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Abstract
Background: Taller people have a lower risk of coronary heart disease but a higher risk of many 
cancers. Mendelian randomization (MR) studies in unrelated individuals (population MR) have 
suggested that these relationships are potentially causal. However, population MR studies are 
sensitive to demography (population stratification, assortative mating) and familial (indirect genetic) 
effects.
Methods: In this study, we performed within-sibship MR analyses using 78,988 siblings, a design 
robust against demography and indirect genetic effects of parents. For comparison, we also applied 
population MR and estimated associations with measured height.
Results: Within-sibship MR estimated that 1 SD taller height lowers the odds of coronary heart 
disease by 14% (95% CI: 3–23%) but increases the odds of cancer by 18% (95% CI: 3–34%), highly 
consistent with population MR and height-disease association estimates. There was some evidence 
that taller height reduces systolic blood pressure and low-density lipoprotein cholesterol, which may 
mediate some of the protective effects of taller height on coronary heart disease risk.
Conclusions: For the first time, we have demonstrated that the purported effects of height on 
adulthood disease risk are unlikely to be explained by demographic or familial factors, and so likely 
reflect an individual-level causal effect. Disentangling the mechanisms via which height affects 
disease risk may improve the understanding of the etiologies of atherosclerosis and carcinogenesis.
Funding: This project was conducted by researchers at the MRC Integrative Epidemiology Unit 
(MC_UU_00011/1) and also supported by a Norwegian Research Council Grant number 295989.
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Introduction
Height is a classical complex trait influenced by genetic and early-life environmental factors. Despite 
the nonmodifiable nature of adult height, evaluating the effects of height on noncommunicable disease 
risk can give insights into the etiology of adulthood diseases (Emerging Risk Factors Collaboration, 
2012; Davey Smith et al., 2000). Two major groupings of diseases, cardiovascular disease and cancer, 
have divergent associations with height (Emerging Risk Factors Collaboration, 2012; Davey Smith 
et  al., 2000; Stefan et  al., 2016). Taller people are less likely to develop cardiovascular disease, 
including coronary heart disease (CHD) (Emerging Risk Factors Collaboration, 2012; Nelson et al., 
2015; Nüesch et al., 2016; Hebert et al., 1993; Batty et al., 2009; Marouli et al., 2019) and stroke 
(Njølstad et al., 1996), but more likely to be diagnosed with cancer (Emerging Risk Factors Collab-
oration, 2012; Green et al., 2011; Zhang et al., 2015; Thrift et al., 2015; Dixon-Suen et al., 2018; 
Batty et al., 2006; Gunnell et al., 2001; Perkins et al., 2016). The mechanisms via which height 
influences disease risks are unclear. The association between height and cardiovascular disease may 
be mediated via favorable lipid profiles (Emerging Risk Factors Collaboration, 2012; Nelson et al., 
2015), lower systolic blood pressure (SBP) (Emerging Risk Factors Collaboration, 2012; Langenberg 
et al., 2003), lung function (Marouli et al., 2019; Gunnell et al., 2003), lower heart rate (Smulyan 
et al., 1998), and coronary artery vessel dimension (O’Connor et al., 1996). The increased cancer 
incidence among taller individuals could relate to early-life exposure to hormones such as insulin-like 
growth factor 1 (IGF-1) (Renehan et al., 2004; Clayton et al., 2011) or the increased number of cells 
in taller individuals (Stefan et al., 2016; Green et al., 2011; Albanes and Winick, 1988). However, 
although overall cancer risk is higher among taller individuals (Green et al., 2011; Batty et al., 2006; 
Gunnell et al., 2001), there is some evidence for heterogeneity across cancer subtypes with null or 
inverse associations observed between height and risk of stomach, oropharyngeal, and esophageal 
cancers (Green et al., 2011; Batty et al., 2006; Gunnell et al., 2001; Perkins et al., 2016).

