differences in the average expression
levels per cluster, ranging from 1.3 to 33.8 [exp(log Normalized counts) -1)]. Nomenclature of
the 8 neuronal clusters is based on a combination of relatively high (>20), medium (5-20) or low
(<5) Pomc levels and high expression of one differential key feature gene as follows: no. 1,
Pomc(high)/Prdm12; no. 2 Pomc(med)/Ebf1; no. 3, Pomc(med)/Nr4a2; no. 4, Pomc(low)/Otp; no. 5,
Pomc(low)/Tac2; no. 6, Pomc(low)/Dlx5; no. 7, Pomc(low)/Prdm13; and no. 8, Pomc(low)/Pitx2. The
cluster distribution and relative expression of those feature genes are represented by individual
UMAP plots (Figure 1D). Average expression levels of all genes, including Pomc, in the 11
clusters and complete lists of all feature genes that define the individual clusters are presented
in Figure 1-Source Data 1 and Figure 1-Source Data 2, respectively.

In order to validate our experimental approach of isolating Pomc-expressing cells from
the developing hypothalamus by FACS for the transgenic surrogate marker Pomc-TdDsRed, we
performed an independent unsupervised cluster analysis of the transcriptomes from the 5,724
cells that had DsRed counts of ≥ 1 UMI (Figure1-figure supplement 2A-C and Figure 1-Source
Data 3). A projection analysis (Figure1-figure supplement 2D-F) of the differentially expressed
feature genes defined 9 DsRed clusters (Figure 1-Source Data 4) which closely corresponded
to 9 of the 11 clusters based on Pomc counts of ≥ 1 UMI (Figure 1-Source Data 3). The two
exceptions were the smallest clusters 7, Pomc(low)/Prdm13 and astrocytes (Figure1-figure
supplement 3D-F). Furthermore, the number of cells at each developmental age from the
corresponding neuronal clusters were remarkably similar in the Pomc UMI ≥ 1 data set
compared to the DsRed UMI ≥ 1 data set (compare Figure 1B to Figure1-figure supplement 3A).
The different population of DsRed fluorescent sorted cells showing UMI ≥ 1 for Pomc (13,962)
or DsRed (5,724) may be due to differential half-lives of the fluorescent protein DSRED used
during cell sorting and its transcript used for barcoding the RNAseq libraries.

**Temporal gene expression analysis of the eight neuronal clusters at individual
developmental stages**
Next, we analyzed temporal gene expression patterns for each of the 8 neuronal clusters at the 6 distinct developmental ages (Figure 2 - Source Data 1). The progressive changes in feature genes across time are responsible for the observed within cluster heterogeneity on the heat map in Figure 1-figure supplement 1.

Cluster 1. Pomc^{(high)}/Prdm12 cells were the most abundant among the eight neuronal clusters and consistently had the highest levels of Pomc expression at all six developmental ages. We consider them to be the cell lineage that matures into the canonical POMC neurons in the adult hypothalamus (Figure 2A-2C). Other feature genes included a set of four TFs known to be critical for the initiation and/or maintenance of Arc Pomc expression, Isl1, Nkx2-1, Prdm12 and Tbx3 (Nasif et al., 2015, Orquera et al., 2019, Quarta et al., 2019, Hael et al., 2020) (Figure 2A). They were expressed in similar developmental patterns to each other, with the exception of Tbx3 that was significantly expressed only from day E15.5. Notably, there was a lack of the pituitary-specific Tbx19 TF, confirming that no pituitary tissue was included in the hypothalamic dissections. Two homologues of the Drosophila sine oculus homeobox gene, Six3 and Six6, which have not been described previously in the context of Arc POMC neuron development, were also expressed robustly at all six time points (Figure 2A). Co-expression of their mRNAs with Pomc by RNAscope at ages E12.5 and E16.5 confirmed the scRNAseq analysis, although the two TFs were expressed in additional hypothalamic domains and the pituitary gland (Figure 2B). Vim1, Sox1, 2, 3 and 14, and Myc, whose expression is typically associated with neuronal precursors or immature neurons, tended to have higher expression at the earlier embryonic ages (Figure 2A). The nuclear receptor gene Nr5a1, also known as steroidogenic factor 1 (Sf1), was a key feature gene expressed almost exclusively at ages E11.5. (Figure 2A), but only minimally expressed at later embryonic time points when NR5A1 is critically involved in the development of the hypothalamic ventromedial nucleus (VMN) (Ikeda et al., 1995). This differential spatio-temporal presence of NR5A1 within or outside POMC neurons was confirmed by immunofluorescence on hypothalamic sections taken from E11.5 and E17.5 mouse embryos.
Interestingly, Nr5a1, Nr0b1 (Dax1) and Shh, transcripts were also present in Cluster 1 at the two earliest ages, and are factors known to interact with the Wnt/β-catenin signaling pathway in early cell fate determination in the adrenal and pituitary glands (Luo et al., 1994, Meeks et al., 2003, Mizusaki et al., 2003). A combination of pseudotime and gene ontology analyses for the top expressed genes (Log2FoldChange >0.25, P<0.05) in cluster1 revealed that the genes expressed at the beginning of pseudotime function in the organization of cell projections, axonogenesis and the regulation of cellular component size, whereas genes expressed at the middle and end of the pseudotime function are related to neuron maturation and neuron-specified functions such as the formation of myelin sheath and regulation of synaptic vesicle cycling (Figure 2C).

Cluster 2. Pomc^{med}/Ebf1 neurons made up the second highest abundance cluster of POMC neurons, particularly at E11.5 and E13.5. After these time points, the fraction of all neurons constituting cluster 2 dropped by approximately two thirds from ages E15.5 through P12. In contrast, the number of neurons in clusters 3-8 increased over time with peaks at different embryonic ages (Figure 1B). Cluster 2 neurons, on average, had medium levels of Pomc transcripts that were divided distinctly from their lowest at ages E11.5-E13.5 to highest at later embryonic and postnatal ages (Figure 2D; Figure 2 - Source Data 1). Major cluster 2 feature markers included members of the non-basic helix-loop-helix early B-cell TF family EBF (Figure 1 - Source Data 2). Ebf1 is typically co-expressed with either Ebf2 or Ebf3 and pairs of these factors were shared not only in cluster 2, but also in clusters 3 and 8 (Figure2-figure supplement 2). Dual RNAscope in situ hybridization showed overlapping coexpression of Ebf1 and Pomc mRNAs in the ventricular zone of the developing hypothalamus at an early embryonic stage (E11.5) (Figure 2E). However, transcript levels of Ebf1 are much lower than what was found in other areas of the same sections, such as the mesenchyme (MES) (Figure 2E). Ebf1 mRNA was also detected in Pomc-expressing cells at E13.5, and then was barely detectable at E17.5 (Figure 2-figure supplement 1A and 1B). A similar expression pattern was found with
another cluster 2 featured gene, *Pou4f1* (*POU Class 4 Homeobox 1*). Dual RNAscope *in situ* hybridization confirmed the overlap of *Pou4f1* and *Pomc* mRNAs at E13.5, but not at E17.5 (Figure 2-figure supplement 1C and 1D). These results, together, suggest that *Pomc* mRNA levels peak only after expression of both *Ebf1* and *Pou4f1* decrease. Two other prominent feature genes in cluster 2 were *Crabp1* and *Crabp2*, which encode cellular retinoic acid binding proteins. A majority of the marker genes for cluster 2 are predicted to be expressed at the beginning of pseudotime and the main functions are associated with the maintenance of basic cell biological processes such as nucleosome organization, axonogenesis, microtubule transport, and intracellular transport (Figure 2F). The genes ordered in the middle and end of pseudotime function for the regulation of synapse structure and activities.

Visual examination of the UMAP plots in Figure 1D suggested that cluster 2 was composed of two compartments, one with high and one with low *Pomc* abundance. Unsupervised reclustering of the differentially expressed genes from integrated cluster 2 confirmed the existence of two subclusters (Figure 2G). Subcluster 2-1 contained two-thirds of the neurons, which were *POMC*\(^{\text{high}}\) whereas subcluster 2-2 contained the other one-third of cluster 2 neurons, which in contrast, were *Pomc*\(^{\text{low}}\). As shown in Figure 2D, subcluster 2-2 contains cells mainly from the early developmental stages E11.5 to E15.5, whereas, subcluster 2-1 contains cells from E17.5 to P12. Consistently, known activating TFs for *Pomc* expression such as *Nkx2-1*, *Isl1* and *Tbx3* were limited to subcluster 2-1 while relatively high levels of *Ebf* and *Crabp* transcripts were characteristic of subcluster 2-2 (Figure 2-Source Data 2 and Figure 2-Source Data 3). Another distinctive feature of cells in cluster 2 (both subclusters) is the absence of *Prdm12* transcripts, one main component of cluster 1 (Figure 2A and Figure 2D).

Cluster 3. *Pomc*\(^{\text{med}}\)/*Nr4a2* neurons displayed high expression of its major feature gene *Nr4a2* (*Nuclear Receptor Subfamily 4 Group A Member 2*) (Figure 2-figure supplement 2). *Nr4a2* mRNA was also expressed at relatively high levels in clusters 2. *Pomc*\(^{\text{med}}\)/*Ebf1* and 8.
Pomclow/Pitx2. Nr4a2 (Nurr1) has been implicated in the regulation of Pomc expression in the pituitary corticotrophic cell line AtT20 (Kovalovsky et al., 2002). Furthermore, Nr4a2 is a pioneer transcriptional regulator important for the differentiation and maintenance of meso-diencephalic dopaminergic (mdDA) neurons during development (Perlmann and Wallen-Mackenzie, 2004). It is crucial for expression of a set of genes including Slc6a3 (plasma membrane dopamine transporter, DAT), Slc18a2 (synaptic vesicular monoamine transporter, VMAT), Th (Tyrosine hydroxylase), Foxa1 and Foxa2 (forkhead family TFs) and Drd2 (dopamine receptor 2) that together define the dopaminergic neuronal phenotype (Hong et al., 2014, Jankovic et al., 2005, Saucedo-Cardenas et al., 1998, Smits et al., 2003). An additional key factor involved in the generation and maintenance of mdDA neurons, Lmx1a (Lim- and homeodomain factor 1a) (Andersson et al., 2006, Hong et al., 2014), was also a key feature gene of clusters 3 and 8 (Figure 2-figure supplement 2A and 2D) suggesting that POMC and DA neurons share at least part of their genetic differentiation programs.

