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Abstract Endothelial and skeletal muscle lineages arise from common embryonic progeni-
tors. Despite their shared developmental origin, adult endothelial cells (ECs) and muscle stem 
cells (MuSCs; satellite cells) have been thought to possess distinct gene signatures and signaling 
pathways. Here, we shift this paradigm by uncovering how adult MuSC behavior is affected by 
the expression of a subset of EC transcripts. We used several computational analyses including 
single-cell RNA-seq (scRNA-seq) to show that MuSCs express low levels of canonical EC markers in 
mice. We demonstrate that MuSC survival is regulated by one such prototypic endothelial signaling 
pathway (VEGFA-FLT1). Using pharmacological and genetic gain- and loss-of-function studies, we 
identify the FLT1-AKT1 axis as the key effector underlying VEGFA-mediated regulation of MuSC 
survival. All together, our data support that the VEGFA-FLT1-AKT1 pathway promotes MuSC survival 
during muscle regeneration, and highlights how the minor expression of select transcripts is suffi-
cient for affecting cell behavior.

Editor's evaluation
This study presents a valuable finding on the unique role of VEGFA-FLT1-AKT1 signaling in regu-
lating muscle stem cell (MuSC) survival. The evidence supporting the claims is convincing, with 
multiple approaches utilized, including pharmacological and genetic methods performed in vitro 
and in vivo, demonstrating that the VEGFA-FLT1-AKT1 axis protected MuSCs from apoptosis. The 
work will be of broad interest to researchers in the MuSC biology field and support the future devel-
opment of VEGFA and FLT1 targeted therapies for various diseases, such as cancer and neuromus-
cular diseases.

Introduction
Skeletal muscle and endothelial cells (ECs) and their progenitors from the trunk and limbs are derived 
from the somites during early developments. Previous works demonstrated the existence of bipo-
tent progenitors which express both Pax3 and Flk1 (Eichmann et al., 1993; Kardon et al., 2002; 
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Ema et al., 2006; Esner et al., 2006; Tozer et al., 2007). These bipotent progenitors migrate into 
trunk and limb buds from ventrolateral region of the somites to generate MYOD(+) myogenic cells 
followed by skeletal muscle and PECAM1(+) ECs followed by vasculatures (Hutcheson and Kardon, 
2009; Kardon et al., 2002; Lagha et al., 2009; Mayeuf-Louchart et al., 2016; Mayeuf-Louchart 
et al., 2014). In addition, FLK1(+) cells give rise to myogenic cells during development and onco-
logic transformation (Drummond and Hatley, 2018; Mayeuf-Louchart et al., 2014; Motoike et al., 
2003). Lastly, multipotent mesoangioblasts, vessel‐associated stem cells, have been identified in 
embryonic dorsal aorta (Minasi et al., 2002). These cells are able to differentiate into several types 
of mesodermal tissues including skeletal muscle and ECs (Roobrouck et al., 2011). Interestingly, 
these myogenic cells show the same morphology as muscle satellite cells (MuSCs), stem cell popula-
tions for skeletal muscle, and express a number of myogenic and EC markers such as Myod, Cdh15, 
Kdr, and Cdh5 (De Angelis et al., 1999). However, it is not clear whether adult MuSCs derived from 
these bipotent progenitors still maintain canonical EC signals. Curiously, blood vessel-associated 
myoendothelial cell progenitors that express both myogenic and EC markers, and are able to differ-
entiate into myogenic cells following transplantation have been identified in the interstitial spaces 
of both murine and human adult skeletal muscle (Tamaki et al., 2002; Zheng et al., 2007; Huang 
et al., 2014). However, the relationship between these myoendothelial cell progenitors and MuSCs 
remains unclear.

Vascular endothelial growth factor (VEGF), specifically VEGFA modulates many biological aspects 
including angiogenesis through its two receptors, FLT1 and FLK1. Although FLK1 possesses stronger 
signaling capability and the major signaling receptor tyrosine kinase (RTK) for VEGFA, FLT1 has consid-
erably higher affinity for VEGF but weaker cytoplasmic signaling capability. In normal tissue, FLT1 acts 
as a decoy receptor and a sink trap for VEGF thereby preventing excessive normal and pathological 
angiogenesis. In addition, there are two co-receptors for VEGFA (NRP1 and NRP2) that function with 
FLK1 to modulate VEGFA signaling. While VEGF signaling has been extensively studied for its role 
in development, proliferation, and survival of endothelial cells (ECs), its role in non-vascular systems 
such as neuron and bone has only recently been appreciated (Poesen et al., 2008; Liu et al., 2012; 
Okabe et al., 2014). Skeletal muscle tissue is the most abundant producer of VEGFA in the body. It 
has already been extensively studied in the skeletal muscle fibers in models of Vegfa knockout mice 
(Tang et al., 2004; Wagner et al., 2006; Olfert et al., 2009) as well as Vegfa overexpression (Arsic 
et al., 2004; Yan et al., 2005; Messina et al., 2007; Bouchentouf et al., 2008).

Adult skeletal muscle also contains the tissue resident muscle stem cell population, termed 
MuSCs, which mediate postnatal muscle growth and muscle regeneration (Motohashi and Asakura, 
2014). After muscle injury, quiescent MuSCs initiate proliferation to produce myogenic precursor 
cells, or myoblasts. The myoblasts undergo multiple rounds of cell division before terminal differ-
entiation and formation of multinucleated myotubes by cell fusion. Importantly, the MuSC-derived 
myoblasts also express VEGFA, which has been shown to increase the proliferation of myoblasts 
(Christov et al., 2007). Our data obtained from genetical model mice demonstrated that MuSCs 
express abundant VEGFA, which recruits ECs to establish vascular niche for MuSC self-renewal 
and maintenance (Verma et al., 2018). In addition, VEGFA and its receptors are expressed in the 
myoblast cell line, C2C12 cells, and the signaling can induce cell migration and protect apoptotic 
cell during myogenic differentiation in vitro (Germani et al., 2003; Bryan et al., 2008; Mercatelli 
et  al., 2010). However, it is not clear whether MuSCs also express VEGF receptors and if cell-
autonomous VEGFA signaling plays an essential roles in MuSC function during muscle regenera-
tion in vivo.