Height is highly heritable, but the average height across the European populations has increased 
over the last hundred years (Hatton, 2013), illustrating the effects of early-life environmental factors 
such as nutrition and childhood infections. The associations of height with adulthood diseases and 
relevant biomarkers could reflect the biomechanical effects relating to increased stature (e.g., number 
of cells or larger arteries; O’Connor et al., 1996) or could reflect confounding by early-life environ-
mental factors that influence both height and later-life health such as parental socioeconomic position. 
For example, wealthier parents may provide their offspring with better nutrition, leading to increased 
adult height, and a better education, potentially leading to improved health in adulthood (Perkins 
et al., 2016). Thus, it is unclear whether height has a causal effect on the risk of cardiovascular disease 
and cancer or if a confounding factor influences both height and disease risk.

Mendelian randomization (Smith and Ebrahim, 2003) analyses, using genetic variants associated 
with height as a proxy for observed height, have been used to strengthen the evidence for causal 
effects of height on adulthood diseases (Nelson et al., 2015; Nüesch et al., 2016; Zhang et al., 2015; 
Thrift et al., 2015; Dixon-Suen et al., 2018). The underlying premise being that genetic variants asso-
ciated with height, unlike height itself, are unlikely to be associated with potential confounders such as 
childhood nutrition. However, there is growing evidence that estimates from genetic epidemiological 
studies using unrelated individuals may capture effects relating to demography (population stratifica-
tion, assortative mating) and familial effects (e.g., indirect genetic effects of relatives where parental 
genotype influences offspring phenotypes) (Barton and Hermisson, 2019; Berg et al., 2019; Sohail 
et al., 2019; Ruby et al., 2018; Haworth et al., 2019; Brumpton et al., 2019; Lee et al., 2018; 
Kong et  al., 2018; Young et  al., 2018). Indeed, recent articles have illustrated the potential for 
genetic analyses of height to be affected by these biases (Berg et al., 2019; Sohail et al., 2019), 
including a Mendelian randomization study of height on education (Brumpton et al., 2019). One 
approach to overcome these potential biases is to use data from siblings (Brumpton et al., 2019; 
Davies et al., 2019) and exploit the shared early-life environment of siblings and the random segre-
gation of alleles during meiosis (Smith and Ebrahim, 2003). Indeed, true Mendelian randomization 
was initially proposed as existing within a parent-offspring design (Smith and Ebrahim, 2003; Davey 
Smith et al., 2020; Figure 1).

Here, we used data from 40,275 siblings from UK Biobank (Bycroft et al., 2018) and 38,723 siblings 
from the Norwegian HUNT study (Krokstad et al., 2013) to estimate the effects of adulthood height 
on CHD, cancer risk, and relevant biomarkers. Study-level information is contained in Table 1. We 
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report the estimates of the effects of height on CHD and cancer from both phenotypic models and 
Mendelian randomization, with and without accounting for family structure.

Methods
UK Biobank
Overview
UK Biobank is a large-scale prospective cohort study, described in detail previously (Bycroft et al., 
2018; Sudlow et al., 2015). In brief, 503,325 individuals aged between 38 and 73 years were recruited 
between 2006 and 2010 from across the United Kingdom. For the purpose of this study, we used a 
subsample of 40,275 siblings from 19,588 families (Brumpton et al., 2019). Full-siblings were derived 
using UK Biobank-provided estimates of pairwise identical by state (IBS) kinships (>0.5–21 * IBS0, 
<0.7) and IBS0 (>0.001, <0.008), the proportion of unshared loci (Hill and Weir, 2011). This research 
has been conducted using the UK Biobank Resource under Application Number 15825. UK Biobank 
has ethical approval from the North West Multi-centre Research Ethics Committee (MREC). All UK 
Biobank participants provided written informed consent.

Figure 1. Mendelian randomization within families. The random allocation of alleles within a parent-offspring quad (two parents and two offspring), 
initially observed by Mendel, is illustrated. Consider a height influencing genetic variant H where on average individuals with the H+ allele are taller than 
individuals with the H- allele. From Mendel’s law of segregation, parent 1, who is heterozygous at this allele, has an equal chance of transmitting either 
an H+ or H- allele to offspring. Parent 2, homozygous at this allele, will always transmit a copy of the H- allele. It follows that 50% of this pair’s offspring 
will be heterozygous (as parent 1) and 50% will be homozygous for the H- allele (as parent 2). On average, the heterozygous offspring will be taller than 
the homozygous H- offspring, with this difference a consequence of random segregation of gametes.