Similar to cluster 2, reclustering of the differentially expressed genes from cluster 3 revealed two subclusters (Figure 2-figure supplement 2C). Subcluster 3-1 constituted 72% of the main cluster 3 and was characterized by Pomclow neurons with strong Nr4a2 expression at all developmental ages. Feature genes for subcluster 3-1 also included Lmx1a, Slc6a3, Slc18a2, Foxa2 and Th, all feature genes for developmental subclusters E13.5-10 and E15.5-11 derived from cluster 3 indicating that a fraction of cluster 3 neurons were dopaminergic and existed transiently during a three-day developmental window (Figure 1-Source Data 2, Figure 2-Source Data 1). In contrast, subcluster 3-2 neurons were Pomchigh together with characteristic expression of the known Pomc transcriptional activator genes and were present only at ages P5 and P12. The dissociation of high Pomc expression with low Nr4a2 expression in subcluster 3-2 suggests that the latter is not necessary for hypothalamic Pomc expression, unlike its role in pituitary corticotrophs (Murphy and Conneely, 1997).
Cluster 8. Pomc(low)/Pitx2 is more closely related to clusters 2. Pomc(med)/Ebf1 and 3. Pomc(med)/Nr4a2 than to any of the others (Figure2-figure supplement 2D). In addition to Pitx2, major feature genes were Barhl1, Foxa1, Foxp2, Lmx1a/b, and Tac1 (Figure 1-Source Data 2). Intriguingly, virtually all of the top cluster 8 defining genes (Figure 1-Source Data 2) are identical to those that characterize both the mesencephalic dopamine neurons and glutamatergic, nondopaminergic, subthalamic nucleus neurons (Kee et al., 2017). Dual RNAscope \textit{in situ} hybridization for Pitx2 and Pomc showed limited overlap at E12.5 (Figure2-figure supplement 2E). Cluster 8 is the only cluster with the neuropeptide Cck as a feature gene at developmental ages P5 and P12 (Figure 1- Source Data1 and Figure 2 – Source Data 1).

Cluster 4. Pomc(low)/Otp cells uniquely expressed Otp at all developmental ages (Figure 3A). Pomc expression was moderate at E11.5 and then dropped to consistently lower levels through age P12 despite continued expression of Isl1, Nkx2-1 and Tbx3. Interestingly, expression of the other transcriptional modulator important for Pomc expression, Prdm12, was detected only at E11.5. Other characteristic features of cluster 4 were increasing gradients of Agrp, Npy and Calcr expression over the course of development (Figure 3A). Minimal co-expression of Pomc and Npy was confirmed by FISH at age E15.5 (Figure 3B). Sst was highly expressed in this cluster at ages E13.5, P5 and P12 with a temporary drop off at E15.5 and E17.5. Altogether, these patterns of gene expression indicate that a subpopulation of POMC neurons expressing Otp further differentiates into AGRP/NPY neurons as suggested previously by studies based on transgenic lineage tracing (Padilla et al., 2010). Most of the top enriched genes of this cluster are expressed in the middle and end portions of pseudotime prediction highlighting functions such as regulation of inhibitory synapses, ribosomal biogenesis, and synaptic vesicle cytoskeletal transport (Figure 3C). A map of gene expression in individual cells within the cluster 4 UMAP plot demonstrated that Npy was expressed in virtually all Agrp neurons, but few Sst neurons. Sst and Agrp neurons were essentially separate cell populations (Figure 3D). The GABAergic marker Slc32a1 encoding the vesicular inhibitory amino acid
transporter was expressed at the second highest level in cluster 4 relative to all other clusters (Figure 1-Source Data 1), consistent with the GABAergic phenotype of mature AGRP/NPY neurons (Figure 3-figure supplement 1).

Cluster 5. Pomc\(^{low}\)/Tac2 represents a distinct neuronal population from cluster 1 in its patterns of TFs associated with the development of mature POMC neurons and its low level of Pomc transcripts (Figure 3E). In particular, \textit{Isl1} was highly expressed only at E11.5 and \textit{Prdm12} at E11.5 and E13.5 in cluster 5. Starting from E15.5 through P12 there was a gradual onset of expression for a set of genes including \textit{Tac2}, \textit{Ar}, \textit{Esr1}, \textit{Tacr3}, \textit{Prlr}, \textit{Pdyn}, and \textit{Kiss1/Gm28040} isoforms (Figure 3E). Confirmations of co-expression for Pomc with either Tac2, Tacr3 and Sox14 or TDTOMATO with ESR1 at several embryonic ages are shown in Figure 3F. Interestingly, Sox14 has been reported to be necessary for expression of Kiss1 (Huisman et al., 2019). Most of the top enriched genes for this cluster are inferred to be expressed at the middle to end portions of the pseudotime prediction, and their functions are related to reproduction, synapse assembly/organization, pre/post synaptic specialization, and neuron migration (Figure 3G). Taken together, this ensemble of genes is characteristic of adult Arc KNDY neurons that play an essential role in the control of reproductive physiology. A previous publication based on transgene lineage tracing also concluded that a significant subpopulation of KNDY neurons is derived from POMC progenitor cells (Sanz et al., 2015).

A prominent and unique characteristic of cluster 6. Pomc\(^{low}/\)Dlx5 neurons was the expression of members of the Dlx family of homeobox TFs (Figure 3-figure supplement 2A and 2B). The six family members are usually expressed in 3 linked pairs of isoforms: 1 and 2, 3 and 4 or 5 and 6. Cluster 6 was enriched in \textit{Dlx1}/2, and \textit{Dlx5}/6 together with \textit{Dlxos1}. The \textit{Dlx1}/2 pair is known to activate expression of \textit{Ghrh} in the mouse Arc (Lee et al., 2018). However, there were no transcripts for \textit{Ghrh} expressed in cluster 6 or any of the other Pomc neuronal clusters suggesting that \textit{Dlx1}/2 are not sufficient to induce \textit{Ghrh} expression. Moreover, it has been
recently shown that *Dlx1/2* binding to *Otp* regulatory elements inhibits OTP production, subsequently reducing downstream *Agrp* expression (Lee et al., 2018). Cluster 6 had the highest expression of the opioid prepronociceptin (*Pnoc*) compared to the other integrated clusters, but low levels of preprodynorphin (*Pdyn*), similar to cluster 5 KNDY neurons.

Cluster 6 had the highest *Gad1*, *Gad2* and *Slc32a1* (*Vgat*, vesicular inhibitory amino acid transporter) expression density of all clusters with virtually no *Slc17a6* (*Vglut2*, vesicular glutamate transporter 2) expression, suggesting that these differentiating neurons were exclusively GABAergic. A comparison of GABAergic and glutamatergic markers among the eight neuronal clusters is shown in Figure3-figure supplement 1. Cluster 4 neurons were also uniformly GABAergic. Cluster 1 neurons contained a mixture of glutamatergic and GABAergic markers with the exception of undetectable *Slc32a1*. However, they did express low levels of *Slc18a2* (*Vmat2*, vesicular monoamine transporter 2), which possibly functions as an alternative vesicular GABA transporter in some dopamine neurons (German et al., 2015). This combination of mixed glutamatergic and GABAergic features in cluster 1 is characteristic of postnatal POMC neurons (Wittmann et al., 2013, Jones et al., 2019) and was also present to a limited extent in cluster 2. The remaining neuronal clusters 3, 5, 7 and 8 were all uniformly glutamatergic.

Cluster 7. *Pomc*^{low}/P*rdm13* contained the smallest number of cells among the eight neuronal clusters, and the cells were primarily limited to developmental ages E13.5 to E17.5 (Figure 1B). Feature genes included *Prdm13*, *Nr5a1*, *Adcypap1*, *Cnr1*, *Fam19a1*, *Rbp1* and *Pdyn* (Figure 3 – figure supplement 2C). *Prdm13* was reported recently (Chen et al., 2020) to be highly expressed in E15.5 POMC cells.

We further analyzed all of the neurons and non-neuronal cells by reclustering them based on their individual developmental ages (Figure 4) rather than for their gene expression profiles integrated across all ages. Average gene expression levels for each of these
developmental subclusters are listed in Figure 4-Source Data 1 and the feature genes defining
the developmental subclusters are listed in Figure 4-Source Data 2. Based on these data, it was
then possible to trace the temporal continuity between developmental subclusters from age
E11.5 to P12 relative to the original integrated cell cluster identities (Figure4 - figure supplement
1). These data are important because they connected the dynamic nature of gene expression
profiles at each embryonic stage leading to the eventual transcriptomes present in the postnatal
time points.

Comparison of transcriptional profiles for neuropeptides, neuropeptide processing
enzymes, neuroendocrine secretory proteins and GPCRs in the eight neuronal POMC
clusters at each developmental age

We identified 19 unique neuropeptide prohormone genes that were clearly differentially
expressed features in at least one of the neuronal clusters at one or more developmental ages
(Figure4 - figure supplement 2, Figure 2-Source Data 1). In addition to the neuropeptide genes
already mentioned as characteristic features of certain clusters, additional neuropeptides were
featured in other clusters primarily at postnatal ages P5 and P12. Notable examples are Gal,
Tac1, Adcyap1, Cartpt and Pthlh. Unlike the mosaic of neuropeptide gene expression profiles
across clusters and developmental ages, the neuroendocrine secretory proteins, characteristic
of dense core granules, were expressed ubiquitously in all eight neuronal clusters with similar
gradients across all developmental ages (Figure4 - figure supplement 2). These included
members of the chromogranin (Chga and Chgb) and secretogranin (Scg2, Scg3 and Scg5)
families. Among the prohormone processing enzymes, Pcsk1 was prominently expressed only
at P5 and P12 in most neuronal clusters while Pcsk2 was expressed at both embryonic and
postnatal ages in the same clusters as Pcsk1. Pam was expressed in the same
cluster/developmental age pattern as Pcsk1. Only Cpe was expressed in virtually all neurons at
all developmental ages.
Split plots of GPCR gene expression revealed a wide range of cluster- and age-specific patterns (Figure 4 - figure supplement 3). Cnr1 (Cannabinoid receptor 1) was an important feature primarily of clusters 7 and the two interrelated clusters 3 and 8. The two metabotropic GABA receptors Gabbr1 and Gabbr2 were strongly expressed in all eight neuronal clusters but differed in their developmental gradients. Gabbr1 was expressed at all developmental ages while Gabbr2 transcripts were largely present only in more mature neurons at postnatal ages P5 and P12. The opioid receptor Oprl1 that is selectively activated by nociception/orphanin FQ (Toll et al., 2016) stood out for its consistently strong expression in all eight neuronal clusters, particularly at postnatal days P5 and P12.