We have previously shown that Flt1 heterozygous gene knockout and conditional deletion of Flt1 
in ECs display increased capillary density in skeletal muscle, indicating the essential roles for Flt1 in 
adult skeletal muscle. More importantly, when crossed with the Duchenne muscular dystrophy (DMD) 
model mdx mice, these mice show both histological and functional improvements of their dystro-
phic phenotypes. This was partly due to the effect of increased ECs leading to an increase in MuSCs 
(Verma et al., 2010; Verma et al., 2019; Bosco et al., 2021). However, the effect of VEGFA on MuSC 
in vivo remained unknown. We found that MuSCs express low levels of canonical EC markers including 
VEGF receptors using single cell transcriptomics. Therefore, we examined the effects of VEGFA on 
MuSCs and show that it has a drastic effect on cell survival in the via its receptor FLT1 by signaling 
through AKT1.

https://doi.org/10.7554/eLife.73592


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology | Stem Cells and Regenerative Medicine

Verma et al. eLife 2024;13:e73592. DOI: https://doi.org/10.7554/eLife.73592 � 3 of 32

Results
EC gene signal including Vegf receptors in MuSCs
EC signatures in MuSCs has been seen in several gene expression data sets (Figure 1—figure supple-
ment 1A–1D, Supplementary file 1; Fukada et al., 2007; Charville et al., 2015; Ryall et al., 2015; 
van Velthoven et al., 2017). However, with the lack of EC control, we questioned whether these were 
true expression or artifact. To isolate EC and MuSC populations, we first crossed the Flk1+/GFP mice 
to label the ECs of the vasculature (Ema et al., 2006) and the Pax7+/CreERT2:ROSA26+/Loxp-stop-Loxp-tdTomato 
(Pax7+/CreERT2:R26R+/tdT) mice to mark the MuSC lineage (Murphy et al., 2011; Verma et al., 2018). We 
performed bulk RNA sequencing (RNA-seq) on FACS sorted ECs and MuSCs as well as freshly isolated 
single muscle fibers (Figure 1A, Figure 1—figure supplement 1E–G). We found that single muscle 
fibers routinely have ECs fragments attached to the fiber (Figure 1—figure supplement 1G) and so 
we removed such fibers based on Flk1GFP expression from the samples collected for sequencing. We 
surveyed for canonical genes for each cell type (Figure 1B) and found minimal but reliable expression 
of canonical ECs genes such as Pecam1, Cdh5, Kdr, and Flt1 in MuSCs.

It is possible that these EC signatures detected in MuSCs were due to small amounts of contam-
inating ECs with very high expression of the canonical EC genes skewing the average expression 
in MuSC RNA samples. To rule out this possibility, we performed single-cell RNA-seq (scRNA-seq) 
on MuSCs and ECs isolated from mouse hind limb muscle from both basal condition and 3  days 
post intramuscular cardiotoxin (CTX) injury to look at both quiescent and activated MuSCs from the 
reporter mice specified above (Figure 1A). We could reliably delineate injured and activated MuSCs 
via side and forward scatter (Figure 1—figure supplement 1H and I). We FACS isolated cells from 
both days separately and spiked in 20% of the ECs into the MuSCs from their respective time points, 
and performed scRNA-seq for each time point (Figure 1A). We performed sequencing with ~300 K 
read/cell compared with the commonly used sequencing with 60 K reads/cell, in order to maximize the 
possibility of detecting low-abundance transcripts (Zhang et al., 2020). In the aggregated dataset, 
the MuSCs showed low overlap between D0 and D3 owing to the different stages of the myogenic 
differentiation cycle, while the ECs clusters showed near perfect overlap (Figure 1C and D). While 
drastic morphological changes in ECs have been shown during muscle regeneration (Hardy et al., 
2016), transcriptomic changes are much more tapered, especially compared with MuSCs (Latroche 
et al., 2017). We were able to deconvolve the quiescent MuSCs from the activated and differentiating 
MuSCs, ECs, and other cell types from gene signatures. (Figure 1—figure supplement 1J). Impor-
tantly, data from scRNA-seq were able to recapitulate the minimal expression of canonical EC genes 
in the MuSC clusters such as Cdh5 (Figure 1E) as seen in our Bulk RNA-seq results (Figure 1B). These 
included the Vegf receptors Flk1 (Kdr) and Flt1 (Figure 1E).

As a quality control measure, we introduced an artificial chromosome into our reference genome 
with sequences for the three transgene genes; eGFP from Flk1+/GFP, tdTomato and CreERT2 from 
Pax7+/CreERT2:R26R+/tdT and used this genome to map our single cell RNA-seq data (Figure  1E, 
Figure 1—figure supplement 1K). Surprisingly, we also found eGFP in the MuSCs and tdTomato in 
EC fraction, while the CreERT2 expression remained mainly restricted to the MuSCs (Figure 1—figure 
supplement 1K). FACS analysis and FACS-sorted cells confirmed that GFP(+) and tdTomato(+) cells 
are exclusively restricted as ECs and MuSCs, respectively (Figure 1—figure supplement 1E and F). 
Therefore, we hypothesized that this was due to the ambient-free mRNA from the digested cells that 
is intrinsic to any droplet based single-cell sequencing platform. By using SoupX (Young and Behjati, 
2020), we performed careful background subtraction using genes expressed exclusively in myofibers 
as our negative control and genes validated by in situ hybridization as a positive control (Kann and 
Krauss, 2019). We observed decreased but sustained eGFP expression in the MuSC fraction and 
tdTomato expression in the EC fraction after SoupX subtraction (Figure 1—figure supplement 1K). 
In addition, the EC signatures such as Cdh5 expression in the MuSC fraction was also sustained. These 
results conclude that MuSCs contain mRNAs from canonical ECs genes. We showed that the canonical 
EC genes, such as Cdh5, Flt1 and Flk1 were broadly expressed in the myogenic cells in our dataset 
(Figure 1E).

Since detection of rare subpopulation in single cell dataset is a factor of cell numbers, we re-an-
alyzed previously published dataset with 2,232 myogenic cells across different states (Torre et al., 
2018; De Micheli et al., 2020). We were able to classify cell as quiescent, proliferative vs. differ-
entiating states based on the expression of Calcr, Cdk1, and Myog, respectively (Figure 1—figure 

https://doi.org/10.7554/eLife.73592
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Figure 1. EC gene signal including VEGF receptor genes in MuSCs. (A) Experimental schema for bulk and scRNA-seq from the Pax7CreERT2:R26RtdT:Flk1GFP 
mice. Bulk RNA-seq performed on MuSCs, ECs and single muscle fibers (SMFs) from uninjured muscle. FACS sorted MuSCs and ECs from uninjured and 
regenerating TA muscle (3 days following CTX) were run separately on the 10 X single cell platform and aggregated. This panel created with BioRender.
com, and published using a BW26O8AXHL license with permission. (B) Bulk RNA-seq showing EC signature in MuSCs. Subset dividing genes that are 
commonly used to delineate cell identity for MuSCs, ECs and SMFs. Last column shows genes that define macrophages (Mφ), which should not be 
highly expressed in any on our cell types. Red dots indicate MuSCs, green dots indicate ECs and blue dots indicate SMFs. Data show mean ± SD (n=3). 