https://doi.org/10.7554/eLife.72984
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Phenotype data
At baseline, study participants attended an assessment center where they completed a touch-screen 
questionnaire, were interviewed, and had various measurements and samples taken. Height (field 
ID: 12144-0.0) and sitting height (field ID: 20015-0.0) were measured using a Seca 202 device at the 
assessment center. Seated height is equivalent to trunk length, leg length was defined as height minus 
seated height, and the leg to trunk ratio was calculated by taking the ratio of leg and trunk length. SBP 
was measured using an automated reading from an Omron Digital blood pressure monitor (field ID: 
4080-0.0). Biomarkers of interest, including direct low-density lipoprotein cholesterol (LDL-C), high-
density lipoprotein cholesterol (HDL-C), triglycerides (TG), glucose, and IGF-1, were measured using 
blood samples and the Beckman Coulter AU5800 or the DiaSorin LIASON XL (IGF-1) analyzers.

International Classification of Disease (10th edition) (ICD10) codes and Office of Population Censuses 
and Surveys Classifications of Interventions and Procedures (OPCS) codes were used to identify CHD 
and cancer (all subtypes and a stratified analysis) cases using several data sources: (1) secondary care 
data from Hospital Episode Statistics (HES), (2) death register data, and (3) cancer registry data. The 
stratified analysis included a subset of cancer subtypes (lung, oropharyngeal, stomach, esophageal, 
pancreatic, bladder, and multiple myeloma). Relevant codes are given in Supplementary file 1A. Both 
prevalent and incident cases were included in the analyses.

Genotyping
The UK Biobank study participants (N = 488,377) were genotyped using the UK BiLEVE (N = 49,950) 
and the closely related UK Biobank Axiom Arrays (N = 438,427). Directly genotyped variants were 
pre-phased using SHAPEIT3 (O’Connell et al., 2016) and imputed using Impute4 and the UK10K 
(Walter et al., 2015), Haplotype Reference Consortium (McCarthy et al., 2016) and 1000 Genomes 
Phase 3 (Genomes Project Consortium, 2015) reference panels. More details are given in a previous 
publication (Bycroft et al., 2018).

HUNT
Overview
The Trøndelag Health Study (HUNT) is a series of general health surveys of the adult population of 
the demographically stable Nord-Trøndelag region, Norway, as detailed in a previous study (Holmen 
et al., 2003). The entire adult population of this region (~90,000 adults in 1995) is invited to attend a 
health survey (includes comprehensive questionnaires, an interview, clinical examination, and detailed 

Table 1. UK Biobank and HUNT study characteristics.
Information on the UK Biobank and Norwegian HUNT studies, including descriptive of the sibling 
samples, is given.

UK Biobank HUNT

Sibling sample:
N individuals (N sibships)

40,275 (19,588) 38,723 (15,179)

Recruitment period:
years

2006–2010 HUNT2 (1995–97)
HUNT3 (2006–08)

Year of birth:
median (Q1, Q3)

1950 (1945, 1956) 1951 (1937, 
1963)

Sex:
male (%)

42.2 48.7

Male height (cm):
mean (SD)

175.7 (6.7) 177.6 (6.7)

Female height (cm):
mean (SD)

162.4 (6.2) 164.4 (6.3)

Coronary heart disease:
N cases (% of sample)

3006 (7.5%) 6447 (16.6%)

Cancer:
N cases (% of sample)

6724 (16.5%) 2323 (6.0%)

https://doi.org/10.7554/eLife.72984
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phenotypic measurements) every 10 years. To date, four health surveys have been conducted, HUNT1 
(1984–1986), HUNT2 (1995–1997), HUNT3 (2006–2008), and HUNT4 (2017–2019), and all surveys 
have a high participation rate (Krokstad et al., 2013). This study includes 38,723 siblings from 15,179 
families who participated in the HUNT2 and HUNT3 surveys. Siblings were identified using KING soft-
ware (Manichaikul et al., 2010), with pairs defined as follows: kinship coefficient between 0.177 and 
0.355, the proportion of the genomes that share two alleles identical by descent (IBD) > 0.08, and the 
proportion of the genome that share zero alleles IBD > 0.04. The use of HUNT data in this study was 
approved by the Regional Committee for Ethics in Medical Research, Central Norway (2017/2479). All 
HUNT study participants provided written informed consent.