The prokineticin receptor 1 (Prokr1) was selectively expressed together with the GPCR accessory protein gene Mrap2 in cluster 1 Pomc(high)/Prdm12 neurons. Although MRAP2 was initially identified as an activating modulator of melanocortin receptor signaling, consequently reducing food intake, it was subsequently shown to be promiscuous in its interaction with additional GPCRs (Srisai et al., 2017). Unlike its action on MC4R signaling, MRAP2 inhibits PROKR1 signaling to promote food intake in mice independently of its interaction with MC4R (Chaly et al., 2016). Therefore, the co-expression of Prokr1 and Mrap2 in anorexigenic POMC neurons suggests an additional mechanism for PROKR1’s regulation of energy homeostasis by modulating the release of melanocortins from POMC neurons. Finally, the high expression of Npy2r (neuropeptide Y receptor 2) in both clusters 1 and 4 matches well with its expression in adult anorexigenic POMC neurons and orexigenic AGRP/NPY neurons, respectively.

TRAP-seq analysis of Pomc-expressing cells at P12 and P60

To define the important genetic programs that direct the transition from early postnatal to adulthood and to compare the differences of the transcriptional programs that guide embryonic vs. postnatal / adult development, we performed Translating Ribosome Affinity Purification...
TRAP-seq using compound Pomc-CreERT2; Rosa26-eGFPL10a transgenic mice where POMC neurons are labeled with a eGFPL10a tag after tamoxifen administration at specific developmental stages. Colocalization of POMC and GFP immunoreactivity confirms the expression of eGFPL10a in Arc POMC neurons upon tamoxifen injection (Figure 5A). Anti-GFP-conjugated beads were used to pull-down actively translating RNAs bound to the eGFPL10a ribosomes from hypothalamic extracts. Both the pull-down mRNA samples and the resultant supernatant mRNA samples were subjected to RNA sequencing. Principal component analysis (PCA) shows distinct separation of pull-down and supernatant samples at both ages P12 and P60 from three independent experiments, suggesting good quality of these samples and the intrinsic differences between pull-down and supernatant samples (Figure 5B). Both Pomc and GFP were highly expressed in TRAP pull-down samples relative to the supernatants (Figure 5C), further validating the specificity of the TRAP-seq method. Gene enrichment analysis identified 1143 and 1047 highly enriched genes (P<0.05) from Pomc- eGFPL10a P12 and P60 TRAP-seq pull-downs, respectively (Figure 5D, Figure 5-Source Data 1 and Figure 5-Source Data 2), from which 653 genes expressed in both datasets (Figure 5E). We hypothesize that the commonly expressed genes may be associated with the maintenance of POMC functional identity, whereas the uniquely expressed genes at P12 or P60 may be related to distinct age-dependent biological phenomena. To test this hypothesis, we performed gene ontology analysis on the 653 co-expressed genes, 394 P60 specifically expressed genes and 490 P12 specifically expressed genes. The results demonstrate that the commonly expressed genes are associated with the establishment and maintenance of neuron structure and basic neuronal functions. The top 3 functional annotations include the organization of synapses, regulation of neuron differentiation and cytoskeleton-dependent intracellular transport. The ontology annotations on the uniquely expressed genes from P12 and P60 are dramatically different from each other. The functions of P12 uniquely enriched genes emphasize basic cellular metabolism, cellular modeling and biochemical changes, whereas, the P60 enriched genes are related to the
maturation of POMC neurons such as neurotransmitter development and POMC specific
function establishment including the responses to nutrient, and the construction of feeding
behavioral circuits (Figure 5F). We next compared the TRAP-seq commonly expressed genes
to our developmental single cell RNA-seq data to examine their expression levels in each
cluster and each age. Approximately one third (241) of the genes shown in the heatmaps on the
left are abundantly expressing in the single cell RNA-seq dataset across all the clusters.
Notably, compared to the four embryonic stages, a constantly higher transcript abundance was
observed at both P5 and P12 ages (grey outlined boxes in Figure 5G), indicating great genetic
similarities between P5 and P12. Intriguingly, the patterns of expression levels are very similar
in both the P12 and P60 TRAP-seq datasets (Figure 5G, right heatmaps). To gain a better
visualization of the distribution of TRAP-seq common genes expression at a single cell level, we
grouped the 241 genes as one module, calculated module scores based on the normalized
counts and projected the scores to a UMAP plot of the eight neuronal clusters (Figure 5H). Most
cells from cluster 1 (Pomc(high)/Prdm12), cluster 5 (Pomc(low)/Tac2), cluster 3 (Pomc(med)/Nr4a2)
and a subcluster of cluster 2 (Pomc(med)/Ebf1) present a higher module score (high gene
expression levels). Assessment together with Figure 6B confirms that most of the high scoring
cells are derived from the two postnatal stages (P5 and P12).

*Developmental relationships of gene expression patterns in the eight neuronal POMC
clusters at four embryonic ages*

To investigate the gene expression trajectories of developing POMC neurons, we performed an
RNA velocity analysis of cells from the 8 neuronal clusters focusing on the four embryonic
stages. This RNA velocity analysis revealed a major origin of POMC neurons captured by the
Pomc(high)/Prdm12 cluster and a minor origin depicted by the Pomc(med)/Ebf1 cluster (Figure 6A
and 6B), which is consistent with the early appearance of these two clusters at E11.5 (Figure 6-
Further investigation of cells from E13.5, E15.5 and E17.5 also suggest a dual origin from \(Pomc^{(high)}/Prdm12 \) or \(Pomc^{(med)}/Ebf1 \) clusters (Figure 6-figure supplement 1).

To further validate the hypothesis of a dual origins of POMC neurons and to better visualize cell trajectories in three dimensional Euclidian space, we constructed diffusion maps of all neurons from the four embryonic stages (Figure 6C). The image depicts a triangular beveled star polygon with rays 1 and 2 derived primarily from distinct groups of neurons at ages E11.5 and E13.5, a center vertex containing individual neurons from the intermediate ages E13.5 and E15.5 and a third ray with neurons from ages E15.5 and E17.5. The same data are alternatively color-coded for each neuron’s cluster identity (Figure 6D) showing that ray 1 is primarily derived from cluster 2, ray 2 from cluster 1, the center vertex from a convergence of all clusters 1-8 and ray 3 from clusters 1, 2, 4, 5 and 6. Compared to Ray 2, cells in Ray 1 are not continuously ordered, but instead show an abrupt transition at the junction of cells from E11.5 and E13.5.

We then overlaid the geometric location of each neuron with the expression levels of selected feature genes from each of the eight clusters (Figure 6E). Consistent with the diffusion maps analyses, the more granular data for individual genes and neurons illustrates the essentially identical patterns of high \(Pomc \) expression with the two originally discovered cognate transactivating factors \(Isl1 \) and \(Nkx2-1 \) across embryonic development (Rays 2 and 3). However, \(Isl1 \) was also expressed in numerous \(Pomc^{(low)} \) neurons at E11.5 and E13.5 (Ray 1). \(Prdm12 \) and \(Tbx3 \) exhibited complementary temporal patterns of high expression at early (Ray 2) versus late (Ray 3) embryonic ages, respectively. The combined developmental and geometric patterns of \(Six3 \), \(Six6 \) and \(Sox14 \) expression were all very similar to both \(Pomc \) and \(Nkx2-1 \), suggesting that all four of these TF genes might be necessary to define the cell fate of a subpopulation of hypothalamic neuronal progenitors into mature differentiated POMC neurons.
In contrast to those genes with expression patterns that defined the continuum of neuronal identity from Ray 2 to Ray 3, another set of genes including Ebf1, Pou4f1 and Nr4a2 was similarly highly expressed only at the two earliest embryonic ages in neurons constituting Ray 1. The expression of Pitx2, which characterizes cluster 8 and a portion of cluster 3, was high in Ray 1 as it merges into the center vertex and was mostly derived from age E13.5. Finally, the temporal and geometric patterns of high expression levels for Otp, Prdm13, Tac2 and Dlx5 were distinct from each other and the aforementioned genes, consistent with their ontogeny into the distinct differentiated cell fates of cluster 4. AGRP/NPY/GABA, cluster 5. KNDY and cluster 6. GABA/PNOC neurons, respectively.

Discussion

In this study, we tracked the genetic programs that give rise to Pomc-expressing neurons in the developing hypothalamus and followed their progression into terminally differentiated POMC neurons and alternative phenotypic destinies. To this end, we performed a single-cell RNA-seq study specifically of Pomc-expressing neurons present in developing mouse hypothalami at four embryonic time points (E11.5, E13.5, E15.5, E17.5) and two early postnatal days (P5 and P12). We also performed a complementary TRAP-seq study on affinity purified translating RNAs derived from hypothalamic POMC cells obtained at ages P12 and P60. These developmental stages were selected based on the ontogeny of Pomc expression in the presumptive hypothalamus (Japon et al., 1994), peak of neurogenesis of POMC neurons (Nasif et al., 2015, Orquera et al., 2019), subsequent developmental maturation (Padilla et al., 2010, Sanz et al., 2015) and terminal differentiation (Quarta et al., 2019).

Our study revealed the existence of a major group of POMC neurons (Cluster 1. Pomc(high)/Prdm12) that showed by far the highest levels of Pomc UMIs relative to all other neuronal clusters at all ages. We believe that this cluster constitutes the canonical POMC
neurons that further mature and integrate into functional circuits in the postnatal hypothalamus.