Figure 1 continued on next page
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supplement 1L). We noticed that EC prototypic markers such as Flt1 are broadly expressed with small 
amounts in MuSCs. Complementary data from different laboratories showed the clear expression of 
EC prototypic markers such as Cdh5, Flt1, and Kdr, using microarrays and Bulk-RNA-seq (Figure 1—
figure supplement 1A and B; Fukada et al., 2007; Ryall et al., 2015). RNA-seq data from fixed 
quiescent, early activated and late activated MuSCs show that Flt1 may be transiently upregulated 
during the early activation process (Figure 1—figure supplement 1C; Yue et al., 2020). To confirm 
whether the EC gene mRNAs were transcribed from MuSCs, we utilized previously published MuSC 
nascent RNA transcriptome from TU-tagged samples (Gay et al., 2013; van Velthoven et al., 2017). 
As expected, Myh1 was represented in the whole muscle but was absent in the TU-tagged MuSCs 
(Figure 1F), indicating that the nascent MuSCs were devoid of cellular contamination from other cells 
in the muscle. Inversely, the nascent MuSC transcript was over-represented for MuSC related genes 
such as Calcr and Sdc4. Interestingly, we were able to detect EC genes such as Kdr and Pecam1 in 
the TU-tagged MuSC samples indicating that they were actively transcribed by MuSCs (Figure 1F, 
Figure 1—figure supplement 1D).

We also verified the expression of Vegfr genes (Kdr, Flt1, Nrp1, and Nrp2) in MuSCs using RT-qPCR 
(Figure 1G). In addition, we verified the expression of Flt1 by performing in situ hybridization using 
RNAScope on MuSC on whole muscle fiber, which we currently believe to be the gold standard for 
expression studies (Figure 1H). Finally, in MuSC-derived myoblasts, NRP1and NRP2 expression was 
detectable with comparable intensity compared with EC cell line, while FLT1 expression was detect-
able with lower intensity compared with EC cell line (Figure 1I). By contrast, PECAM1, VE-Cadherin 
and FLK1 expression, which was clearly detected in EC cell line, was undetectable level in myoblasts. 
Taken together, these data indicate that there are both transcripts of these EC canonical genes and 
EC canonical proteins in MuSCs.

VEGFA induces proliferation and cell survival but not differentiation in 
myoblasts
Since VEGFRs were expressed in MuSCs in small amounts and their ligand, VEGFA, was highly 
expressed in MuSCs (Verma et al., 2018), we wanted to investigate whether there were any biological 
effects to induction by VEGFA. We found that treatment with VEGFA could increase proliferation of 
MuSC-derived myoblasts at low dose but inhibit proliferation at high dose of VEGFA, a phenomenon 
that has been previously described in ECs (Noren et al., 2016; Figure 2—figure supplement 1A). We 
saw no effect on differentiation by VEGFA as evaluated by myosin heavy chain (MyHC) staining, fusion 
index and RT-qPCR (Figure 2—figure supplement 1B–D). By contrast, crystal violet staining showed 
that VEGFA could significantly increase survival as judged by number of myoblasts following UV-medi-
ated apoptotic cell death induction (Figure 2—figure supplement 1E and F). To investigate apoptosis 

(C) UMAP from aggregated single cell RNA-seq shows expression of different phases of MuSCs (quiescent MuSCs, activated MuSCs and myoblasts), 
ECs (tip ECs and ECs) and from likely contaminant cells such as macrophages (Mφ) and smooth muscle cells (SMC). (D) UMAP from aggregated data 
visualized by sample day showing MuSCs segregated by the sample day but overlap in the EC population. Red dots indicate intact (day 0) and blue dots 
indicate 3 days following CTX. (E) Expression of quality control genes such as eGFP, tdTomato, CreERT2, and EC genes such as Cdh5, Kdr, and Flt1. 
(F) Genome browser tracks of whole muscle and TU-tagged MuSC nascent RNA (GSE97399, van Velthoven et al., 2017). Kdr and Pecam1 expression 
can be found in the MuSC fraction. As control, Myh1 is highly expressed in the whole muscle preparation but largely absent in the MuSC fraction. Sdc4 
and Calcr are highly expressed in MuSC and less so in the whole muscle fraction. (G) qPCR for Kdr, Flt1, Nrp1 and Nrp2 in EC lines (bEnd.3 and C166), 
muscle cell line (C2C12) and MuSC-derived myoblasts in growth and differentiation medium (DM) shows low level expression of VEGFRs and VEGF 
co-receptors. Data show mean ± SD (n=3). (H) RNAScope of Flt1 on freshly isolated single muscle fibers from Pax7tdT mice shows Flt1 expression (green) 
and tdTomato (red) in MuSCs. Nuclei were counterstained with DAPI (blue). Scale bar indicates 5 µm. (I) Immunostaining for PECAM1, VE-cadherin 
(VE-Cad), VEGFA co-receptors (NRP1 and NRP2) and VEGFA receptors (FLT1 and FLK1) in bEnd.3 EC cell line and MuSC-derived myoblasts (MB). Nuclei 
were counterstained with DAPI (blue). Scale bar indicates 20 µm.

© 2024, BioRender Inc. Figure 1 was created using BioRender, and is published under a CC BY-NC-ND 4.0. Further reproductions must adhere to the 
terms of this license

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Measurement of EC gene signal including VEGF receptor genes in MuSCs.

Figure supplement 1. EC gene signal in MuSCs.

Figure supplement 1—source data 1. Measurement of EC gene signal in MuSCs.

Figure 1 continued
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in detail, we optimized Annexin V assay following thapsigargin-mediated endoplasmic reticulum (ER)-
stress (Hirai et al., 2010) so that we could study deviation at ~ED50 while still performing experiments 
to remove the confounding variable to proliferation from the experimental setup (Figure 2—figure 
supplement 1G and H). We had previously shown that MuSCs are the predominant cells that secrete 
VEGFA in skeletal muscle (Verma et al., 2018) and while adding exogenous VEGFA did not improve 
cell survival, blocking VEGFA via a soluble form of FLT1-FC increased the number of apoptotic and 
necrotic myoblasts in vitro (Figure 2A and B).

VEGFA-facilitated cell survival in MuSC-derived myoblasts is mediated 
through FLT1
To characterize the VEGF receptor responsible for the anti-apoptotic effect of VEGFA on MuSC-
derived myoblasts, we used pharmacological inhibitors of the VEGF receptors (Figure 2C and D). We 
used blocking antibody for the VEGF receptors FLT1 (anti-FLT1 antibody), small molecule inhibitors 
for FLK1 (SU4502 and ZM306416) and the FLK1 co-receptor NRP1 (EG00229) following thapsigargin 
induction (Figure 2A and D). Surprisingly, inhibiting FLK1, the major signaling RTK for VEGFA, had 
no effect on myoblasts survival following thapsigargin induction (Figure 2D). By contrast, blocking 
FLT1 via blocking antibody greatly decreased the survival of myoblasts following thapsigargin induc-
tion (Figure 2D). To confirm this interesting result using genetic tools, we obtained myoblasts with 
Pax7-CreER-inducible deletion of Flt1 mice (Pax7+/CreER:Flt1Loxp/Loxp or MuSC-Flt1Δ/Δ) and the control 
mice (Pax7+/+:Flt1Loxp/Loxp). In vitro 4-OHT-mediated genetic deletion of Flt1 (MuSC-Flt1Δ/Δ) resulted in 
down-regulation of Flt1 RNA and FLT1 protein expression (Figure 2—figure supplement 1I and J), 
and increased spontaneous apoptotic cell death even without induction of apoptosis (Figure 2E). By 
contrast, Flt1 deletion did not affect cell proliferation assessed by EdU staining or myogenic differenti-
ation assessed by MyHC staining (Figure 2—figure supplement 1K–M). When thapsigargin-induced 
apoptosis was induced, the MuSC-Flt1Δ/Δ myoblasts had increased apoptosis that was not responsive 
to exogenous VEGFA (Figure 2F).

