1 2	Structure and ion-release mechanism of $P_{\rm IB-4}\mbox{-type}$ ATPases
3	Christina Grønberg ¹ , Qiaoxia Hu ¹ , Dhani Ram Mahato ² , Elena Longhin ¹ , Nina
4	Salustros ¹ , Annette Duelli ¹ , Pin Lyu ¹ , Viktoria Bågenholm ¹ , Jonas Eriksson ² , Komal
5	Umashankar Rao ³ , Domhnall Iain Henderson ³ , Gabriele Meloni ⁴ , Magnus
6	Andersson ² , Tristan Croll ⁵ , Gabriela Godaly ³ , Kaituo Wang ¹ and Pontus Gourdon ^{1,6}
7	
8	¹ Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B,
9	Copenhagen N, 2200, Denmark
10	² Department of Chemistry, Umeå University, Linneaus Väg 10, 901 87 Umeå,
11	Sweden
12 13	³ Department of Laboratory Medicine, Lund University, Klinikgatan 28, Lund, 222 42, Sweden
14	⁴ Department of Chemistry and Biochemistry. The University of Texas at Dallas, 800
15	W Campbell Rd., Richardson, TX 75080, USA
16	⁵ Cambridge Institute for Medical Research, Department of Haematology, University
17	of Cambridge, Keith Peters Building, Hills Rd, Cambridge CB2 0XY, United
18	Kingdom
19	⁶ Department of Experimental Medical Science, Lund University, Sölvegatan 19,
20	Lund, 221 84, Sweden
21	
22	Abstract
23	Transition metals, such as zinc, are essential micronutrients in all organisms, but
24	also highly toxic in excessive amounts. Heavy-metal transporting P-type (P _{IB})
25	ATPases are crucial for homeostasis, conferring cellular detoxification and
26	redistribution through transport of these ions across cellular membranes. No
27	structural information is available for the P _{IB-4} -ATPases, the subclass with the
28	broadest cargo scope, and hence even their topology remains elusive. Here we
29	present structures and complementary functional analyses of an archetypal
30	P _{IB-4} -ATPase, sCoaT from Sulfitobacter sp. NAS14-1. The data disclose the
31	architecture, devoid of classical so-called heavy metal binding domains, and
32	provides fundamentally new insights into the mechanism and diversity of heavy-
33	metal transporters. We reveal several novel P-type ATPase features, including a
34	dual role in heavy-metal release and as an internal counter ion of an invariant

histidine. We also establish that the turn-over of P_{IB}-ATPases is potassium
independent, contrasting to many other P-type ATPases. Combined with new
inhibitory compounds, our results open up for efforts in e.g. drug discovery,
since P_{IB-4}-ATPases function as virulence factors in many pathogens.

39

40 Introduction

41 The ability to adapt to environmental changes in heavy metal levels is paramount for 42 all cells, as these elements are essential for a range of cellular processes and yet toxic at elevated concentrations^(l, 2). Transition metal transporting P-type (P_{IB}) ATPase 43 44 proteins are critical for cellular heavy metal homeostasis, providing efflux of e.g. 45 copper, zinc and cobalt from the intracellular milieu. Indeed, malfunctioning of the 46 human P_{IB}-members, ATP7A and ATP7B, cause the fatal neurological Menkes disease and Wilson disease ^(3, 4). The P_{IB}-ATPases belong to the P-type ATPase 47 superfamily of integral membrane proteins, which exploit energy from ATP 48 49 hydrolysis for transport of cargo across cellular membranes. These proteins share an overall mechanism described by the so-called Post-Albers cycle^(5, 6), as established by 50 decades of structural and functional investigations of primarily Ca^{2+} -, Na^+/K^+ - and 51 H⁺-specific P-type ATPases⁽⁷⁻¹⁵⁾. In summary, four cornerstone states, E1-E1P-E2P-52 E2, provide alternating access and affinity for the transported ions (and counter-ions, 53 54 if present). Inward facing (e.g. cytosolic) E1 and outward facing (e.g. extracellular) 55 E2P conformations are coupled to ATP-dependent phosphorylation (yielding ionoccluded E1P) and dephosphorylation (to occluded E2) of an invariant catalytical 56 57 aspartate, respectively.

58 P_{IB}-ATPases are subdivided into groups based on conserved sequence motifs and the selectivity towards transported transition metal ions⁽¹⁶⁻¹⁹⁾. Whereas Cu⁺- and Zn²⁺-59 60 transporting P_{IB-1} and P_{IB-2} ATPases are relatively well-characterized, little is known regarding the P_{IB-4} proteins, which comprise some of the simplest and shortest 61 proteins within the entire P-type ATPase superfamily⁽¹⁶⁾. They are present in plants, 62 archaea and prokaryotes, and have been assigned a role as virulence factors in 63 pathogens, as e.g. the P_{IB-4}-ATPase MtCtpD is required for tuberculosis infections ^{(20,} 64 ²¹⁾, and therefore represent attractive targets for novel antibiotics. 65

66 The P_{IB-4} -ATPases are classically referred to as cobalt transporters. However, the 67 metal specificity of the P_{IB-4} ATPases remain elusive as some members have a 68 confirmed cobalt-specificity, while others seemingly have broader or altered iontransport profiles, also transporting ions such as Zn^{2+} , Ni^{2+} , Cu^+ and even $Ca^{2+(18, 22-25)}$. Thus, the P_{IB-4}-ATPases appear to have the widest scope of transported ions of the P_{IB}-ATPases, and it is possible that further sub-classification principles and sequence motifs will be identified. Due to the broad ion transport range, they have been proposed to serve as multifunctional emergency pumps that can be exploited under extreme environmental stress to maintain heavy metal homeostasis⁽²⁶⁾.

Hitherto, the available high-resolution structural information of full-length P_{IB}-75 76 ATPases is limited to two structures each of ion-free conformations of the Cu⁺transporting P_{IB-1}-ATPase from Legionella pneumophila (LpCopA)^(27, 28), and the 77 Zn²⁺-transporting P_{IB-2}-ATPase from *Shigella sonnei* (SsZntA)⁽²⁸⁾. Thus, the principal 78 architecture of the P_{IB-4}-ATPases remains debated, as sequence analyses have 79 80 proposed different topologies for the N-terminus: with or without i) the so-called 81 called heavy metal binding domains (HMBDs), and ii) the first two transmembrane helices, MA and MB $^{(16, 29-31)}$, which both are present in other P_{IB}-ATPases (Figure 1 82 83 - figure supplement 1a). These represent structural features that have been suggested to be important for ion-uptake and/or regulation in other P_{IB}-ATPases^(27, 28, 32, 33), 84 raising questions if similar levels of protein control are absent or replaced in the P_{IB-4} 85 group. In addition, despite a shared overall architecture, the P_{IB-1} and P_{IB-2} structures 86 suggested significantly different types of entry and exit pathways, hinting at unique 87 translocation mechanisms for each P_{IB} group $^{(34)}$. However, it remains unknown if 88 similar molecular adaptions have taken place in P_{IB-4}-ATPases to handle the unique 89 90 array of cargos. To address these fundamental questions, we determined structures of 91 a P_{IB-4}-ATPase in different states and validated our findings using *in vitro* functional 92 characterization.

93

94 **Results & Discussion**

95 Metal specificity

We employed the established P_{IB-4} model sCoaT (UniProt ID A3T2G5) to shed further light on the structure and mechanism of the entire P_{IB-4} -class. As the metal ion specificity of the P_{IB-4} -ATPases is known to be wide, the ATPase activity was assessed *in vitro* in lipid-detergent solution using the so-called Baginski assay, in the presence of a range of different heavy metals. The protein exhibited clear Zn²⁺ and Cd²⁺ dependent ATPase activity, while Co²⁺ only stimulated ATP-hydrolysis at high ion concentrations (**Figure 2 – figure supplement 1**). This is in partial agreement 103 with the ion range profile previously reported for sCoaT, as higher Co^{2+} sensitivity 104 has been detected using a different functional assay and different experimental 105 conditions⁽¹⁸⁾ (**Figure 2 – figure supplement 1**).

The fact that the $K_{\rm M}$ value for the Co²⁺-dependent sCoaT activity reported previously 106 is lower than measured in this study is unexpected (Figure 2 – figure supplement 107 $(16)^{(18)}$. We therefore assessed if this observation relates to lower available 108 concentration of Co^{2+} consequent to chelation by buffer solution components, or if 109 this metal interferes with the color development in the ATPase assays determining P_i 110 concentrations (Figure 2 – figure supplement 1c). However, Co^{2+} and Zn^{2+} display 111 similar Baginski color development as determined by calibration with separate 112 113 standard curves. Moreover, neither exclusion of azide and molybdate to avoid possible Co^{2+} -binding of these compounds, nor supplementation of the reducing agent 114 TCEP (to avoid possible oxidation of Co^{2+} from molecular oxygen) has a significant 115 116 effect on turn-over. We also investigated if the type of assay may affect the outcome (Figure 2 – figure supplement 1c). However, employment of the alternative 117 118 Malachite Green Phosphate Assay essentially reproduced the relative activity in the presence of Zn^{2+} and Co^{2+} , respectively⁽³⁵⁾. sCoaT is purified in a buffer containing 5 119 mM β -mercaptoethanol, and even following dilution into the assay buffer the 120 concentration is still approximately 100 μ M, and as thiols can act as ligands for Co²⁺ 121 it may explain part of the differences in the $K_{\rm M}$ values. However, this still does not 122 explain why Zn²⁺ and Cd²⁺ dependent ATPase activity has not been observed for 123 sCoaT in the previously study ⁽²⁶⁾, although other P_{IB-4}-members have been associated 124 with Zn^{2+} -activity. While not detected, the reported K_M and V_{max} may nevertheless be 125 126 influenced by numerous environmental factors not tested for here, such as lipids, detergents, presence/absence/location of metal-binding his-tags or other settings. 127

128 Despite that higher sensitivity has been measured for Zn^{2+} compared to Co^{2+} , it cannot 129 be excluded that Co^{2+} , rather than Zn^{2+} , is the preferred cargo *in vivo* as the relative 130 intracellular availability of Co^{2+} is more than three orders of magnitude higher than 131 that of Zn^{2+} in certain bacterial cells⁽³⁶⁾.

132

133 Structure determination

We determined structures of sCoaT in metal-free conditions supplemented with two different phosphate analogues, BeF_3^- and AlF_4^- , respectively, which previously have been exploited to stabilize E2 reaction intermediates of the transport cycle of P_{IB} -

ATPases^(28, 37, 38). The structures were determined at 3.1 Å and 3.2 Å resolution, using 137 molecular replacement as phasing method and SsZntA as search model, and the final 138 139 models yielded R/R_{free} of 24.4/26.8 and 21.8/25.5 (Table 1). The two crystal forms 140 were obtained using the HiLiDe method (crystallization in the presence of high concentrations of detergent and lipids)⁽³⁹⁾. Surprisingly however, the crystal packing 141 142 for both structures reveal only minor contacts between adjacent membrane-spanning 143 regions, which are critical for the crystals obtained of most other P-type ATPase proteins^(28, 37, 40) (Figure 1 – figure supplement 2). Hence, some crystal forming 144 interactions likely take place through lipid-detergent molecules. To our knowledge, 145 146 this is the first time that type I crystals with unrestrained transmembrane domains are 147 reported, but a consequence is that peripheral parts of the membrane domain are less 148 well-resolved (Figure 1 – figure supplement 3). While this caused difficulty in 149 modelling some transmembrane (TM) helices, satisfying solutions were found with the aid of the software ISOLDE⁽⁴¹⁾ due to its use of AMBER forcefield which helped 150 151 to maintain physical sensibility in the lowest-resolution regions. In addition, root 152 means square deviation, secondary structure as well as centers-of-mass of the 153 transmembrane helices, only showed minor variation over time in MD simulations, 154 indicative of a stable structure (Figure 1 – figure supplement 4-5). The TM helices 155 also showed lowered backbone root mean square fluctuation compared to more 156 dynamic regions, such as the soluble domains and loop regions (Figure 1 – figure 157 supplement 4b).

158

159 Overall structure, without classical HMBD

Examination of the structures reveals that the P_{IB-4} -ATPase architecture is reminiscent to that of other P-type ATPases, with three cytosolic domains, A (actuator), N (nucleotide-binding) and P (phosphorylation), as well as a membrane spanning Mdomain (**Figure 1a**). Furthermore, the core of the soluble portions, including the nucleotide binding pocket and catalytic phosphorylation site at D369, are wellconserved.

166 The topology of P_{IB-4} -ATPases has been a conundrum as sequence analyses have 167 proposed different arrangements, with variable number of transmembrane segments 168 and different sizes of the N-termini ^(16, 27, 28, 30, 31, 38). However, our data 169 unambiguously demonstrate that P_{IB-4} -ATPases possess eight transmembrane helices, 170 MA and MB followed by M1-M6. As previously observed for P_{IB-1} - and P_{IB-2} - 171 ATPases, MB is kinked by a conserved Gly-Gly motif (G82 and G83), forming an

172 amphipathic 'platform', MB', immediately prior to M1, see further below (Figure 1 –

173 **figure supplement 3**).

174 Are then HMBDs present in P_{IB-4}-ATPases as in the other P_{IB} subclasses? As only the 175 first 47 residues remain un-modelled in the final structures (Supplementary Table 176 1), it is clear that many P_{IB-4}-ATPases including sCoaT are lacking a classical HMBD 177 ferredoxin-like fold (typically 70 residues long). In agreement with this observation, the cysteine pair (CGIC in the sequence) in the N-terminus of sCoaT is rather 178 179 positioned in MA, facing M1 (Figure 1 – figure supplement 1, 3), in contrast to the 180 surface-exposed, metal-binding CXXC hallmark-motif detected in classical HMBDs. 181 Functional analysis of mutant forms lacking these cysteines in vitro also support that 182 they are unimportant for function (Figure 2a). We note that there are P_{IB-4} -ATPases with extended N-termini that, in contrast to sCoaT, may harbour HMBDs⁽¹⁶⁾. 183 184 Conversely, the sCoaT N-terminus is rich in metal-binding methionine, cysteine, histidine, aspartate and glutamate residues, and this feature is conserved among P_{IB-4}-185 186 ATPases (Figure 2 – figure supplement 2). We therefore explored the role of this N-187 terminal tail through assessment of an sCoaT form lacking the first 33 residues. 188 However, in vitro characterization suggests only minor differences compared to wild-189 type, indicating that the residues upstream of MA are not essential for catalytic 190 activity (Figure 2a). Aggregated, this hints at that no classical HMBD is present, and 191 hence that this level of regulation is absent in many P_{IB-4}-ATPases, although it cannot 192 be excluded that the N-termini are important in vivo.

193 Interestingly, it has been shown that the in vivo transport specificity of the sCoaT homolog from *Synechocystis PCC* 6803 (CoaT) can be switched from Co^{2+} to Zn^{2+} by 194 exchanging the N-terminal region to that of the Zn^{2+} transporting P_{IB-2} ATPase ZiaA 195 from same organism $^{(42)}$. This demonstrates that P_{IB-4}-ATPases not only in vitro (our 196 data), but also *in vivo* are able to transport Zn^{2+} , if the M-domain gain access to the 197 198 metal. One possible explanation for the change of specificity for the CoaT chimeric construct, is that the N-terminal peptide tail, as also suggested for ATP7B⁽⁴³⁾, prevents 199 200 ATP hydrolysis through binding to the soluble domains, and this inhibition is then 201 released upon binding of the cognate metal to the N-terminal and/or HMBD. 202 However, it is also possible that the role of the N-terminal region of P_{IB-4}-proteins is to impair Zn²⁺ acquisition, an ability that is lost when exchanged with the N-terminal 203 204 part of ZiaA. Preliminary assessment of the metal specificity influence of the N-

205 terminal tail of sCoaT suggest it has little or no effect on distinguishing between Co^{2+} 206 and Zn²⁺ *in vitro* (**Figure 2 – figure supplement 1d**). From this it is clear that further 207 studies are needed to shed light on the function of the N-terminal region in P_{IB}-208 ATPases, also in P_{IB-4}-ATPases.

209 Associated, this raises questions also on the role of the above-mentioned MB' platform, which has been proposed to serve as an interaction site for HMBDs in P_{IB-1}-210 and P_{IB-2}-ATPases, and for the Cu⁺-ATPases as a docking site for metal delivering 211 chaperones^(27, 28, 32, 44). As there are no known zinc/cadmium chaperones for P_{IB-4}-212 213 ATPases, and because classical HMBDs appear to be missing in at least some 214 proteins of the group, the MB' function may need to be revisited. Alternatively, the 215 N-terminus may have merely been maintained through evolution without conferring 216 functional benefits or disadvantages.

217

218 Structures in a transition state of dephosphorylation

219 The classical view of P-type ATPases is that the E2P state is outward-open and that 220 the following transition state of dephosphorylation, E2.P_i, is occluded, and that these 221 conformations can be stabilized using the phosphate analogues employed here for 222 structure determination, BeF_3^- and AlF_4^- , respectively. Furthermore, distinct ion release pathways have been proposed among P_{IB}-ATPases^(27-29, 45), including a narrow 223 224 exit pathway lined by MA, M2 and M6 that remains open also in the E2.P_i state for 225 the P_{IB-1}-ATPases. In contrast, a wide opening extending from the location of the 226 bound metal in the M-domain of ion-occluded states to the non-cytoplasmic side has 227 been observed for the P_{IB-2}-ATPases, and this group becomes re-occluded with the 228 E2P to E2.P_i shift.

229 Surprisingly however, analysis of the two obtained structures suggests that the 230 anticipated significant domain reorientations are absent in sCoaT (Figure 2b), and the 231 models are in contrast rather similar. The compact assembly of the soluble domains 232 and the position of the A-domain near the P-domain, placing the conserved TGE-233 motif responsible for dephosphorylation towards the phosphorylation site, are 234 typically associated with commencement of dephosphorylation, indicating that the two structures are trapped in an $E2.P_i$ like transition state (Figure 2 – figure 235 236 supplement 3a-c, e). This observation differs from the equivalent structures of the other structurally determined P_{IB}-ATPases, in which the phosphorylation site of the 237 238 E2P state (stabilized by BeF_3) is shielded from the TGE-loop as also observed for the 239 well-studied sarcoendoplasmic reticulum Ca^{2+} -ATPase (SERCA) (**Figure 2 – figure**

240 supplement 3d).

Notably, analogous highly similar BeF_3^- and AlF_4 -stablized structures have recently also been observed for the Ca^{2+} -specific P-type ATPase from *Listeria monocytogenes* (LMCA1)⁽⁴⁶⁾. It was proposed that LMCA1 pre-organizes for dephosphorylation already in a late E2P state (E2P*, stabilized by BeF_3^-), in accordance with its rapid dephosphorylation. Favoured occlusion and activation of dephosphorylation directly upon ion-release may thus also be the case for sCoaT, and consequently the E2-BeF₃⁻ structure captured here may represents a late (or quasi) E2P state (E2P*).