Phenotype data
Height was measured to the nearest 1.0 cm using standardized instruments with participants wearing 
light clothes without shoes. SBP was measured using automated oscillometry (Critikon Dinamap 845XT 
and XL9301, acquired by GE Medical Systems Information Technologies in 2000) on the right arm in a 
relaxed sitting position (Holmen et al., 2003; Krokstad et al., 2013). SBP was measured twice with a 
1 min interval between measurement with the mean of both measurements used in this study.

All HUNT participants provided nonfasting blood samples when attending the screening site. 
Total cholesterol, HDL-C, and TG levels in HUNT2 were measured in serum samples using enzymatic 
colorimetric methods (Boehringer Mannheim, Mannheim, Germany). In HUNT3, participants’ total 
cholesterol was measured by enzymatic cholesterol esterase methodology; HDL-C was measured by 
accelerator selective detergent methodology; and TGs were measured by glycerol phosphate oxidase 
methodology (Abbott, Clinical Chemistry, USA). LDL-C levels were calculated using the Friedewald 
formula (Friedewald et al., 1972) in both surveys. Participants in HUNT with TG levels ≥ 4.5 mmol/L (n 
= 1349) were excluded for LDL-C calculation as the Friedewald formula is not valid at higher TG levels. 
For all these phenotypes, if the participant attended both HUNT2 and HUNT3 surveys, then the values 
from HUNT2 were used for the analysis presented here.

The unique 11-digit identification number of every Norwegian citizen was used to link the HUNT 
participant records with the hospital registry, which included the three hospitals in the area (up to 
March 2019). We used ICD-10 and ICD-9 codes 410–414 and I20–I25 to define CHD, including both 
prevalent and incident cases. Cancer status (yes/no) was self-reported in HUNT2, HUNT3, and HUNT4 
questionnaires. Individuals with discordant responses across different questionnaires were excluded 
from analyses. Due to the nature of cancer data collection, only prevalent cancer cases were included 
in analyses.

Genotyping
DNA samples were available from 71,860 HUNT samples from HUNT2 and HUNT3 and were geno-
typed (Krokstad et  al., 2013) using one of the three different Illumina HumanCoreExome arrays: 
HumanCoreExome12 v1.0 (n = 7570), HumanCoreExome12 v1.1 (n = 4960), and University of Mich-
igan HUNT Biobank v1.0 (n = 58,041; HumanCoreExome-24 v1.0, with custom content). Quality 
control was performed separately for genotype data from different arrays. The call rate of geno-
typed samples was >99%. Imputation was performed on samples of recent European ancestry using 
Minimac3 (v2.0.1, http://genome.sph.umich.edu/wiki/Minimac3) (Das et  al., 2016) from a merged 
reference panel constructed from (1) the Haplotype Reference Consortium panel (release version 1.1) 
(McCarthy et al., 2016) and (2) a local reference panel based on 2202 whole-genome sequenced 
HUNT participants (Zhou et al., 2017). The subjects included in the study were of European ancestry 
and had passed the quality control.

Statistical analysis
Population and within-sibship models
The population model is a conventional regression model where the outcome is regressed (linear 
or logistic) against the exposure (height or height polygenic score [PGS]) with the option to include 
covariates.

The within-sibship model is an extension to the population model that includes a family mean term, 
the average exposure value across each family (height or height PGS), with each individual expo-
sure value centered about the family mean exposure. To account for relatedness between siblings, 

https://doi.org/10.7554/eLife.72984
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standard errors are clustered by family in both models. More information on these models is contained 
in previous publications (Brumpton et al., 2019; Howe et al., 2021) with statistical code available on 
GitHub (Howe, 2022).

Phenotypic and Mendelian randomization analyses
In phenotypic analyses, we used regression models (within-sibship and population) to estimate the 
association between measured height and all outcomes (CHD, cancer, SBP, LDL-C, HDL-C, TG, 
glucose, and IGF-1) using linear models for continuous outcomes and logistic models for binary 
disease outcomes. In both cohorts, we used a standardized measure of height after adjusting for age 
and sex and also standardized continuous outcomes after adjusting for age and sex.

