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Abstract Hypertrophic cardiomyopathy (HCM) is associated with risk of sudden cardiac death 
(SCD) due to ventricular arrhythmias (VAs) arising from the proliferation of fibrosis in the heart. 
Current clinical risk stratification criteria inadequately identify at- risk patients in need of primary 
prevention of VA. Here, we use mechanistic computational modeling of the heart to analyze how 
HCM- specific remodeling promotes arrhythmogenesis and to develop a personalized strategy to 
forecast risk of VAs in these patients. We combine contrast- enhanced cardiac magnetic resonance 
imaging and T1 mapping data to construct digital replicas of HCM patient hearts that represent the 
patient- specific distribution of focal and diffuse fibrosis and evaluate the substrate propensity to VA. 
Our analysis indicates that the presence of diffuse fibrosis, which is rarely assessed in these patients, 
increases arrhythmogenic propensity. In forecasting future VA events in HCM patients, the imaging- 
based computational heart approach achieved 84.6%, 76.9%, and 80.1% sensitivity, specificity, and 
accuracy, respectively, and significantly outperformed current clinical risk predictors. This novel VA 
risk assessment may have the potential to prevent SCD and help deploy primary prevention appro-
priately in HCM patients.

Introduction
Hypertrophic cardiomyopathy (HCM) is the most common cause of sudden cardiac death (SCD) in 
the young and is a significant cause of sudden death in adults (Maron, 2004). The disease, with 
an incidence of 1 in 500, presents with progressive myocardial fibrosis which can create substrates 
for ventricular arrhythmias (VAs) leading to SCD in patients who are typically asymptomatic (Galati 
et al., 2016; Olivotto et al., 2012). Implantable cardioverter defibrillator (ICD) deployment, a proce-
dure that carries risk of potential complications and morbidity, is used as primary prevention of SCD 
due to VA in patients with HCM (Lambiase et al., 2016; Jayatilleke et al., 2004). However, current 
risk stratification criteria outlined by the American College of Cardiology Foundation (ACCF)/Amer-
ican Heart Association (AHA) and European Society of Cardiology (ESC) fail to accurately identify all 
patients at risk for SCD, leading to suboptimal rates of appropriate ICD implantation (Gersh et al., 
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2011; O’Mahony et al., 2014; Schinkel et al., 2012). Thus, many HCM patients receive ICDs without 
deriving any health benefits, while others are not adequately protected. The development of accurate 
means to stratify SCD risk due to VA in HCM patients for guidance of ICD deployment is an important 
unmet clinical need.

Cardiac magnetic resonance (CMR) imaging with late gadolinium enhancement (LGE) has unparal-
leled capability in the detection and quantification of scar and dense fibrosis (Prakosa et al., 2014). 
In HCM, myocardial fibrosis takes the form of both dense (focal) and diffuse fibrosis, with histo-
pathological evidence showing diffuse fibrosis as the hallmark feature of the disease (Galati et al., 
2016). Diffuse fibrosis, however, is not well captured by standard LGE- CMR. Instead, postcontrast T1 
mapping, a parametric imaging modality, has been used to visualize diffuse fibrosis in patients with 
HCM (Chu et al., 2017; Ellims et al., 2012). We have previously developed a computational modeling 
approach (virtual heart) to predict SCD risk due to VA in postinfarction patients (Arevalo et al., 2016). 
We hypothesized that a new personalized virtual- heart technology, one that entails constructing fusion 
electrophysiological models based on the distribution of both dense and diffuse fibrosis, as acquired 
by the two different CMR modalities, would be predictive of the propensity of the HCM- remodeled 
substrate to VAs and could thus be used to assess SCD risk due to VA in this patient population.

The goal of this study is to create a personalized virtual- heart approach based on the combination 
of postcontrast T1 mapping and LGE- CMR and to employ it (1) to analyze how HCM- specific remod-
eling promotes arrhythmogenesis and (2) in a targeted strategy to forecast risk of VA in HCM patients. 
In a proof- of- concept patient cohort, we assess the predictive capability of the approach as compared 
to that of other clinical metrics for VA risk prediction in HCM.

Results
The new approach to analyzing arrhythmogenic propensity in HCM patients developed here involved 
creating three- dimensional (3D) patient- specific electrophysiological ventricular models based on 
fusing data from LGE- CMR and postcontrast T1 mapping. Each model thus represented the person-
alized distribution of focal fibrosis (scar) and diffuse fibrosis. VA inducibility in each HCM patient’s 
substrate was probed to determine VA risk for the patient and to understand the mechanisms of 
arrhythmogenesis, and specifically, the contribution of the individualized diffuse fibrosis distribution, 
which is rarely assessed in these patients. Conceptual overview of our approach to analyzing the 
arrhythmogenic propensity of HCM patient hearts is presented in Figure 1A.

Patient characteristics
Twenty- six patients with HCM were included in this study. Demographic information for the cohort is 
provided in Table 1. All patients were adults (median age 53 years) and our cohort was 19% female. 
Thirteen of the 26 HCM patients experienced clinical VAs. Of the clinical parameters that associate 
with SCD in HCM (FHSCD, unexplained syncope, MWT, Max LVOTG, age, and LA diameter; see 
Table 1 for abbreviations), there were no statistically significant differences (p = 0.34, –, 0.65, 0.72, 
0.98, 0.26) between patients with and without clinical VA. There was no statistically significant differ-
ence in any of the other common clinical characteristics between the two groups. Clinical data alone 
were not sufficient to accurately determine VA risk in this population.