AKT1 signaling is involved in apoptosis of muscle stem cells
VEGFA signaling is mediated through Extracellular signal-Regulated Kinase (ERK), p38 Mitogen-
Activated Protein Kinase (MAPK), and Protein kinase B (AKT1). In ECs, VEGFA is known to protect cells 
from apoptosis via AKT1 (Domigan et al., 2015; Lee et al., 2007). However, it is not known whether 
VEGFA can similarly activate AKT1 in MuSC-derived myoblasts. While the role of AKT1 has been 
explored in proliferation and differentiation in myoblasts, its role in apoptosis has not been well char-
acterized (Loiben et al., 2017). We assessed for AKT1 activation via phosphorylated AKT1 (pAKT1) 
in MuSC-derived myoblasts. We found that exogenous VEGFA could induce AKT1 phosphorylation 
(pAKT1) (Figure 2G and H, Figure 2—figure supplement 1N and O). This response was blunted in 
MuSC-Flt1Δ/Δ myoblasts and was no longer responsive to VEGFA (Figure 2G and H, Figure 2—figure 
supplement 1N and O). Lastly, we wanted to confirm that AKT1 activation could improve myoblast 
survival. We infected lentiviral E4ORF1 or MyrAKT1 vectors in myoblasts, both of which gene prod-
ucts have been shown to specifically activate AKT1 without activating ERK or p38 (Kobayashi et al., 
2010). We found that overexpression of either of these genes improved cell survival compared with 
the control in vitro following induction of apoptosis via thapsigargin (Figure 2I). These data establish 
FLT1-AKT1 as the cascade linking VEGFA to apoptosis in MuSC-derived myoblasts during muscle 
regeneration (Figure 2J).

VEGFA-FLT1 pathway protects MuSCs from apoptosis in vivo
Endogenous and exogenous VEGFA have been shown to regulate cell survival and protect ECs from 
apoptosis (Gerber et al., 1998; Lee et al., 2007). To assess whether additional VEGFA had an effect 
on MuSC behaviors in vivo, we used mice carrying the Vegfa+/Hyper allele for injury-mediated TA muscle 
regeneration following BaCl2 injection (Figure  3A and B; Miquerol et  al., 1999). MuSC-derived 
myoblasts from Pax7+/tdT:Vegfa+/Hyper mice showed around 2.8-fold increased expression of Vegfa 
but not the Vegfr genes compared with myoblasts from wild-type mice (Figure 3—figure supple-
ment 1A). Interestingly, while treatment with VEGFA alone had no effect on apoptosis in vitro, the 
MuSCs from Pax7+/tdT:Vegfa+/Hyper mice showed decreased cell death in regenerating muscle by 1 day 
following BaCl2 injection (Figure 3C). Consequently, single muscle fibers from Pax7+/tdT:Vegfa+/Hyper 

https://doi.org/10.7554/eLife.73592
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Figure 2. VEGFA-FLT1-AKT1 axis controls apoptosis in MuSC in vitro. (A) Experimental scheme for assessing apoptosis following thapsigargin induction 
in myoblast culture. (B) Decreased cell survival in myoblast in vitro as VEGFA is blocked using 100 ng/ml FLT1-FC (a VEFGA trap) following thapsigargin 
induction. This phenotype is partially rescued with exogenous VEGFA (50 ng/ml). Data show mean ± SD (n=3). (C) Graphical representation of the 
various tools used to interrogate the VEGFA pathway in this figure. This panel created with BioRender.com, and published using a TQ26O8B2M7 
license with permission. (D) Following thapsigargin induction, apoptotic and necrotic cells are increased with inhibition of FLT1 via FLT1-FC or anti-FLT1 
antibody (anti-FLT1 mAb) but not FLK1 (SU5402 and ZM306416) or NRP1-FLK1 inhibition (EG00229) following exogenous VEGFA (50 ng/ml). Data show 

Figure 2 continued on next page
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mice showed increased number of MuSCs, compared with those from Pax7+/tdT:Vegfa+/+ mice by 
28 days following BaCl2 injection (Figure 3D). In addition, muscle regeneration was promoted in 
Vegfa+/Hyper mice in the early (14 days) and late (28 days) muscle repair processes as judged by fiber 
diameter and increase in eMHC(+) regenerating muscle fibers (Figure 3E and F, Figure 3—figure 
supplement 1B–F, ).

We then performed the reciprocal experiment to investigate the consequence of Vegfa loss in 
MuSCs in vivo, and utilized MuSC-specific Vegfa knockout mice (Pax7+/CreER:VegfaLoxp/Loxp). We have 
previously shown that vasculature in the MuSC-VegfaΔ/Δ mouse muscle is perturbed and the prox-
imity between the MuSC and EC is increased (Verma et al., 2018). However, the functional conse-
quences of this remained unknown. We confirmed that clear downregulation of VEGFA protein in 
MuSC-derived myoblasts isolated from MuSC-VegfaΔ/Δ mice (Figure 3—figure supplement 2A). We 
noticed that deletion of Vegfa in MuSCs in the MuSC-VegfaΔ/Δ mouse muscle led to an increase in 
the proportion of dead MuSCs following BaCl2 injection (Figure 3G). Consequently, the number of 
MuSCs in the MuSC-VegfaΔ/Δ muscle were significantly reduced following recovery after injury without 
difference in the MuSC numbers in MuSC-VegfaΔ/Δ muscle at homeostasis (Figure 3H). In addition, the 
muscle had a regenerative defect as indicated by the shift in fiber size distribution, decrease in the 
size of regenerating eMHC(+) fiber and increased adipose following muscle injury (Figure 3B, I and 
J, Figure 3—figure supplement 2B–E, Figure 3—figure supplement 1E and F). While a limitation 
of this experiment is that the MuSC fusion into the fiber also deletes Vegfa from the fiber themselves, 
muscle-fiber-specific deletion of Vegfa has not shown an effect on fiber size (Delavar et al., 2014). 
These data indicate that cell intrinsic VEGFA improves cell survival of MuSCs and that loss of MuSC-
derived VEGFA results in reduced muscle regeneration.