In Mendelian randomization analyses, we fit regression models as above but used an age/sex-
standardized height PGS instead of measured height. The height PGS was constructed in PLINK 
(Purcell et al., 2007) using 372 independent (LD clumping: 250 kb, r2 < 0.01, p<5 × 10–8) genetic vari-
ants from a previous height genome-wide association study (Wood et al., 2014) that did not include 
UK Biobank or HUNT. Again, we standardized and adjusted for age/sex for continuous outcomes. To 
estimate the effect of the PGS on height, we fit a model regressing measured standardized height 
against the height PGS. We then generated scaled Mendelian randomization estimates by taking the 
Wald ratio of the PGS-outcome associations and the PGS-height associations. All statistical analyses 
were conducted using R (v. 3.5.1).

There are three core instrumental variable assumptions for Mendelian randomization analyses. 
First, the genetic variants should be robustly associated with the exposure (relevance). Second, there 
should be no unmeasured confounders of the genetic variant-outcome association (independence). 
Third, the genetic variants should only influence the outcome via their effect on the exposure (the 
exclusion restriction) (Haycock et al., 2016; Didelez and Sheehan, 2007; Lawlor et al., 2008).

UK Biobank and HUNT meta-analyses
We performed phenotypic and Mendelian randomization analyses (using population and within-
sibship models) in both UK Biobank and HUNT. For phenotypes measured in both studies (CHD, 
cancer, LDL-C, HDL-C, TG), we combined estimates across both studies using a fixed-effects model 
in the metafor R package for meta-analysis. We tested for heterogeneity between UK Biobank/HUNT 
estimates using the difference of two means test statistic (Altman and Bland, 2003).

Outcomes
Using the previously described models and meta-analysis procedure, we estimated the effects of 
height on CHD, cancer, LDL-C, HDL-C, TG, glucose, and IGF-1. As a sensitivity analysis, we used 
phenotypic models to evaluate the associations between dimensions of height (leg length, trunk 
length, and leg to trunk ratio) with CHD and cancer in UK Biobank. A further sensitivity analysis 
involved repeating cancer analyses in UK Biobank with a subset of cancers not phenotypically associ-
ated with height (described above).

Results
Adulthood height and risk of CHD and cancer
We found consistent evidence across population and within-sibship models, using both measured 
height and a height PGS, that taller adulthood height reduced CHD risk and increased the risk of 
cancer (Supplementary file 1B and C).

Within-sibship Mendelian randomization estimated that 1 SD taller height (approximately 6.8 cm 
for men and 6.2 cm for women) reduced the odds of CHD by 14% (95% CI 3–23%) but increased 
the odds of cancer by 18% (95% CI 3–34%). These estimates were consistent across analyses using 
measured height as well as with population Mendelian randomization estimates. For example, popu-
lation Mendelian randomization analyses estimated that 1 SD taller height reduced the odds of CHD 
by 10% (95% CI 4–16%) and increased the odds of cancer by 9% (95% CI 2–16%) (Table 2, Figure 2).

We then evaluated the associations between dimensions of height (trunk length, leg length, and 
leg to trunk ratio) and risk of CHD/cancer in UK Biobank. We found little evidence of heterogeneity 
between estimates, although stronger conclusions are limited by statistical power (Supplementary 

https://doi.org/10.7554/eLife.72984
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file 1D). We also ran a sensitivity analysis in UK Biobank, rerunning height-cancer analyses including 
only cases with one of seven cancer subtypes (lung, oropharyngeal, stomach, esophageal, pancreatic, 
bladder, and multiple myeloma) for which a previous study found little evidence they associated with 
height (Green et al., 2011). These subtypes generally show very strong social patterning, which could 
explain the attenuated associations with height that is also often socially patterned. As expected, the 
association of measured height with this subset of cancers (population OR 0.99; 95% CI 0.92–1.06; 
within-sibship OR 1.01; 95% CI 0.88–1.15) was less strong than the association between height and 
the all-cancer outcome (population OR 1.05; 95% CI 1.02–1.07; within-sibship OR 1.05; 95% CI 1.01–
1.09). Mendelian randomization estimates were imprecise because of the modest number of cases for 
these cancers (Supplementary file 1E).