248 Comparisons of the sCoaT structures to the equivalent structure of SsZntA (E2.P_i) 249 revealed a unique arrangement of the A-domain (Figure 2 – figure supplement 4). 250 The TGE-loop region superposes well with the corresponding area in SsZntA, but the rest of the A-domain is rotated towards the P-domain - approximately 14° and 5.3 Å 251 252 (Figure 2 – figure supplement 4). However, it cannot be excluded that this rotation 253 is due to crystal contacts as the two peripheral β -sheets of the A-domain are 254 interacting tightly with parts of a neighbouring molecule. Additionally, we noticed 255 that the A-domain of sCoaT possesses a surface-exposed extension similar to 256 SERCA, but this feature is not present in P_{IB-1}- and P_{IB-2}-ATPases and it is not a 257 conserved property in the P_{IB-4} -group either (Figure 2 – figure supplement 2, 4). 258 Conversely, the M-domains of the two sCoaT structures are overall similar and appear 259 outward-occluded (Figure 2c), as also supported by comparisons with the equivalent structures of SsZntA, again contrasting to the situation observed in P_{IB-1}- and P_{IB-2}-260 261 ATPases.

262

263 Ion-release

Next, to shed light on ion-release, we compared the sCoaT structures to the E2P state of SsZntA, in which the extracellular ends of M5 and M6 shift away from the proposed metal binding site, allowing an exit pathway to be formed (**Figure 2d**). Considering that P_{IB-2} - and P_{IB-4} -ATPases have overlapping cargo range, share overall topology and that they release ions in free-form to the extracellular environment, in contrast to their P_{IB-1} -counterparts, we find it likely that they employ similar exit pathways, lined primarily by M2, M4, M5 and M6 (**Figure 2d**)^(28, 38). 271 The high affinity binding site in P_{IB-4} ATPases has previously been suggested to be 272 formed by residues from the conserved SPC- (starting from S325) and HEGxT- (from 273 H657) motifs of M4 and M6, based on X-ray absorption spectroscopy (XAS) and mutagenesis studies^(18, 47). An outstanding remaining question is, however, how the 274 275 ion is then discharged to the extracellular site? Among the resides that likely 276 constitute the high affinity binding site, remarkably E658 of M6 is pointing away 277 from the ion-binding region around the SPC motif (Figure 2e and Figure 1 – figure 278 supplement 3). We anticipate that E658 rotates away from its ion-binding 279 configuration in the E1P to E2P transition, thereby assisting to lower the cargo-280 affinity to permit release via the M2, M4, M5 and M6 cavity (Figure 2e). The 281 conserved E120 of M2 (sometimes replaced with an aspartate in P_{IB-4}-ATPases) is located along this exit pathway. The residue also overlays with the conserved E202 in 282 283 SsZntA (Figure 2f), which has been suggested to serve as a transient metal ligand, stimulating substrate release from the CPC motif of P_{IB-2} -ATPases⁽²⁸⁾. We propose a 284 similar role for E120 in sCoaT as further supported by the decreased activity of 285 286 E120A sCoaT form (Figure 2a).

287

288 A unique internal counter-ion principle

289 Many P-type ATPases couple ion- and counter-transport, and hence the reaction cycle 290 cannot be completed without counter-ions. The importance of the counter-transport has been demonstrated in e.g. Ca²⁺/H⁺- (such as SERCA), Na⁺/K⁺- and H⁺/K⁺-291 ATPases $^{(48-51)}$. In contrast, absence of counter-transport has been proposed for P_{IB-2}-292 ATPases⁽²⁸⁾, H⁺-ATPases⁽⁵²⁾ and P4-ATPases⁽⁵³⁾, which rather exploit a built-in 293 294 counter-ion Specifically for the P_{IB-2}-ATPases, a conserved lysine of M5 (K693 in 295 SsZntA) serves as the counter ion, through interaction with the conserved metal 296 binding aspartate of M6 (D714 in SsZntA) in E2 states. Similarly, P_{IB-1}-ATPases are 297 not Cu⁺/H⁺ antiporters, but a likely built-in counter-ion residue is not conserved in the group⁽⁵⁴⁾. Instead, it is possible that the requirement for counter-ion translocation is 298 299 prevented by the narrow exit pathway, preventing back-transfer of the released ion and perhaps rendering complete-occlusion unnecessary ⁽⁵⁴⁾. For the P_{IB-4}-ATPases, 300 biochemical studies have proposed an ion-binding stoichiometry of one (18, 22, 26, 47), 301 302 however no information is available regarding the presence or absence of counter 303 transport.

304 In the E2-BeF₃ sCoaT structure, we identify a tight configuration of HEGxT-motif 305 H657, being sandwiched between the SPC residues, distinct from the M5 lysine - M6 306 aspartate interaction observed in P_{IB-2}-ATPases (Figure 2g-h). Despite the packing 307 issues of the generated crystals, clear electron-density is visible for H657, indicating a 308 rigid conformation (Figure 2g). Moreover, activity measurements of an alanine 309 substitution of H657 demonstrate that it is crucial for function (Figure 2a). In light of 310 these findings and an earlier report suggesting that a mutation of the equivalent of H657 in MtCtpD leaves the ion affinity unaffected $^{(47)}$, we suggest this histidine serves 311 as an internal counter-ion, similarly as for the invariant lysine in SsZntA, perhaps 312 313 preventing back-transfer of released ions and for charge stabilization, however we 314 cannot exclude that H657 is also part of the high affinity binding site in sCoaT.

The rigid conformation observed for H657 in the E2-BeF₃ structure is also observed in the E2-AlF₄ structure (**Figure 1 – figure supplement 3b**). In contrast, for SsZntA the interaction between K693 and D714 is only detected in the E2.P_i state. Thus, the interaction pattern is consistent with the idea that sCoaT pre-organizes for dephosphorylation already in the (late) E2P state, with the associated occlusion and internal counter-ion interaction taking place earlier than for SsZntA.

321

322 A more potent A-domain modulatory site

323 A conserved K⁺-site, which cross-links between the A- and P-domains in E2 states and thereby allosterically stimulates the E2P to E2 process ^(55, 56), has been suggested 324 to be present also in P_{IB}-ATPases⁽⁵⁵⁾. However, our new E2 structures and available 325 structures of P_{IB-1}- and P_{IB-2}-ATPases suggest that the A-/P-domain linker is 326 327 maintained without K⁺ in P_{IB}-ATPases, and instead is established directly between 328 R273/D601 in sCoaT, as also supported by potassium titration experiments 329 monitoring sCoaT ATPase activity (Figure 3a-d). Nevertheless, the A-/P-domain 330 point-of-interaction appears critical for P_{IB}-ATPases, as functional characterization of 331 R273A, D601A and D601K result in a marked reduction of turn-over (Figure 2a). 332 This differs from similar mutations of classical P-type ATPases, where only minor effects are observed ^(55, 56). Furthermore, substitution of D601 with glutamate suggests 333 334 that even the A-/P-domain distance is critical (Figure 2a). It is possible that P_{IB}-335 ATPases are more reliant on this particularly tight, ion-independent stabilization, as the A-M1/A-domain linker is absent, and because many other P-type ATPases also 336 337 have a complementary A-/P-domain interaction (Figure 1 – figure supplement 1c).

Thus, our data indicate that this regulation is a general feature of many P-type ATPase
classes, yet featuring unique properties for P_{IB}-ATPases.

340

341 New metal-transport blockers

342 P_{IB-2}- and P_{IB-4}-ATPases serve as virulence factors and are critical for the disease 343 caused by many microbial pathogens, as underscored by the frequent presence of several redundant genes⁽⁵⁷⁻⁶⁰⁾. In this light and because these P-type ATPases are 344 345 missing in humans, they represent putative targets for novel antibiotics. The shared 346 mechanistic principles identified here suggest that compounds can be identified that 347 inhibit both P_{IB}-groups, for example directed against the common release pathway, 348 thereby increasing efficacy. Indeed, screening of a 20,000-substance library using a 349 complementary in vitro assay, uncovers several compounds that abrogate function of 350 sCoaT and SsZntA (Figure 3e-f, data only shown for sCoaT). Furthermore, initial 351 tests of two of these suggest they have a potent effect against mycobacteria, which previously have been shown to be P_{IB-4} -dependent for infection ⁽⁴⁷⁾; 90 % of the 352 353 mycobacteria were killed at mean concentrations of 18.75 and above 50 µM, 354 respectively, using either of these two separate molecules (Figure 3g). In contrast, 355 investigation of cytotoxic effects on primary human macrophages at concentrations 356 up to 25 µM demonstrated considerably less impact on cell survival for both blockers 357 (Figure 3h). Evidently downstream in-depth studies, ranging from investigations of 358 the target specificity, the detailed effect on human cells as well as antibiotic potency 359 in human, are required to fully understand the value of these putative P_{IB-2}- and P_{IB-4}-360 inhibitors. Nevertheless, the substances outlined here represent promising leads for 361 drug-discovery efforts or to aid the development of tools to manipulate heavy metal 362 accumulation in plants to prevent accumulation or for enrichment.

363

364 Conclusion

365 Collectively, the first structure of a P_{IB-4} -type ATPase reveals the topology of P_{IB-4} -366 ATPases, displaying an eight helix M-domain configuration, and likely no HMBDs, 367 at least in members without extended N-termini. Major findings include the 368 observation of an ion-release-pathway similar as in the related P_{IB-2} -ATPases, a 369 previously not observed counter-ion principle for P-type ATPases, and a unique 370 potassium-independent regulation of the P_{IB} -transport cycle (**Figure 4**). Thus, our 371 results significantly increase the understanding of heavy metal homeostasis in cells. The novel identified putative inhibitors and the partially overlapping mechanistic principles of P_{IB-2} - and P_{IB-4} -ATPases also open up a novel avenue for development of compounds accessible from outside the cell against these P_{IB} -groups, to combat global threats such as multi-drug resistance and/or tuberculosis or for biotechnological purposes.

377 Materials and methods

378

Key Resources	Table			
Reagent type (species) or resource	Designation	Source or reference	Identifiers	Additional information
Gene (Sulfitobacter sp. (strain NAS- 14.1))	NAS141_02821	Synthetic	Uniprot: A3T2G5	
Cell line (Escherichia coli)	C41(DE3)	Sigma- Aldrich		Chemically competent cells
Cell line (Mycobacteri um bovis)	BCG Montreal		ATCC 35735	
Software, algorithm	Phenix		RRID:SCR_014224	https://www.pheni x-online.org/
Software, algorithm	ISOLDE	https://doi.org/1 0.1107/S205979 8318002425		https://isolde.cim r.cam.ac.uk/
Software, algorithm	UCSF ChimeraX		RRID:SCR_015872	https://www.cgl.u csf.edu/chimerax/
Software, algorithm	СООТ		RRID:SCR_014222	http://www2.mrc- lmb.cam.ac.uk/per sonal/pemsley/coo t/
Software, algorithm	Pymol		RRID:SCR_000305	http://www.pym ol.org/

380 Overproduction and purification of sCoaT

381 Forms of the 72 kDa sCoaT from Sulfitobacter sp. NAS14-1 (UniProt ID A3T2G5) 382 were transformed into E. coli (C41 strain) cells. The cells were cultured in LB 383 medium at 37 °C with shaking at 175 rpm in baffled flasks until the optical density 384 (600 nm) reached 0.6-1, cooled to 18 °C, and then induced with 1 mM IPTG for 16h. Harvested cells were resuspended in buffer A (1 g cells per 5 mL buffer) containing 385 386 20 mM Tris-HCl, pH=7.6, 200 mM KCl, 20 % (v/v) glycerol and frozen at -80 °C 387 until further use. Cells were disrupted by two runs in a high-pressure homogenizer (Constant System) at 25,000 psi following addition of 5 mM of fresh β-388 389 mercaptoethanol (BME), 5 mM MgCl₂, 1 mM phenylmethanesulphonyl fluoride, 2 390 µg/mL DNase I and Roche protease inhibitor cocktail (1 tablet for 6 L cells). The 391 sample was kept at 4 °C throughout the purification. Cellular debris was pelleted via 392 centrifugation at 20,000 g for 20 minutes. Membranes were isolated by 393 ultracentrifugation for 3 h at 185,500 g, and resuspended in 10 mL buffer B (20 mM 394 Tris-HCl, pH=7.6, 200 mM KCl, 1 mM MgCl₂, 5 mM BME and 20 % (v/v) glycerol) 395 per g membranes and frozen at -80 °C until further use. The protein concentration in the membranes was estimated using the Bradford assay⁽⁶¹⁾. Proteins were solubilized 396 through supplementation of 1 % (w/v) final concentration n-dodecyl-\beta-D-397 maltopyranoside (DDM) and 3 mg/mL final total protein concentration in Buffer B 398 399 with gentle stirring for 2 h. Un-solubilized material was removed by ultracentrifugation for 1 h at 185,500 g. The supernatant was supplemented with 400 401 imidazole to a final concentration of 30 mM and solid KCl (500 mM final concentration), filtered (0.22 mm) and then applied to 5 mL HiTrap Chelating HP 402 columns (GE Healthcare, protein from 6 L cells per column) charged with Ni²⁺ and 403 equilibrated with 4 column volumes of buffer C (20 mM Tris-HCl, pH=7.6, 200 mM 404 405 KCl, 1 mM MgCl₂, 5 mM BME, 150 mg/mL octaethylene glycol monododecyl ether 406 $(C_{12}E_8)$ and 20 % (v/v) glycerol). Proteins were eluted using a gradient, ending with 407 buffer C containing 500 mM imidazole. Eluted protein was assessed using SDS-PAGE, and the fractions containing sCoaT concentrated to approximately 20 mg/mL 408 409 using VivaSpin concentrators (MWCO=50 kDa). 10 mg concentrated protein was 410 subjected to size-exclusion chromatography using a Superose 6 gel-filtration column 411 (GE-Healthcare), pre-equilibrated with 50 mL buffer E (20 mM Tris-HCl, pH=7.6, 80 mM KCl, 1 mM MgCl₂, 5 mM BME, 150 mg/mL C₁₂E₈ and 20 % (v/v) glycerol). 412 413 Fractions containing purified sCoaT were pooled, and concentrated to approximately 414 10 mg/mL, flash frozen in liquid nitrogen, and stored at -80 °C until further use. For 415 the experiments to assess K⁺-dependence, the buffer E was replaced with 20 mM 416 Tris-HCl, pH=7.5, 1 mM MgCl₂, 5 mM BME, 0.15 mg/mL $C_{12}E_8$ and 20 % (v/v) 417 glycerol.

418

419 Crystallization

420 10 mg/mL sCoaT was supplemented with 3 mg/mL (final concentration) DOPC and 6 421 mg/mL (final concentration) C₁₂E₈, incubated at 4 °C and stirring for 16-48 h (modified HiLiDe method⁽³⁹⁾). Aggregates and insoluble DOPC were then removed 422 423 by ultracentrifugation at 50,000 g for 10 minutes. 2 mM AlCl₃ or BeSO₄, 10 mM NaF 424 and 2 mM EGTA (final concentrations) were supplemented and incubated on ice for 425 30 minutes. Crystals were grown using the hanging drop vapor diffusion method at 426 19 °C. E2-AlF₄⁻ crystals were grown with a reservoir solution containing 200 mM 427 MgCl₂, 14 % (v/v) PEG1500, 10 mM tris(2-carboxyethyl)phosphine, 10 % (v/v) 428 glycerol, 3 % 2-Methyl-2,4-pentanediol and 100 mM sodium acetate, pH=5.0. The 429 E2-BeF3⁻ crystals were grown with a reservoir solution containing 200 mM 430 magnesium formate, 14 % (v/v) PEG5000, 100 mM sodium acetate, pH=4.0, and 0.5 % 431 (v/v) 2-propanol was added as an additive. Crystals were fished using litholoops 432 (Molecular Dimensions), flash-cooled in liquid nitrogen, and tested at synchrotron 433 sources. Complete final data sets were collected at the Swiss Light Source, the Paul 434 Scherrer Institute, Villigen, beam line X06SA.

435

436 Structure determination and refinement

437 Collected data were processed and scaled with XDS (Supplementary Table 1). For the E2-AlF₄ structure, initial phases were obtained by the molecular replacement 438 (MR) method using software PHASER⁽⁶²⁾ of the Phenix package⁽⁶³⁾, and using the 439 440 AlF₄-stabilized structure of SsZntA (PDB ID: 4UMW) as a search model. The E2-441 BeF_3^- structure was solved using the generated E2-AlF₄⁻ structure as a MR model. 442 Both crystal forms display poor crystal packing between the membrane domains 443 (Figure 1 – figure supplement 2), deteriorating the quality of the electron density 444 maps in these regions (Figure 1 – figure supplement 3). In this light, model building 445 of the membrane domains were executed with particular prudence, taking into 446 consideration the connectivity to the well-resolved soluble domains, distinct structural 447 features as well as sequence and structure conservation patterns. Examples of such 448 include the conserved GG motif that forms the kink in MB helix, which is clearly 449 identified also at low resolution, the SPC motif that twists the M4 helix and the 450 conserved and functionally important well-resolved residue H657 that assisted 451 assigning nearby residues.

452 Initial manual model building was performed primarily using COOT⁽⁶⁴⁾. ISOLDE⁽⁶⁵⁾ 453 in ChimeraX⁽⁶⁶⁾ was employed for model building and analysis, and was critical for 454 obtainment of the final models with reasonable chemical restraints and low clash 455 score. In particular, ISOLDE's interactive register shifting tool was instrumental in 456 determining the register of the most weakly resolved TM helices. Secondary structure 457 restraints were applied in some flexible regions, also taking into consideration 458 homology to sCoaT and other models.

During final refinements with phenix.refine⁽⁶⁷⁾ the geometry was restrained in torsion space to ISOLDE's output. Molprobity was exploited for structure validation⁽⁶⁸⁾. The final models are lacking the first 40 residues only, which is shorter than a classical MBD of 67 amino acids. All structural figures were generated using Pymol⁽⁶⁹⁾. Statistics for the final models were 96.70, 3.30, 0.20 and 0,74 for E2-BeF₃⁻ and 93.24, 6.13, 0.63 and 8.31 for E2-AlF₄⁻ in Ramachandran favored and allowed regions, and for rotamer outliers and clash-score, respectively.