Since FLT1 but not FLK1 was detected in MuSCs and MuSC-derived myoblasts, we asked 
whether the Flt1 had an effect on MuSC survival in vivo, we evaluated cell death in MuSCs from 
MuSC-Flt1Δ/Δ mouse muscle. We induced muscle regeneration using BaCl2 for 1 day and assessed 
for cell death in MuSCs. As seen in vitro, we found that loss of Flt1 in MuSCs (Figure 2—figure 
supplement 1I and J) resulted in increased cell death during early regeneration (Figure  3K). 
Consequently, single muscle fibers from MuSC-Flt1Δ/Δ mice showed a decreased number of MuSCs, 
compared with those from MuSC-Flt1+/+ mice by 28 days following BaCl2 injection (Figure 3L). We 
also examined the long-term in vivo consequence of deleting Flt1 from MuSC. There was no signif-
icant muscle phenotype in MuSC-Flt1Δ/Δ muscle at homeostasis (Figure 3B, M and N). However, 
following injury, the MuSC-Flt1Δ/Δ muscle had a modest regenerative defect as indicated by the 
shift in fiber size distribution following muscle injury and decrease in size of eMHC(+) regenerating 
fibers (Figure 3B, M and N, Figure 3—figure supplement 2F–J, Figure 3—figure supplement 
1E and F).

mean ± SD (n=3). (E) 4-OHT induced deletion of Flt1 in Pax7+/CreER:Flt1Loxp/Loxp myoblasts is sufficient to reduce cell survival in myoblast without induction 
of apoptosis. Data show mean ± SD (n=3). (F) Cell survival is decreased in vitro in myoblast with thapsigargin induction following 4-OHT mediated 
deletion of Flt1 in Pax7+/CreER:Flt1Loxp/Loxp myoblast that is not rescued by exogenous VEGFA. Blue indicates MuSC-Flt1+/+, red indicates MuSC-Flt1+/+ with 
50 ng/ml VEGFA, green indicates MuSC-Flt1Δ/Δ and purple indicates MuSC-Flt1Δ/Δ with 50 ng/ml VEGFA. Data show mean ± SD (n=3). (G) Representative 
images of pAKT1 (red) in myoblast stained by MyoD (green) in MuSC-Flt1+/+ and MuSC-Flt1Δ/Δ myoblasts induced with exogenous VEGFA. Nuclei were 
counterstained with DAPI (blue). Scale bar indicates 50 µm. (H) Quantification of pAKT1 in myoblasts stained by MyoD in MuSC-Flt1+/+ and MuSC-Flt1Δ/Δ 
myoblast induced w/wo exogenous VEGFA. VEGFA induction increases pAKT1 in MuSC-Flt1+/+ myoblasts but this response is lost in MuSC-Flt1Δ/Δ 
myoblasts. Data show mean ± SD (n=3). (I) Annexin V quantification of myoblasts transfected with myr-AKT1 and E4ORF1 to activate AKT1 showed 
increased cell survival of myoblasts following thapsigargin induction. Data show mean ± SD (n=3). (J) Representative model for VEGFA-FLT1-AKT1 axis-
mediated MuSC survival. This panel created with BioRender.com, and published using a TQ26O8B2M7 license with permission.

© 2024, BioRender Inc. Figure 2 was created using BioRender, and is published under a CC BY-NC-ND 4.0. Further reproductions must adhere to the 
terms of this license.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Measurement of VEGFA-FLT1-AKT1 axis for apoptosis in MuSC in vitro.

Figure supplement 1. VEGFA-FLT1-AKT1 axis for cell survival in MuSC in vitro.

Figure supplement 1—source data 1. Measurement of VEGFA-FLT1-AKT1 axis for cell survival in MuSC in vitro.

Figure supplement 1—source data 2. Uncropped blotting image of Figure 2—figure supplement 1N.

Figure 2 continued

https://doi.org/10.7554/eLife.73592
https://www.biorender.com/
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https://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 3. MuSC-derived VEGFA and Flt1 requires proper skeletal muscle regeneration. (A) Experimental schema detailing the experiments performed 
in this figure. The Pax7+/CreER:R26RtdT:Vegfa+/Hyper (Vegfa+/Hyper) Pax7+/CreER:R26RtdT:VegfaLoxp/Loxp for MuSC-VegfaΔ/Δ and Pax7tdT:Flt1Loxp/Loxp for MuSC-Flt1Δ/Δ lines 
were pulsed with tamoxifen (TMX) prior to BaCl2-induced muscle injury followed by investigations. (B) Representative H&E-stained images for intact 
and on 14-day post injury TA muscle from MuSC-Vegfa+/Hyper, MuSC-Flt1Δ/Δ and MuSC-VegfaΔ/Δ mice and their representative controls. Scale bar indicates 
100 µm. (C) Annexin V staining show less necrotic cells in MuSC from Vegfa+/Hyper mice compared with the control one day following injury. Data show 
mean ± SD (n=3). (D) Quantification of MuSCs from single muscle fibers show increased Pax7 immunofluorescence positive MuSCs in Vegfa+/Hyper EDL 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.73592
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VEGFA-FLT1 pathway regulates muscle pathology in DMD model mice
While angiogenic defects have been reported in the mdx mice as well as in golden retrieval muscular 
dystrophy (GRMD; canine model of DMD) (Verma et  al., 2010; Latroche et  al., 2015; Verma 
et al., 2019; Kodippili et al., 2021; Podkalicka et al., 2021), it is not clear whether VEGF family 
and its receptors are implicated in human dystrophinopathies. We probed the VEGF ligands and 
receptors in microarrays (Supplementary file 1) from skeletal muscles and MuSCs from mdx mice 
(Tseng et al., 2002; Pallafacchina et al., 2010) and skeletal muscles from the GRMD (Vieira et al., 
2015). Vegfa was downregulated in both models (Figure 4—figure supplement 1A). Flt1 was also 
downregulated in GRMD but not mdx muscles. To examine whether VEGF signaling is altered in 
DMD patients, we performed gene expression analysis on previously available data from microar-
rays from patients with DMD (Chen et al., 2000). We also aggregated and probed microarray data 
from muscle biopsies of patients with various neuromuscular diseases or of healthy individuals after 
exercise (Bakay et al., 2006). In the microarray data, Vegfa expression was increased after an acute 
bout of exercise, and Vegfa expression was reduced in ALS muscle, BMD muscle, as well as both 
early and late phases of DMD muscle (Figure 4—figure supplement 1A). These data indicate that 
Vegfa expression is decreased in dystrophinopathy, and thus increasing VEGFA may be a thera-
peutic target for DMD.

Therefore, we crossed the MuSC-Flt1Δ/Δ mice with the chronically regenerating DMD model mice 
(mdx) to generate mdx:MuSC-Flt1Δ/Δ mice, and analyzed long-term effects of Flt1 deletion (Figure 4A, 
Figure 4—figure supplement 1B and C). Importantly, we found a significant decrease in fiber diam-
eter, increased fibrosis and CD31(+) capillary density (Figure 4B–D, Figure 4—figure supplement 1C 
and D) in TA muscle. This was accompanied by a physiological decrease in muscle perfusion as shown 
by laser Doppler flow at 12 months (Figure 4E) as well as a functional decline in muscle strength as 
judged by grip strength both acutely and chronically (Figure 4F).