Adulthood height and biomarkers
Using measured biomarkers, both population and within-sibship models found evidence for the asso-
ciation between taller height and lower SBP, lower circulating LDL-C, and higher circulating IGF-1 
levels. There was some evidence for heterogeneity in phenotypic associations between height and 
biomarkers in UK Biobank and HUNT, such as for SBP, which was more strongly associated with height 
in UK Biobank (Supplementary file 1B).

Population Mendelian randomization results suggested that taller height reduced SBP (per 1 
SD taller height, 0.036 SD decrease; 95% CI 0.014–0.058), LDL-C (per 1 SD taller height, 0.065 SD 
decrease; 95% CI 0.044–0.087), HDL-C (per 1 SD taller height, 0.025 SD decrease; 95% CI 0.003–
0.048) but increased glucose (per 1 SD taller height, 0.032 SD increase; 95%  CI 0.005–0.060). In 
contrast, we found little evidence that taller height affected TG or IGF-1 levels. Within-sibship Mende-
lian randomization estimates were consistent with population estimates; SBP (per 1 SD taller height, 
0.025 SD decrease; 95% CI –0.013 to 0.063), LDL-C (per 1 SD taller height, 0.041 SD decrease; 95% CI 
0.005–0.078), HDL-C (per 1 SD taller height, 0.014 SD decrease; 95% CI –0.022 to 0.050) and glucose 
(per 1 SD taller height, 0.023 SD increase; 95% CI –0.030 to 0.077) (Figure 3, Table 2).

Figure 2. Taller height and risk of coronary heart disease and cancer. The meta-analysis results from four different models used to evaluate the effect 
of height on coronary heart disease (CHD) and cancer risk are displayed. First, a phenotypic population model with measured height as the exposure 
and age and sex included as covariates. Second, a within-sibship phenotypic model with the family mean height included as an additional covariate 
to account for family structure. Third, a population Mendelian randomization model with height polygenic score (PGS) as the exposure exploiting 
advantageous properties of genetic instruments. Fourth, a within-sibship Mendelian randomization model with the family mean PGS included as a 
covariate to control for parental genotypes. Across all four models, we found consistent evidence that taller height reduces the odds of CHD and 
increases the odds of cancer.

https://doi.org/10.7554/eLife.72984
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There was some putative evidence for heterogeneity in the Mendelian randomization effect esti-
mates between UK Biobank and HUNT. For example, within-sibship Mendelian randomization esti-
mate suggested the effects of height on SBP in UK Biobank (0.077 SD decrease; 95% CI 0.017–0.137) 
but the effect estimate was in the opposite direction in HUNT (0.010 SD increase; 95% CI –0.040 to 
0.059; heterogeneity p=0.03) (Table 2).

Discussion
In this study, we used sibling data from two large biobanks to estimate the effects of height on CHD, 
cancer, and relevant biomarkers. We found consistent evidence across all models, including within-
sibship Mendelian randomization, that taller height is protective against CHD but increases the risk of 
cancers. We found less consistent evidence for the effects of height on biomarkers; population and 
within-sibship phenotypic models as well as population Mendelian randomization models suggested 
modest effects of taller height on SBP, LDL-C, and HDL-C. However, the confidence intervals for within-
family Mendelian randomization of height and biomarkers were too wide to draw strong conclusions.

Our findings are largely consistent with previous studies (Emerging Risk Factors Collaboration, 
2012; Nelson et al., 2015; Nüesch et al., 2016; Hebert et al., 1993; Marouli et al., 2019; Green 
et  al., 2011; Zhang et  al., 2015; Thrift et  al., 2015; Dixon-Suen et  al., 2018; Carslake et  al., 
2013) that used nonsibling designs, and with the hypothesis that height affects CHD and cancer risk. 
However, previous studies were potentially susceptible to bias relating to geographic and socioeco-
nomic variation in height and height genetic variants (Barton and Hermisson, 2019; Sohail et al., 
2019; Lee et al., 2018). Indeed, a recent within-sibship Mendelian randomization study found that 
the previously reported effects of height and body mass index on educational attainment were greatly 
attenuated when using siblings (Brumpton et  al., 2019). Here, we provided robust evidence for 
individual-level effects of height by demonstrating that the previous evidence for effects of height on 
adulthood disease risk is unlikely to have been confounded by demography or indirect genetic effects. 
The major strengths of our work are the use of within-sibship Mendelian randomization (Davies et al., 
2019) and the triangulation (Lawlor et al., 2016) of evidence from across phenotypic, genetic, and 
within-sibship models.