466

467 *Activity assay*

sCoaT forms were functionally characterized using the Baginski method to assess the 468 amount of released inorganic phosphate⁽⁷⁰⁾. Briefly, 0.5 µg of purified sCoaT mixed 469 470 with reaction buffer containing 40 mM MOPS-KOH, pH=6.8, 5 mM KCl, 5 mM 471 MgCl₂, 150 mM NaCl, 0.3 mg/mL C₁₂E₈, 0.12 mg/mL soybean lipid, 5 mM NaN₃ and 472 0.25 mM Na₂MoO₄ in a total volume of 50 uL. For metal stimulation assays, different 473 heavy metal ions or EGTA was supplemented the reaction buffer to a final 474 concentration of 50 µM. For inhibitor screening (see how inhibitors were identified 475 below), different concentrations of inhibitors were added to the reaction buffer containing 50 µM ZnCl₂. The samples were then incubated at 37 °C with 500 rpm 476 477 shaking for 5 minutes, and then supplemented with 5 mM ATP (final concentration) to start the reaction, and incubated at 37 °C with 1000 rpm shaking for 10 mins. 50 µL 478 479 freshly prepared stop solution containing 2.5 % (w/v) ascorbic acid, 0.4 M (v/v) HCl 480 and 1 % SDS was then supplemented to stop the reaction and start color development. 481 75 μ L color solution (2 % (w/v) arsenite, 2 % (v/v) acetic acid and 3.5 % (w/v)

482 sodium citrate) was added to the mixture following 10 minutes incubation at room 483 temperature. Absorbance was measured at 860 nm after another 30 minutes 484 incubation at room temperature. For the experiments to assess K⁺-dependence, the 485 reaction buffer was replaced with 40 mM Tris-HCl, pH=7.5, 5 mM MgCl₂, 3.0 486 mg/mL $C_{12}E_8$ and 1.2 mg/mL soybean lipid in a total volume of 50 uL.

487

488 Inhibitor screening

489 The inhibitor screening experiments were initially carried out on the zinc transporting PIB-2-type ATPase ZntA from Shigella sonnei (SsZntA). SsZntA was produced and 490 purified as described previously⁽²⁸⁾ and the inhibitory effect of approximately 20000 491 492 compounds was assessed by the Chemical biology Consortium Sweden (CBCS). 493 Briefly, the ATPase activity of 0.7 µM highly pure protein was measured in the 494 presence of 50 μ M inhibitor through the release of inorganic phosphate (P_i) by the Baginski assay⁽⁷⁰⁾ in a total volume of 200 nL as reported earlier⁽²⁸⁾. The inorganic 495 phosphate was detected with Malachite Green reagent (0.005 % Carbinol 496 497 hydrochloride, 1.7 % sulfuric acid, 0.14 % ammonium molybdate, 0.025 % Triton-X) 498 at an absorbance of 620 nm.

499

500 *Minimum inhibitory concentration (MIC*₉₀)

Mycobacterium bovis bacillus Calmette-Guerin (BCG) Montreal containing the 501 pSMT1-*luxAB* plasmid was prepared as previously described⁽⁷¹⁾. Briefly, the 502 mycobacteria were grown in Middlebrook 7H9 broth, supplemented with 10% ADC 503 504 enrichment (Middlebrook Albumin Dextrose Catalase Supplement, Becton Dickinson, 505 Oxford, UK) and hygromycin (50 mg/l; Roche, Lewes, UK), the culture was washed 506 twice with sterile PBS, and re-suspended in broth and then dispensed into vials. 507 Glycerol was added to a final concentration of 25% and the vials were frozen at 508 -80°C. Prior to each experiment, a vial was defrosted, added to 9 mL of 509 7H9/ADC/hygromycin medium, and incubated with shaking for 72 h at 37°C. 510 Mycobacteria were then centrifuged for 10 minutes at 3000×g, washed twice with 511 PBS, and re-suspended in 10 ml of PBS. Resazurin microtiter assay (REMA) was 512 used to determine the minimum inhibitory concentration (MIC₉₀) for the inhibitors 513 against the mycobacterial strain. The inhibitors (10 µL) were added to bacterial 514 suspensions (90 μ L) on a 96-well plate at a concentration range between 0.4-50.0 μ M. 515 MIC was determined by the color change using resazurin (1:10 v/v, PrestoBlue Cell

516 viability reagent, Thermo Scientific). MIC was determined after one week by adding

517 10 μL resazurin followed by incubation overnight, corresponding to 90% inhibition.

518 Human cytotoxicity assays

519 Human venous blood mononuclear cells were obtained from healthy volunteers using 520 a Lymphoprep density gradient (Axis-Shield, Oslo, Norway) according to the 521 manufacturer's instructions. To obtain pure monocytes, CD14 micro beads were 522 applied to the cell suspension, washed and passed through a LS-column according to 523 manufacturer's description (130-050-201, 130-042-401, Miltenyi Biotec, USA). The 524 monocytes were counted (Sysmex), diluted in RPMI 1640 supplemented with 5% 525 FCS, NEAA, 1 mM Sodium Pyruvate, 0.1 mg/mL Gentamicin (11140-035, 111360-526 039, 15710-49, Gibco, Life Technologies) and 50 ng/mL GM-CSF (215-GM, R&D systems) and seeded in 96-well plates $(10^{5}/\text{well})$ for a week to differentiate into 527 528 macrophages. Infection experiments were performed in RPMI 1640 without 529 Gentamicin. The medium was replaced with fresh medium containing 6.3, 12.5, 25 or 530 50 µM inhibitor or DMSO and incubated 24 h in 5% CO₂ atmosphere. For 531 cytotoxicity measurement. 10 μL 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) solution (Sigma) was added to each well 532 533 according to manufacturer's instructions and analysed in a spectrophotometer at 580 534 nm. NZX cytotoxicity was further examined by ATPlite[™] assays. Primary 535 macrophages were treated with 6.3, 12.5, 25 or 50 µM inhibitor or DMSO (Sigma) for 24 hours. Cell viability was assessed with cellular ATP levels using ATPlite[™] kit 536 537 (6016943, Perkin Elmer) compared to untreated controls, according to the 538 manufacturer's instructions.

539

540 MD simulation

541 The two crystal structures, $E2-AlF_4$ and $E2-BeF_3$, were inserted into a DOPC (1,2dioleoyl-sn-glycero-3-phosphocholine) membrane patch using the CHARMM-GUI 542 membrane builder⁽⁷²⁾. The membrane positions were predicted by the Orientations of 543 Proteins in Membranes (OPM) server⁽⁷³⁾. During the simulation equilibration phase, 544 545 position restraints were gradually released from the water and lipids for a total of 30 546 ns followed by 500 ns non-restrained production runs. Each protein state was 547 simulated in independent repeat simulations starting from a different set of initial 548 velocities, adding up to a sampling total of 500 ns x 4. A Nose-Hoover temperature

coupling⁽⁷⁴⁾ was applied using a reference temperature of 310 K. A Parrinello-549 Rahman pressure coupling⁽⁷⁵⁾ was applied with a reference pressure of 1 bar and 550 compressibility of 4.5e-5 bar⁻¹ in a semi-isotropic environment. The TIP3P water 551 model was used and the system contained 0.15 M NaCl. The E2-AlF₄⁻ system was 552 553 composed of 256 lipids and 29,429 water molecules while E2-BeF3⁻ system was 554 composed of 254 lipids and 30,535 water molecules. The systems were equilibrated and simulated using the GROMACS-2021 simulation package⁽⁷⁶⁾ and CHARMM36 555 all-atom force fields⁽⁷⁷⁾ for the protein and lipids. The membrane domain was used as 556 alignment reference for the root means square deviation and center-of-mass 557 558 calculations, and the protein backbone was used as alignment reference for 559 calculating the root mean square fluctuation. The secondary structure was assessed with the do_dssp tool in GROMACS-2021⁽⁷⁶⁾. 560

561

562 Acknowledgements

CG is currently paid by The BRIDGE - Translational Excellence Programme at 563 564 University of Copenhagen funded by the Novo Nordisk Foundation (NNF18SA0034956). The PhD studies of CG were partly financed by "The memorial 565 566 foundation of manufacturer Vilhelm Pedersen and wife - and the Aarhus Wilson 567 consortium". QH was supported by China Scholarship Council. DRM was funded by 568 Carl Tryggers foundation (CTS 17:22), MA was funded by a Swedish Research Council Starting Grant (2016-03610). The computations were performed on resources 569 570 provided by the Swedish National Infrastructure for Computing (SNIC) through the 571 High-Performance Computing Center North (HPC2N) under project SNIC 2018/2-32 572 and SNIC 2019/2-29. This research was also funded in part by the Wellcome Trust [209407/Z/17/Z] to TC. PG is supported by the following Foundations: Lundbeck, 573 574 Knut and Alice Wallenberg, Carlsberg, Novo-Nordisk, Brødrene Hartmann, Agnes og 575 Poul Friis, Augustinus, Crafoord as well as The Per-Eric and Ulla Schyberg. Funding 576 is also obtained from The Independent Research Fund Denmark, the Swedish 577 Research Council and through a Michaelsen scholarship. GM is supported by the 578 Robert A. Welch Foundation (AT-1935-20170325 and AT-2073-20210327), the 579 National Institute of General Medical Sciences of the National Institutes of Health 580 (R35GM128704) and the National Science Foundation (CHE- 2045984). GG is funded by the Swedish Heart-Lung Foundation (20200378), Alfred Österlunds 581 582 Foundation, Royal Physiographic Society of Lund. We are grateful for assistance with 583 crystal screening at PETRA III at DESY, a member of the Helmholtz Association 584 (HGF), beamline P13, and crystal screening and data collection at the Swiss Light 585 Source, the Paul Scherrer Institute, Villigen, beam line X06SA. Access to synchrotron 586 sources was supported by the Danscatt program of the Danish Council of Independent 587 Research. We acknowledge the Chemical Biology Consortium Sweden (CBCS) at 588 Umeå University that performed the ligand screening. For the purpose of Open 589 Access, the authors have applied a CC BY public copyright licence to any Author 590 Accepted Manuscript (AAM) version arising from this submission.

591

592 **Data Information**

Atomic coordinates and structure factors for the sCoaT AlF₄⁻ and BeF₃⁻-stabilized crystal structures have been deposited at the Protein Data Bank (PDB) under accession codes 7QBZ and 7QC0. The authors declare no competing financial interests. Correspondence and requests for materials should be addressed to P.G. (pontus@sund.ku.dk).

601 Figure 1 | Overall architecture and reaction cycle. The sCoaT structures reveal 602 that P_{IB-4}-ATPases comprise soluble A-, P- and N-domains, shown in yellow, blue and 603 red, respectively, as well as a transmembrane domain with eight helices: MA and MB, 604 in cyan, and M1-M6, in grey, and that the P_{IB-4}-topology lacks classical so-called heavy metal binding domain. The transport mechanism of P-type ATPases depends 605 606 on ATP-dependent phosphorylation and auto-dephosphorylation, and include four 607 principal conformations, E1, E1P, E2P and E2, where P denote phosphorylation. The 608 determined structures are trapped in two transition states following ion-release - an occluded late E2P (E2P^{*}) and an occluded transition state of dephosphorylation, E2.P_i. 609

Figure 2 | Mechanistic insight into the function of P_{IB-4}-ATPases. a, Functional 611 612 ATPase assay in lipid-detergent solution with targeted residues in sequential order. 613 The wild-type (WT) specific activity using the employed experimental conditions in the presence of 50 μ M metal is 1.00 \pm 0.01 μ mol mg⁻¹ min⁻¹ with Zn²⁺ and 2.80 \pm 0.06 614 μ mol mg⁻¹ min⁻¹ with Cd²⁺, comparable to the activity previously measured for P_{IB-4}-615 616 ATPases. For biological averages and s.d. see Figure 2 – figure supplement 1e. b, 617 Comparisons of E2-AlF₄ and E2-BeF₃ structures of sCoaT and the equivalent of 618 SsZntA (PDB ID of SsZntA structures: 4UMV and 4UMW). All superimpositions were performed based on the P-domain, and the RMSD values for the overall 619 620 structures are indicated. c, Identified cavity (wheat) in the $E2-BeF_3^-$ structure using 621 the software HOLE. The E2-BeF₃⁻ and the E2-AlF₄⁻ (not shown) structure are

622 occluded, lacking continuous connection between the ion-binding site to the outward 623 environment. d, The conformational changes that likely allow for closure of the 624 release pathway, as illustrated from the E2-BeF₃⁻ structure of SsZntA to the E2-AlF₄⁻ 625 structures of sCoaT or SsZntA. e-h, Close-views of ion-binding and -release residues 626 in the M-domain of sCoaT and SsZntA. e, The orientation of E658 is incompatible 627 with high-affinity binding, and is likely contributing to ion-release. **f**, Release likely 628 takes place via E658 and E120. g, The sandwiched position between S325 and C327 629 of H657, including the final 2Fo-Fc electron density (blue). h, The position of H657 630 in sCoaT overlaps with the one of K693 in SsZntA, and both likely serve as in-built 631 counter-ions.

Page 23

Figure 3 Regulation and inhibition. a-c, Close-views of the regulatory point of 633 634 interaction between the A- and P-domains in the E2-AlF4⁻ structures of sCoaT, SsZntA and SERCA (PDB IDs 4UMW and 1XP5) with the corresponding 2Fo-Fc 635 636 electron density shown at $\sigma=1.0$ (blue mesh). **a**, sCoaT (colored as in Figure 1) with interaction between D601 and R273. b, SsZntA (shown as panel a) with interaction 637 638 between D657 and R340. c, SERCA (shown as in panel a) with bound K^+ (purple) 639 between E732 and Q244. d, Functional ATPase assay in lipid-detergent solution of 640 sCoaT (wild-type and D601K forms) as well as SsZntA (wild-type), using protein

samples purified in the absence of K^+ and Na^+ (see Methods). The mean + s.d. of 641 technical replicates is shown (n=3). KCl leaves the function of sCoat and SsZntA 642 essentially unaffected in the presence of Zn^{2+} (cyan) or Cd^{2+} (gray). The equivalent 643 form of sCoaT D601K has previously been exploited to demonstrate K⁺-dependence 644 in the Na,K-ATPase ⁽⁵⁶⁾. Collectively, these data suggest that the P-/A-domain site 645 regulation is K⁺-independent in P_{IB}-ATPases, in contrast to classical P-type ATPases. 646 647 e-h Evaluation of the effect on selected identified novel inhibitors on activity of protein, as well as survival of mycobacteria and primary human macrophages. e, 648 649 Effect of two inhibitors (300 µM) on the activity of sCoaT assessed in lipid-detergent solution in the presence of Zn^{2+} . For comparison, the commonly used P-type ATPase 650 inhibitor AlF_4 (500 µM) is included. **f**, The structure of inhibitor 1 and 2. **g**, The 651 652 minimal inhibitory concentration to kill 90 % (MIC₉₀) of mycobacteria for inhibitor 1 653 and 2. The mean MIC₉₀ value for inhibitor 1 is 18.75 μ M, while for inhibitor 2 it is 654 over 50 µM. The values are based on four separate experiments. h, The cytotoxic 655 effect of different concentrations of inhibitor 1 and 2 on primary human macrophages 656 (ATP assay). The standard error of mean (SEM) of 9 replicates is shown (n=9).

658 Figure 4 Putative ion-release and re-occlusion mechanism of P_{IB-4}-ATPases. 659 Schematic model illustrating the transmembrane domain (the soluble domains have been removed for clarity) of two separate states, an E2P and an occluded E2P* 660 conformation as the determined structure (E2-BeF₃⁻), respectively. Zinc or cadmium 661 release from the high affinity binding site in the M-domain is likely permitted through 662 663 re-orientation of E658 (1) in the E1P to E2P transition, thereby lowering the affinity 664 for the occluded ion. E120 serves as a transient linker between the high-affinity 665 binding site and the outward environment (2). Following ion-release (3) H657 shifts 666 to a sandwiched position between S325 and C327 (4), acting as a built-in counter ion, 667 preventing back-transfer of the released ion, and allowing completion of the reaction 668 cycle.

	E2-BeF ₃	E2-AlF ₄
Data collection		
Wavelength (Å)	1.0	1.0
Space group	P 21 21 2	P 21 21 2
Cell dimensions		
<i>a</i> , <i>b</i> , <i>c</i> (Å)	89.0 94.5 128.8	89.6 93.7 128.3
α, β, γ (°)	90 90 90	90 90 90
Resolution (Å)	47.3-3.1	45.6-3.3
	(3.22-3.11)	(3.37-3.25)
$R_{\rm merge}(\%)$	11.4 (276.3)	15.5 (246)
<i>Ι</i> / σ <i>Ι</i>	17.8 (1.12)	8.5 (0.98)
CC _{1/2}	1 (0.475)	0.99 (0.37)
Completeness (%)	97.3 (99.8)	99.2 (99.9)
Redundancy	13.3 (13.8)	6.1 (6.6)
Refinement		
Resolution (Å)	47.3-3.1	45.6-3.3
	(3.22-3.11)	(3.37-3.25)
No. reflections	19643 (1963)	17466 (1714)
$R_{\text{work}} / R_{\text{free}}$ (%)	24.4/26.8	21.8/25.5
No. of atoms		
Protein	4695	4695
Ligand/ion	5	6
Water	10	0
Average B-factors		
Protein	135.91	152.54
Ligand/ion	84.15	86.47
Solvent	79.62	
R.m.s. deviations		
Bond lengths (Å)	0.004	0.003
Bond angles (°)	0.77	0.83
Ramachandran statistics		
Favored (%)	97.8	96.9
Allowed (%)	2.2	3.1
Outliers (%)	0.0	0.0
Clashscore	1.05	7.89
MolProbity score	0.85	1.62

669 Table 1 Table 1 Data collection and refinement statistics. Statistics for the highest

670 resolution shell are shown in parentheses.