Values are given as n (%), mean [range], or mean ± standard deviation (SD). p values were calcu-
lated using Student’s t- test (p ≤ 0.05 considered statistically significant). VA = ventricular arrhythmia; 
CMR = cardiac magnetic resonance; NYHA = New York Heart Association; ASA = alcohol septal abla-
tion; AF = atrial fibrillation; LA = left atrium; LVOTG = left ventricular outflow tract gradient; MWT = 
maximum wall thickness; FS = fractional shortening; FHSCD = family history of sudden cardiac death.

Assessment of HCM structural remodeling using LGE-T1 geometrical 
models
To reconstruct the geometrical model of each patient’s heart, LGE- CMR and postcontrast T1 mapping 
images were combined, creating a personalized LGE- T1 fusion model of HCM ventricular geometry 
and structural remodeling. Figure 1B presents the ‘fusing’ process, in which an initial reconstruction 
of ventricular geometry and scar/fibrosis was performed from the LGE- CMR images using standard 
‘one- size- fits- all’ thresholds, and then the relaxation times from the short- axis T1 map were used 

https://doi.org/10.7554/eLife.73325
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Figure 1. Overview of the approach and geometrical model reconstruction. (A) Flowchart summarizing the virtual- heart ventricular arrhythmia 
(VA) risk stratification approach for hypertrophic cardiomyopathy (HCM) patients. A combination of late gadolinium enhancement (LGE)- cardiac 
magnetic resonance (CMR) and postcontrast T1 mapping is used to construct personalized left ventricular (LV) geometrical models with fibrotic 
remodeling. Incorporating HCM- specific electrophysiological properties (action potential kinetics, conduction velocity) completes the generation 
of each personalized LGE- T1 virtual heart, which is then used to assess VA propensity in the substrate via rapid pacing. right ventricle (RV) is shown 
in transparent gray. Dense fibrosis (scar) is considered nonconductive. (B) Fusing LGE- CMR and postcontrast T1 map information to generate the 
personalized, geometrical virtual- heart model. Top left: LV segmentation with intermediate and high signal intensity thresholds of 3 (yellow) and 5 
standard deviation (SD) (purple), respectively, on short- axis LGE- CMR. Bottom left: mid- ventricular postcontrast T1 map segmentation with relaxation 
time thresholds of <350 (blue) and 350–450 ms (gray). Right: the thresholds of the LGE- CMR signal intensity were adjusted to new, personalized 
thresholds, TDiffuse and TDense, based on the T1 map (see text for detail). The new personalized signal intensity thresholds in the matching LGE- CMR slice 
were then applied to all LGE- CMR short- axis slices.

https://doi.org/10.7554/eLife.73325
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to define personalized signal intensity thresholds 
to delineate areas of diffuse fibrosis and scar (see 
Methods for detailed description). The person-
alized thresholds were unique to each patient. 
The additional personalization of the geometrical 
model furnished by the usage of the T1 mapping 
data ensured a comprehensive representation of 
the individualized structural remodeling in each 
patient’s heart.

Once the geometrical models were recon-
structed, they were analyzed to determine 
whether the level (amount) and/or distribution 
of structural remodeling discriminate between 
patients with and without clinical VA. The level 
of regional hypertrophy was first assessed, as 
measured by the wall thickness of the heart 
models. No statistically significant difference in 
regional hypertrophy was found at the septum 
(p = 0.61), anterior wall (p = 0.84), posterior wall 
(p = 0.94), and apex (p = 0.73) between heart 
models of patients with and without clinical VA, 
as shown in Table 2. These results indicated that 
the level of hypertrophy does not discriminate 
between arrhythmogenic and nonarrhythmogenic 
substrates in HCM patients.

Figure  2A and B presents a comparison 
between geometrical heart models of two 

patients (one with clinical VA and another without) reconstructed by combining LGE- CMR with T1 
mapping, and by using LGE- CMR only. In the latter models, the accepted ‘one- size- fits- all’ thresholds 
of three and five times the SD of the low- intensity mean were used to reconstruct dense fibrosis (scar) 
and diffuse fibrosis distributions (see Methods). In the former models, patient- specific thresholds from 
the T1 mapping were used to delineate dense and diffuse fibrosis. As evident from the figure, using 
patient- specific signal intensity thresholding from the T1 map resulted in a significantly higher amount 
of diffuse fibrosis in these two models (42.9 ± 3.4% vs 9.8 ± 0.1%).

For all HCM LGE- T1 fusion models, the average threshold for diffuse fibrosis, TDiffuse, was 1.1 ± 
0.7, significantly different from the corresponding LGE ‘one- size- fits- all value’, 3 SD. The average 
threshold for dense fibrosis, TDense, was 5.1 ± 0.5, not a significant change from the original 5 SD. 
The personalized threshold adjustment did not therefore result in a significant change in the amount 

of dense fibrosis for LGE- T1 models compared to 
LGE- only models (averages of 3.8 ± 2.3 vs 3.2 ± 
1.3, p = 0.30). However, it resulted in a significant 
change in diffuse fibrosis across all models, as 
illustrated in Figure 2C (40.5 ± 9.4% for LGE- T1 
vs 8.9 ± 1.7% for LGE only, p < 0.0001).