By contrast, when we crossed the Vegfa+/Hyper mice with mdx mice (Figure 4A), we noticed a signif-
icant increase in fiber diameter, increase in capillary density and decreased fibrosis (Figure  4G–I, 
Figure 4—figure supplement 1D–F) in both TA and diaphragm muscle of mdx:Vegfa+/Hyper mice. This 
was accompanied by a physiological increase in muscle perfusion as shown by laser Doppler flow 
at 12 months age (Figure 4J) as well as a functional increase in muscle strength as judged by grip 
strength (Figure 4K) without a change in body mass (Figure 4—figure supplement 1E). Lastly, when 
the muscle was injured acutely, with BaCl2, the Vegfa+/Hyper mouse had lower number of apoptotic 
MuSC (Figure 4—figure supplement 2A–C). These data indicate that VEGFA-FLT1 axis is a thera-
peutic target for the pathology seen in the DMD model mdx mice.

muscle compared with the control mice at base line and 14 days post injury. Data show mean ± SD (n=4). (E) Fiber size distribution and (F) mean feret’s 
diameter of uninjured and regenerating muscle 14 days post injury from Vegfa+/Hyper and control mice show no difference at baseline but an increase 
in fiber diameter following injury. Data show mean ± SD (n=3). (G) Annexin V staining show increased dead cells in MuSCs from MuSC-VegfaΔ/Δ mice 
one day following BaCl2 compared with the control MuSC-Vegfa+/+ mice. Data show mean ± SD (n=4). (H) Quantification of MuSCs from single muscle 
fiber at base line and 14 days post injury shows no difference at baseline and reduced MuSC numbers at 14 days. Data show mean ± SD (n=4). (I) Fiber 
size distribution and (J) mean feret’s diameter of uninjured and regenerating muscle 14 days post injury from MuSC-VegfaΔ/Δ and MuSC-Vegfa+/+ mice 
show no difference at baseline but a decrease in fiber diameter following injury. Data show mean ± SD (n=3 or 5). (K) Annexin V staining show increased 
apoptosis in MuSCs from MuSC-Flt1Δ/Δ mice one day following injury compared with the control MuSC-Flt1+/+ mice. Data show mean ± SD (n=4). 
(L) Quantification of MuSCs from single muscle fiber show decreased MuSCs in MuSC-Flt1Δ/Δ EDL muscle at base line and 14 days post injury compared 
with the control MuSC-Flt1+/+ mice. Data show mean ± SD (n=4). (M) Fiber size distribution and (N) mean feret’s diameter of uninjured and regenerating 
muscle from MuSC-Flt1Δ/Δ and compared with the control MuSC-Flt1+/+ mice show no difference at baseline but a decrease in fiber diameter following 
injury. Data show mean ± SD (n=3).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Measurement of MuSC-derived VEGFA and Flt1 for proper skeletal muscle regeneration.

Figure supplement 1. MuSC-derived VEGFA and Flt1 for skeletal muscle regeneration.

Figure supplement 1—source data 1. Mesurement of MuSC-derived VEGFA and Flt1 for skeletal muscle regeneration.

Figure supplement 2. MuSC-derived VEGFA and Flt1 regulating skeletal muscle regeneration.

Figure supplement 2—source data 1. Measurement of MuSC-derived VEGFA and Flt1 during skeletal muscle regeneration.

Figure 3 continued

https://doi.org/10.7554/eLife.73592
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Figure 4. VEGFA-FLT1 pathway in MuSCs regulates muscle pathology in DMD model mice. (A) Experimental schema detailing the experiments 
performed in this figure. The mdx:Pax7tdT:Flt1Loxp/Loxp was pulsed with tamoxifen (TMX) to generate mdx:MuSC-Flt1Δ/Δ mice prior to investigation. 
mdx:Vegfa+/Hyper mouse line was used without any induction. (B) Representative H&E (scale bar, 100 µm), Sirius red staining (red; scale bar, 100 µm) and 
CD31(+) capillaries (green; scale bar, 25 µm) from mdx:MuSC-Flt1+/+ and mdx:MuSC-Flt1Δ/Δ mouse TA muscle at 3 months of age. (C) Smaller average 
fiber size in mdx:MuSC-Flt1Δ/Δ compared with the control mdx:MuSC-Flt1+/+ mouse TA muscle. Data show mean ± SD (n=6). (D) Increased fibrotic area 
in mdx:MuSC-Flt1Δ/Δ compared with the control mdx:MuSC-Flt1+/+ mouse TA muscle. Data show mean ± SD (n=4). (E) Decreased muscle perfusion 

Figure 4 continued on next page
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Discussion
In this report, we performed bulk and single cell RNA sequencing on MuSCs and ECs. Since deep 
reads can significantly reduce the effect of the technical noise in scRNA-seq, it can improve estimation 
of minor transcriptional state of a given cell (Zhang et al., 2020). Unexpectedly, we found that MuSCs 
broadly express EC prototypic markers in small amounts and used multiple different bioinformatics 
techniques to validate the results. While similar phenomenon in myogenic cells during development 
and existence of blood-vessel-associated myoendothelial cells in the adult skeletal muscle have been 
previously described, no functional follow up as been performed leading to the questions whether 
these minor expression profiles were artifacts or functional (De Angelis et al., 1999; Minasi et al., 
2002; Tamaki et al., 2002; Zheng et al., 2007; Roobrouck et al., 2011; Huang et al., 2014; Char-
ville et al., 2015; Goel et al., 2017; Giordani et al., 2019). Our goal was to see whether this small 
expression pattern had biological consequences. We ultimately decided to use Flt1 for further inves-
tigations and used RNAscope and immunostaining to validate its expression in MuSCs. We found 
that Flt1 indeed exerts a biological function even at a low expression. Signaling through VEGFA-
FLT1-AKT1 can improve cell survival in MuSCs both in vivo and in vitro.

On a grander scale, our finding of EC prototype markers expressed in MuSC calls into two ques-
tions (1) the genes that we used to specify cellular identities and (2) the cellular identity of MuSCs and 
ECs. The former is important as when we experimentally label, induce or perform Cre-mediated gene 
knockout experiments based on our assumptions of different gene expression results which may be 
confounded for these low expressing genes. For example, we have previously investigated both Flt1 
and Kdr in mouse muscle using three different reporters and found them to be negative in MuSCs, 
thereby disregarding their cell-autonomous effect when evaluating global knockouts (Verma et al., 
2010; Verma et al., 2018). It is also possible that EC mRNAs are results of transcription from the cell 
or a result of mRNA transfer from neighboring cells (Desrochers et al., 2016). Of note, the trans-
mission of tdTomato mRNA and protein from Pax7+/CreERT2:R26R+/tdTmice used in this study has been 
recently shown via exosome, opening up the possibility of transmission of other mRNA from MuSC 
to ECs (Murach et al., 2020). The later is an interesting phenomenon form a developmental point of 
view. MuSCs and ECs arise from a bipotent progenitor originated from somites during early devel-
opment (Kardon et al., 2002; Hutcheson and Kardon, 2009; Lagha et al., 2009; Mayeuf-Louchart 
et al., 2014; Mayeuf-Louchart et al., 2016). Therefore, it is possible that there is a permissive chro-
matin state that allows for expression of reciprocal genes in the two populations. Along the lines of 
these observations, FLK1(+) or VE-cadherin(+) cells can contribute to myogenic cells in vitro and after 
cell transplantation (Tamaki et al., 2002; Le Grand et al., 2004; Zheng et al., 2007; Huang et al., 
2014), and during development (Motoike et al., 2003; Mayeuf-Louchart et al., 2014; Drummond 
and Hatley, 2018). Important notion is that the PDGFRα(-)FLK1(+) population exhibited restricted 
potential to differentiate into the MuSCs in injured muscle (Sakurai et al., 2008). Interestingly, in the 
zebrafish, exogenous expression of Etv2 in the fast muscle can lead to transdifferentiation of muscle 
fibers into functional vessels so there is evidence of cell fate flexibility (Veldman et al., 2013). The 