Cluster 1 is featured by a unique combinatorial set of TFs that includes \textit{IsI1}, \textit{Nkx2-1} and \textit{Prdm12}. In the last few years, our laboratories demonstrated that these three TFs are present in neurons that start expressing \textit{Pomc} in the developing arcuate nucleus at E10.5, and their expression continues at later developmental ages and adulthood in hypothalamic POMC neurons. Indeed, we showed that \textit{ISL1} (Nasif et al., 2015), \textit{Nkx2-1} (Orquera et al., 2019) and \textit{PRDM12} (Hael et al., 2020) are absolutely necessary to specify the identity of POMC neurons. Moreover, we also demonstrated previously that adult mice lacking any of these three TFs exclusively from POMC cells display greatly reduced levels of hypothalamic \textit{Pomc} mRNA together with increased adiposity and body weight. However, our results also indicated that the sole presence of \textit{ISL1}, \textit{Nkx2-1} and \textit{PRDM12} at E10.5-E11.5 is insufficient to determine the early identity of hypothalamic POMC neurons, suggesting that the combinatorial set of TFs necessary for neuronal-specific \textit{Pomc} expression has additional early components, yet to be discovered. In this regard, our scRNA-seq study revealed several novel candidates in cluster 1 cells including \textit{Six3}, \textit{Six6}, \textit{Sox1/2/3}, \textit{Sox14} and other TFs (Figure 2). Future molecular and functional genetic studies will be needed to assess their potential contribution to Arc \textit{Pomc} expression and the functioning of POMC neurons.

\textit{Six3} and \textit{Six6} are two evolutionarily related TF genes known to play critical roles in the development of the eyes, forebrain and pituitary (Liu and Cvekl, 2017, Liu et al., 2010, Suh et al., 2010). The expression patterns of \textit{Six3} and \textit{Six6} highly overlap during early embryogenesis but segregate into different territories during late embryonic development, indicating possible distinct postnatal functions (Geng et al., 2008). Indeed, \textit{Six3} knockout mice die at birth whereas mice lacking \textit{Six6} exhibit decreased numbers of GNRH neurons and impaired fertility (Larder et al., 2011). Although \textit{Six3} and \textit{Six6} are abundantly expressed in Arc POMC neurons across all examined developmental stages (Figure. 2), their participation in the control of \textit{Pomc} expression and the patterning and function of POMC neurons requires further investigation. Regarding \textit{Sox...
genes, a family of TFs known to regulate cell fate by transactivating cell-specific genes, \textit{in silico} analysis of conserved SOX protein binding motifs suggest the potential binding of SOX proteins including SOX1, SOX2, SOX3, and SOX14 to \textit{Pomc} neuronal enhancers nPE1 and nPE2 (Chen et al., 2020). All four of these Sox genes were highly enriched in \textit{Pomc}[high]/Prdm12 cluster 1 (Figure 2 and Figure 1-Source Data 2) as well as in \textit{Pomc}[low]/Tac2 cluster 5 and \textit{Pomc}[low]/Prdm13 cluster 7. Furthermore, mice lacking Sox14 exhibit a great reduction in KNDY neurons (Huisman et al., 2019).

A particular feature gene present in cluster 1 was \textit{Tbx3}, a T-box TF that has been recently reported to play a key role in Arc \textit{Pomc} expression (Quarta et al., 2019). Unlike \textit{Istk}, \textit{Nkk2.1} and \textit{Prdm12}, which are all strictly required at the onset of \textit{Pomc} expression (E10.5), \textit{Tbx3} expression commences several days later (E15.5) in the Arc and, therefore, apparently does not participate in the early specification of POMC neurons. However, \textit{Tbx3} plays an important role in the functional maturation of these neurons as a transcriptional booster of arcuate \textit{Pomc} expression. It was recently demonstrated in mice specifically lacking \textit{Tbx3} from POMC neurons that \textit{Pomc} expression was diminished leading to hyperphagia and obesity (Quarta et al., 2019).

The TRAP-seq results add another layer to our understanding of the genetic machinery that leads to mature functional POMC neurons. Genes that are uniquely enriched at P12 are associated with the basic cellular biology process and cell metabolism whereas genes specifically expressed at P60 are involved in the establishment of POMC neuronal functions. The co-expressed genes from TRAP-seq are highly expressed at P5 and P12 in the single cell sequencing datasets, suggesting that the genetic programs that dominate embryonic POMC neuronal development are substantially different from the programs that guide postnatal POMC neuronal differentiation. Although only one week apart, the cells at P5 share more genetic similarities to the cells at P12 rather than the cells at E17.5.
An unanticipated finding of our study is the discovery of an early population of Arc Pomc-expressing neurons characterized by the expression of the TF Ebf1 and Pou4f1, in the absence of Prdm12 transcripts. The expression profile of cluster 2.Pomc$^{\text{med}}$/Ebf1 differs from cluster 1.Pomc$^{\text{high}}$/Prdm12 most particularly at the earliest developmental ages E11.5 to E15.5 and may both represent alternative genetic routes leading to mature arcuate neurons. The early expression of Ebf1 suggests that this TF may regulate the migration of differentiating neurons out of the ventricular zone to the mantle, as has been reported in the developing striatum (Garel et al., 1999). Further studies are needed to understand the functional significance of the non-canonical population of Pomc-expressing neurons captured by cluster 2 cells.

Another main finding of our study is the identification of multiple subpopulations of Pomc-expressing neurons that originate in the developing arcuate nucleus. In addition to the previously characterized fertility-regulating KNDY neurons (Pomc$^{\text{low}}$/Tac2) (Sanz et al., 2015) and orexigenic AGRP/NPY neurons (Pomc$^{\text{low}}$/Otp) (Padilla et al., 2010), our data indicated that, as early as E11.5, Pomc-expressing neurons may also give rise to four other less characterized neuronal populations noted as Pomc$^{\text{med}}$/Nr4a2, Pomc$^{\text{low}}$/Pitx2, Pomc$^{\text{low}}$/Dlx5 and Pomc$^{\text{low}}$/Prdm13. Moreover, subclustering cells from E11.5 revealed a distinct cell population featured by Otp expression (E11.5-9 cluster in Figure 4), suggesting that the presence of Otp transcripts at E11.5 may already be dictating the differentiation pathway of this neuronal cluster towards an AGRP phenotype, a hypothesis that requires further investigation. In addition, RNA-velocity developmental trajectory analysis (Figure 6A and Figure 6-Figure Supplement 1B) suggested that the early cells in Pomc$^{\text{high}}$/Prdm12 cluster project to Pomc$^{\text{low}}$/Otp cluster.

Pomc$^{\text{med}}$/Nr4a2 and Pomc$^{\text{low}}$/Pitx2 are related clusters sharing 20% of their top 150 feature genes being one of the most salient differences the presence of neuropeptide Cck transcripts only in the Pomc$^{\text{low}}$/Pitx2 cluster. Comparing our dataset with a previous one obtained using FACS from adult hypothalami of POMC-EGFP mice (Lam et al., 2017) in which
Nr4a2 showed to be expressed in 18.5% of cells in cluster 4, it is likely that embryonic
Pomc$^{\text{med}}$/Nr4a2 cells captured by our study keep their identity through adulthood. Similarly,
signature genes for the Pomc$^{\text{low}}$/Dlx5 cluster including Dlx1, Dlx2, Dlx5, and Dlx6 were also
found to be highly enriched and specific for cluster 1 in Lam et al.’s study, suggesting that the
Pomc$^{\text{low}}$/Dlx5 cluster detected in our study becomes a subset of adult POMC neurons. Finally,
our identification of the Pomc$^{\text{low}}$/Prdm13 cluster matches with a recent study showing that
Prdm13 is highly enriched in FACS cells from E15.5 POMC-EGFP embryos analyzed by whole
transcriptome RNA sequencing (Chen et al., 2020).

It is worth mentioning that despite some extent of similarities between embryonic and
adult POMC cells, the majority of embryonic and early postnatal cells profiled in our study are
distantly related to mature adult POMC neurons, indicating that terminal differentiation of POMC
neurons is a long lasting maturation process that proceeds along multiple life stages. For example, most adult POMC cells express proprotein convertase PC1/3 (Pcsk1) and leptin
receptor (Lepr), whereas only 22% and 2.7% of cells from our datasets express the two genes,
respectively, suggesting critical functional changes in the transcriptome of POMC neurons
during postnatal maturation after early postnatal ages.

Due to the limitations of the single cell RNA-sequencing techniques, some interesting
questions cannot be answered from our study at the functional level. For example, are all
transcription factors present in cluster 1. Pomc$^{\text{high}}$/Prdm12 at E11.5 critical for dictating the
identity of the canonical POMC neurons? what TFs are critical for maintaining POMC neuron
identity throughout lifetime? Is Otp the only critical gene that determines the transition of Pomc-
expressing cells into AGRP / NPY neurons? Which are the TFs that give rise to the lineage of
KNDY neurons during development? We believe that our study provides a valuable resource to
tackle these and many other questions aimed at a better understanding of the regulation and
functioning of POMC and other related neurons in the mammalian arcuate nucleus of the hypothalamus.

Concluding remarks

In summary, this study is the first to comprehensively characterize the transcriptomes of Arc hypothalamic POMC cells during embryonic and early postnatal development. This dataset extends our understanding of the diversification of early POMC cells and provides a valuable resource for further elucidating the regulatory mechanism for Pomc expression and neuronal maturation. The identification of new marker genes in each subpopulation from single cell RNA-seq and uniquely expressed genes at P12 or P60 from the TRAP-seq study will potentially lead to new directions for future functional studies of POMC neurons.

Acknowledgements

We thank Dr. Graham L. Jones, Dr. Zoe Thompson and Charles Keane for their assistance in animal dissection, tissue sectioning and data analysis, Dr. Joshua Welch and Tongyu Liu for advice on data analysis, the Flow Cytometry Core, the Advanced Genomics Core, the Bioinformatics Core and the Microscopy, Imaging and Cellular Physiology Core (supported by NIH Grant: P30DK020572) and the University of Michigan Center for Gastrointestinal Research (supported by NIH grant: P30DK034933) at University of Michigan for data collection.

Funding

This study was supported by NIH grant DK068400 (M.J.L. and M.R.)
Competing Interests

The authors declare no competing interests.

Accession Codes

All raw data have been deposited in the Gene Expression Omnibus under accession numbers GSE154153 and GSE181539. GSE154153 is public available. The link for GSE181539 is https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE181539. Please log in with the reviewer token gbcvaiayhzuxpur. No custom code was used in this study. The detailed analytical methods were described in the methods.