No statistical differences were found in the 
amounts of diffuse fibrosis between LGE- T1 
models with and without clinical VA (p = 0.53, 
confidence interval [CI: 36.8, 44]) and between 
LGE- only models with and without clinical VA (p 
= 0.94, CI: [8.25, 9.53]; Figure 1B); also, no statis-
tical difference was found in the amount of scar 
(3.7 ± 2.2% vs 3.8 ± 2.5%, p = 0.91 for LGE- T1 and 
3.4 ± 1.2% vs 3.0 ± 1.5%, p = 0.53 for LGE- only 
models). These results indicate that the imaging 
characteristics of HCM structural remodeling, as 

Table 1. Patient characteristics (N = 26).

Clinical 
characteristic

Patients 
without VA, 
n = 13

Patients 
with VA, n 
= 13 p value

Male 12 (92) 9 (69) 0.08

Age at CMR, 
years 49.7 [19–76] 49.8 [22–78] 0.98

NYHA III/IV 4 (31) 4 (31) –

Myectomy 1 (8) 1 (8) –

ASA 1 (8) 2 (15) 0.34

Amiodarone 0 (0) 1 (8) 0.34

Persistent AF 3 (23) 4 (31) 0.34

LA diameter, 
mm 43.8 ± 6.3 38.3 ± 12.7 0.26

Max LVOTG, 
mm Hg 57.8 [4–154] 50.8 [8–160] 0.72

MWT, mm 20.5 ± 5.0 19.6 ± 5.6 0.65

FS, % 38.0 ± 10.2 40.3 ± 10.8 0.40

FHSCD 3 (23) 4 (31) 0.34

Unexplained 
syncope 3 (23) 3 (23) –

Table 2. Left ventricular (LV) wall thickness in 
hypertrophic cardiomyopathy (HCM) patients 
with and without clinical ventricular arrhythmia 
(VA).

Patients 
without VA, 
n = 13

Patients with 
VA, n = 13 p value

Wall thickness (mean ± standard deviation [SD])

Septum, mm 11.3 ± 8.4 13.1 ± 9.2 0.61

Anterior, mm 11.3 ± 7.4 10.7 ± 7.3 0.84

Posterior, mm 11.1 ± 7.2 11.3 ± 7.3 0.94

Apex, mm 7.9 ± 5.3 7.2 ± 4.8 0.73

p values were calculated using Student’s t- test (p ≤ 
0.05 considered statistically significant).

https://doi.org/10.7554/eLife.73325
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visualized by the combination of LGE- CMR and T1 mapping, cannot be used to discriminate between 
patients who will and will not develop clinical VA.

For each geometrical model used in this study, the amount of diffuse fibrosis in each LGE- T1 and 
LGE- only model (Figure 2—source data 1).

Assessment of propensity to VA in HCM LGE-T1 virtual-heart models
Once the geometrical models of all HCM patients were reconstructed, electrophysiological models 
were generated and used to assess the individualized propensity to VA by pacing from distributed 
ventricular sites, representing potential ectopy. Full detail is in Methods. A total of 182 simulations 
([26 patient heart] × [7 pacing locations]) were performed to probe propensity to VA induction in this 
cohort. To be able to better understand the role of T1- based diffuse fibrosis in arrhythmogenesis, we 
also repeated the simulations with LGE- only models.

Figure 3 presents reentrant arrhythmias induced (from sites marked with stars) in three LGE- T1 
virtual hearts from patients with known clinical VAs. In all three cases, a single VA morphology was 
induced. In Figure 3, left, the VA localized in a region of interdigitated diffuse and dense fibrosis. 
In Figure 3, middle, there was a figure- of- eight reentry in a transmural region of diffuse fibrosis. In 
Figure 3, right, the VA shown was induced from two different pacing sites, one in the basal lateral 
and another in the inferoseptal wall and persisted also in a region of interdigitated diffuse and dense 
fibrosis.

For each geometrical model that reentry was induced, the number of unique VA morphologies and 
amount of diffuse fibrosis in each LGE- T1 and LGE- only model (Figure 4—source data 1).

Of the 26 LGE- T1 models, 14 were found inducible for VA in simulations. In contrast, only 12 LGE- 
only models were found inducible, indicating that the presence of diffuse fibrosis leads to increased 
VA inducibility. Figures 4 and 5 explore the mechanistic contributions to increased VA vulnerability in 
models with T1- based diffuse fibrosis.

Figure 2. Fibrotic remodeling. (A,B) Examples of hypertrophic cardiomyopathy (HCM) personalized left ventricular (LV) geometrical models with fibrotic 
remodeling (right ventricle [RV] shown in transparent gray) reconstructed using late gadolinium enhancement (LGE)- cardiac magnetic resonance (CMR) 
images with personalized T1- informed fibrosis segmentation thresholds (left) and using LGE- CMR images with one- size- fits- all fibrosis segmentation 
thresholds of 3 and 5 standard deviation [SD] (right). There is significantly more diffuse fibrosis in the T1- adjusted models. (A) Heart model from an HCM 
patient without clinical ventricular arrhythmia (VA). (B) Heart model from an HCM patient with clinical VA. (C) Boxplot of the amount of diffuse fibrosis in 
LGE- T1 and LGE- only HCM geometrical models without clinical VA (LGE- T1: N = 13, interquartile range [IQR] = 12.54; LGE only: N = 13, IQR = 2.41; *p 
< 0.0001) and with clinical VA (LGE- T1: N = 13, IQR = 14.44; LGE only: N = 13, IQR = 2.46; **p < 0.0001). The '+' denotes an outlier.