in mdx:MuSC-Flt1Δ/Δ compared with the control mdx:MuSC-Flt1+/+ mouse TA muscle. Data show mean ± SD (n=3). (n=3). (F) Decreased grip strength 
normalized to body weight in mdx:MuSC-Flt1Δ/Δ compared with the control mdx:MuSC-Flt1+/+ mouse TA muscle at both 3 and 12 months of age. Data 
show mean ± SD (n=3). (G) Representative H&E (scale bars, 100 µm), Sirus red stain staining (red; scale bars, 100 µm) and CD31(+) capillaries (green; 
scale bar, 25 µm) from TA muscle of mdx:Vegfa+/Hyper and mdx:Vegfa+/+ mouse at 3 months. (H) Increased average fiber size in mdx:Vegfa+/Hyper compared 
with the control mdx:Vegfa+/+ mouse TA and diaphragm (DM) muscle. Data show mean ± SD (n=3). (I) Decreased fibrosis in mdx: Vegfa+/Hyper compared 
with the control mdx:Vegfa+/+ mouse TA muscle and diaphragm (DM) muscle. Data show mean ± SD (n=4 to 8). (J) Muscle perfusion is increased in 
mdx:Vegfa+/Hyper compared with the control mdx:Vegfa+/+ mouse TA muscle. Data show mean ± SD (n=3). (K) Grip strength normalized to body weight is 
increased in mdx:Vegfa+/Hyper compared with the control mdx:Vegfa+/+ mice. Data show mean ± SD (n=3).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Measurement of VEGFA-FLT1 pathway in MuSCs for muscle pathology in DMD model mice.

Figure supplement 1. VEGFA-FLT1 pathway in MuSCs for muscle pathology in DMD model mice.

Figure supplement 1—source data 1. Measurement of VEGFA-FLT1 pathway in MuSCs for muscle pathology in DMD model mice.

Figure supplement 2. VEGFA-FLT1 pathway in MuSCs regulates apoptotic cell death in DMD model mice.

Figure supplement 2—source data 1. Measurement of apoptotic cell death.

Figure 4 continued
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potential of EC transdifferentiation was also examined by ETV2 overexpression in five human cell 
types, skeletal muscle cells, adipose-derived mesenchymal stem cells, umbilical-cord-derived mesen-
chymal stem cells, embryonic lung fibroblast cells, and skin fibroblast cells. Among them, human skel-
etal muscle cells showed the highest amenability for this EC induction following infection with ETV2 
lentivirus vector (Yan et al., 2019). Conversely, Etv2-deficient vascular progenitors can differentiate 
into skeletal muscle cells (Chestnut et al., 2020). It would be interesting to see whether other EC 
gene signatures also have functional consequences in the MuSC or muscle at large.

We decided to focus on function of Flt1 among several EC genes expressed in MuSCs for further 
investigations on MuSC biology. Our pharmacological and genetic analyses demonstrate that MuSC-
derived VEGFA has a drastic effect on cell survival in the via its receptor FLT1 by signaling through 
AKT1. While VEGFA binds to both FLT1 and FLK1, VEGFB and PGF only bind to FLT1. This creates 
a scenario where PGF and VEGFB binding can sequester FLT1, increasing free VEGFA availability 
for VEGFA-FLK1 binding which is the major VEGF signaling pathway for many cell types (Vempati 
et al., 2014). While PGF is not normally expressed in adult tissues, VEGFB is expressed in the MuSCs 
and muscle fiber (data not shown). Importantly, the VEGFB-FLT1 axis has also been shown to inhibit 
apoptosis in retina and brain cells in mouse models of ocular neurodegeneration and stroke (Li et al., 
2008). While our results cannot rule out the involvement of VEGFB in protection of MuSC apoptosis, 
we provide evidence from both pharmacological and genetic data to indicate that VEGFA is involved.

Despite drastic effect of VEGFA-FLT1 on apoptosis in vitro, the long-term consequences of in vivo 
deletion of Flt1 in the MuSC compartment were modest compared with deletion of Vegfa in the MuSCs 
unless crossing with mdx mice. Although Vegfa is required for both MuSC survival and recruitment 
of vascular niche (Verma et al., 2018), in the steady state, the MuSC turnover may be low enough 
that the apoptotic stress burden is low. We demonstrated that VEGFA improves cell survival during 
the proliferative stage following injury in mdx:Vegfa+/Hyper mice. The evidence that MuSC survival is 
impaired comes indirectly from transplantation experiments where MuSCs obtained from mdx mice 
engraft to a much lesser degree than those from WT mice (Boldrin et al., 2015).

During the review process of this paper, two additional labs reported complementary findings 
about VEGFA signaling in MuSC (Chen et al., 2022; Groppa et al., 2023). Groppa et al performed 
extensive transcriptomics to show role of the VEGFA system in muscle regeneration. They showed 
that VEGFA is expressed in expression in MuSC and inflammatory cells. In addition, VEGFA increased 
MuSC proliferation through KDR (FLK1). They also found that deletion of MuSC derived VEGFA lead 
to an increase in TUNEL(+) apoptotic MuSC. The role of KDR in MuSC was also corroborated by 
Chen ​et.​al who showed that MuSC lacking KDR showed asymmetrical division deficits and limit MuSC 
proliferation resulting in impaired tissue regeneration. While both these reports focus on the role of 
VEGFA-KDR on proliferation, the current paper focuses on the role of VEGFA-FLT1 on MuSC survival.

VEGFA and FLT1 targeted therapies are being explored as both pro- and anti-angiogenic thera-
pies for several indications including retinal degeneration, cancer, pre-eclampsia, and neuromuscular 
diseases (Bae et al., 2005; Verma et al., 2010; Mac Gabhann et al., 2010; Keifer et al., 2014; Verma 
et al., 2019; Bosco et al., 2021; Xin et al., 2021). As these therapies mature, it will be important to 
ascertain the MuSC-specific effects of VEGFA and FLT1.