Materials and Methods

<table>
<thead>
<tr>
<th>Key Resources Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent type (species) or resource</td>
</tr>
<tr>
<td>Genetic reagent (M. musculus)</td>
</tr>
<tr>
<td>Genetic reagent (M. musculus)</td>
</tr>
<tr>
<td>Genetic reagent (M. musculus)</td>
</tr>
<tr>
<td>Antibody</td>
</tr>
<tr>
<td>----------------------------------</td>
</tr>
<tr>
<td>Anti-Nr5a1(Rabbit Polyclonal)</td>
</tr>
<tr>
<td>Anti-td-Tomato [16D7] (Rat Monoclonal)</td>
</tr>
<tr>
<td>Anti-Pomc (Rabbit Polyclonal)</td>
</tr>
<tr>
<td>Anti-Rabbit Alexa 488 (Goat polyclonal)</td>
</tr>
<tr>
<td>Anti-Esr1 (Rabbit Polyclonal)</td>
</tr>
<tr>
<td>Anti-GFP (Chicken polyclonal)</td>
</tr>
<tr>
<td>Papain Dissociation System</td>
</tr>
<tr>
<td>DNase</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>Seurat 3.1.5</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Sequence-based reagent</td>
</tr>
<tr>
<td>Category</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td>Sequence-based reagent</td>
</tr>
<tr>
<td>Chemical compound, drug</td>
</tr>
<tr>
<td>Chemical compound, drug</td>
</tr>
<tr>
<td>Chemical compound, drug</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td>Other</td>
</tr>
</tbody>
</table>
All procedures were performed in accordance with the Institutional Animal Care and Use Committee (IACUC) at the University of Michigan and followed the Public Health Service guidelines for the humane care and use of experimental animals. Mice were housed in ventilated cages under controlled temperature and photoperiod (12-h light/12-h dark cycle, lights on from 6:00 AM to 6:00 PM), with free access to tap water and laboratory chow (5L0D, LabDiet). Breeding mice were fed with the breeder chow diet (5008, LabDiet). Transgenic mice expressing the fluorescent protein Tdimer-Discosoma red (TdDsRed) in POMC neurons were generated previously17. The vast majority of Pomc-TdDsRed cells were validated as authentic POMC neurons based on co-localization of ACTH immunostaining with the TdDsRed fluorophore (Hentges et al., 2009) Pomc-CreERT2 and RosaeGFP-L10a (Stock no. 024750, The Jackson Laboratory) mice were generated as previously described (Liu et al., 2014). To induce POMC neurons specific expression of eGFP-L10a at P12 or P60, tamoxifen (50 mg/kg) was injected intraperitoneally for five constitutive days from P6 to P10 or P50 to P54.

Generation of single cell (sc) suspension for scRNAseq

Adult male Pomc-TdDsRed/+ mice were bred with female Pomc-TdDsRed/+ mice and the day of copulation plug detection was counted as embryonic day 0.5 (E0.5). Embryonic hypothalami were dissected at E11.5, E13.5, E15.5, and E17.5. Postnatal hypothalami were isolated from pups at postnatal day 5 (P5) and P12. In each dissection, hypothalami from at least 6 pups were pooled together to acquire enough cells for fluorescence-activated cell sorting (FACS). Pooled tissue samples were digested in papain solution supplemented with DNAse for 20 mins (E11.5 and E13.5), 30 mins (E15.5), 40 mins (E17.5) or 1hr (P5, and P12) with gentle agitation based on a published protocol14. The isolated cells were stained with DAPI as an indicator for cell viability and sorted by FACS for the transgenic red fluorophore. The collected cells were counted and subjected to scRNA-seq library preparation and sequencing (10x Genomics).
Single Cell RNA Sequencing Data processing

A total of 37,053 single cells (E11.5: 5,329, E13.5: 7,051, E15.5: 5,148, E17.5: 2,488, P5: 7,551 and P12: 9,486) from six different developmental stages were processed using the 10X Genomics Chromium system. The libraries were sequenced on Illumina HiSeq 4000 and NovaSeq platforms. We obtained a total of over 2.6 billion reads with an average of 70,7896 reads per cell. Over 85% of reads mapped confidently to the mouse genome across all six developmental stages. Raw reads were processed with Cell Ranger (version 2.2 and version 3.0). Seurat package (version 3.1.5) (Butler et al., 2018) was used for downstream analysis. Since the number of genes and UMI counts varied across developmental stage we applied different criteria at each stage to filter out possible doublets and low quality cells. Specifically, at E11.5, we removed outlier cells that had UMI counts < 5,000 or >60,000 and gene counts <1,000 or >8,000 (determined by the visualization of UMI counts and gene count distributions). At E13.5, we removed outlier cells that had UMI counts <2,500 or >30,000 and gene counts >1,500. At E15.5, we removed outlier cells that had UMI counts >40,000 and gene counts <1,000 or 6,000. At E17.5, we removed outlier cells that had UMI counts >25,000 and gene counts <1,000 or > 5,000. At P5, we removed outlier cells that had UMI counts <1,500 or >60,000 and gene counts <1,500 or >8,000. At P12, we removed outlier cells that had UMI counts <2,000 or >60,000 and gene counts <1,500 or > 8000. Moreover, cells with high proportions of mitochondrial genes (>10%) or hemoglobin genes (>10%) were filtered out. Finally, we removed all the cells without any Pomc transcript UMI counts. A total of 13,953 cells passed the criteria (E11.5: 1,498, E13.5: 1,796, E15.5: 2,078, E17.5: 1,139, P5: 3,909 and P12: 3,533) for downstream analysis.

The gene expression level for each cell was normalized by the total expression, multiplied by a scaling factor of 10,000 followed by log-transformation (Butler et al., 2018).
top 2,000 most variable genes were selected from each age and 60 integration anchors were used to combine all the datasets together. After scaling and centering the integrated dataset, we performed principal components (PC) analysis on the data matrix and the top 50 PCs were selected based on JackStraw and Elbow plots from Seurat Package19 for data visualization using Uniform Manifold Approximation and Projection (UMAP) technique. We next constructed a Shared Nearest Neighbor (SNN) graph by setting an expected number of neighbors to 50. In order to cluster the cells, a SNN modularity optimization technique within a function FindClusters was used to group cells together with a resolution parameter 0.1. The identity for each cluster was assigned based on the level of \textit{Pomc} transcripts and prior knowledge of marker genes. The similar analysis was applied to define \textit{TdDsRed} cell clusters (Figure1-figure supplement 2 and Figure1-figure supplement 3). In addition to the above criteria applied to remove unwanted cells, we chose cells with at least one \textit{TdDsRed} transcript UMI count and used the top 2,000 highly variable genes for principal components analysis. The top 30 PCs were selected for unsupervised clustering with a resolution of 0.3.

Unsupervised cell clustering from each developmental age (Figure3-figure supplement 3) was conducting using the following PC numbers (E11.5: 25; E13.5:24, E15.5: 26, E17.5: 19, P5: 40, P12: 34) with their corresponding resolutions (E11.5: 0.2; E13.5: 0.6, E15.5: 0.5, E17.5: 0.5, P5: 0.5, P12: 0.5. The UMAP plots, violin plots, feature plots and dot plots were all generated in the Seurat Package. The average expression levels for each gene within each developmental subcluster (Figure 4-Source Data 1) were obtained from Seurat and calculated by the average of $[\exp(\log\text{Normalized counts}) - 1]$. The differentially expressed genes in each identified cluster was identified by the comparison of gene expression levels in a specific cluster to all the other clusters.

Cluster identity comparisons
To compare cluster identities between POMC cells and DSRED cells (Figure 1-figure supplement 2), we normalized the DSRED cells data and acquired the top 2000 most variable genes. We then used the standard datasets integration method from Seurat packages with the top 50 anchors for data integration and top 50 anchors to transfer cell identities from POMC cells to DSRED cells. We also applied this approach to conduct age-pairwise comparisons (Figure 4-figure supplement 1) with default setting from Seurat V3.1.5 package.

Cell lineage construction

For RNA velocity analysis, spliced and unspliced matrices of reads were summarized using velocyto (v.0.17.16) with default parameters (La Manno et al., 2018). Low complexity and repeat regions were downloaded from the UCSC browser (risky table from mm10). scVelo was performed for RNA velocity analysis (v.0.2.2) (Bergen et al., 2020). The cell embedding information was acquired from Seurat analysis. The top 4000 genes, the top 20 principal components and the top 20 neighbors under stochastic mode were used to generate velocity graph.

Cell lineage was constructed using the Destiny (version 2.14.0) package, which implements the formulation of diffusion maps (Angerer et al., 2016). Diffusion maps are a spectral method for non-linear dimension reduction, which is especially suitable for analyzing single-cell gene expression data from different time-courses. We removed VLMC, glial cells and astrocytes (cluster 9, 10 and 11 in Figure 1) and kept only neurons at embryonic stages (E11.5, E13.5, E15.5 and E17.5), resulting in a total of 6,005 cells for this analysis. The log-transformed normalized data from Seurat data slot and the corresponding annotation information were imported to construct an expression matrix. The diffusion maps were constructed under the default setting for the Gaussian kernel width sigma (σ) and 300 nearest neighbors. The first two
Diffusion Components (DCs) were used to visualize the results. The 3D plots were produced using rgl package (version 0.100.50) with the top three DCs.

To perform pseudotime gene expression analysis, cells from cluster 1, cluster 2, cluster 4 and cluster 5 were extracted from the Seurat object respectively. Raw counts were acquired to construct Monocle (v.2.4.0) (Qiu et al., 2017a, Trapnell et al., 2014, Qiu et al., 2017b) datasets. Cells were ordered along the pseudotime by setting E11.5 as the root state. Differentially expressed genes (Log2FoldChange > 0.25 and P<0.05) in each cluster from the Seurat analysis were plotted along the pseudotime using “plot_pseudotime_heatmap” function. Gene ontology analysis (Biological Process) were performed using ClusterProfiler (v.3.18.1) (Yu et al., 2012).