The online version of this article includes the following source data for figure 2:

Source data 1. Spreadsheet including source data underlying Figure 2.

https://doi.org/10.7554/eLife.73325
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Figure  4A presents the number of unique VA morphologies induced by the pacing protocol. 
LGE- T1 models had a total of 24 unique VAs induced in them (out of total 32 VA episodes induced 
in the LGE- T1 models); in each model, there were between 1 and 3 different VA morphologies. LGE- 
only models had a total of 15 unique VAs (with a total of 17 VA episodes induced in these models), 
with only 1 or 2 distinct VA morphologies induced per model. These results indicate that the presence 
of diffuse fibrosis as reconstructed from T1 mapping increases the number of unique VAs in each 
substrate. Figure 4B correlates the amount of diffuse fibrosis and the number of unique VAs (R = 
0.40, p = 0.157) in LGE- T1 inducible models. The moderate negative correlation indicates that the 
distribution of diffuse fibrosis is more important than its amount as the mechanism of VA inducibility 
in the HCM- remodeled substrate. Figure 4C presents two bullseye plots with the 7 AHA regions in 
which pacing sites were located; shown are the number of pacing sites in each segment that elicited 
VAs in LGE- T1 and LGE- only inducible models. In the LGE- T1 models, out of the 98 pacing sites (7 
pacing sites per each of the 14 inducible models), 32 (33%) resulted in VA induction. In contrast, out 
of 84 pacing sites in the 12 LGE- only inducible models, 17 (20%) resulted in VA induction. Thus, the 
presence of T1- based diffuse fibrosis renders the substrate inducible from a larger number of ectopic 
locations, contributing to the overall increased vulnerability to VA. Interestingly, the sector with the 
pacing sites that induced most VAs (mid- anteroseptal) and that with least (basal inferolateral) were the 
same in LGE- T1 and LGE- only models, indicating that the additional T1- based diffuse fibrosis local-
izes to the sectors with arrhythmogenic substrate in the LGE- only models. Overall, the distribution of 
pacing sites is the same (with small exception in the basal regions), but the number of sites per sector 
increased with the presence of diffuse fibrosis.

Figure 5 explores the contribution of T1- based diffuse fibrosis to VA inducibility by comparing 
arrhythmogenesis in individual models. Panel A shows, for the 13 patients with clinical VAs, the 
number of distinct VAs per patient model. First, LGE- T1 modeling documented correctly VA occur-
rence in the digital substrates of 11 of the 13 patients with clinical VAs (compared to 9 LGE- only 
correct VA predictions); thus, the representation of T1- based diffuse fibroses increased the fidelity of 

Figure 3. Ventricular arrhythmias (VAs) induced in three late gadolinium enhancement (LGE)- T1 virtual hearts from patients with known clinical VAs. (A) 
Reconstructed patient- specific geometrical models. (B) Activation patterns of the reentry induced from the pacing site(s) marked with star. Black regions 
did not activate during the timeframe shown.

https://doi.org/10.7554/eLife.73325
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the HCM virtual- heart approach. Second, while the number of unique VA morphologies per inducible 
virtual heart increased in LGE- T1 models as compared to LGE only (consistent with data in Figure 4A), 
with LGE- T1 models having maximum three unique VAs (vs 2 in LGE only) in the cohort, this plot points 
to interesting VA dynamics in individual substrates. Patients 5, 6, and 9 had the same level of arrhyth-
mogenicity of the substrate (1 VA induced) regardless of the presence of T1- based diffuse fibrosis. 
An example of VA dynamics in these models is shown in Figure 5B (patient 6). The additional diffuse 
fibrosis did not alter the location or direction of VA reentry; the reentry occurred in a region of dense 

Figure 4. Relationship between T1- based diffuse fibrosis and ventricular arrhythmia (VA) inducibility in late gadolinium enhancement (LGE)- T1 and 
LGE- only personalized virtual- heart models of hypertrophic cardiomyopathy (HCM) patients. (A) Comparison of the number of unique VA morphologies 
between inducible LGE- T1 and LGE- only models for all VA- inducing pacing sites (LGE- T1: N = 14, interquartile range [IQR] = 1; LGE only: N = 12, 
IQR = 0.75; p = 0.0538, confidence interval [CI]: [1.25, 1.75]). (B) Correlation between amount of T1- based diffuse fibrosis and the number of unique 
VA morphologies induced in LGE- T1 models using logistic regression (R = 0.40, p = 0.157). (C) The distribution of the pacing sites that induced VAs in 
LGE- T1 and LGE- only models.

The online version of this article includes the following source data for figure 4:

Source data 1. Spreadsheet including source data underlying Figure 4.

https://doi.org/10.7554/eLife.73325
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scar in both types of models. Although the T1- based diffuse fibrosis (36.2%) in this patient augments 
the existing diffuse fibrosis of the LGE- only model (9.6%), there are no additional VA morphologies. 
However, the activation dynamics were altered, with propagation being less organized.

In the reminder of the clinical- VA patients in Figure 5A, the presence of T1- based diffuse fibrosis 
resulted in the occurrence of additional VA(s), on top of that (those) also present in the LGE- only 
model. Furthermore, there was not a strict correspondence between the VAs in the LGE- only models 
and the equivalent ones in the LGE- T1 virtual heart in terms of VA locations and dynamics. This indi-
cates that the arrhythmogenic substrate changes in a global fashion when T1- based diffuse fibrosis in 
considered. An example is presented in Figure 5C (patient 9).