671 **References**

672	1.	K. J. Waldron, J. C. Rutherford, D. Ford, N. J. Robinson, Metalloproteins and
673		metal sensing. <i>Nature</i> 460 , 823-830 (2009).
674	2.	H. Kozlowski <i>et al.</i> , Copper, iron, and zinc ions homeostasis and their role
675		in neurodegenerative disorders (metal uptake, transport, distribution and
676		regulation). <i>Coordin Chem Rev</i> 253 , 2665-2685 (2009).
677	3.	P. C. Bull, G. R. Thomas, J. M. Rommens, J. R. Forbes, D. W. Cox, The Wilson
678		Disease Gene Is a Putative Copper Transporting P-Type Atpase Similar to
679		the Menkes Gene. <i>Nature Genetics</i> 5 , 327-337 (1993).
680	4.	C. Vulpe, B. Levinson, S. Whitney, S. Packman, J. Gitschier, Isolation of a
681		candidate gene for Menkes disease and evidence that it encodes a copper-
682		transporting ATPase. <i>Nat Genet</i> 3 , 7-13 (1993).
683	5.	R. W. Albers, S. Fahn, G. J. Koval, The Role of Sodium Ions in the Activation
684		of Electrophorus Electric Organ Adenosine Triphosphatase. Proceedings of
685		the National Academy of Sciences of the United States of America 50 , 474-
686		481 (1963).
687	6.	R. L. Post, A. K. Sen, An Enzymatic Mechanism of Active Sodium and
688		Potassium Transport. J Histochem Cytochem 13, 105-112 (1965).
689	7.	C. Toyoshima, M. Nakasako, H. Nomura, H. Ogawa, Crystal structure of the
690		calcium pump of sarcoplasmic reticulum at 2.6 A resolution. <i>Nature</i> 405 ,
691		647-655 (2000).
692	8.	C. Toyoshima, H. Nomura, Structural changes in the calcium pump
693		accompanying the dissociation of calcium. <i>Nature</i> 418 , 605-611 (2002).
694	9.	C. Toyoshima, H. Nomura, T. Tsuda, Lumenal gating mechanism revealed
695		in calcium pump crystal structures with phosphate analogues. <i>Nature</i>
696		432 , 361-368 (2004).
697	10.	C. Olesen, T. L. Sorensen, R. C. Nielsen, J. V. Moller, P. Nissen,
698		Dephosphorylation of the calcium pump coupled to counterion occlusion.
699		Science 306 , 2251-2255 (2004).
700	11.	C. Olesen <i>et al.</i> , The structural basis of calcium transport by the calcium
701		pump. <i>Nature</i> 450 , 1036-1042 (2007).
702	12.	A. M. Winther <i>et al.</i> , The sarcolipin-bound calcium pump stabilizes
703		calcium sites exposed to the cytoplasm. <i>Nature</i> 495 , 265-269 (2013).
704	13.	C. Toyoshima <i>et al.</i> , Crystal structures of the calcium pump and sarcolipin
705		in the Mg2+-bound E1 state. <i>Nature</i> 495 , 260-264 (2013).
706	14.	J. P. Morth <i>et al.</i> , Crystal structure of the sodium-potassium pump. <i>Nature</i>
707		450 , 1043-1049 (2007).
708	15.	T. Shinoda, H. Ogawa, F. Cornelius, C. Toyoshima, Crystal structure of the
709		sodium-potassium pump at 2.4 A resolution. <i>Nature</i> 459 , 446-450 (2009).
710	16.	A. T. Smith, K. P. Smith, A. C. Rosenzweig, Diversity of the metal-
711		transporting P1B-type ATPases. J Biol Inorg Chem 19, 947-960 (2014).
712	17.	J. M. Arguello, Identification of ion-selectivity determinants in heavy-
713		metal transport P1B-type ATPases. J Membr Biol 195 , 93-108 (2003).
714	18.	E. L. Zielazinski, G. E. Cutsail, 3rd, B. M. Hoffman, T. L. Stemmler, A. C.
715		Rosenzweig, Characterization of a cobalt-specific P(1B)-ATPase.
716		Biochemistry 51 , 7891-7900 (2012).
717	19.	D. Zhitnitsky, O. Lewinson, Identification of functionally important
718		conserved trans-membrane residues of bacterial PIB -type ATPases. Mol
719		Microbiol 91 , 777-789 (2014).

720	20.	C. M. Sassetti, E. J. Rubin, Genetic requirements for mycobacterial survival
721		during infection. Proceedings of the National Academy of Sciences of the
722		United States of America 100 , 12989-12994 (2003).
723	21.	S. M. Joshi <i>et al.</i> , Characterization of mycobacterial virulence genes
724		through genetic interaction mapping. <i>Proceedings of the National Academy</i>
725		of Sciences of the United States of America 103 , 11760-11765 (2006).
726	22.	D. Raimunda, J. E. Long, C. M. Sassetti, J. M. Arguello, Role in metal
727		homeostasis of CtpD, a Co(2)(+) transporting P(1B4)-ATPase of
728		Mycobacterium smegmatis. Mol Microbiol 84, 1139-1149 (2012).
729	23.	I. Moreno <i>et al.</i> , AtHMA1 is a thapsigargin-sensitive Ca2+/heavy metal
730		pump. <i>Journal of Biological Chemistry</i> 283 , 9633-9641 (2008).
731	24.	J. Scherer, D. H. Nies, CzcP is a novel efflux system contributing to
732		transition metal resistance in Cupriavidus metallidurans CH34. Mol
733		Microbiol 73 , 601-621 (2009).
734	25.	D. Seigneurin-Berny <i>et al.</i> , HMA1, a new Cu-ATPase of the chloroplast
735		envelope, is essential for growth under adverse light conditions. <i>Journal of</i>
736		Biological Chemistry 281 , 2882-2892 (2006).
737	26.	A. T. Smith, M. O. Ross, B. M. Hoffman, A. C. Rosenzweig, Metal Selectivity
738		of a Cd-, Co-, and Zn-Transporting P1B-type ATPase. <i>Biochemistry</i> 56 , 85-
739	~-	95 (2017).
740	27.	P. Gourdon <i>et al.</i> , Crystal structure of a copper-transporting PIB-type
741	20	ATPase. Nature 475 , 59-074 (2011).
742	28.	K. Wang <i>et al.</i> , Structure and mechanism of Zn2+-transporting P-type
743	20	A I Pases. <i>Nature</i> 514 , 518-522 (2014).
744	29.	M. Andersson <i>et al.</i> , Copper-transporting P-type ATPases use a unique
745 746	20	1011-release pathway. Nul Struct Mol Biol 21 , 43-+ (2014).
740	50.	A. C. ROSEIIZWEIG, J. M. AIguello, Toward a molecular understanding of motol transport by D(1P) type ATDasas, Curr Ton Membr 60, 112, 126
747 748		(2012)
740	21	(2012). S. I. Droos, D. F. Bovar, C. Landars-Lamschar, M. Lubhan, Distinct
750	51.	functions of serial metal-binding domains in the Escherichia coliP(1B)-
751		ATPase ConA Molecular Microbiology 97 423-438 (2015)
752	32	M Gonzalez-Guerrero I M Arguello Mechanism of Cu+-transporting
753	52.	ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane
754		transport sites Proceedings of the National Academy of Sciences of the
755		United States of America 105 , 5992-5997 (2008).
756	33.	D. Mattle <i>et al.</i> , On allosteric modulation of P-type Cu(+)-ATPases. <i>I Mol</i>
757	001	<i>Biol</i> 425 , 2299-2308 (2013).
758	34.	O. Sitsel <i>et al.</i> , Structure and Function of Cu(I)- and Zn(II)-ATPases.
759		Biochemistry 54 , 5673-5683 (2015).
760	35.	P. A. Lanzetta, L. J. Alvarez, P. S. Reinach, O. A. Candia, An improved assay
761		for nanomole amounts of inorganic phosphate. <i>Anal Biochem</i> 100 , 95-97
762		(1979).
763	36.	D. Osman <i>et al.</i> , Bacterial sensors define intracellular free energies for
764		correct enzyme metalation. <i>Nat Chem Biol</i> 15 , 241-249 (2019).
765	37.	P. Gourdon <i>et al.</i> , Crystal structure of a copper-transporting PIB-type
766		ATPase. Nature 475, 59-64 (2011).

767	38.	M. Andersson <i>et al.</i> , Copper-transporting P-type ATPases use a unique
768		ion-release pathway. <i>Nature structural & molecular biology</i> 21 , 43-48
769		(2014).
770	39.	P. Gourdon et al., HiLiDe-Systematic Approach to Membrane Protein
771		Crystallization in Lipid and Detergent. <i>Cryst Growth Des</i> 11 , 2098-2106
772		(2011).
773	40.	T. L. Sorensen, C. Olesen, A. M. Jensen, J. V. Moller, P. Nissen, Crystals of
774		sarcoplasmic reticulum Ca(2+)-ATPase. J Biotechnol 124 , 704-716 (2006).
775	41.	T. Croll, ISOLDE: a physically realistic environment for model building
776		into low-resolution electron-density maps. Acta Crystallographica Section
777		D 74 , 519-530 (2018).
778	42.	G. P. Borrelly, S. A. Rondet, S. Tottey, N. J. Robinson, Chimeras of P-type
779		ATPases and their transcriptional regulators: contributions of a cytosolic
780		amino-terminal domain to metal specificity. <i>Mol Microbiol</i> 53 , 217-227
781		(2004).
782	43.	C. H. Yu <i>et al.</i> , The metal chaperone Atox1 regulates the activity of the
783		human copper transporter ATP7B by modulating domain dynamics. <i>J Biol</i>
784		Chem 292 , 18169-18177 (2017).
785	44.	I. Morin, S. Gudin, E. Mintz, M. Cuillel, Dissecting the role of the N-terminal
786		metal-binding domains in activating the yeast copper ATPase in vivo. Febs
787		Journal 276 , 4483-4495 (2009).
788	45.	D. Mattle <i>et al.</i> , A sulfur-based transport pathway in Cu+-ATPases. <i>EMBO</i>
789		<i>Rep</i> 16 , 728-740 (2015).
790	46.	S. B. Hansen <i>et al.</i> , The crystal structure of the Ca ²⁺ -ATPase
791		1 from Listeria monocytogenes reveals a pump primed for
792		dephosphorylation. <i>bioRxiv</i> , 2020.2006.2023.166462 (2020).
793	47.	S. J. Patel et al., Fine-tuning of Substrate Affinity Leads to Alternative
794		Roles of Mycobacterium tuberculosis Fe2+-ATPases. J Biol Chem 291,
795		11529-11539 (2016).
796	48.	J. V. Moller, C. Olesen, A. M. Winther, P. Nissen, The sarcoplasmic Ca2+-
797		ATPase: design of a perfect chemi-osmotic pump. <i>Q Rev Biophys</i> 43 , 501-
798		566 (2010).
799	49.	K. Faxen <i>et al.</i> , Characterization of a Listeria monocytogenes Ca(2+)
800		pump: a SERCA-type ATPase with only one Ca(2+)-binding site. <i>J Biol</i>
801		Chem 286 , 1609-1617 (2011).
802	50.	K. Abe, K. Irie, H. Nakanishi, H. Suzuki, Y. Fujiyoshi, Crystal structures of
803		the gastric proton pump. <i>Nature</i> 556 , 214-218 (2018).
804	51.	M. Dyla, M. Kjaergaard, H. Poulsen, P. Nissen, Structure and Mechanism of
805		P-Type ATPase Ion Pumps. Annu Rev Biochem 89 , 583-603 (2020).
806	52.	B. P. Pedersen, M. J. Buch-Pedersen, J. P. Morth, M. G. Palmgren, P. Nissen,
807		Crystal structure of the plasma membrane proton pump. <i>Nature</i> 450 ,
808		1111-1114 (2007).
809	53.	H. Nakanishi <i>et al.</i> , Transport Cycle of Plasma Membrane Flippase ATP11C
810		by Cryo-EM. <i>Cell Rep</i> 32 , 108208 (2020).
811	54.	N. Abeyrathna, S. Abeyrathna, M. T. Morgan, C. J. Fahrni, G. Meloni,
812		Transmembrane Cu(i) P-type ATPase pumps are electrogenic uniporters.
813		Dalton Trans, (2020).