TRAP-seq analysis

Mice (*Pomc-CreERT2; ROSA26*^{GFP-L10a}) were euthanized and decapitated. The brain was removed from the skull and the arcuate nucleus was isolated from 2-mm thick coronal slices using a brain matrix. Tissues were then homogenized and the subsequent tissue lysate was subjected to immunopurification steps according to the previous protocol (Heiman et al., 2014). The ribo-depletion kit (RiboGone, Takara, CA) and SMARTer Stranded total RNA sample prep kit were used to remove excess ribosomal RNA and synthesize cDNA library. Samples were sequenced on a 50-cycle single end run on a HiSeq 4000 (Illumina) according to manufacturer's protocols.

Raw sequencing data was processed at the University of Michigan Bioinformatics core. Briefly, the quality of the raw reads data was checked using FastQC (v.0.11.3) and the filtered reads were aligned to reference genome (UCSC mm10) using TopHat (v.2.0.13) and Bowtie2 (v.2.2.1) with default parameters. The HTSeq/DEseq2 method was used for differential expression analysis with paired-samples and treatment (pull-down vs. supernatant) as the main effects.
Tissue collection and Immunofluorescence staining

Depending on developmental stage, embryos at E10.5 – E17.5 were fixed in 4% paraformaldehyde in phosphate buffer solution (PBS) at 4 °C for a various period of time. Specifically, embryos at E10.5 to E12.5 were fixed for 1h; heads from embryos at E15.5-E16.6 and E17.5 were fixed for 2 h and 4 h respectively. Tissues were stabilized in 10% sucrose/10% gelatin in PBS at 37 °C for 30 min prior to embedding in O.C.T. compound as described previously. Embryonic brains were sectioned sagittally on a cryostat (Leica CM1950) at 20 μm thickness. For dual immunofluorescence, after washing excess O.C.T. compound with PBS, a heat-induced antigen retrieval process was performed using citrate buffer (10 mM anhydrous citric acid and 0.05% Tween-20, pH 6.0) at 80 °C for 30 min followed by two washes in PBS. Sections were then blocked with 3% normal goat serum and 0.1% Triton X-100 for 1 hour and incubated with primary antibodies at room temperature overnight. After PBS washes, sections were incubated with goat secondary antibodies for 2 hours at room temperature. Nuclei were stained with DAPI (1 mg/l) for 10 min and the slides washed five times with PBS before mounting with ProLong™ Gold Antifade Mountant (ThermoFisher). Sections were imaged on a Nikon 90i fluorescence microscope with NIS-Elements software. Information on the sources and dilution of antibodies are listed in Key Resources Table.

In situ hybridization

Fluorescence in situ hybridization (FISH) was performed using RNAscope® Multiplex Fluorescent V2 Assay (Advanced Cell Diagnostics) according to the manufacturer's instructions with slight modifications. Specifically, after washing with PBS, sections were post-fixed with 4% paraformaldehyde for 20 minutes, and dehydrated in a series of ethanol solutions (50%, 70% and 100%). After drying, dehydrated sections were incubated in RNAscope® Hydrogen Peroxide
solution for 10 mins followed by the protease treatment using RNAscope® Protease IV for 20 mins. Sections were then hybridized to target RNA probes for 2 hours in the HybEZ™ II hybridization oven. Hybridized probes were amplified using a cascade of signal amplification solutions (AMP 1-3) followed by standard signal developing protocol as described in the manufacturer's brochure. Detailed information on RNA probes and dilutions are listed in Key Resources Table. Confocal images were obtained using a Nikon Instruments A1 Confocal Laser Microscope with NIS-Elements software.
FIGURE LEGENDS

Figure 1. Single cell sequencing of Pomc^{DsRed} cells from developing mouse hypothalami at E11.5, E13.5, E15.5, E17.5, P5 and P12 reveals eight distinct neuronal clusters and three non-neuronal clusters. (A) Schematic diagram showing the overall experimental procedure. (B) UMAP (Uniform Manifold Approximation and Projection) plot showing the distribution of major cell clusters and their corresponding numbers of cells at each developmental stage. (C) Violin plots showing the expression of three signature genes and Pomc for each cluster. (D) UMAP plots showing the enrichment of feature genes in each cluster. Genes representing each cluster were colored and highlighted to show the cluster-specific enrichment. The color intensity corresponds to the normalized gene expression from Seurat analysis, where gene expression for each cell was normalized by the total expression, multiplied by a scale factor of 10,000, and then log-transformed. VLMC, vascular leptomeningeal cell.
Figure 2. Temporal gene expression patterns of the $Pomc^{(\text{high})}/Prdm12$ cluster and $Pomc^{(\text{med})}/Ebf1$ clusters. (A) and (D) Violin plots showing the expression of signature genes at each developmental stage in the $Pomc^{(\text{high})}/Prdm12$ cluster and $Pomc^{(\text{med})}/Ebf1$ cluster respectively. (B) Fluorescence in situ hybridization showing the co-localization of $Pomc$ (green) and $Six6$ (red), the co-localization of $Pomc$ (green) and $Six3$ (red) at indicated developmental stages. Immunofluorescence showing the co-localization TDTOMATO (red) NR5A1 (green) at the indicated developmental stages. (C) and (F) Heatmaps showing the gene ontology analysis based on the top marker genes in the order of pseudotime in $Pomc^{(\text{high})}/Prdm12$ cluster and $Pomc^{(\text{med})}/Ebf1$ cluster respectively. (E) Fluorescence in situ hybridization showing the co-localization of $Pomc$ (green) and $Ebf1$ (red) at E11.5. (G) Re-clustering cells from the $Pomc^{(\text{med})}/Ebf1$ cluster reveals two sub-clusters denoted as 2-1 $Pomc^{(\text{high})}$ and 2-2 $Pomc^{(\text{low})}$. Violin plots showing the signature gene expression in 2-1 $Pomc^{(\text{high})}$ and 2-2 $Pomc^{(\text{low})}$ clusters. Insets are magnified views of the indicated boxes. Arrows indicate co-expressing neurons in the merged panels. Scale bar: 50 µm. Image orientation: left, posterior(P); right, anterior(A). RP: Rathke’s pouch; Pit: pituitary gland. Arc: arcuate nucleus; VMH: ventromedial hypothalamus; V: ventricular zone; Mes: mesenchyme.
Figure 3. Temporal gene expression patterns of the \(\text{Pomc}^{\text{low}}/\text{Otp} \) cluster and \(\text{Pomc}^{\text{low}}/\text{Tac2} \) cluster. (A) and (E) Violin plots showing the expression of signature genes at each developmental stage in \(\text{Pomc}^{\text{low}}/\text{Otp} \) cluster and \(\text{Pomc}^{\text{low}}/\text{Tac2} \) cluster respectively. (B) Fluorescence \textit{in situ} hybridization showing the co-localization of \(\text{Pomc} \) (green) and \(\text{Npy} \) (red) at E15.5. (C) and (G) Heatmaps showing the gene ontology analysis based on the top marker genes in the order of pseudotime in \(\text{Pomc}^{\text{low}}/\text{Otp} \) cluster and \(\text{Pomc}^{\text{low}}/\text{Tac2} \) cluster respectively. (D) UMAP plots showing cells in the \(\text{Pomc}^{\text{low}}/\text{Otp} \) cluster expressing \(\text{Sst} \), \(\text{Agrp} \), \(\text{Npy} \), \(\text{Sst}/\text{Agrp} \), \(\text{Sst}/\text{Npy} \) or \(\text{Agrp}/\text{Npy} \). Cells expressing \(\text{Sst} \) and cells expressing both \(\text{Agrp}/\text{Npy} \) are from two distinct cell populations. (F) Fluorescence \textit{in situ} hybridization showing the co-localization of \(\text{Pomc} \) (green) and \(\text{Tac2} \) (red), the co-localization of \(\text{Pomc} \) (green) and \(\text{Tacr3} \) (red), and the co-localization of \(\text{Pomc} \) (green) and \(\text{Sox14} \) (red) at the indicated developmental stages. Immunofluorescence showing the co-localization of TDTOMATO (red) and ESR1 (green) at the indicated developmental stages. Insets are magnified views of the indicated boxes. Arrows indicate co-expressing neurons in the merged panels. Scale bar: 50 \(\mu \text{m} \). Image orientation: left, posterior; right, anterior; Pit: pituitary gland, RP: Rathke’s pouch.
Figure 4. UMAP plots showing the distribution of major cell clusters at each developmental stage. (A) E11.5, (B) E13.5, (C) E15.5, (D) E17.5, (E) P5 and (F) P12. The developmental subclusters derived from each primary cluster are colored to corresponding cells in the UMAP plot in Figure 1B.
Figure 5. TRAP-seq showing gene enrichment and gene expression profiles at P12 and P60.

(A) Schematic diagram showing the generation of Pomc-CreERT2; ROSA26eGFP-L10a mice for TRAP-seq experiment. Immunofluorescence validated the co-localization of POMC and eGFP.

(B) Principal Component Analysis showing the separation of the RNA sequencing data from beads pull-down vs. supernatant at P12 (Purple) and P60 (Green) respectively. (C) Heatmap showing both Pomc and eGFP were highly expressed in beads pull-down samples. Rows are the biological replicates of each sample. Sup: Supernatant samples; PD: Pull-Down samples.

Data were presented as scaled counts per million (CPM). (D) Gene enrichment plots showing 1143 genes and 1047 genes were significantly expressed in beads pull-down samples at P12 and P60 respectively (P<0.05). (E) Venn diagram showing the number of genes highly enriched in both P12 (Purple) and P60 (Green) beads pull-down samples. (F) Gene ontology analysis showing the top 15 biological processes that were represented in P12 and P60 co-expressed genes, P12 uniquely expressed genes and P60 uniquely expressed genes. (G) Expression profile of the top enriched genes from both P12 and P60 TRAP-seq datasets across 8 neuronal clusters; grey boxes indicate the higher expression of these genes in the two postnatal stages.