Figure 5. Comparison of arrhythmogenesis in hypertrophic cardiomyopathy (HCM) models of patients with clinical ventricular arrhythmias (VAs). (A) 
Plot of the number of unique VA morphologies for patients with clinical VA using late gadolinium enhancement (LGE)- T1 and LGE- only models. (B, C) 
Comparison of VAs in corresponding LGE- T1 and LGE- only models. Pacing site(s) are marked with stars. Bullseye plots show the pacing site location 
(star) and the location of the reentrant pathway in LGE- T1 (blue) and LGE- only (purple) models.

The online version of this article includes the following source data for figure 5:

Source data 1. Spreadsheet including source data underlying Figure 5.

https://doi.org/10.7554/eLife.73325
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As VAs in HCM patients can occur under different circumstances and be documented by different 
means, there is no invasive clinical mapping data for these patients regarding the location and 
morphologies of the clinical VAs. However, two patients in this cohort underwent clinical electrophys-
iology studies that identified episodes of VA. The simulated VAs in the LGE- T1 models matched the 
locations of the clinical VAs as documented by the chart review.

It remains unclear why patients 1 and 2 had noninducible LGE- T1 substrates despite having clinical 
VAs. The amount of diffuse fibrosis in these two substrates (42.4 ± 12.2%) was similar to that in the 
11 inducible substrates (41.2 ± 10.9%); similar was the finding regarding dense scar. Additionally, the 
maximum wall thickness and the thickness distribution fall into the same ranges as the averages of 
the cohort. It is possible that there have been other factors, including electrophysiological remodeling 
that the fusion substrate- based modeling approach presented here cannot capture. Despite incorrect 
prediction in 2 out of 26 patients in the HCM cohort, the VA risk prediction capabilities of the LGE- T1 
virtual- heart approach significantly surpassed those of any current clinical risk assessment approaches, 
as detailed in the next section.

For each geometrical model with clinical VA, the number of unique VA morphologies in each 
LGE- T1 and LGE- only model (Figure 5—source data 1).

Assessment of the capability of the HCM virtual-heart VA risk 
prediction
After examining the mechanistic underpinning of arrhythmogenesis and the role of T1- based diffuse 
fibrosis in the HCM substrate, we conducted a comparison of our VA risk predictor capability with 
the clinical risk assessment guidelines of the ACCF/AHA and ESC. Results are presented in Table 3, 
illustrating that both existing clinical approaches were significantly inferior in predicting VA risk in 
this cohort. Of the 13 HCM patients with clinical VAs, the ACCF/AHA model predicted correctly 6 of 
the patients, while the ESC model predicted correctly 7 patients; the LGE- T1 virtual- heart approach 
predicted correctly 11 patients. Overall, our LGE- T1 virtual- heart technology exhibited higher accuracy 
and greater sensitivity and specificity (80.1%, 84.6%, and 76.9%) as compared to the best performing 
corresponding metrics of the clinical risk assessment methodologies (46.2%, 53.9%, and 46.2% for 
accuracy, sensitivity, and specificity, respectively).

For completeness, data at the bottom of Table 3 quantify the predictive capability of the substrate 
arrhythmogenesis approach when using LGE- only models (9 patients predicted correctly out of 13). 
Interestingly, even without the additional T1 personalization (i.e. without accounting for T1- based 
diffuse fibrosis), the LGE- only virtual- heart technology outperformed the clinical risk stratifiers in this 
HCM cohort. This finding indicates that assessing the arrhythmogenic propensity of the substrate is 
of paramount importance to HCM VA risk stratification, even when the distribution of diffuse fibrosis 
may not be accurately represented.

Discussion
In this study, we presented a new personalized virtual- heart approach for assessing arrhythmia risk 
in patients with HCM, which could be used in guiding clinical decisions for prophylactic ICD implan-
tation. Our technology uses multiscale computational models of patients’ hearts reconstructed on 
the basic of the fusion of imaging data from LGE- CMR and T1 mapping. With the inclusion of 

Table 3. Predictive capability of hypertrophic cardiomyopathy (HCM) virtual- heart technology.

Sensitivity Specificity PPV NPV Accuracy

ACCF/AHA risk model 46.2 46.2 46.2 46.2 46.2

ESC risk model 53.9 38.5 46.7 45.5 46.2

Virtual- heart technology: LGE- T1 84.6 76.9 78.8 83.3 80.1

Virtual- heart technology: LGE only 69.2 76.9 75.0 71.4 73.1

ACCF = American College of Cardiology Foundation, AHA = American Heart Association, ESC = European 
Society of Cardiology, LGE = late gadolinium enhancement.

https://doi.org/10.7554/eLife.73325
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information from postcontrast T1 mapping, a quantitative and parametric imaging modality, exten-
sive diffuse fibrotic remodeling, which is a hallmark of HCM, is adequately represented. Here, this is 
done by adjusting the diffuse fibrosis intensity- based thresholds in model construction based on the 
T1 maps, while preserving the identification of dense scar from LGE- MRI. These are the first person-
alized heart models created with data from different types of CMR; previous personalized modeling 
approaches for VA assessment have utilized LGE- MRI scans in reconstructing model geometry/
structure (Prakosa et al., 2014; Cartoski et al., 2019; Arevalo et al., 2016). Once constructed, 
the mechanistic personalized electrophysiological models were used to analyze how HCM- induced 
remodeling, and specifically the presence of diffuse fibrosis promotes arrhythmogenesis. Finally, 
the capability of our approach to forecast future VA events was assessed in the cohort of 26 HCM 
patients.