 Bephosphorylation of the Sarcoplasmic Reticulum Ca2+-ATPase. Journal of Biological Chemistry 279, 46355-46358 (2004). V. R. Schack et al., Identification and function of a cytoplasmic K+ site of the Na+, K+ -ATPase. J Biol Chem 283, 27982-27990 (2008). C. M. Sassetti, E. J. Rubin, Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100, 12989-12994 (2003). S. M. Joshi et al., Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci U S A 103, 11760-11765 (2006). H. Botella et al., Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10, 248-259 (2011). H. Pi, S. J. Patel, J. M. Arguello, J. D. Helmann, The Listeria monocytogenes Fur-regulated virulence protein FrvA is an Fe(II) efflux P1B4 -type ATPase. Mol Microbiol 100, 1066-1079 (2016). H. M. Bradford, Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. Anal Biochem 72, 248-254 (1976). A. J. McCoy et al., Phaser crystallographic software. Journal of applied crystallography 40, 658-674 (2007). D. Liebschner et al., Macromolecular structure determination using X- rays, neutrons and electrons: recent developments in Phenix. Acta Crystallographica Section D 75, 861-877 (2019). F. Lonkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallographica Section D 66, 486-501 (2010). T. L. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallographic Structure refinement with phenix.refine. Acta Crystallographica Section D 68, 352- 367 (2012). K. J. Willisms et al., MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci 27, 293-315 (2018). F. D. Goddard et a	814	55.	T. LM. Sørensen <i>et al.</i> , Localization of a K+-binding Site Involved in
 of Biological Chemistry 279, 46355-46358 (2004). V. R. Schack et al., Identification and function of a cytoplasmic K+ site of the Na+, K+ ATPase. J Biol Chem 283, 27982-27990 (2008). C. M. Sassetti, E. J. Rubin, Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100, 12989-12994 (2003). S. M. Joshi et al., Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci U S A 103, 11760-11765 (2006). H. Botella et al., Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10, 248-259 (2011). H. Pi, S. J. Patel, J. M. Arguello, J. D. Helmann, The Listeria monocytogenes Fur-regulated virulence protein FrvA is an Fe(II) efflux P1B4 -type ATPase. Mol Microbiol 100, 1066-1079 (2016). M. M. Brädford, Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. Anal Biochem 72, 248-254 (1976). A. J. McCoy et al., Phaser crystallographic software. Journal of applied crystallography 40, 658-674 (2007). D. Liebschner et al., Macromolecular structure determination using X- rays, neutrons and electrons: recent developments in Phenix. Acta Crystallographica Section D 75, 861-877 (2019). F. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D 74, 519-530 (2018). G. T. D. Goddard et al., MOEr ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27, 14-25 (2018). F. V. Afonine et al., MoNer Soit X Acta Crystallographica Section D 68, 352- 367 (2012). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem 13, 326-332 (1967). V. A. Snewin et al., Assessment of i	815		Dephosphorylation of the Sarcoplasmic Reticulum Ca2+-ATPase. <i>Journal</i>
 V. R. Schack <i>et al.</i>, Identification and function of a cytoplasmic K+ site of the Na+, K+ ATPase. <i>J Biol Chem</i> 283, 27982-27990 (2008). C. M. Sassetti, E. J. Rubin, Genetic requirements for mycobacterial survival during infection. <i>Proc Natl Acad Sci U S A</i> 100, 12989-12994 (2003). S. M. Joshi <i>et al.</i>, Characterization of mycobacterial virulence genes through genetic interaction mapping. <i>Proc Natl Acad Sci U S A</i> 103, 11760-11765 (2006). H. Botella <i>et al.</i>, Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. <i>Cell Host Microbe</i> 10, 248-259 (2011). H. Botella <i>et al.</i>, Mycobacterial p(1)-type ATPases mediate resistance to ATPase. <i>Mol Microbiol</i> 100, 1066-1079 (2016). H. P., S. J. Patel, J. M. Arguello, J. D. Helmann, The Listeria monocytogenes Fur-regulated virulence protein FrvA is an Fe(II) efflux P1B4 -type ATPase. <i>Mol Microbiol</i> 100, 1066-1079 (2016). M. M. Bradford, Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. <i>Anal Biochem</i> 72, 248-254 (1976). A. J. McCoy <i>et al.</i>, Phaser crystallographic software. <i>Journal of applied crystallography</i> 40, 658-674 (2007). D. Liebschner <i>et al.</i>, Macromolecular structure determination using X- rays, neutrons and electrons: recent developments in Phenix. <i>Acta Crystallographica Section D</i> 75, 861-877 (2019). P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. <i>Acta Grystallographica Section D</i> 66, 486-501 (2010). T. L. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. <i>Acta Crystallogr D</i> 74, 519-530 (2018). P. V. Afonine <i>et al.</i>, Towards automated crystallographica Section D 68, 352- 367 (2012). P. V. Afonine <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure vali	816		of Biological Chemistry 279 , 46355-46358 (2004).
 the Na+, K+ -ATPase. J Biol Chem 283, 27982-27990 (2008). C. M. Sassetti, E. J. Rubin, Genetic requirements for mycobacterial survival during infection. Proc Natl Acad Sci U S A 100, 12989-12994 (2003). S. M. Joshi et al., Characterization of mycobacterial virulence genes through genetic interaction mapping. Proc Natl Acad Sci U S A 103, 11760-11765 (2006). H. Botella et al., Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. Cell Host Microbe 10, 248-259 (2011). H. Pi, S. J. Patel, J. M. Arguello, J. D. Helmann, The Listeria monocytogenes Fur-regulated virulence protein FrvA is an Fe(II) efflux P1B4 - type ATPase. Mol Microbiol 100, 1066-1079 (2016). M. M. Bradford, Rapi and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. Anal Biochem 72, 248-254 (1976). A. J. McCoy et al., Phaser crystallographic software. Journal of applied crystallography 40, 658-674 (2007). D. Liebschner et al., Macromolecular structure determination using X- rays, neutrons and electrons: recent developments in Phenix. Acta Crystallographica Section D 75, 861-877 (2019). F. L. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D 74, 519-530 (2018). T. D. Goddard et al., UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27, 14-25 (2018). F. P. V. Afonine et al., MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci 27, 293-315 (2018). C. J. Williams et al., MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci 27, 293-315 (2018). W. L. DeLano, Pymoi. An open-source molecular graphics stool. CCP4 Newsletter on protein crystallography 40, 82-92 (2002). E. L. Wu e	817	56.	V. R. Schack <i>et al.</i> , Identification and function of a cytoplasmic K+ site of
 S7. C. M. Sassetti, E. J. Rubin, Genetic requirements for mycobacterial survival during infection. <i>Proc Natl Acad Sci U S A</i> 100, 12989-12994 (2003). S. M. Joshi <i>et al.</i>, Characterization of mycobacterial virulence genes through genetic interaction mapping. <i>Proc Natl Acad Sci U S A</i> 103, 11760-11765 (2006). H. Botella <i>et al.</i>, Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. <i>Cell Host Microbe</i> 10, 248-259 (2011). H. Pi, S. J. Patel, J. M. Arguello, J. D. Helmann, The Listeria monocytogenes Fur-regulated virulence protein FrvA is an Fe(II) efflux P1B4 -type ATPase. <i>Mol Microbiol</i> 100, 1066-1079 (2016). M. M. Bradford, Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. <i>Anal Biochem</i> 72, 248-254 (1976). A. J. McCoy <i>et al.</i>, Phaser crystallographic software. <i>Journal of applied crystallography</i> 40, 658-674 (2007). D. Liebschner <i>et al.</i>, Macromolecular structure determination using X- rays, neutrons and electrons: recent developments in Phenix. <i>Acta Crystallographica Section D</i> 75, 861-877 (2019). P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. <i>Acta Crystallographica Section D</i> 66, 486-501 (2010). T. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. <i>Acta Crystallogr D</i> 74, 519-530 (2018). C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). P. V. Afonine <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4</i> <i>Newsletter on protein crystallography</i> 40, 82-92 (2002). E. L. Wu <i>et al.</i>, CHARMM-GUI Mem	818		the Na+, K+ -ATPase, <i>I Biol Chem</i> 283 , 27982-27990 (2008).
 during infection. <i>Proc Natl Acad Sci U S A</i> 100, 12989-12994 (2003). S. M. Joshi <i>et al.</i>, Characterization of mycobacterial virulence genes through genetic interaction mapping. <i>Proc Natl Acad Sci U S A</i> 103, 11760-11765 (2006). H. Botella <i>et al.</i>, Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. <i>Cell Host Microbe</i> 10, 248-259 (2011). H. Pi, S. J. Patel, J. M. Arguello, J. D. Helmann, The Listeria monocytogenes Fur-regulated virulence protein FrvA is an Fe(II) efflux P1B4 -type ATPase. <i>Mol Microbiol</i> 100, 1066-1079 (2016). M. M. Bradford, Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. <i>Anal Biochem</i> 72, 248-254 (1976). A. J. McCoy <i>et al.</i>, Phaser crystallographic software. <i>Journal of applied</i> <i>crystallography</i> 40, 658-674 (2007). D. Liebschner <i>et al.</i>, Macromolecular structure determination using X- rays, neutrons and electrons: recent developments in Phenix. <i>Acta</i> <i>Crystallographica Section D</i> 75, 861-877 (2019). P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. <i>Acta Crystallographica Section D</i> 66, 486-501 (2010). T. Coll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. <i>Acta Crystallogr D</i> 74, 519-530 (2018). T. D. Goddard <i>et al.</i>, UCSF ChimeraX: Meeting modern challenges in visualization and analysis. <i>Protein Sci</i> 27, 14-25 (2018). P. V. Afonine <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4</i> <i>Newsletter on protein crystallography</i> 40, 82-92 (2002). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materia	819	57.	C. M. Sassetti, E. I. Rubin, Genetic requirements for mycobacterial survival
 S. M. Joshi <i>et al.</i>, Characterization of mycobacterial virulence genes through genetic interaction mapping. <i>Proc Natl Acad Sci U S A</i> 103, 11760-11765 (2006). H. Botella <i>et al.</i>, Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. <i>Cell Host Microbe</i> 10, 248-259 (2011). H. Pi, S. J. Patel, J. M. Arguello, J. D. Helmann, The Listeria monocytogenes <i>Eur-regulated virulence protein FrvA is an Fe</i>(II) efflux P1B4 - type ATPase. <i>Mol Microbiol</i> 100, 1066-1079 (2016). M. M. Bradford, Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. <i>Anal Biochem</i> 72, 248-254 (1976). A. J. McCoy <i>et al.</i>, Phaser crystallographic software. <i>Journal of applied</i> <i>crystallography</i> 40, 658-674 (2007). D. Liebschner <i>et al.</i>, Macromolecular structure determination using X- rays, neutrons and electrons: recent developments in Phenix. <i>Acta</i> <i>Crystallographica Section D</i> 75, 861-877 (2019). P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. <i>Acta Crystallographica Section D</i> 66, 486-501 (2010). T. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. <i>Acta Crystallogr D</i> 74, 519-530 (2018). T. D. Goddard <i>et al.</i>, UCSF ChimeraX: Meeting modern challenges in visualization and analysis. <i>Protein Sci</i> 27, 14-25 (2018). C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4</i> <i>Newsletter on protein crystallography</i> 40, 82-92 (2002). T. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin Chem</i> 13, 326-332 (1967). V.	820	0/1	during infection Proc Natl Acad Sci USA 100 12989-12994 (2003)
 through genetic interaction mapping. <i>Proc Natl Acad Sci U S A</i> 103, 11760-11765 (2006). H. Botella <i>et al.</i>, Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. <i>Cell Host Microbe</i> 10, 248-259 (2011). H. Botella <i>et al.</i>, Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. <i>Cell Host Microbe</i> 10, 248-259 (2011). H. Pi, S. J. Patel, J. M. Arguello, J. D. Helmann, The Listeria monocytogenes Fur-regulated virulence protein FrvA is an Fe(II) efflux P1B4 -type ATPase. <i>Mol Microbiol</i> 100, 1066-1079 (2016). M. M. Bradford, Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. <i>Anal Biochem</i> 72, 248-254 (1976). A. J. McCoy <i>et al.</i>, Phaser crystallographic software. <i>Journal of applied crystallography</i> 40, 658-674 (2007). D. Liebschner <i>et al.</i>, Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. <i>Acta Crystallographica Section D</i> 75, 861-877 (2019). P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. <i>Acta Crystallographica Section D</i> 66, 486-501 (2010). T. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. <i>Acta Crystallogr D</i> 74, 519-530 (2018). T. D. Goddard <i>et al.</i>, UCSF ChimeraX: Meeting modern challenges in visualization and analysis. <i>Protein Sci</i> 27, 14-25 (2018). P. V. Afonine <i>et al.</i>, Towards automated crystallographica Section D 68, 352-367 (2012). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, hospholipids, and total phosphate in biologic materials. <i>Clin Chem</i> 13, 326-332 (1967). V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-459	821	58	S M Joshi <i>et al</i> Characterization of mycobacterial virulence genes
 and the first interference of the probability of the first interference of the probability of the preprindent of the probability of the probability of the p	822	501	through genetic interaction manning <i>Proc Natl Acad Sci USA</i> 103
 59. H. Botella <i>et al.</i>, Mycobacterial p(1)-type ATPases mediate resistance to zinc poisoning in human macrophages. <i>Cell Host Microbe</i> 10, 248-259 (2011). 60. H. Pi, S. J. Patel, J. M. Arguello, J. D. Helmann, The Listeria monocytogenes Fur-regulated virulence protein FrvA is an Fe(II) efflux P184 -type ATPase. <i>Mol Microbiol</i> 100, 1066-1079 (2016). 61. M. M. Bradford, Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. <i>Anal Biochem</i> 72, 248-254 (1976). 62. A. J. McCoy <i>et al.</i>, Phaser crystallographic software. <i>Journal of applied crystallography</i> 40, 658-674 (2007). 63. D. Liebschner <i>et al.</i>, Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. <i>Acta Crystallographica Section D</i> 75, 861-877 (2019). 64. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. <i>Acta Crystallographica Section D</i> 66, 486-501 (2010). 71. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. <i>Acta Crystallogr D</i> 74, 519-530 (2018). 65. P. V. Afonine <i>et al.</i>, Towards automated crystallographic Section D 68, 352-367 (2012). 66. C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). 67. W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4 Newsletter on protein crystallography</i> 40, 82-92 (2002). 71. V. A Snewin <i>et al.</i>, McIrodetion. <i>Protein</i> 36, 1997-2004 (2014). 72. E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membranes simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). 73. M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for postioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, 03	823		11760-11765 (2006)
 b) Indecting in human macrophages. <i>Cell Host Microbe</i> 10, 248-259 (2011). 60. H. Pi, S. J. Patel, J. M. Arguello, J. D. Helmann, The Listeria monocytogenes Fur-regulated virulence protein FrvA is an Fe(II) efflux P1B4 -type ATPase. <i>Mol Microbiol</i> 100, 1066-1079 (2016). 61. M. M. Bradford, Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. <i>Anal Biochem</i> 72, 248-254 (1976). 62. A. J. McCoy <i>et al.</i>, Phaser crystallographic software. <i>Journal of applied crystallography</i> 40, 658-674 (2007). 63. D. Liebschner <i>et al.</i>, Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. <i>Acta Crystallographica Section D</i> 75, 861-877 (2019). 64. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. <i>Acta Crystallographica Section D</i> 66, 486-501 (2010). 71. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. <i>Acta Crystallographica</i> 77 (2018). 65. T. D. Goddard <i>et al.</i>, UCSF ChimeraX: Meeting modern challenges in visualization and analysis. <i>Protein Sci</i> 27, 14-25 (2018). 67. P. V. Afonine <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). 68. C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). 69. W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4 Newsletter on protein crystallography</i> 40, 82-92 (2002). 70. E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin Chem</i> 13, 326-332 (1967). 71. W. A. Smewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase	824	59	H Botella <i>et al</i> Mycobacterial $n(1)$ -type ATPases mediate resistance to
 (2011). (2011). (2011). (2011). (2011). (2011). (2012). (2013). (2014). (2015). (2015). (2016). (2017). (2017). (2017). (2017). (2018). <	825	07.	zinc poisoning in human macronhages <i>Cell Host Microhe</i> 10 248-259
 H. Pi, S. J. Patel, J. M. Arguello, J. D. Helmann, The Listeria monocytogenes Fur-regulated virulence protein FrvA is an Fe(II) efflux P1B4 -type ATPase. Mol Microbiol 100, 1066-1079 (2016). M. M. Bradford, Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. Anal Biochem 72, 248-254 (1976). A. J. McCoy et al., Phaser crystallographic software. Journal of applied crystallography 40, 658-674 (2007). D. Liebschner et al., Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallographica Section D 75, 861-877 (2019). F. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallographica Section D 66, 486-501 (2010). T. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D 74, 519-530 (2018). T. D. Goddard et al., UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27, 14-25 (2018). P. V. Afonine et al., Towards automated crystallographica Section D 68, 352-367 (2012). C. J. Williams et al., MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci 27, 293-315 (2018). W. L. DeLano, Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography 40, 82-92 (2002). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem 13, 326-332 (1967). V. A. Snewin et al., Assessment of immunity to mycobacterial infection with luciferase reporter constructs. Infect Immun	826		(2011)
 Gold Hill, J. J. Right, J. M. Right, J. M. Birkhman, The Bell Setting Molecy Setters and Network Setting Proceedings of the Setting Process of the Setting Proces of the Setting Process of the Setti	820 827	60	H Pi S I Patel I M Arguello I D Helmann The Listeria monocytogenes
 ATPase. <i>Mol Microbiol</i> 100, 1066-1079 (2016). M. M. Bradford, Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. <i>Anal Biochem</i> 72, 248-254 (1976). A. J. McCoy <i>et al.</i>, Phaser crystallographic software. <i>Journal of applied</i> <i>crystallography</i> 40, 658-674 (2007). D. Liebschner <i>et al.</i>, Macromolecular structure determination using X- rays, neutrons and electrons: recent developments in Phenix. <i>Acta</i> <i>Crystallographica Section</i> D 75, 861-877 (2019). P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. <i>Acta Crystallographica Section</i> D 66, 486-501 (2010). T. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. <i>Acta Crystallogr</i> D 74, 519-530 (2018). T. D. Goddard <i>et al.</i>, UCSF ChimeraX: Meeting modern challenges in visualization and analysis. <i>Protein Sci</i> 27, 14-25 (2018). P. V. Afonine <i>et al.</i>, Towards automated crystallographica Section D 68, 352- 367 (2012). C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4</i> <i>Newsletter on protein crystallography</i> 40, 82-92 (2002). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin Chem</i> 13, 326-332 (1967). V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immu</i> 67, 4586-4593 (1999). E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning	828	00.	Fur-regulated virulance protein FrvA is an Fe(II) efflux P1RA stype
 An M. B. radford, Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. Anal Biochem 72, 248-254 (1976). A. J. McCoy et al., Phaser crystallographic software. Journal of applied crystallography 40, 658-674 (2007). D. Liebschner et al., Macromolecular structure determination using X- rays, neutrons and electrons: recent developments in Phenix. Acta Crystallographica Section D 75, 861-877 (2019). P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallographica Section D 66, 486-501 (2010). T. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D 74, 519-530 (2018). T. D. Goddard et al., UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27, 14-25 (2018). P. V. Afonine et al., Towards automated crystallographica Section D 68, 352- 367 (2012). C. J. Williams et al., MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci 27, 293-315 (2018). W. L. DeLano, Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography 40, 82-92 (2002). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem 13, 326-332 (1967). V. A. Snewin et al., Assessment of immunity to mycobacterial infection with luciferase reporter constructs. Infect Immun 67, 4586-4593 (1999). E. L. Wu et al., CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40, D370-376 (2012). 	820		ATPase Mol Microhiol 100 1066-1079 (2016)
 Mi. M. Braufor, Rapit and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. Anal Biochem 72, 248-254 (1976). A. J. McCoy et al., Phaser crystallographic software. Journal of applied crystallography 40, 658-674 (2007). D. Liebschner et al., Macromolecular structure determination using X- rays, neutrons and electrons: recent developments in Phenix. Acta Crystallographica Section D 75, 861-877 (2019). P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallographica Section D 66, 486-501 (2010). T. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D 74, 519-530 (2018). T. D. Goddard et al., UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27, 14-25 (2018). P. V. Afonine et al., Towards automated crystallographica Section D 68, 352- 367 (2012). C. J. Williams et al., MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci 27, 293-315 (2018). W. L. DeLano, Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography 40, 82-92 (2002). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem 13, 326-332 (1967). V. A. Snewin et al., Assessment of immunity to mycobacterial infection with luciferase reporter constructs. Infect Immun 67, 4586-4593 (1999). E. L. Wu et al., CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40, D370-376 (2012). 	830	61	M M Bradford Papid and Sonsitive Method for Quantitation of
 Binding, Anal Biochem 72, 248-254 (1976). A. J. McCoy et al., Phaser crystallographic software. Journal of applied crystallography 40, 658-674 (2007). D. Liebschner et al., Macromolecular structure determination using X- rays, neutrons and electrons: recent developments in Phenix. Acta Crystallographica Section D 75, 861-877 (2019). P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallographica Section D 66, 486-501 (2010). T. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D 74, 519-530 (2018). T. D. Goddard et al., UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27, 14-25 (2018). P. V. Afonine et al., Towards automated crystallographica Section D 68, 352- 367 (2012). C. J. Williams et al., MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci 27, 293-315 (2018). W. L. DeLano, Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography 40, 82-92 (2002). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem 13, 326-332 (1967). V. A. Snewin et al., CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40, D370-376 (2012). 	830 821	01.	M. M. Diaulolu, Rapid and Sensitive Method for Qualification of Microgram Quantities of Protoin Utilizing Principle of Protoin Dyo
 A. J. McCoy et al., Phaser crystallographic software. Journal of applied crystallography 40, 658-674 (2007). D. Liebschner et al., Macromolecular structure determination using X- rays, neutrons and electrons: recent developments in Phenix. Acta Crystallographica Section D 75, 861-877 (2019). P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallographica Section D 66, 486-501 (2010). T. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D 74, 519-530 (2018). T. D. Goddard et al., UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27, 14-25 (2018). P. V. Afonine et al., Towards automated crystallographic Section D 68, 352- 367 (2012). C. J. Williams et al., MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci 27, 293-315 (2018). M. L. DeLano, Pymoi: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography 40, 82-92 (2002). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem 13, 326-332 (1967). V. A. Snewin et al., Assessment of immunity to mycobacterial infection with luciferase reporter constructs. Infect Immun 67, 4586-4593 (1999). E. L. Wu et al., CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40, D370-376 (2012). 	031 022		Pinding Angl Diochom 72 249 254 (1076)
 A. J. MCC09 <i>et al.</i>, Fhase Cystallographic software. <i>Journal of applied</i> <i>crystallography</i> 40, 658-674 (2007). D. Liebschner <i>et al.</i>, Macromolecular structure determination using X- rays, neutrons and electrons: recent developments in Phenix. <i>Acta</i> <i>Crystallographica Section D</i> 75, 861-877 (2019). P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. <i>Acta Crystallographica Section D</i> 66, 486-501 (2010). T. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. <i>Acta Crystallogr D</i> 74, 519-530 (2018). T. D. Goddard <i>et al.</i>, UCSF ChimeraX: Meeting modern challenges in visualization and analysis. <i>Protein Sci</i> 27, 14-25 (2018). P. V. Afonine <i>et al.</i>, Towards automated crystallographic structure refinement with phenix.refine. <i>Acta Crystallographica Section D</i> 68, 352- 367 (2012). C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4</i> <i>Newsletter on protein crystallography</i> 40, 82-92 (2002). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin</i> <i>Chem</i> 13, 326-332 (1967). V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immu</i> 67, 4586-4593 (1999). F. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	032 022	62	Diffullig. Anul Diochem 72, 240-254 (1970).
 b) Liebschner et al., Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallographica Section D 75, 861-877 (2019). P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallographica Section D 66, 486-501 (2010). T. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D 74, 519-530 (2018). T. D. Goddard et al., UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27, 14-25 (2018). P. V. Afonine et al., Towards automated crystallographica Section D 68, 352- 367 (2012). W. L. DeLano, Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography 40, 82-92 (2002). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem 13, 326-332 (1967). V. A. Snewin et al., Assessment of immunity to mycobacterial infection with luciferase reporter constructs. Infect Immun 67, 4586-4593 (1999). F. L. Wu et al., CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40, D370-376 (2012). 	033 024	02.	A. J. MCCOY et ul., Phaser crystanographic software. <i>Journal of upplied</i>
 b. Liebschief <i>et al.</i>, Macromolectuar structure determination using X-rays, neutrons and electrons: recent developments in Phenix. <i>Acta Crystallographica Section D</i> 75, 861-877 (2019). F. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. <i>Acta Crystallographica Section D</i> 66, 486-501 (2010). T. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. <i>Acta Crystallogr D</i> 74, 519-530 (2018). T. D. Goddard <i>et al.</i>, UCSF ChimeraX: Meeting modern challenges in visualization and analysis. <i>Protein Sci</i> 27, 14-25 (2018). P. V. Afonine <i>et al.</i>, Towards automated crystallographica Section <i>D</i> 68, 352-367 (2012). C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4 Newsletter on protein crystallography</i> 40, 82-92 (2002). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin Chem</i> 13, 326-332 (1967). V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). F. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membranes simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	034 025	(2	Crystullography 40, 656-674 (2007).
 <i>Crystallographica Section D</i> 75, 861-877 (2019). <i>P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development</i> of Coot. <i>Acta Crystallographica Section D</i> 66, 486-501 (2010). T. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. <i>Acta Crystallogr D</i> 74, 519-530 (2018). T. D. Goddard <i>et al.</i>, UCSF ChimeraX: Meeting modern challenges in visualization and analysis. <i>Protein Sci</i> 27, 14-25 (2018). <i>P. V. Afonine et al.</i>, Towards automated crystallographica Section <i>D</i> 68, 352- 367 (2012). C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4</i> <i>Newsletter on protein crystallography</i> 40, 82-92 (2002). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin</i> <i>Chem</i> 13, 326-332 (1967). V. A. Snewin <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	833	63.	D. Liebschner <i>et al.</i> , Macromolecular structure determination using X-
 64. P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. <i>Acta Crystallographica Section D</i> 66, 486-501 (2010). 7. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. <i>Acta Crystallogr D</i> 74, 519-530 (2018). 65. T. D. Goddard <i>et al.</i>, UCSF ChimeraX: Meeting modern challenges in visualization and analysis. <i>Protein Sci</i> 27, 14-25 (2018). 67. P. V. Afonine <i>et al.</i>, Towards automated crystallographica Section D 68, 352- 367 (2012). 68. C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). 69. W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4</i> <i>Newsletter on protein crystallography</i> 40, 82-92 (2002). 70. E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin</i> <i>Chem</i> 13, 326-332 (1967). 71. V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). 72. E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). 73. M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	830		rays, neutrons and electrons: recent developments in Phenix. Acta
 b. Emsley, B. Lonkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallographica Section D 66, 486-501 (2010). T. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D 74, 519-530 (2018). G. T. D. Goddard et al., UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27, 14-25 (2018). P. V. Afonine et al., Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallographic Section D 68, 352- 367 (2012). C. J. Williams et al., MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci 27, 293-315 (2018). W. L. DeLano, Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography 40, 82-92 (2002). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem 13, 326-332 (1967). V. A. Snewin et al., Assessment of immunity to mycobacterial infection with luciferase reporter constructs. Infect Immun 67, 4586-4593 (1999). E. L. Wu et al., CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40, D370-376 (2012). 	83/	()	<i>Crystallographica Section D</i> 75 , 861-877 (2019).
 of Coot. Acta Crystallographica Section D 66, 486-501 (2010). T. I. Croll, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D 74, 519-530 (2018). T. D. Goddard et al., UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci 27, 14-25 (2018). P. V. Afonine et al., Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallographica Section D 68, 352- 367 (2012). C. J. Williams et al., MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci 27, 293-315 (2018). W. L. DeLano, Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography 40, 82-92 (2002). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem 13, 326-332 (1967). V. A. Snewin et al., Assessment of immunity to mycobacterial infection with luciferase reporter constructs. Infect Immun 67, 4586-4593 (1999). E. L. Wu et al., CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40, D370-376 (2012). 	838	64.	P. Emsley, B. Lonkamp, W. G. Scott, K. Cowtan, Features and development
 65. 1. I. Croil, ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. <i>Acta Crystallogr D</i> 74, 519-530 (2018). 66. T. D. Goddard <i>et al.</i>, UCSF ChimeraX: Meeting modern challenges in visualization and analysis. <i>Protein Sci</i> 27, 14-25 (2018). 67. P. V. Afonine <i>et al.</i>, Towards automated crystallographic structure refinement with phenix.refine. <i>Acta Crystallographica Section D</i> 68, 352- 367 (2012). 68. C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). 69. W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4</i> <i>Newsletter on protein crystallography</i> 40, 82-92 (2002). 70. E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin</i> <i>Chem</i> 13, 326-332 (1967). 71. V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). 72. E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). 73. M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	839		of Coot. Acta Crystallographica Section D 66 , 486-501 (2010).
 into low-resolution electron-density maps. <i>Acta Crystallogr D</i> 74, 519-530 (2018). 66. T. D. Goddard <i>et al.</i>, UCSF ChimeraX: Meeting modern challenges in visualization and analysis. <i>Protein Sci</i> 27, 14-25 (2018). 67. P. V. Afonine <i>et al.</i>, Towards automated crystallographic structure refinement with phenix.refine. <i>Acta Crystallographica Section D</i> 68, 352-367 (2012). 68. C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). 69. W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4 Newsletter on protein crystallography</i> 40, 82-92 (2002). 70. E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin Chem</i> 13, 326-332 (1967). 71. V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). 72. E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). 73. M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	840	65.	1. I. Croll, ISOLDE: a physically realistic environment for model building
 (2018). (2018). 66. T. D. Goddard <i>et al.</i>, UCSF ChimeraX: Meeting modern challenges in visualization and analysis. <i>Protein Sci</i> 27, 14-25 (2018). 67. P. V. Afonine <i>et al.</i>, Towards automated crystallographic structure refinement with phenix.refine. <i>Acta Crystallographica Section D</i> 68, 352- 367 (2012). 68. C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). 69. W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4</i> <i>Newsletter on protein crystallography</i> 40, 82-92 (2002). 70. E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin</i> <i>Chem</i> 13, 326-332 (1967). 71. V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). 72. E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). 73. M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	841		into low-resolution electron-density maps. Acta Crystallogr D 74, 519-530
 66. 1. D. Goddard <i>et al.</i>, UCSF ChimeraX: Meeting modern challenges in visualization and analysis. <i>Protein Sci</i> 27, 14-25 (2018). 67. P. V. Afonine <i>et al.</i>, Towards automated crystallographic structure refinement with phenix.refine. <i>Acta Crystallographica Section D</i> 68, 352- 367 (2012). 68. C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). 69. W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4</i> <i>Newsletter on protein crystallography</i> 40, 82-92 (2002). 70. E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin</i> <i>Chem</i> 13, 326-332 (1967). 71. V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). 72. E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). 73. M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	842		(2018).
 Visualization and analysis. <i>Protein Sci 27</i>, 14-25 (2018). F. V. Afonine <i>et al.</i>, Towards automated crystallographic structure refinement with phenix.refine. <i>Acta Crystallographica Section D</i> 68, 352- 367 (2012). C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4</i> <i>Newsletter on protein crystallography</i> 40, 82-92 (2002). F. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin</i> <i>Chem</i> 13, 326-332 (1967). V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). F. E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	843	66.	1. D. Goddard <i>et al.</i> , UCSF ChimeraX: Meeting modern challenges in
 P. V. Afonine <i>et al.</i>, Towards automated crystallographic structure refinement with phenix.refine. <i>Acta Crystallographica Section D</i> 68, 352- 367 (2012). 68. C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). 69. W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4</i> <i>Newsletter on protein crystallography</i> 40, 82-92 (2002). 70. E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin</i> <i>Chem</i> 13, 326-332 (1967). 71. V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). 72. E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). 73. M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	844		visualization and analysis. Protein Sci 27, 14-25 (2018).
 refinement with phenix.refine. Acta Crystallographica Section D 68, 352- 367 (2012). 68. C. J. Williams et al., MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci 27, 293-315 (2018). 69. W. L. DeLano, Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography 40, 82-92 (2002). 70. E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem 13, 326-332 (1967). 71. V. A. Snewin et al., Assessment of immunity to mycobacterial infection with luciferase reporter constructs. Infect Immun 67, 4586-4593 (1999). 72. E. L. Wu et al., CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 35, 1997-2004 (2014). 73. M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40, D370-376 (2012). 	845	67.	P. V. Afonine <i>et al.</i> , Towards automated crystallographic structure
 847 367 (2012). 848 68. C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). 850 69. W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4</i> <i>Newsletter on protein crystallography</i> 40, 82-92 (2002). 852 70. E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin</i> <i>Chem</i> 13, 326-332 (1967). 855 71. V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). 857 72. E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). 859 73. M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	846		refinement with phenix.refine. Acta Crystallographica Section D 68, 352-
 68. C. J. Williams <i>et al.</i>, MolProbity: More and better reference data for improved all-atom structure validation. <i>Protein Sci</i> 27, 293-315 (2018). 69. W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4</i> <i>Newsletter on protein crystallography</i> 40, 82-92 (2002). 70. E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin</i> <i>Chem</i> 13, 326-332 (1967). 71. V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). 72. E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). 73. M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	847	60	367 (2012).
 improved all-atom structure validation. Protein Sci 27, 293-315 (2018). 69. W. L. DeLano, Pymol: An open-source molecular graphics tool. CCP4 Newsletter on protein crystallography 40, 82-92 (2002). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. Clin Chem 13, 326-332 (1967). V. A. Snewin et al., Assessment of immunity to mycobacterial infection with luciferase reporter constructs. Infect Immun 67, 4586-4593 (1999). E. L. Wu et al., CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40, D370-376 (2012). 	848	68.	C. J. Williams <i>et al.</i> , MolProbity: More and better reference data for
 W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4</i> <i>Newsletter on protein crystallography</i> 40, 82-92 (2002). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin</i> <i>Chem</i> 13, 326-332 (1967). V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	849	6 0	improved all-atom structure validation. <i>Protein Sci</i> 27 , 293-315 (2018).
 Newsletter on protein crystallography 40, 82-92 (2002). E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin</i> <i>Chem</i> 13, 326-332 (1967). V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). F. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	850	69.	W. L. DeLano, Pymol: An open-source molecular graphics tool. <i>CCP4</i>
 852 70. E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin</i> <i>Chem</i> 13, 326-332 (1967). 855 71. V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). 857 72. E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). 859 73. M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	851		<i>Newsletter on protein crystallography</i> 40 , 82-92 (2002).
 phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin</i> <i>Chem</i> 13, 326-332 (1967). V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	852	70.	E. S. Baginski, P. P. Foa, B. Zak, Microdetermination of inorganic
 <i>Chem</i> 13, 326-332 (1967). V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	853		phosphate, phospholipids, and total phosphate in biologic materials. <i>Clin</i>
 V. A. Snewin <i>et al.</i>, Assessment of immunity to mycobacterial infection with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	854		<i>Chem</i> 13 , 326-332 (1967).
 with luciferase reporter constructs. <i>Infect Immun</i> 67, 4586-4593 (1999). F. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	855	71.	V. A. Snewin <i>et al.</i> , Assessment of immunity to mycobacterial infection
 857 72. E. L. Wu <i>et al.</i>, CHARMM-GUI Membrane Builder toward realistic 858 biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). 859 73. M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM 860 database and PPM web server: resources for positioning of proteins in 861 membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	856		with luciferase reporter constructs. <i>Infect Immun</i> 67 , 4586-4593 (1999).
 biological membrane simulations. <i>J Comput Chem</i> 35, 1997-2004 (2014). M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	857	72.	E. L. Wu et al., CHARMM-GUI Membrane Builder toward realistic
 M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM database and PPM web server: resources for positioning of proteins in membranes. <i>Nucleic Acids Res</i> 40, D370-376 (2012). 	858		biological membrane simulations. <i>J Comput Chem</i> 35 , 1997-2004 (2014).
860database and PPM web server: resources for positioning of proteins in861membranes. Nucleic Acids Res 40, D370-376 (2012).	859	73.	M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, A. L. Lomize, OPM
861 membranes. <i>Nucleic Acids Res</i> 40 , D370-376 (2012).	860		database and PPM web server: resources for positioning of proteins in
	861		membranes. <i>Nucleic Acids Res</i> 40 , D370-376 (2012).