Figure 3. Mendelian randomization estimates of the effects of taller height on biomarkers. The meta-analysis results from population and within-sibship 
Mendelian randomization analyses estimating the effect of taller height on biomarkers across UK Biobank and HUNT are shown. The estimates were 
broadly similar between the two models, suggesting the modest effects of demography and indirect genetic effects.

https://doi.org/10.7554/eLife.72984
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A limitation of our analyses is that because of limited sibling data and the statistical inefficiency of 
within-family models, we have limited statistical power to investigate the effects of height on disease 
subtypes,further explore the mechanisms using multivariable Mendelian randomization (Burgess and 
Thompson, 2015), and perform sensitivity analyses to evaluate horizontal pleiotropy. An additional 
limitation is that our study may have been susceptible to selection and survival biases relating to 
nonrandom participation in UK Biobank and/or HUNT and the requirement of at least two siblings 
to survive to be recruited. Indeed, cancer and CHD are both leading worldwide causes of mortality 
and so cases for one disease may have a reduced likelihood of developing the other disease due 
to increased mortality. Therefore, our study may have been susceptible to survival bias relating to 
competing risks. We mitigated this by defining cases for both diseases using both nonfatal and fatal 
events. Our study analyzed families with two or more siblings jointly participating in a cohort; never-
theless, further research is required to investigate the impact of selection bias on family studies.

Adulthood height is nonmodifiable, and the interpretation of causality is nuanced because it is 
unclear whether biological effects relate to stature itself, increased childhood growth, or to factors 
highly correlated with height such as lung function (Marouli et  al., 2019; Gunnell et  al., 2003) 
and artery length (Palmer et al., 1990). Previous studies Gunnell et al., 2001; Langenberg et al., 
2003; Gunnell et al., 2003; Regnault et al., 2014 have explored the possibility that associations 
may relate to dimensions of height, with evidence that blood pressure is associated with trunk but 
not leg length (Regnault et al., 2014). Here, we found that the effects of height on disease risk 
due to leg or trunk length were similar. We found consistent effects of increased height across 
etiologically heterogeneous cancer subtypes, which implies that the mechanism could relate to 
the larger number of cells in taller individuals or a generalized growth phenotype. Notably there is 
minimal evidence of a correlation between the size of an organism and cancer risk (Peto’s paradox), 
suggesting that the number of cells hypothesis could influence cancer risk in humans but would not 
explain variation in cancer risk across different organisms (Caulin and Maley, 2011). Our Mendelian 
randomization estimates for the effects of height on a subset of cancers not strongly phenotypically 
associated with height (Green et al., 2011) were consistent with the combined cancer estimates, 
although we had limited power in this dataset because of the modest prevalence of the cancer 
subtypes.

The estimated effects of height on disease risk were relatively consistent between the Norwegian 
HUNT and UK Biobank studies. Contrastingly, the heterogeneity between UK Biobank and HUNT for 
analyses involving SBP and LDL-C suggests that some effects of height could be population specific. 
Alternatively, heterogeneity could relate to the variance in associations between adulthood height and 
early-life environmental confounders across countries (Perkins et al., 2016). Additional explanations 
could relate to the differences in biomarker measurement between studies (e.g., measuring LDL-C 
directly or using the Friedewald formula, differences in fasting level before samples were taken), 
selection bias (Munafò et al., 2016), or differences between the cohorts in terms of recruitment and 
participation. Further work is required to investigate if our findings generalize to non-European popu-
lations; biological mechanisms could be expected to be largely consistent across populations but 
context-specific (e.g., social) mechanisms could lead to geographic heterogeneity.

To conclude, using within-sibship Mendelian randomization, we showed that height has individual-
level effects on risk of CHD and cancers as well as several biomarkers. Larger family datasets and 
additional analyses including two-step (Relton and Davey Smith, 2012) and multivariable Mendelian 
randomization (Burgess and Thompson, 2015) could be used to investigate the potential mediators 
of these relationships.
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