The two heatmaps (right) indicating the top genes expression in P12 and P60 TRAP-seq datasets. (H) UMAP plot showing the distribution of the top enriched genes from both P12 and P60 Trap-seq datasets in 8 neuronal cell clusters. CPM: counts per million; org.: organization; reg.: regulation; pos.: positive; neg.: negative.
Figure 6. RNA velocity and diffusion maps analyses illustrating the developmental trajectories of hypothalamic neuronal clusters. (A) RNA velocity analysis showing the multiple origins of embryonic POMC cells in 8 neuronal clusters according to Seurat analysis cell embedding. (B) RNA velocity analysis showing the multiple origins of POMC cells correspond to the early embryonic stages. (C-D) Diffusion map showing the cell lineages of POMC neurons during embryogenesis. Cells are colored on the basis of their developmental stage (C) or based on their previously defined clusters (D). (E) Diffusion maps showing the expression of selected genes according to previous characterization of the feature genes representing each cluster. The color intensity corresponds to the normalized gene expression from Seurat analysis.
Figure 1-figure supplement 1

Heat map showing the expression of the top 30 marker genes defining each cluster from Figure 1. M: microglia; V: vascular and leptomeningeal cells; A: astrocytes.

Figure 1-figure supplement 2

Analysis of POMC cells with DsRed transcripts reveals 9 distinct cell clusters. (A) UMAP plot showing the distribution of major cell clusters. (B) Violin plots showing signature gene expression in each cell type. Three feature genes were chosen to represent each cell type. (C) UMAP plots showing the enrichment of feature genes in each cluster. Genes representative of each cluster were colored and highlighted to show the cluster-specific enrichment. The color intensity corresponds to the normalized gene expression from Seurat analysis. (D) Identification of similar cell clusters between POMC cells with DsRed transcripts and POMC cell clusters. Red: POMC cell clusters are from Figure 1. Blue: POMC cells with DsRed transcripts from Figure1-figure supplement 2. (E) Venn diagram showing the number of cells expressing Pomc transcripts, DsRed transcripts or both Pomc and DsRed transcripts. Pie chart showing the percentage of POMC cells expressing DsRed transcripts at each developmental stage. (F) Vertical bar-chart showing the percentage of cells with DsRed transcripts projected to corresponding POMC cell clusters. VLMC, vascular and leptomeningeal cell.

Figure 1-figure supplement 3

Overview of cell clusters from POMC cells with DsRed transcripts. (A) UMAP plot showing the distribution of major cell clusters and their corresponding number of cells from each developmental stage. (B) UMAP plots showing the number of cells at each developmental stage. (C) UMAP plots showing the splitting of clusters by developmental stages.

Figure 2-figure supplement 1
Fluorescence *in situ* hybridization showing the co-localization of Pomc (green) and Ebf1 (red) at E13.5 (A) and at E17.5 (B) and the co-localization of Pomc (green) and Pou4f1 (red) at E13.5 (C) and at E17.5 (D) respectively. Scale bar: 50 µm. Image orientation: left, posterior (P); right, anterior (A); Pit: pituitary gland; Mes: mesenchyme.

Figure 2—figure supplement 2

Temporal gene expression patterns of the Pomc(med)/Nr4a2 and Pomc(low)/Pitx2 clusters. (A) Violin plots showing the expression of signature genes in the Pomc(med)/Nr4a2 cluster at each developmental stage. (B) Fluorescence *in situ* hybridization showing the co-localization of Pomc (green) and Nr4a2 (red). (C) Re-clustering cells from the Pomc(med)/Nr4a2 cluster reveals two sub-clusters denoted as 3-1 Pomc(low) and 3-2 Pomc(high) clusters. Violin plot showing the signature gene expression in 3-1 Pomc(low) and 3-2 Pomc(high) clusters. (D) Violin plots showing the expression of signature genes at each developmental stage in the Pomc(low)/Pitx2 cluster. (E) Fluorescence *in situ* hybridization showing the co-localization of Pomc (green) and Pitx2 (red). Scale bar: 50 µm. Insets are magnified views of the indicated boxes. Arrows indicate co-expressing neurons in the merged panels. Scale bar: 50 µm. Image orientation: left, posterior (P); right, anterior (A). RP: rathke’s pouch; Pit: pituitary gland.

Figure 3—figure supplement 1

Distribution of GABAergic and glutamatergic neurons in POMCDsRed cell clusters (A) UMAP plots showing the distribution of cells with Gad1 or Vglut2 gene expression. (B) Violin plots showing expression of the GABAergic or glutamatergic marker genes in each neuronal cluster.

Figure 3—figure supplement 2

Temporal gene expression patterns of the Pomc(low)/Dlx5 and Pomc(low)/Prdm13 clusters. (A) Violin plots showing the expression of signature genes at each developmental stage in the
Pomc\textsuperscript{\text{low}}/Dlx5 cluster. (B) Fluorescence in situ hybridization showing the co-localization of Pomc (green) and Dlx5 (red). (C) Violin plots showing the expression of signature genes at each developmental stage in the Pomc\textsuperscript{\text{low}}/Prdm13 cluster. (D) Fluorescence in situ hybridization showing the co-localization of Pomc (green) and Prdm13 (red). Insets are magnified views of the indicated boxes. Arrows indicate co-expressing neurons in the merged panels. Scale bar: 50 \textmu m. Image orientation: left, posterior; right, anterior; Pit: pituitary gland.

Figure 4-figure supplement 1

POMCDsRed developmental cell subclusters shown in Figure 4 are projected to the original integrated cell clusters from Figure 1. The projections were based on the Seurat analysis and manual comparisons of feature genes in each subcluster (Figure 1-Source Data 2 and Figure 4-Source Data 2). The clusters from individual stages leading to the same final integrated clusters are labeled with the same color. Question marks indicate uncertainties of individual projections.

Figure 4-figure supplement 2

Overview of neuropeptide, secretory granule and processing enzyme gene expression patterns across clusters and developmental ages. The size of dots indicates the percentage of cells expressing the specific transcripts. The color intensity corresponds to the levels of normalized gene expression.

Figure 4-figure supplement 3

Overview of G-protein coupled receptor (GPCR) gene expression patterns across clusters and developmental ages. The size of dots indicates the percentage of cells expressing the specific transcripts. The color intensity corresponds to the levels of normalized gene expression. The list of genes was acquired from https://www.guidetopharmacology.org/targets.jsp and Gene Ontology (GO:0005576).
Figure 6-figure supplement 1

(A) UMAP plots showing the splitting of neuronal clusters by developmental stages. Clusters were dash-dot circled to show the emerging / evolving progress through development. (B) RNA velocity analysis showing the multiple origins of POMC cells are mainly from 1. Pomc(high)/Prdm12 and 2. Pomc(med)/Ebf1 clusters and are mainly from E11.5 and E13.5. (C) RNA velocity analysis on neurons from three late embryonic stages (E13.5, E15.5, and E17.5) showing two origins of POMC cells from 1. Pomc(high)/Prdm12 and 2. Pomc(med)/Ebf1 clusters at E13.5.

Additional Files

Figure 1-Source Data 1

Average gene expression obtained from the Seurat analysis of each of the 11 Pomc clusters integrated across all six developmental stages (corresponding to Figure 1).

Figure 1-Source Data 2

Feature genes that define each of the 11 Pomc clusters (corresponding to Figure 1) integrated across all six developmental stages.

Figure 1-Source Data 3

Average gene expression obtained from the Seurat analysis of each of the 9 DsRed clusters integrated across all six developmental stages (corresponding to Figure1-figure supplement 2).

Figure 1-Source Data 4

Feature genes that define each of the 9 DsRed clusters integrated across all six developmental stages (corresponding to Figure1-figure supplement 3).
Figure 2-Source Data 1

Average gene expression obtained from the Seurat analysis of six developmental stages of each cluster (corresponding to Figures 2, Figure 3 and their linked supplemental figures).

Figure 2-Source Data 2

Average gene expression obtained from the Seurat analysis of the two subclusters 3-1 and 3-2 derived from reclustering of Cluster 3. P_{omc}^{(med)}/N_{r4a2} and the two subclusters 2-1 and 2-2 derived from reclustering of Cluster 2. P_{omc}^{(med)}/E_{bf1} (corresponding to Figure 2G, cluster 2 and Figure 2-figure supplement 1, cluster 3).

Figure 2-Source Data 3

Feature genes that define each of the 2 subclusters 3-1 and 3-2 derived from reclustering of Cluster 3. P_{omc}^{(med)}/N_{r4a2} and the two subclusters 2-1 and 2-2 derived from reclustering of Cluster 2. P_{omc}^{(med)}/E_{bf1} E_{bf1} (corresponding to Figure 2G, cluster 2 and Figure 2-figure supplement 1, cluster 3).

Figure 4-Source Data 1

Average gene expression obtained from the Seurat analysis of each subcluster unique to the six developmental stages (corresponding to Figure 4 and Figure 4-figure supplement 1).

Figure 4-Source Data 2

Feature genes that define each subcluster at each of the six developmental stages (corresponding to Figure 4 and Figure 4-figure supplement 1).

Figure 5-Source Data 1
Differentially expressed genes by RNA TRAP-seq between pull-down vs. supernatant at age P12 (corresponding to Figure 5).

Figure 5-Source Data 2

Differentially expressed genes by RNA TRAP-seq between pull-down vs. supernatant at age P60 (corresponding to Figure 5).

Single neurons: Evidence for a hypothalamic prothalamic processing axis.