The presence of diffuse fibrosis has been suggested previously as a potential factor in increased 
risk of VA, in addition to focal scar. Previous studies have found associations between diffuse fibrosis 
and VA in nonischemic dilated cardiomyopathies (Nakamori et al., 2018) and mitral valve prolapse 
(Bui et al., 2017). Additionally, diffuse ventricular fibrosis has been found to increase left atrial pres-
sure, and may be a marker of atrial fibrillation recurrence postablation (Begg et al., 2020). However, 
its contribution to arrhythmogenic propensity in HCM patients has never been assessed before. This 
study found that the presence of T1- based diffuse fibrosis resulted in the occurrence of new VAs, in 
addition to those arising from scar (as assessed by signal heterogeneities in LGE- MRI). Furthermore, 
T1- based diffuse fibrosis distribution rendered the substrate inducible from a larger number of ectopic 
locations, contributing to the overall increased vulnerability to VA. The arrhythmogenic propensity 
of the ventricular substrate with diffuse fibrosis is patient specific; it is the amount of fibrosis and its 
distribution (shape and location) that determine inducibility of arrhythmia.

In this retrospective proof- of- concept HCM study, the personalized LGE- T1 virtual- heart tech-
nology demonstrated excellent performance in forecasting future VA events in HCM patients, 
achieving 84.6%, 76.9%, and 80.1% sensitivity, specificity, and accuracy, respectively. It outperformed 
both risk models used in current clinical practice, the ACCF/AHA and ESC models. Indeed, all 26 
HCM patients in our study were deemed at high risk for SCD by the ACCF/AHA criteria and received 
ICDs for primary prevention, but only 13 patients, that is 50% of the cohort, actually experienced VA 
(appropriate ICD firing). Should our LGE- T1 virtual- heart technology be proven to be a superior risk 
predictor in larger clinical studies, it would advance the management of patients with this complex 
disease, helping to ensure that those at high risk for VA are adequately protected by ICDs and that 
unnecessary ICD implantations and the associated device complications are minimized.

The HCM virtual- heart technology’s ability to comprehensively evaluate substrate arrhythmoge-
nicity, as probed by rapid pacing delivered at a number of uniformly distributed ventricular locations, 
is paramount to its superior performance. Even when using only LGE- CMR in model construction, 
which reliably detects focal scar (dense fibrosis) but underestimates the amount of nonischemic fibrotic 
remodeling, our technology still offers VA risk assessment that is superior to the clinical risk models. 
However, the use of T1 maps in model construction confers a higher level of personalization in each 
patient’s heart model as compared to LGE only (i.e. personalized thresholds for segmentation), which 
ultimately translates into superior predictive capability.

HCM is a genetic disease that progresses throughout the life of the patient, and a cardiac event 
might be a phenotypic expression of the disease at any point of time. Therefore, we envision that in 
the clinical application of our technology, patients would be reimaged at different time points and risk 
assessment repeated to account for changes in arrhythmia susceptibility over time as the diseased 
heart remodels.

The technology developed here charts a new direction in the use of biophysically detailed heart 
modeling in the prognosis of rhythm disorders. A number of different imaging modalities used in 
patient assessment such as positron emission tomography or single- photon emission computerized 
tomography could also be integrated with LGE- CMR to construct hybrid heart computational models. 
Combining such computational approaches with machine learning techniques (Shade et al., 2020a; 
Shade et al., 2021) will enable the incorporation of additional patient clinical data, such as genetic 
information, phenotypic characterization, time series, such as electrocardiography, and fibrotic distri-
bution in the diagnosis and treatment of complex cardiac diseases with adequately sized patient 
cohorts.

https://doi.org/10.7554/eLife.73325
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Study limitations
Our study has a small sample size, limited by the fact that a number of LGE- CMR scans of HCM patients 
had imaging artifact, which prevented us from reconstructing a larger number of virtual hearts. Specif-
ically, aliasing and motion artifacts were main causes for excluding patient data as well as incomplete 
scans (operator did not scan the entire left ventricular [LV]). Further, there were minor discrepancies of 
the in- plane resolution between the postcontrast T1 map and the matching LGE- CMR short- axis scan 
which were mitigated by binning the regions of fibrotic remodeling and electrophysiological changes 
instead of using a continuum. The resolution of the CMR scan does not allow representation of small 
structural heterogeneities.

Finally, our virtual- heart technology does not incorporate cardiac mechanics into the arrhythmia 
risk stratification, however we do not expect that including it will alter our prediction. Indeed, a 
recent paper examining VA in a patient- specific model with structural remodeling that incorporated 
mechanics Salvador et  al., 2021 demonstrated that mechanics only modifies the stability of the 
arrhythmia, but does not alter its inducibility.

Materials and methods
Study overview
The methodology for assessing VA risk in HCM patients involves creating 3D patient- specific electro-
physiological ventricular models with data from LGE- CMR and postcontrast T1 mapping. Each model 
represents the personalized distribution of both focal fibrosis (scar) and diffuse fibrosis, both of which 
contribute to the formation of the arrhythmogenic substrate. VA inducibility in each HCM patient’s 
substrate is probed to understand the mechanisms of arrhythmogenesis, and specifically the contri-
butions to it of the focal and diffuse fibrosis distributions, and to determine VA risk for the patient. 
Conceptual overview is presented in Figure 1.