862	74.	S. Nosé, M. Klein, Constant pressure molecular dynamics for molecular
863		systems. <i>Molecular Physics</i> 50 , 1055-1076 (1983).
864	75.	M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A
865		new molecular dynamics method. <i>Journal of Applied physics</i> 52 , 7182-
866		7190 (1981).
867	76.	M. J. Abraham <i>et al.</i> , GROMACS: High performance molecular simulations
868		through multi-level parallelism from laptops to supercomputers.
869		SoftwareX 1, 19-25 (2015).
870	77.	R. B. Best <i>et al.</i> , Optimization of the additive CHARMM all-atom protein
871		force field targeting improved sampling of the backbone phi, psi and side-
872		chain chi(1) and chi(2) dihedral angles. <i>J Chem Theory Comput</i> 8 , 3257-
873		3273 (2012).
874	78.	B. Mitra, R. Sharma, The cysteine-rich amino-terminal domain of ZntA, a
875		Pb(II)/Zn(II)/Cd(II)-translocating ATPase from Escherichia coli, is not
876		essential for its function. <i>Biochemistry</i> 40 , 7694-7699 (2001).
877		

881 **Figure 1 – figure supplement 1** | **Topology comparison.** Topological differences 882 between P_{IB}-ATPases and classical P-type ATPases such as sCoaT and SERCA, 883 respectively. a, Schematic topology of P-type ATPases showing features unique to 884 P_{IB}-ATPases (the so-called heavy metal binding domain, HMBD, and transmembrane 885 helices MA-MB in cyan) and SERCA (an extended A-domain, an additional A-886 domain linker and M7-M10 transmembrane helices in green). Location of key 887 residues in the M-domain for P_{IB}-ATPases are highlighted. b, The structure of 888 SERCA (PDB ID 3BA6), colored as the schematic topology highlighting the additional linker to the A-domain. c, Topology of the P_{IB-4}-ATPase sCoaT. The 889 890 present work discloses the presence of helices MA, MB, MB' and that the core of P_{IB}-891 4-ATPases is devoid of classical HMBD, representing a previously elusive matter. 892 The cysteine pair (CGIC in the sequence) in the N-terminus of sCoaT is rather 893 positioned in MA. The N-terminus of sCoaT is rich in methionine, cysteine, histidine, 894 aspartate and glutamate residues (shown as purple circles), amino acids that can bind 895 metal.

Figure 2 – figure supplement 1 | Metal selectivity screening and reproducibility. 897 a, Screen of different transition metals, tested at 50 µM each. There is clear metal-898 dependent ATPase activity with Zn^{2+} (1.0 ± 0.01 µmol mg⁻¹ min⁻¹) and Cd²⁺ (2.8 ± 899 0.05 μ mol mg⁻¹ min⁻¹), comparable to the activity previously measured for P_{IB-4}-900 ATPases and also to Zn²⁺-dependent activity of SsZntA (0.59±0.02 µmol mg⁻¹ min⁻ 901 1)⁽²⁸⁾. In contrast, only low ATPase activity (about 5 % of the wild-type, corrected for 902 the background observed with no metal added) was detected with Co^{2+} for sCoaT. **b**. 903 Titration of zinc and cobalt. Co²⁺-induced ATPase activity predominates above 1 904 mM, while at lower concentrations Zn^{2+} stimulates activity at a faster rate. The data 905 yield $K_{\rm M}$ values of 1.3 mM and 4.1 μ M for Co²⁺ and Zn²⁺, respectively. The 906 corresponding for the SsZntA related pump EcZntA is 10 μ M with Zn^{2+ (78)}. c, 907 Screening of assay conditions and assay type. d, The effect of the N-terminal tail on 908 the ion-specificity. Relative activity in the presence of Co^{2+} and Zn^{2+} (100 % is equal 909 to the activity measured for wild type at every measured metal type and 910 911 concentration), respectively, at five different metal concentrations, suggesting that the 912 tail is no major determinant for metal specificity. e, Biological and technical 913 replicates exploited to generate the error bars in Figure 2a.

Figure 1 – figure supplement 2 | Crystal packing of sCoaT E2-AlF₄⁻ compared 915 916 to the E2-BeF₃⁻ crystal form of ZntA from Shigella sonnei (SsZntA, PDB ID: 917 **4UMV**). The domains are coloured as in Figure 1b. **a**, sCoaT E2-AlF₄ (P2₁2₁2, with 918 1 molecule per asymmetric unit). Left: View of the membrane layer. Right: 90° 919 rotation view (compared to panel to the left) showing only the transmembrane domains. Equivalent views of the sCoaT E2-BeF₃⁻ (P2₁2₁2) (**b**) and the SsZntA E2-920 BeF_3 (P12₁1) (c) crystal forms. Note the loose packing of the sCoaT crystals 921 922 compared to that of SsZntA E2-BeF₃.

923 924 **Figure 1 – figure supplement 3** | **Electron density quality.** Final, sharpened, 2Fo-925 Fc electron density at $\sigma=1.0$ (blue mesh) if not otherwise stated. The overall resolution is indicated and the structures are colored as in Figure 1. **a**, E2-BeF₃⁻ and **b**, 926 927 E2-AIF₄. The quality of the maps differs between structures and domains. The A-, P-928 and N-domains are well-resolved in both structures. The M-domain is in general less 929 well-resolved than the soluble domains, and the domain is somewhat more well-930 resolved in the E2-BeF₃⁻ structure than in E2-AlF₄⁻ structure. Nevertheless, it is still clear that MA and MB is present and that C50 and C53 in the N-terminus is 931

- 932 membrane embedded and not part of a heavy metal binding domain (HMBD). This is
- 933 relevant, as CXXC is otherwise a pattern typically linked to a solvent-exposed metal
- 934 binding site in HMBDs of other P_{IB}-groups.

Figure 1 – figure supplement 4 | **Stability of the M-domain.** Molecular dynamics 936 937 (MD) simulations were performed to assess the stability of the M-domain. a, Root 938 mean square deviation of the M-domain in AlF₄ (black), AlF₄-repeat (red), BeF₃ 939 (green), BeF₃-repeat (blue) simulations. **b**, RMSF of the M-domain in the AlF₄⁻ and 940 AlF₄-repeat simulations (upper) and BeF_3 and BeF_3 -repeat simulations (lower) 941 across the C_{α} atoms. The TM helices region are marked in transparent grey. Evolution 942 of the centers-of-mass of TM helices in the c, AlF_4 , d, AlF_4 -repeat, e, BeF_3 , and f, 943 BeF₃-repeat simulations. The TM helices are shown in different colors: MA (black), 944 MB (red), M1 (green), M2 (blue), M3 (magenta), M4 (orange), M5 (dark green) and 945 M6 (cyan).