1051
1052 LIU, W. & CVEK, A. 2017. Six3 in a small population of progenitors at E8.5 is required for neuroretinal
1053 specification via regulating cell signaling and survival in mice. Dev Biol, 428, 164-175.
1054 LIU, W., LAGUTIN, O., SWINDELL, E., JAMRICH, M. & OLIVER, G. 2010. Neuroretina specification in mouse
1055 embryos requires Six3-mediated suppression of Wnt8b in the anterior neural plate. J Clin Invest,
1056 120, 3568-77.
1057 LOU, X., IKEDA, Y. & PARKER, K. L. 1994. A cell-specific nuclear receptor is essential for adrenal and
1060 32-3.
1061 MIZUSAKI, H., KAWABE, K., MUKAI, T., ARIYOSHI, E., KASAHARA, M., YOSHIOKA, H., SWAIN, A. &
1062 MOROHASHI, K. 2003. Dax-1 (dosage-sensitive sex reversal-adrenal hypoplasia congenita critical
1063 region on the X chromosome, gene 1) gene transcription is regulated by wnt4 in the female
1066 adrenal axis by the nur77/nur77 subfamily of nuclear receptors. Mol Endocrinol, 11, 39-47.
1067 NASIF, S., DE SOUZA, F. S., GONZALEZ, L. E., YAMASHITA, M., ORQUERA, D. P., LOW, M. J. & RUBINSTEIN,
1068 M. 2015. Islet 1 specifies the identity of hypothalamic melanocortin neurons and is critical for
1071 Homeodomain Transcription Factor NX2.1 Is Essential for the Early Specification of
1072 Melanocortin Neuron Identity and Activates POMC Expression in the Developing Hypothalamus. J
1073 Neurosci, 39, 4023-4035.
1074 PADILLA, S. L., CARMODY, J. S. & ZELTSER, L. M. 2010. POMC-expressing progenitors give rise to
1076 PERLMANN, T. & WALLEN-MACKENZIE, A. 2004. Nurr1, an orphan nuclear receptor with essential
1081 embedding resolves complex single-cell trajectories. Nat Methods, 14, 979-982.
1082 QUARTA, C., FISETTE, A., XU, Y., COLLDEN, G., LEGUTKO, B., TSENG, Y. T., REIM, A., WIERER, M., DE
1083 ROSA, M. C., KLAUS, V., RAUSCH, R., THAKER, V. V., GRAF, E., STROM, T. M., POHER, A. L.,
1084 GRUBER, T., LE THUC, O., CEIBRIAN-SERRANO, A., KABRA, D., BELLOCCCHIO, L., WOODS, S. C.,
1085 PFLUGFELDER, G. O., NOGUEIRAS, R., ZELTSER, L., GRUNWALD KADOW, I. C., MOON, A., GARCIA-
1087 hypothalamic melanocortin neurons depends on Tbx3. Nat Metab, 1, 222-235.
1089 opioid stress-induced analgesia in mice lacking beta-endorphin by site-directed mutagenesis.
1090 Proc Natl Acad Sci U S A, 93, 3995-4000.
1091 SANZ, E., QUINTANA, A., DEEM, J. D., STEINER, R. A., PALMITER, R. D. & MCKNIGHT, G. S. 2015. Fertility-
1092 regulating Kiss1 neurons arise from hypothalamic POMC-expressing progenitors. J Neurosci, 35,
1093 5549-56.
1094 SAUCEDO-CARDENAS, O., QUINTANA-HAU, J. D., LE, W. D., SMIDT, M. P., COX, J. J., DE MAYO, F.,
1095 BURBACH, J. P. & CONNEELY, O. M. 1998. Nurr1 is essential for the induction of the
dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor

50

1. **Pomc**\(^{\text{high}}\)/**Prdm12**

<table>
<thead>
<tr>
<th>Expression Level</th>
<th>E11.5</th>
<th>E13.5</th>
<th>E15.5</th>
<th>E17.5</th>
<th>P5</th>
<th>P12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pomc</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Is1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Nkx2-1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Prdm12</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tbx3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Six3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Six6</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cartpt</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S100a10</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sox1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sox2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sox3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sox14</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Dlk1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Chchd10</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calb1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Nr5a1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Nr0b1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tox2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Vim</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Shh</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Myc</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Thsd4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Car10</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

2. **Pomc**\(^{\text{med}}\)/**Ebf1**

<table>
<thead>
<tr>
<th>Expression Level</th>
<th>E11.5</th>
<th>E13.5</th>
<th>E15.5</th>
<th>E17.5</th>
<th>P5</th>
<th>P12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pomc</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ebf1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ebf2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ebf3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Crabp1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Crabp2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Onecut2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Figure B: Micrographs showing axial projections from E12.5 to E16.5. **Figure C**: Heatmap showing cellular components and their regulation. **Figure D**: Expression levels of various genes at different stages. **Figure E**: Enlarged view of specific regions. **Figure F**: Additional heatmap with different regulation factors. **Figure G**: Subcluster analysis.
6. Pomc(low)/Dlx5

7. Pomc(low)/Prdm13
<table>
<thead>
<tr>
<th>E11.5</th>
<th>E13.5</th>
<th>E15.5</th>
<th>E17.5</th>
<th>P5</th>
<th>P12</th>
<th>Integrated Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>E11.5-1</td>
<td>E13.5-2</td>
<td>E15.5-2</td>
<td>E17.5-4</td>
<td>P5-1</td>
<td>P12-3</td>
<td>1.Pomc(high)/Prdm12</td>
</tr>
<tr>
<td></td>
<td>E13.5-3</td>
<td>E15.5-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E11.5-9</td>
<td>E13.5-4</td>
<td>E15.5-1</td>
<td>E17.5-3</td>
<td>P5-10</td>
<td>P12-13</td>
<td>4.Pomc(low)/Otp</td>
</tr>
<tr>
<td></td>
<td>E15.5-3</td>
<td>E17.5-1</td>
<td>P5-1</td>
<td>P12-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P5-2</td>
<td>P5-11</td>
<td>P12-11</td>
<td>P12-14</td>
<td></td>
</tr>
<tr>
<td>E11.5-5</td>
<td>E13.5-5</td>
<td>E15.5-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E11.5-6</td>
<td>E13.5-1</td>
<td>E15.5-10</td>
<td></td>
<td></td>
<td></td>
<td>2.Pomc(med)/Ebf1</td>
</tr>
<tr>
<td>E11.5-2</td>
<td>E13.5-5</td>
<td>E15.5-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E13.5-7</td>
<td>E15.5-4</td>
<td>E17.5-9?</td>
<td>P5-7</td>
<td>P12-9</td>
<td></td>
<td>3.Pomc(med)/Nr4a2</td>
</tr>
<tr>
<td>E13.5-8</td>
<td></td>
<td>E17.5-9?</td>
<td>P5-7</td>
<td>P12-9</td>
<td></td>
<td>8.Pomc(low)/Pitx2</td>
</tr>
<tr>
<td>E13.5-9</td>
<td>E15.5-4</td>
<td>E15.5-9</td>
<td>E17.5-9</td>
<td>P5-7</td>
<td>P12-9</td>
<td></td>
</tr>
<tr>
<td>E11.5-4</td>
<td>E13.5-10</td>
<td>E15.5-11</td>
<td></td>
<td></td>
<td></td>
<td>3.Pomc(med)/Nr4a2</td>
</tr>
<tr>
<td>E11.5-8</td>
<td>E13.5-10</td>
<td>E15.5-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E15.5-5</td>
<td>E17.5-2</td>
<td>P5-8</td>
<td>P5-3</td>
<td>P12-7</td>
<td></td>
<td>5.Pomc(low)/Tac2</td>
</tr>
<tr>
<td>E15.5-6</td>
<td>E17.5-6</td>
<td>P5-6</td>
<td>P5-3</td>
<td>P12-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E15.5-7</td>
<td>E17.5-7</td>
<td>P5-9</td>
<td>P5-6</td>
<td>P12-12</td>
<td></td>
<td>6.Pomc(low)/Dlx5</td>
</tr>
<tr>
<td>E17.5-5</td>
<td>P5-4</td>
<td>P12-10</td>
<td>P12-10</td>
<td>P12-10</td>
<td></td>
<td>2.Pomc(med)/Ebf1</td>
</tr>
<tr>
<td>E17.5-8</td>
<td></td>
<td>P12-10</td>
<td>P12-10</td>
<td>P12-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E15.5-12</td>
<td></td>
<td>P12-10</td>
<td>P12-10</td>
<td>P12-10</td>
<td></td>
<td>9.Microglia</td>
</tr>
<tr>
<td>E15.5-5</td>
<td>P5-5</td>
<td>P12-10</td>
<td>P12-10</td>
<td>P12-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E15.5-6</td>
<td>P5-13</td>
<td>P12-10</td>
<td>P12-10</td>
<td>P12-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E15.5-12</td>
<td>P5-5</td>
<td>P12-10</td>
<td>P12-10</td>
<td>P12-10</td>
<td></td>
<td>9.Microglia</td>
</tr>
<tr>
<td>E15.5-5</td>
<td>P5-13</td>
<td>P12-10</td>
<td>P12-10</td>
<td>P12-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E11.5-3</td>
<td>E13.5-6</td>
<td>E15.5-8</td>
<td></td>
<td></td>
<td></td>
<td>10.VLMC</td>
</tr>
<tr>
<td>E11.5-3</td>
<td>E13.5-6</td>
<td>E15.5-8</td>
<td></td>
<td></td>
<td></td>
<td>11.Astrocytes</td>
</tr>
</tbody>
</table>

The table above summarizes the expression patterns of different clusters at various developmental stages (E11.5 to E17.5, P5, P12) along with the integrated clusters identified. Each row corresponds to a specific cluster defined by the expression of key transcription factors such as Pomc, Prdm12, Otp, and Dlx5. The expression levels are denoted as (high), (med), and (low).
<table>
<thead>
<tr>
<th>Cluster_Age</th>
<th>Percent Expressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>E11.5</td>
<td>0 25 50 75 100</td>
</tr>
<tr>
<td>E13.5</td>
<td></td>
</tr>
<tr>
<td>E15.5</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td></td>
</tr>
<tr>
<td>P12</td>
<td></td>
</tr>
</tbody>
</table>

- 0 25 50 75 100
1. Pomchigh/Prdm12
2. Pomcmed/Ebf1
3. Pomcmed/Nr4a2
4. Pomcmed/Otp
5. Pomcmed/Tac2
6. Pomcmed/Dlx5
7. Pomcmed/Prdm13
8. Pomcmed/Pitx2

Expression

Low

High

Ray 1

Ray 2

Ray 3

Central Vertex

Ray 2

Ray 1

Ray 3

Central Vertex

E13.5
A

E11.5

E13.5

E15.5

E17.5

P5

P12

B

1. Pomc(high)/Prdm12

2. Pomc(med)/Ebf1

3. Pomc(med)/Nr4a2

4. Pomc(low)/Otp

5. Pomc(low)/Tac2

6. Pomc(low)/Dlx5

7. Pomc(low)/Prdm13

8. Pomc(low)/Pitx2

1. Pomc(high)/Prdm12

2. Pomc(med)/Ebf1

3. Pomc(med)/Nr4a2

4. Pomc(low)/Otp

5. Pomc(low)/Tac2

6. Pomc(low)/Dlx5

7. Pomc(low)/Prdm13

8. Pomc(low)/Pitx2