The predictive capabilities of the virtual- heart HCM VA risk stratifier were evaluated retrospectively 
in a proof- of- concept study using data from 26 HCM patients. We chose a cohort that was balanced 
between patients with VAs based on appropriate ICD firings (13 patients) and without arrhythmic 
events (the other 13 patients). All patients underwent implantation of clinically indicated ICDs. Virtual- 
heart predictions of VA risk, executed blindly, were compared to clinical outcomes.

Study population
The 26 patients were diagnosed with HCM based on the presence of LV wall thickness ≥15 mm on two- 
dimensional echocardiography in the absence of other ventricular diseases, including hypertrophy of 
the right ventricle (RV), between 2011 and 2016 at Johns Hopkins Hospital (Chu et al., 2017). All 
patients were clinically referred for prophylactic ICD implantation, being deemed at high risk for VA 
based on clinician assessment. T1 maps and LGE- CMR were obtained pre- ICD implantation. Patients 
were followed for the primary end point of appropriate ICD firing due to VA. As stated above, of the 
26 HCM patients, 13 (50%) had known VA episodes based on appropriate ICD firing. Patient clinical 
characteristics are shown in Table 1.

Imaging data
Patients whose imaging data were retrospectively used in this study had cardiac CMR examinations 
using a 1.5 T scanner (MAGNETOM Avanto; Siemens Healthcare, Erlangen, Germany) prior to ICD 
implantation. Short- axis LGE- CMR images with 2- mm in- plane and 8- mm z- axis resolution were 
acquired as previously described (Chu et al., 2017). In addition, a single mid- ventricular short- axis 
postcontrast T1 map with 1.5- mm in- plane and 8- mm z- axis resolution was acquired during the same 
scan 12 min after gadolinium injection using a MOLLI sequence (Chu et al., 2017). All patient imaging 
data for model generation were obtained under IRB approval.

Geometrical reconstruction of patients’ hearts from T1 maps and LGE-
CMR images
In generating HCM patients’ virtual hearts, a geometrical model of each patient’s heart was first 
reconstructed using the patient’s LGE- CMR images. The LV myocardium was segmented from short- 
axis LGE- CMR in the CardioViz3D software using a validated semiautomatic landmark- based method 

https://doi.org/10.7554/eLife.73325
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to define the boundaries of the endocardium and epicardium as described in previous virtual- heart 
projects by our team (Arevalo et al., 2016; Shade et al., 2020b; Cartoski et al., 2019) The RV was 
not reconstructed due to blood pool artifacts and the lack of hypertrophy and fibrotic substrate in 
HCM patients. The LGE- CMR was processed in the standard manner for reconstructing LV geomet-
rical models of patients with ischemic (Arevalo et al., 2016) or nonischemic cardiomyopathy (Shade 
et al., 2020b; Cartoski et al., 2019) which incorporate the distribution of scar and surrounding gray 
(border) zone. Specifically, as LGE- CMR is an image of relative intensity, the mean of the low signal 
intensity region in each image was determined, the latter representing myocardium without detect-
able fibrosis. The SD of that mean value was used to threshold regions of intermediate (>3 SD above 
the mean) and high (>5 SD above the mean) signal intensity in the LV, representing fibrotic gray zone 
and focal scar. Figure 1B, top left, shows these thresholds applied to one LGE- CMR image. The same 
SD thresholds were used for all models.

Information from the patient’s postcontrast T1 mapping was next incorporated in each geometrical 
heart model. As only a single short- axis mid- LV postcontrast T1 map (Figure 1B) was acquired for each 
patient, the matching slice with the same position and orientation of the ventricle (Figure 1B, top left) 
in the LGE- CMR stack was selected using the z- axis coordinate of the images. Each set of a postcon-
trast T1 map and a corresponding short- axis LGE- MRI slice was visually inspected for differences in 
anatomy, cardiac phase, and distribution of enhancement, and only images found to be in agreement 
by the radiologists were used in this study. The postcontrast T1 map was segmented using the same 
method as described above. The relaxation times from the segmented LV of the short- axis T1 map 
were used to define new, personalized signal intensity thresholds (different from the ‘one- size- fits- all’ 
thresholds of 3 and 5 SD of the low- intensity mean) to delineate areas of intermediate and high signal 
intensities in the corresponding LGE slice. Specifically, the signal intensity profile of the myocardium 
from the corresponding LGE- CMR slice was normalized to the intensity profile (relaxation times) of the 
T1 map myocardium. Regions in the LGE- CMR slice signal intensity corresponding to short (<350 ms) 
and intermediate (350–450 ms) relaxation times in the T1 map were thresholded (Figure 1B). Based 
on evidence in histopathological studies (Ellims et al., 2012; Iles et al., 2008; Mewton et al., 2011; 
Ellims et al., 2014), these regions in the T1 map represent dense fibrosis (scar) and diffuse fibrosis.