946

Figure 1 – figure supplement 5 | Secondary structure stability of the M-domain.
MD simulations were performed to assess the secondary structure stability of the Mdomain. Total structure (black), helix (blue), and coil (red) secondary structural
elements in the a, AlF₄⁻, b, AlF₄⁻-repeat, c, BeF₃⁻, and d, BeF₃⁻ repeat simulations.

sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	 MTEKL	RLDIPVLI	PGLPDS: MSTP	SDPCVERI	LSELRGKEC	GVEAAHIKTAN.V APQFAAFKPLTTV	VDSDSQICVHYDP VQNANDCCCD.G.
	Ion b	oinding aa in N-1	terminus	Selected c	onserved residue	s m domain	
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	AAISL ACSSS	ARIRELVI PTLSE	STGAVIS	SSRFGHVI SGTRYS	WQLKGVWHH WKVSGMDCA	ERRARTVASQLRA AACARKVENAVRÇ	ALPGVIEAEVSAS 2LAGVNQVQVLFA
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	GIARV TE.KL	EFDNDRIS VVDADNDI	AAGIEQ/ RAQVES/	1 MRKVVA MTLT ALSKRGLA A	10 	GHACHHEHNSPE	20 NHTPD
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	 VYTCP	MHPEIRQS	APGHCPI	 	30 000 000 000 000 000 000 000	40 GGFLNRIGGRAU GGFLNREKNWAQDAU TIPOPLSWGAALW AHAHGSVFGPNTE ASRLKENLE VSPEYLDMRRFW	MA 50 VIFAVLCG VIVSVRVAT VIVSVRVATVAL CLIFSLICG VIITLI VIALMLTIPVV
		МА			МВ	MB'	M1
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	ICLLL ALILA LLFLA ALLGL VMMAI ILEMG	60 GWL.GPKY GWLLSGY. GLVAQ.L GFAVGKLF SWGLEQF. GHGLKHFI	GIMSE Q Q 	79 2FGFGLLI VLSIILFI AMWWTLYI WIPVAFFV PFGQLAFI WIQLLLAT	80 AAYFFGGYI LAFVIGGF ACYLAGGWC GAYFFGGF ATTLVGLYI PVVLWGGWI	99 FTLREAVEK.ISH AKAKEGIEETLES SSAWAGAQA.LRN (TVREAIEN.LRI PIARQALRLIKSC PFFKRGWQS.LKT	100 CGQFQIDFLMLVA SKILNVELLMIFA IKALDVDLLMIAA IKKFEIDTLMLVA SSYFAIETLMSVA CGQLNMFTLIAM.
	M1					M2	
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	ASGAA AIGSA AVGAV AAGAA AIGAL GIGVA	WIYSMVAV	/LWPGVF1	PHAFRSQE	12 ILGEWAA LIGYWAA AIGQIF ALGAWAA FIGATAA FIGATA	130 GAFLLFLFSVGF GAILIFIFSLSG GALLIVIFATSG GALLLFLFSLGF AAMVLLLFLIGE	140 ALENYAMGRARN GALDIIATRHTAE IGLEHYAMGRAKR RLEGWAASRARQ VLELKAREQTGS
	15	0	160	170	18	30 190	200
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	AVAAL DLTSL SVKGL AIEAL GVSAL AIRAL	AGLTPDEA MQLEPEEA LDLAPDQA AALAPATA MALKPETA LKLVPESA	LVRRGDI TLMVNGI VVVQGD SVRREGI TRLRNGI HRIKED	KT.ETVLI ET.KRVPV GSERVVAA EV.REVPV ER.EEVAI GSEEEVSI	ENLLVGDI SDLQAGDM SELVVGDR EELQVGDV NSLRPGDV DNVAVGDL	VVRSNERLPAD VVRSNERVAAD VVRPGDRIPAD VVRPNERLPAD EVAAGGRLPAD RVRPGEKIPVD	FVVKGSSAVNQA SILESGSTSLDES GAVLSGASDVDQR GFLVKGASAVNQA KLLSPFASFDES GEVQEGRSFVDES
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	2 PITGE ALTGE SITGE PVTGE ALTGE MVTGE	10 SAPVDKLP SMPVEKNI SMPVAKAR SIPVDKQP SIPVERAI PIPVAKEA	220 CODPEFA CG CODDAAA CODDAAAA CODKVP.	230 AAANLDKI ARRKPDAV	TPOTRVFAC DTVFTC DEVFAC GAVSRVFAC AKVIGA	10 250 SSINGSGSLDVQV GTVNRNGSLTVRV GTVNGSGVLHLVV GTINGAGAIEVEV GATSVDRLVTLEV ATINQTGSFVMKA	260 VTKLSGESTLARV VTKANEDSLFRKI VTRLSTDSALAKV VLSEPGASAIDRI ALHVGSDTMLARI
					МЗ		M4
	2	7 <u>0</u>	280	290		300 31	
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	VTLVA IKLVE VELVA VKMVN LKLIE VOMVS	EAQTRQSP SAQNSVSP DASATKAK EAEAQKSP EAEERRAP DAORSRAP	TQNFTKI AQAFIEI TQLFIEI SQRFTEI IERFIDI	KFEKIFVP RFENAYVK KIEQRYSI KFERIFVP RFSRIYTP FVSGWFVP	CVIALAF. GVLIAVALI GMVAATL. AVLVLAV.I AIMAVALL	/TSFSFLIL.DET LLFVPHFAL.GWS ALIVIPLMF.GAE LLLFAGLVI.NEF /TLVPPLLF.AAS	TAAQSFYRAMAVL SWSETFYRAMVFM DLRPVLLRAMTFM PFSATFYRAMAVL SWQEWIYKGLTLL SWQEWIYKGLTLL

		M4			
	330	340	350	360	370 380
sCoaT/1-682	VAASPCALA	IATPSAVLSG	VARAARGGVLIKG	GAPLEAMGHLDAIAN	FDKTGTLTIGEPHL
MtCtpD/1-657	IVASPCAVV	LATMPPLLSA	IANAGRHGVLVKS	AVVVERLADTSIVA	L <mark>DKTG</mark> TLTRGIPRL
CmCzcP/1-829 SsZntA/1-732	VAASPCALA	AIATPSAVLSG	VARAARGGVLIKG	GAPLENLGSLKAIA GAALEOLGRVTOVA	FDKTGTLTEGRPRI
LpCopA/1-736	IIACPCALO	GLATPMSIMVG	VGKGAQSGVLIKN	IAEALERMEKVNTLV	VDKTGTLTEGHPKL
	A-domain	P-domain	N-domain	M-domain	
	Ion binding aa	a in N-terminus	Selected conserved re	esidues	
	3	390 <u>4</u>	00 410	420	430
sCoaT/1-682 BsZosA/1-637	VEITPYGD. ETIRIAEG	.ATETELLQV ESEAEVLEA	SAAVEMLSDHPLA VYAIETOSSHPLA	QAVVRDVKDRLGD.	LPSEASDFANIIGQ OSGYISIEETSGE
MtCtpD/1-657	ASVAPLDPN	VVDARRLLQL	AAAAEQSSEHPLG	GRAIVAEARRRGIA.	.IPPAKDFRAVPGC
CmCzcP/1-829 SsZntA/1-732	TDVMVAEG.	.VAEAELLSV	AVAVESLSDHPLA AAAVEOGATHPLA	AAIARDGRKRLEGS:	SIPEASHLQSLTGR IPTAESORALVGS
LpCopA/1-736	TRIVTDD	FVEDNALAL	AAALEHQSEHPLA	NAIVHAAKEKGLS.	LGSVEAFEAPTGK
	440	450	460 470	480	490
sCoaT/1-682	GVSAKVDSK	VVHIGKTALF	ESVAGLPLPDDLR	GTVEAMSQNGRTTM:	IVRSGDRYLGAIGL
MtCtpD/1-657	GVHALVGND	FVEIASPQSY	RGAPL	AELAPLLSAGATAA	IVLLDGVAIGVLGL
CmCzcP/1-829	GVTATLCGK	TVWIGKPDMF	GADGIAPLSESMA	SAVQTLRSTGRTTM	IVRQGDRDLGAIGL
LpCopA/1-736	GVVGQVDGH	HVAIGNARLM	QEHGGDNAPLF	'EKADELRGKGASVMI	MAVDGKTVALLVV
	500	510	520 530	540	550
sCoaT/1-682	500 MDTPREDAR	510 RSVIAALRDLG	520 530 LKRMMMISGDNQN	540 IVANAVAKEVGLDTAI	550 FGDLMPEDKVTKIA
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657	500 MDTPREDAR KDQIRPEAK	510 RSVIAALRDLG REVMEELNRLG VESVAAMAALT	520, 530 LKRMMMISGDNON IKTA.MLTGDHED AAPPVLLTGDNGB	540 IVANAVAKEVGLDTAI TAQAIAKEAGMTTVV	55 • • • • • • • • • • • • •
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829	500 MDTPREDAF KDQIRPEAK TDQLRPDAV MDTPRASAF	510 SVIAALRDLG EVMEELNRLG VESVAAMAALT RAALEALRRLG	520 530 LKRMMMISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDHQB	540 IVANAVAKEVGLDTAI TAQAIAKEAGMTTV RAAWRVARNAGITDVI RAAEAVAKDVGIDEAV	55 0 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALLPEQKVEVVR NGDLMPEDKVKAIQ
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-732	500 MDTPREDAR KDQIRPEAK TDQLRPDAV MDTPRASAR QDTLRADAA EDPIKSSTB	510 SVIAALRDLG VEVMEELNRLG VESVAAMAALT AALEALRRLG ATAISELNALG ETILELOOSG	520 530 LKRMMMISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDHQR VKGV.ILTGDNPR VEIV.MLTGDSKR	540 VANAVAKEVGLDTAN TAQAIAKEAGMTTV AAWRVARNAGITDV AAAAIAGELGLEFK TAEAVAGTLGIKKV	550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALLPEQKVEVVR NGDLMPEDKVKAIQ AGLLPEDKVKAVT VAEIMPEDKSRIVS
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	500 MDTPREDAR KDQIRPEAK TDQLRPDAV MDTPRASAR QDTLRADAA EDPIKSSTP	510 SVIAALRDLG EVMEELNRLG ESVAAMAALT RAALEALRRLG PETILELQOSG	520 530 IKRMMMISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDHQR VKGV.ILTGDNPR IEIV.MLTGDSKR	540 IVANAVAKEVGLDTAI TAQAIAKEAGMTTV AAWRVARNAGITDVI AAEAVAKDVGIDEAI AAAAIAGELGLEFK TAEAVAGTLGIKKVV	550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALLPEQKVEVVR WGDLMPEDKVKAIQ AGLLPEDKVKAVT VAEIMPEDKSRIVS
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	500 MDTPREDAR KDQIRPEAK TDQLRPDAV MDTPRASAR QDTLRADAA EDPIKSSTE	510 SVIAALRDLG EVMEELNRLG ESVAAMAALT AALEALRRLG TAISELNALG ETILELQOSG	520 530 IKRMMMISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDHQP VKGV.ILTGDNPR IEIV.MLTGDSKR	9 540 IVANAVAKEVGLDTAI TAQAIAKEAGMTTVV AAWRVARNAGITDVI AAEAVAKDVGIDEAI AAAAIAGELGLEFK TAEAVAGTLGIKKVV	550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALLPEQKVEVVR WGDLMPEDKVKAVQ AGLLPEDKVKAVT VAEIMPEDKSRIVS
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	500 MDTPREDAR KDQIRPEAK TDQLRPDAV MDTPRASAR QDTLRADAA EDPIKSSTP	510 SVIAALRDLG EVMEELNRLG VESVAAMAALT AALEALRRLG ETILELQOSG 570	520 530 IKRMMMISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDHQR VKGV.ILTGDNPR IEIV.MLTGDSKR	0 540 IVANAVAKEVGLDTAI DTAQAIAKEAGMTTVV IAAWRVARNAGITDVI IAAEAVAKDVGIDEAI IAAEAVAKDVGIDEAI IAAEAVAGTLGIKKVV	550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALLPEQKVEVVR WGDLMPEDKVKAIQ AGLLPEDKVKAIV VAEIMPEDKSRIVS M5
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736 sCoaT/1-682	500 MDTPREDAR KDQIRPEAK TDQLRPDAV MDTPRASAP QDTLRADAA EDPIKSSTP 560 ALKAD.GGV	510 RSVIAALRDLG EVMEELNRLG VESVAAMAALT KAALEALRRLG TAISELNALG ETILELQOSG 570 VAMVGDGVNDA	520 530 LKRMMMISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDHQR VKGV.ILTGDNPR IEIV.MLTGDSKR 580 59 PAMANATVGIAMG	540 VVANAVAKEVGLDTAI TAQAIAKEAGMTTVI TAQAIAKEAGMTTVI TAQAIAKEAGMTTVI TAQAIAKEAGMTTVI TAQAIAKEAGMTTVI TAQAIAKEAGMTTVI TAQAIAKEAGMTTVI TAQAIAKEAGMTTVI TAQAIAKEAGMTTVI TAQAIAKEAGMTVI TAEAVAKDVGIDEAI TAEAVAGTLGIKKVI O 600 TAAGSDVALETADIAI	550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALLPEQKVEVVR NGDLMPEDKVKAIQ AGLLPEDKVKAVT VAEIMPEDKSRIVS M5 610 LMADDLQTLPFAVG
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736 sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657	500 MDTPREDAR KDQIRPEAK TDQLRPDAV MDTPRASAR QDTLRADAA EDPIKSSTP 560 ALKAD.GGV RLKEEFGTI NLOAGGHOV	510 SVIAALRDLG VESVAAMAALT VALEALRRLG TAISELNALG ETILELQOSG 570 VAMVGDGVNDA CAMVGDGINDA	520 530 LKRMMMISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDHQR VKGV.ILTGDNPR IEIV.MLTGDSKR 580 59 PAMANATVGIAMG PALKAADVGIAMG	540 IVANAVAKEVGLDTAH TAQAIAKEAGMTTVV AAWRVARNAGITDVH AAWRVARNAGITDVH AAAAIAGELGLEFK TAEAVAGTLGIKKVV OO 600 GAAGSDVALETADIAJ G. GTDVALETADMVI	550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALLPEQKVEVVR NGDLMPEDKVKAVT VAEIMPEDKSRIVS M5 610 LMADDLQTLPFAVG LMKNDLKKLVNMCR FIRDELHTIPTIIG
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736 sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829	500 MDTPREDAR KDQIRPEAK TDQLRPDAV MDTPRASAR QDTIRADAA EDPIKSSTF 560 ALKAD.GGV RLKEEFGTI NLQAGGHQV TLRAE.AKV	510 SVIAALRDLG EVMEELNRLG VESVAAMAALT RALEALRRLG PETILELOOSG 570 YAMVGDGVNDA AMVGDGVNDA LLVGDGVNDA YAMVGDGVNDA	520 530 LKRMMMISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDHQR ITRMIMISGDHQR KGV.ILTGDNPR IEIV.MLTGDSKR 580 59 PAMANATVGIAMG PAMAARAAVAMG PAMAARAAVAMG PAMAARAAVAMG	540 IVANAVAKEVGLDTAI TAQAIAKEAGMTTVV AAWRVARNAGITDVI IAAWRVARNAGITDVI IAAWRVARNAGITDVI IAAWRVARNAGITDVI IAAAAIAGELGLEFK TAEAVAGTLGIKKVV O 600 IAAGSDVALETADIAI IG. GTDVALETADIVI IA. GADLTLQTADGV IAAGSDVALETADVA	550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALLPEQKVEVVR NGDLMPEDKVKAIQ AGLLPEDKVKAVT VAEIMPEDKSRIVS MS 610 LMADDLQTLPFAVG LMKNDLKKLVNMCR FIRDELHTIPTIG LMADDLQHLPFVVG
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736 sZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	500 MDTPREDAR KDQIRPEAK TDQLRPDAV MDTPRASAR QDTIKASAF QDTIKSSTF 560 ALKAD.GGV RLKEEFGTI NLQAGGHQV TLRAE.AKV KLNQH.API ELKDKGLIV	510 SVIAALRDLG EVMEELNRLG EVMEELNRLG AALEALRRLG ETILELOOSG 570 VAMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA	520, 530 IKRMMMISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDHQR VKGV.ILTGDNPR IEIV.MLTGDSKR 580, 59 PAMANATVGIAMG PAMAAARAAVAMG PAMAAARAAVAMG PAMAAARAAVAMG PAMAAARAAVAMG PAMAAARAAVAMG PAMAAARAAVAMG PAMAAARAAVAMG PAMAAARAAVAMG	540 IVANAVAKEVGLDTAI TAQAIAKEAGMTTVV IAAWRVARNAGITDVI IAAEAVAKDVGIDEAI IAAEAVAKDVGIDEAI IAAAAIAGELGLEFK IAAAAIAGELGLEFK IAAAAIAGELGLEFK IAAAAIAGELGLEFK IAAAAIAGELGLEFK IAAGSDVALETADIAI IG.GTDVALETADMVI IAAGSDVALETADMVI IAAGSDVALETADMVI IAAGSDVALETADMVI IAAGSDVALETADMVI IAGSDVALETADMVI IAGSDVALETADMVI IAGDVALETADMVI	550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALLPEQKVEVVR NGDLMPEDKVKAIQ AGLLPEDKVKAVT VAEIMPEDKSRIVS M5 610 LMADDLQTLPFAVG LMKNDLKKLVNMCR FIRDELHTIPTIIG LMADDLQHLPFVVG LTHNHLRGLVQMIE STACA
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736 sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	500 MDTPREDAR KDQIRPEAK TDQLRPDAV MDTPRASAR QDTLRADAA EDPIKSSTE 560 ALKAD.GGV RLKEEFGTI NLQAGGHQV TLRAE.AKV KLNQH.API ELKDKGLIV	510 SVIAALRDLG EVMEELNRLG EAALEALRRLG ETILELQOSG 570 VAMVGDGVNDA AMVGDGVNDA VAMVGDGVNDA VAMVGDGVNDA VAMVGDGVNDA VAMVGDGVNDA VAMVGDGVNDA	520 530 IKRMMMISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDNQN ITRMIMISGDNQN ITRMIMISGDNQN S80 580 59 PAMANATVGIAMG PAMAAARAAVAMG PAMAAATUGIAMG PAMAAATUGIAMG PAMAAATUGIAMG PAMAAATUGIAMG PAMAAATUGIAMG PAMAAATUGIAMG PAMAAATUGIAMG PAMAAATUGIAMG PALAKADIGIAMG	540 IVANAVAKEVGLDTAI ITAQAIAKEAGMTTVV IAAWRVARNAGITDVI IAAEAVAKDVGIDEAI IAAEAVAKDVGIDEAI IAAEAVAKDVGIDEAI IAAEAVAGTLGIKKVV IAAAAIAGELGLEFK IAAAAIAGELGLEFK IAAGSDVALETADIAI IG.GTDVALETADIAI IA.GADLTLQTADGVI IA.GADLTLQTADGVI IS.GTDVALETADAAI IT.GTDVALESAGVTI	550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALLPEQKVEVVR WGDLMPEDKVKAVT VAEIMPEDKVKAVT VAEIMPEDKSRIVS M5 610 LMADDLQTLPFAVG LMADDLQTLPFAVG LMADDLQHLPFVG LMADDLQHLPFVG LTHNHLRGLVQMIE LIHGDLRGIAKARR
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736 sSCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	500 MDTPREDAR KDQIRPEAK TDQLRPDAV MDTPRASAR QDTLRADAA EDPIKSSTE 560 ALKAD.GGV RLKEEFGTI NLQAGGHQV TLRAE.AKV KLNQH.API ELKDKGLIV	510 SVIAALRDLG EVMEELNRLG ESVAAMAALT AALEALRRLG ETILELQOSG 570 AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGINDA AMVGDGINDA AMAGDGVNDA	520 530 IKRMMISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDHQR VKGV.ILTGDNPR IEIV.MLTGDSKR 580 59 PAMANATVGIAMG PALKAADVGIAMG PAMAAARAAVAMG PAMAAARAAVAMG PAMAAARAAVAMG	540 IVANAVAKEVGLDTAI ITAQAIAKEAGMTTVV IAAWRVARNAGITDVI IAAEAVAKDVGIDEAI IAAEAVAKDVGIDEAI IAAEAVAKDVGIDEAI IAAEAVAGTLGIKKVV IAAGSDVALETADIAI IAAGSDVALETADIAI IAAGSDVALETADIAI IAAGSDVALETADIAI IIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALLPEQKVEVVR WGDLMPEDKVKAVT VAEIMPEDKVKAVT VAEIMPEDKSRIVS M5 610 LMADDLQTLPFAVG LMADDLQTLPFAVG LMADDLQTLPFAVG LHTNHLRGLVQMIE LTHNHLRGLVQMIE LHHGDLRGIAKARR
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736 sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	500 MDTPREDAR KDQIRPEAK TDQLRPDAV MDTPRASAR QDTLRADAA EDPIKSSTE 560 ALKAD.GGV RLKEEFGTI NLQAGGHQV TLRAE.AKV KLNQH.API ELKDKGLIV	510 SVIAALRDLG EVMEELNRLG EVMEELNRLG EXAALEALRRLG ETILELQOSG 570 YAMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA YAMSDGVNDA YAMSDGVNDA YAMSDGVNDA YAMSDGVNDA YAMSDGVNDA YAMSDGVNDA YAMSDGVNDA YAMSDGVNDA YAMSDGVNDA YAMSDGVNDA YAMSDGVNDA YAMSDGVNDA	520 530 IKRMMISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDHQP VKGV.ILTGDNPR IEIV.MLTGDSKR 580 59 PAMANATVGIAMG PALKAADVGIAMG PAMAARAAVAMG PAMAAARAAVAMG PAMAAARAAVAMG PAMAAARAAVAMG PAMAAARAAVAMG PAMAAARAAVAMG PAMAAARAAVAMG	540 VANAVAKEVGLDTAI TAQAIAKEAGMTTVV AAWRVARNAGITDVI AAEAVAKDVGIDEAI (AAAAIAGELGLEFK (TAEAVAGTLGIKKVV 00600 (AAGSDVALETADIA) (G.GTDVALETADMV) (AAGSDVALETADMV) (AAGSDVALETADA) (S.GTDVALETADA) (T.GTDVALESAGVT)	550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALLPEQKVEVVR NGDLMPEDKVKAIQ AGLLPEDKVKAVT VAEIMPEDKSRIVS M5 610 LMADDLQTLPFAVG LMADDLQTLPFAVG LMADDLQHLPFVVG LTHNHLRGLVQMIE LHHGDLRGIAKARR M6 660
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736 sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736 sCoaT/1-682	500 MDTPREDAR KDQIRPEAK TDQLRPDAV MDTPRASAR QDTLRADAA EDPIKSSTP 560 ALKAD.GGV RLKEEFGTI NLQAGGHQV TLRACAAPI ELKDKGLIV 620 LSRKTSRII	510 SVIAALRDLG EVMEELNRLG VESVAAMAALT AALEALRRLG TAISELNALG ETILELQOSG 570 VAMVGDGVNDA AMVGDGVNDA VLVGDGVNDA AMVGDGVNDA VMVGDGVNDA AMVGDGVNDA AMVGDGVNDA MS 630 RLNLWFSLGV	520 530 IKRMMMISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDNQN VKGV.ILTGDNPR IEIV.MLTGDSKR 580 59 PAMANATVGIAMG PAMANATVGIAMG PAMANATVGIAMG PAMAAARAAVAMG PALKAADIGIAMG PALKAADIGIAMG PALAKADIGIAMG	540 IVANAVAKEVGLDTAI DTAQAIAKEAGMTTUVI AAAAVAKDVGIDEAI AAEAVAKDVGIDEAI (AAAAIAGELGLEFK (TAEAVAGTLGIKKV) 0 600 GAAGSDVALETADIAI (G.GTDVALETADIA) GAGSDVALETADIAI (G.GTDVALETADIA) S.GTDVALETADIAI (S.GTDVALETADIA) S.GTDVALETADAGY G.GTDVALETADIAI S.GTDVALETADAGY G.GTDVALETADIAI S.GTDVALETADAGY G.GTDVALETADAGY G.GTDVALETADAGY G.GTDVALETADAGY G.GTDVALETADAGY	550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALLPEQKVEVVR WGDLMPEDKVKAIQ AGLLPEDKVKAIQ AGLLPEDKVKAIT VAEIMPEDKSRIVS M5 610 LMADDLQTLPFAVG LMADDLQTLPFAVG LMADDLQTLPFAVG LMADDLQHLPFVVG LTHNHLRGLVQMIE LLHGDLRGIAKARR M6 660 VHEGSTLVVVANAL
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736 sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-736 sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657	500 MDTPREDAF KDQIRPEAK TDQLRPDAV MDTPRASAF QDTLRADAA EDPIKSSTF 560 ALKAD.GGV RLKEEFGTI NLQAGGHQV TLRAE.AKV KLNQH.API ELKDKGLIV	510 SVIAALRDLG EVMEELNRLG VESVAAMAALT KAALEALRRLG TAISELNALG ETILELQOSG 570 VANVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA MS 630 RLNLWFSLGV KQNIVFSLAV VIVISLAV	520, 530 LKRMMMISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDHQR VKGV.ILTGDNPR IEIV.MLTGDSKR 580, 59 PAMANATVGIAMG PAMAAARAAVAMG PAMAARAAVAMG PAMAAAAAAMG PAMAAAAAAMG PAMAAAAAMG PAMAAAAAMG PAMAAAAAMG PAMAAAAMG PAMAAAAAAMG PAMAAAAAMG PAMAAAAAMG PAMAAAAAMG PAMAAAAMG PAMAAAAMG PAMAAAAAMG PAMAAAAMG PAMAAAAMG PAMAAAAMG PAMAAAAMG PAMAAAAMG PAMAAAAMG PAMAAAAMG PAMAAAAMG PAMAAAAMG PAMAAAAMG PAMAAAAMG PAMAAAAMAAAAMG PAMAAAAMG PAMAAAAMG PAMAAAAMG PAMAAAAMG PAMAAAAAMG PAMAAAAAMG PAMAAAAMG PAMAAAAAMG PAMAAAAAMG PAMAAAAMG PAMAAAAMG PAMAAAAAMG PAMAAAAAMG PAMAAAAAAMG PAMAAAAAAMG PAMAAAAAAMG PAMAAAAAAMG PAMAAAAAAMG PAMAAAAAAAAAAMG PAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	540 IVANAVAKEVGLDTAI DTAQAIAKEAGMTTUVI AAWRVARNAGITDVI AAAVAKDVGIDEAI AAAAIAGELGLEFK TAEAVAGTLGIKKUV 0 600 GAAGSDVALETADMU GAGSDVALETADMU SAGSDVALETADMU SAGSDVALETADMU SAGSDVALETADMU SGTDVALETADAAI T.GTDVALESAGVTI 650 GG.LGIGGPAVLY QAMELPFGVI	550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALLPEQKVEVVR NGDLMPEDKVKAVT VAEIMPEDKVKAVT VAEIMPEDKVKAVT MS 610 LMADDLQTLPFAVG LMADDLQTLPFAVG LMADDLQTLPFVVG LHTIPTIIG LMADDLQHLPFVVG LTHNHLRGLVQMIE LLHGDLRGIAKARR M6 660 VHEGSTLVVVANAL GESTLVVINAL
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736 sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-736 sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 MtCtpD/1-657 MtCtpD/1-657	500 MDTPREDAF KDQIRPEAK TDQLRPDAV MDTPRASAF QDTLRADAA EDPIKSSTF 560 ALKAD.GGV RLKEEFGTI NLQAGGHQV TLRAE.AKV KLNQH.API ELKDKGLIV 620 LSRKTSRII LSRKMNRII LARQARVV LSRHTRAII	510 SVIAALRDLG EVMEELNRLG VESVAAMAALT AALEALRRLG TAISELNALG ETILELQOSG 570 VANVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA CLUGDGVNDA AMVGDGVNDA CLUGDG	520, 530 IKRMMNISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDNQN ITRMIMISGDNQN IEIV.MLTGDNRR IEIV.MLTGDSKR 580, 59 PAMANATVGIAMG PAMAAAAVAMG PAMAAARAAVAMG PAMAARAANG PAMAAARAAVAMG PAMAAARAAVAMG PAMAARAANATUGIAMG	9 54 0 IVANAVAKEVGLDTAI ITAQAIAKEAGMTTVV IAAWRVARNAGITDVI IAAEAVAKDVGIDEAI IAAEAVAKDVGIDEAI IAAAAIAGELGLEFK IAAAAIAGELGLEFK IAAAAIAGELGLEFK IAAAAIAGELGLEFK IAAGSDVALETADIAI IG. GTDVALETADMVI IAAGSDVALETADMVI IAAGSDVALETADMVI IAAGSDVALETADMVI IAAGSDVALETADMVI IAAGSDVALETADMVI IAAGSDVALETADAINI IAGSDVALETADAINI IAAGSDVALETADAINI IAA	550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALLPEQKVEVK RAALLPEQKVEVV AGDLMPEDKVKAIQ AGLLPEDKVKAVT VAEIMPEDKSRIVS M5 610 LMADDLQTLPFAVG LMADDLQTLPFAVG LMADDLQHLPFVVG LTHNHLRGLVQMIE LLHGDLRGIAKARR M6 660 VHEGSTLVVVANAL HEGSTLVVINGM HEGSTLVVFNAL
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736 sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-736 sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-732	500 MDTPREDAF KDQIRPEAK TDQLRPDAV MDTPRASAF QDTLRADAA EDPIKSSTF 560 ALKAD.GGV RLKEEFGTI NLQAGGHQV TLRAE.AKV KLNQH.API ELKDKGLIV 620 LSRKTSRII LARQARVV LSRHTRAII LARATHANI LSESTSN	510 SVIAALRDLG EVMEELNRLG AALEALRRLG AALEALRRLG ETILELQOSG 570 AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA CONSTRUCTION	520 530 IKRMMMISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDNQN ITRMIMISGDNQN ITRMIMISGDNQN IKTA.MLTGDNFR IEIV.MLTGDSKR 580 59 PAMANATVGIAMG PAMAAARAAVAMG PAMAARAANG PAMAARAANG PAMAARANG PAMAARANG PAMAARANG PAMAARANG PAMAARANG PAMAARANG PAMAARANG PAMAAR ILCLICANILF VAGUVUMDILF VAGUVUMAARANG VAGUVUN VAGUVUN <t< th=""><th>9 540 IVANAVAKEVGLDTAI ITAQAIAKEAGMTTVV IAAWRVARNAGITDVI IAAEAVAKDVGIDEAI IAAEAVAKDVGIDEAI IAAAAIAGELGLEFK IAAAAIAGELGLEFK IAAAAIAGELGLEFK IAAAAIAGELGLEFK IAAGSDVALETADIAI IG. GTDVALETADMVI IA.GADLTLQTADGVI IA.GADLTLQTADGVI IA.GADLTLQTADGVI IA.GADLTLQTADGVI IA.GADLTLQTADGVI G.GTDVALETADAIAI IT.GTDVALESAGVII IT.GTDVALESAGVII GOLPLPFGVII IGLGIGPAVANI IGHTGLWLAVAII</th><th>550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALPEQKVEVVR WGDLMPEDKVKAVT VAEIMPEDKVKAVT VAEIMPEDKSRIVS M5 610 LMADDLQTLPFAVG LMADDLQTLPFAVG LMADDLQHLPFVVG LHTIPTIIG LHGDLRGIAKARR M6 660 VHEGSTLVVVANAL GHEGSTLVVVANAL GHEGSTLVVVANAL GHEGSTLVVVANAL GHEGSTLVVVANAL MALSGVSVIVANAL</th></t<>	9 540 IVANAVAKEVGLDTAI ITAQAIAKEAGMTTVV IAAWRVARNAGITDVI IAAEAVAKDVGIDEAI IAAEAVAKDVGIDEAI IAAAAIAGELGLEFK IAAAAIAGELGLEFK IAAAAIAGELGLEFK IAAAAIAGELGLEFK IAAGSDVALETADIAI IG. GTDVALETADMVI IA.GADLTLQTADGVI IA.GADLTLQTADGVI IA.GADLTLQTADGVI IA.GADLTLQTADGVI IA.GADLTLQTADGVI G.GTDVALETADAIAI IT.GTDVALESAGVII IT.GTDVALESAGVII GOLPLPFGVII IGLGIGPAVANI IGHTGLWLAVAII	550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALPEQKVEVVR WGDLMPEDKVKAVT VAEIMPEDKVKAVT VAEIMPEDKSRIVS M5 610 LMADDLQTLPFAVG LMADDLQTLPFAVG LMADDLQHLPFVVG LHTIPTIIG LHGDLRGIAKARR M6 660 VHEGSTLVVVANAL GHEGSTLVVVANAL GHEGSTLVVVANAL GHEGSTLVVVANAL GHEGSTLVVVANAL MALSGVSVIVANAL
sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736 sCoaT/1-682 BsZosA/1-637 MtCtpD/1-657 CmCzcP/1-829 SsZntA/1-732 LpCopA/1-736	500 MDTPREDAF KDQIRPEAK TDQLRPDAV MDTPRASAF QDTLRADAA EDPIKSSTF 560 ALKAD.GGV RLKEEFGTI NLQAGGHQV TLRAE.AKV KLNQH.API ELKDKGLIV 620 LSRKTSRIT LARQARRVV LSRHTRAII LARATHANI LSESTMSNI	510 SVIAALRDLG EVMEELNRLG EVMEELNRLG EAALEALRRLG ETILELQOSG 570 VAMVGDGVNDA AMVGDGVNDA AMVGDGVNDA VAMVGDGVNDA VAMVGDGVNDA AMVGDGVNDA AMVGDGVNDA AMVGDGVNDA CRUNG CRUNGDGVNDA CRUNGDGVNDA CRUNGDGVNDA CRUNGDGVNDA CRUNGDGVND	520 530 IKRMMMISGDNQN IKTA.MLTGDHED AAPPVLLTGDNGR ITRMIMISGDNQN ITRMIMISGDNQN ITRMIMISGDNQN ITRMIMISGDNQN ITRMIMISGDNQN ITRMIMISGDNQN S80 59 PAMANATVGIAMG PAMANATVGIAMG PAMANATVGIAMG PALAKADVGIAMG PALAKADIGIAMG VALLIPAT ICLLICAN IAVLVLWD VALLIPAT IVULVLWD VALLIPAT	9 54 0 IVANAVAKEVGLDTAI ITAQAIAKEAGMTTVV IAAANAGIDTAI IAAEAVAKDVGIDEAI IAAEAVAKDVGIDEAI IAAAAIAGELGLEFK ITAEAVAGTLGIKKVV 90 60 0 IAAGSDVALETADIAI IG. GTDVALETADMVI IA.GADLTLQTADGVI IA.GADLTLQTADAI IA.GADLTLQTADAI IA.GADLTLQTADAI IA.GADLTLQTADAI IA.GADLTLQTAISAGVI IA.GADLTLQTAISAGVI IA.GADLTLQTAISAGVI IA.GADLTLQTAISAGVI IA.GADLTLQTLAAIAI IA.GADLTLQTLAA	550 FGDLMPEDKVTKIA VAECLPDQKVNEIK RAALLPEQKVEVVR WGDLMPEDKVKAVT VAEIMPEDKVKAVT VAEIMPEDKSRIVS M5 610 LMADDLQTLPFAVG LMADDLQTLPFAVG LMADDLQHLPFVVG LHHJLRGLVQMIE LHHGDLRGIAKARR M6 660 MEGSTILVIVANAL GHEGSTILVVINAL GHEGSTLVVVANAL GHEGSTLVVVANAL GHEGSTLVVVANAL MALSSVSVIINAL

7 <u>0</u>						6	8	0					
RLI	A	F	K	D	N	R	V	K	S	A			
RLI	K			•									
RLI	T	Ν	R	S	W	R	A	A	A	S	A	A	R
RLI	A	Y	R	D	K	S	Ρ						
RLI	R	R	R										
RLK	R	V	Т	L									
	70 RLI RLI RLI RLI RLI RLI	70 RLLA RLLK RLLT RLLA RLLR RLLR	70 RLLAF RLLK. RLLTN RLLAY RLLRR RLKRV	79 RLLAFK RLLK RLLTNR RLLAYR RLLRRR RLKRVT	79 RLLAFKD RLLK RLLTNRS RLLAYRD RLLRRR. RLKRVTL	70 RLLAFKDN RLLK RLLTNRSW RLLAYRDK RLLRRR RLKRVTL.	706 RLLAFKDNR RLLK RLLTNRSWR RLLAYRDKS RLLRRR RLKRVTL	70 68 RLLAFKDNRV RLLK RLLTNRSWRA RLLAYRDKSP RLLRRR RLKRVTL	70 680 RLLAFKDNRVK RLLK RLLTNRSWRAA RLLAYRDKSP. RLLRRR RLKRVTL	70 680 RLLAFKDNRVKS RLLK RLLTNRSWRAAA RLLAYRDKSP RLLRRR RLKRVTL	70 680 RLLAFKDNRVKSA RLLK RLLTNRSWRAAAS RLLAYRDKSP RLLRRR. RLKRVTL	70 680 RLLAFKDNRVKSA. RLLK RLLTNRSWRAAASA RLLAYRDKSP RLLRRR RLKRVTL	70 680 RLLAFKDNRVKSA RLLK RLLTNRSWRAAASAA RLLAYRDKSP RLLRRR RLKRVTL

Figure 2 – figure supplement 2 | Sequence alignment of selected P_{IB}-ATPases.
Sequence alignment of four P_{IB-4}-ATPases, sCoaT from *Sulfitobacter* sp. NAS-14.1
CmCzcP from *Cupriavidus metallidurans*, BsZoa from *Bacillus subtilis* and MtCtpD
from *Mycobacterium tuberculosis*. The P_{IB-1}-ATPase LpCopA from *Legionella pneumophila* and the P_{IB-2}-ATPase SsZntA from *Shigella sonnei* are also included for
comparison.

959

Figure 2 – figure supplement 3 | Comparison of E2 states overall and close-960 961 views of the phosphorylation site. The TGE loop in the E2-BeF₃ stabilized sCoaT 962 (E2P*) is pre-organised for dephosphorylation, which is not the case for SsZntA and LpCopA. a, The overall E2P* structure of sCoaT showing the region of focus in 963 964 panels **b-d**. **b**, Comparison of the TGE loop in the two sCoaT structures, with only 965 minor differences. c, Comparison of sCoaT E2.P_i with the equivalent structures of 966 SsZntA and LpCopA (PDB-ID: 4UMW and 4BYG). d, Comparison of sCoaT E2P* 967 with the equivalent structures of SsZntA and LpCopA (PDB-ID: 4UMV and 4BBJ). 968 e, Comparisons of E2-AlF₄ and E2-BeF₃ structures of sCoaT and SsZntA (PDB ID 969 of SsZntA structures: 4UMV and 4UMW). All superimpositions were performed 970 based on the P-domain, and the RMSD values based on the overall structure are listed below the structural alignments. Alignment of the $E2-BeF_3^-$ and $E2-AlF_4^-$ structures of 971 972 sCoaT demonstrates that they are very similar (RMSD= 1.1), and comparison to the 973 equivalent structures of SsZntA support the conclusion from **a-d** that both structures 974 have been captured in occluded E2.P_i transition states.

Figure 2 – figure supplement 4 | **A-domain differences.** Superimposition of the 976 977 E2-AlF₄ structures of sCoaT (determined here, shown in green) and SsZntA (PDB ID 4UMW, purple) and the E2-BeF3⁻ structure of SsZntA (PDB ID 4UMV, blue). The 978 979 overall structures are shown to the left. The inset represents a close-view of the A-980 domain, showing that the sCoaT structure is more alike the SsZntA E2-AlF₄ 981 structure. The peripheral part of the A-domain in sCoaT is shifted closer to the P-982 domain, whereas the area around the conserved TGE motif (the Glu of the TGE motif 983 is visualized as a sphere) superposes well with SsZntA. Like SERCA, the A-domain 984 of sCoaT possesses a surface-exposed extension which is however not present in P_{IB}. 985 1- and P_{IB-2}-ATPases.