The thresholds in the LGE- CMR slice, originally 3 and 5 SD of the mean signal intensity of the 
normal myocardium, were changed to new values (TDiffuse and TDense, in units of SD, Figure 1B, bottom 
left) such that the amount and distribution of tissue of mid- and high signal intensity in the LGE- CMR 
slice matched those in the T1 map. The new personalized signal intensity thresholds in the matching 
LGE- CMR slice were then applied to all LGE- CMR short- axis slices (Figure 1B, right) for the given 
patient to complete the generation of the LGE- T1 personalized geometrical heart model (Figure 1A, 
middle) that incorporates regions of focal scar and diffuse fibrosis; the personalized fibrosis segmen-
tation thresholds were unique to each patient. Using T1 mapping provided additional personalization 
of the model geometrical reconstruction and ensured a comprehensive representation of the individ-
ualized structural remodeling in each patient’s heart.

High- resolution finite- element tetrahedral meshes, with an average resolution of 355 ± 69  μm, 
were constructed directly from the ventricular segmented images using finite- element analysis soft-
ware (Mimics Innovation Suite; Materialise, Leuven, Belgium); the software uses an input target 
finite- element edge length and generates a computational mesh with a tight edge length distribu-
tion around the input value. The mesh resolution requirement in electrophysiological simulations is 
300–400 μm to ensure stability of the solution, as demonstrated by a number of studies (Prassl et al., 
2009; Plank et al., 2008).

Fiber orientations, unique to each patient- specific geometry, were applied to each computational 
mesh on a per- element basis using a rule- based approach (Bayer et al., 2012) validated using human 
fiber orientations acquired in histological and diffusion- tensor MRI studies. This methodology uses 
the Laplace–Dirichlet method to define apicobasal and transmural directions for every element in the 
personalized ventricular meshes followed by bidirectional spherical linear interpolation to assign fiber 
orientations based on a set of rules.

https://doi.org/10.7554/eLife.73325
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Electrophysiological properties in the HCM virtual hearts
The personalized 3D virtual hearts of HCM patients incorporated electrical functions from the cellular 
scale to the whole heart. Electrophysiological remodeling was incorporated in each virtual heart based 
on the reconstruction of heterogeneously distributed structural remodeling.

At the cellular level, in regions of nonfibrotic myocardium, the human ventricular myocyte model 
by ten Tusscher and Panfilov, 2006 was used, with added representation of INaL (O’Hara et  al., 
2011), as done in our previous studies (Cartoski et al., 2019; Shade et al., 2020a, Arevalo et al., 
2016; Prakosa et al., 2018; Shade et al., 2021). For regions of diffuse fibrosis, we modified the 
ionic channel kinetics of the ten Tusscher model based on data reported by Coppini et al., 2013. In 
the latter study, prolonged action potential duration and notch elevation following depolarization 
were observed in experimental recordings from myocytes in hyperthrophied regions acquired via 
myectomy. As regions of hypertrophy in the HCM heart are also characterized with diffuse fibrotic 
remodeling, as per histopathological evidence (Galati et al., 2016), in the absence of experimental 
reports of specific ionic changes in regions of diffuse fibrosis, we used those reported by Coppini 
et al., 2013. Specific changes included 107% increase of INaL maximal conductance, 19% increase of 
ICaL maximal conductance, 34% decrease of IKr maximal conductance, 27% decrease of IKs maximal 
conductance, 85% decrease of Ito maximal conductance, 15% decrease of IK1 maximal conductance, 
34% increase of sodium- calcium exchanger activity, and 43% reduction of sarcoplasmic/endoplasmic 
reticulum calcium ATPase activity. The net results of the changes to the cell model include increased 
action potential duration at 90% repolarization from 280 to 330 ms (+18%) and diminution of the 
notch after depolarization. Figure 1A, middle, shows the action potentials implemented in regions of 
fibrotic and nonfibrotic myocardium.

At the tissue level, conductivity values along the longitudinal and transverse fiber directions in 
fibrotic and nonfibrotic myocardium were the same as previously implemented for nonischemic 
patient heart models (Shade et al., 2020b). Dense fibrosis was considered electrically inexcitable. 
Once completed, the patient- specific HCM electrophysiological heart models were used to assess the 
patient’s risk of arrhythmia.

Assessing VA risk in the personalized HCM computational models
Full details regarding the simulation of electrical activity in the virtual hearts can be found in previous 
publications (Plank et al., 2008; Prakosa et al., 2018; Vigmond et al., 2008). Briefly, these were finite 
element heart models, where the simulation of electrical activity was performed in a monodomain 
representation of the myocardium using the software package CARP (https://carp.medunigraz.at/). 
Each virtual heart was paced sequentially from seven uniformly distributed endocardial LV locations 
using a validated rapid pacing protocol described in detail in previous studies (Prakosa et al., 2018; 
Arevalo et al., 2016; Cartoski et al., 2019). Similar to our work on VA risk stratifications for patients 
with ischemic cardiomyopathy (Arevalo et al., 2016), simulation results were analyzed to determine 
whether reentrant VA was induced in the LV HCM models following rapid pacing from any of the sites. 
If VA was induced from at least one pacing site in a given personalized HCM virtual heart, the patient 
was then considered at risk of VA. Simulation results were blind to clinical outcome.

The capability of our HCM virtual- heart technology to predict VA risk was compared to risk scores 
for prophylactic ICD implantation developed by ACCF/AHA (Gersh et al., 2011) and ESC (O’Mahony 
et al., 2014) using the patient clinical data.
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Boards. Documentation and instructions on the use of the openCARP cardiac electrophysiology 
simulator and meshalyzer visualization software (both available via https://opencarp.org/) can be 
used to precisely reproduce the computational protocol applied to patient- specific left ventricular 
models in this study.
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