Materials and methods
Mice
Flt1LoxP/LoxP were obtained from Gua-Hua Fong (Ho et  al., 2012). B6.Cg-Pax7tm1(cre/ERT2)Gaka/J (Pax7+/

CreERT2; JAX stock# 017763; Murphy et al., 2011), B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J (Ai9; JAX stock 
# 007909; Madisen et al., 2010), Vegfa+/Hyper (Vegfatm1.1Nagy/J; JAX stock# 027314; Miquerol et al., 
1999) and B6Ros.Cg-Dmdmdx-5cv/J (mdx5cv; JAX stock #002379; Chapman et al., 1989) were obtained 
from Jackson Laboratory. Kdrtm2.1Jrt/J (Flk1+/GFP) were obtained from Masatsugu Ema (Ema et al., 2006). 
B6.Cg-Pax7tm1(cre/ERT2)Gaka/J (Pax7+/CreERT2) mice were crossed with the B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)

Hze/J (Ai9) to yield the Pax7+/CreERT2:R26RtdT(Pax7tdT) mice. Pax7tdT mice were bred with the Vegfa+/Hyper 
and Flk1+/GFP to obtain Pax7+/tdT:Vegfa+/Hyper and Pax7+/tdT:Flk1+/GFP mice. VegfaLoxP/LoxP mice obtained 
from Napoleone Ferrara (Gerber et al., 1999) were crossed with Pax7+/CreERT2 to yield the Pax7+/CreERT: 
VegfaLoxP/LoxP mice. Flt1LoxP/LoxP mice obtained from Guo-Hua Fong (Gerber et al., 1999) were crossed 
with Pax7+/CreERT2 to yield the Pax7+/CreERT:Flt1LoxP/LoxP mice. Colonies for all the mice were established 
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in the laboratory. Cre recombination was induced using tamoxifen (T5648, MilliporeSigma) dosed 
as 75 mg/kg body weight x 3 times over 1 week at 3–6 weeks of age. Mice carrying the wild-type 
CreERT2 allele were used for control experiments. TA muscle regeneration was induced by intra-
muscular injection of 20 µl of 1% BaCl2 (342920, MilliporeSigma) or 20 µl of 10 µM Cardiotoxin (CTX) 
(V9125, MilliporeSigma). Mice used for this study is summarized in Key Resources Table.

Genotyping to detect the transgenic and mutant alleles was performed by PCR using the primers 
described on the web site of Jackson Laboratory shown in Key Resources Table. All primers were 
synthesized as custom DNA oligos from Integrated DNA technologies (IDT). Genotyping to detect 
the mutated allele of mdx5cv was performed by PCR using the primers (0981 and 0982) shown in Key 
Resources Table. The PCR product DNA was digested with DraIII restriction enzyme (R3510S, New 
England Biolabs). Wild-type allele generated 180 bp and mutant allele generated 50 and 130 bp 
bands.

The animals were housed in an SPF environment and were monitored by the Research Animal 
Resources (RAR) of the University of Minnesota. All protocols (2204–39969A) were approved by the 
Institutional Animal Care and Usage Committee (IACUC) of the University of Minnesota and complied 
with the NIH guidelines for the use of animals in research.

Cell isolation by FACS
Pax7tdT:Flk1GFP mice were utilized for FACS-mediated MuSC and EC isolation as previously described 
(Asakura et al., 2002; Verma et al., 2018). We performed extensive validation of the fluorescent 
reporter mice as previously described (Figure 1—figure supplement 1A–C; Verma et  al., 2018). 
Briefly, quiescent MuSCs and ECs were isolated from the hind limb skeletal muscle of 1- to 2-month-old 
Pax7tdT:Flk1GFP mice after digestion with collagenase type II. FACS was performed on an FACS sorter 
(BD FACSAria) and data were analyzed using FlowJo (BD Biosciences). Sorting gates, tdTomato(+) 
for MuSCs and GFP(+) for ECs, were strictly defined based on control cells isolated from wild-type 
mice and the forward scatter and side scatter gating. Sorted cells were immediately characterized by 
immunostaining on slide glasses, utilized for RNA preparation or cultured on collagen-coated plates 
in the myoblast growth medium as below to obtain MuSC-derived myoblasts and ECs. FACS analysis 
was performed as previously described (Turaç et al., 2013). Cells were either trypsinized (cultured 
cells) or a single cell suspension was obtained following enzymatic digestion as whole muscle-derived 
cells (Asakura et al., 2001; Asakura et al., 2002). Cells were then washed with FACS buffer (2% BSA 
and 1 mM EDTA in PBS) followed by live/dead staining using ZombieNIR (423105, Biolegends). Cells 
were washed, then immunostained for cell surface markers. Blocking cells was performed with 1% 
BSA/PBS, and cells were incubated in fluorescently-conjugated antibody. FACS was performed on a 
Fortessa X-20 (BD Biosciences) with a 355 nm, 405 nm, 488 nm, 561 nm, and 640 nm lasers.

Cell culture
Mouse bEnd.3 EC cells (CRL-229), C166 EC cells (CRL-2581), and C2C12 myoblast cells (CRL-1772) 
were obtained from American Type Culture Collection (ATCC). Human 293 FT cells (R70007) were 
obtained from ThermoFisher Scientific. All cell lines were cultured in DMEM medium with 10% FBS, 
100 units/ml of penicillin, and 100 μg of streptomycin at 37 °C in 5% O2 and 5% CO2. All cell lines were 
STR profiled to confirm their identity and tested negative for mycoplasma. MuSC-derived myoblast 
isolation from adult mice was performed as previously described (Motohashi et al., 2014). Briefly, 
after collagenase type II (CLS-2, Worthington) treatment, dissociated cells from mouse hindlimb 
muscle were incubated with anti-CD31-PE (12-0311-82, eBiosciences), anti-CD45-PE (12-0451-81, 
eBiosciences), anti-Sca1-PE (A18486, eBiosciences) and anti-Integrin α7 (ABIN487462, MBL Inter-
national), followed by anti-PE microbeads (130-048-801, Miltenyi Biotec), and then performed LD 
column (130-042-901, Miltenyi Biotec) separation. Negative cell populations will be incubated with 
anti-Mouse IgG beads (130-048-402, Miltenyi Biotec), and then MS column (130-042-201, Miltenyi 
Biotec) separation was performed to isolate Integrin α7(+) MuSCs. MuSC-derived myoblasts were 
maintained in culture on collagen coated plates in myoblast medium containing 20% FBS, 20 ng/
ml bFGF (PHG0263, Invitrogen), 100 units/ml of penicillin and 100 μg of streptomycin in HAM’s-
F10 medium. Cell cultures were maintained in a humidified incubator at 37 °C with 5% CO2 and 5% 
O2. 4-Hydroxy tamoxifen (4-OHT, H6278, MilliporeSigma) treatment (1 µM in EtOH) was used to 
induce Flt1 deletion in myoblasts isolated from Flt1LoxP/LoxP:Pax7CreERT2 mice. For cell survival assay, 
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1 x 105 cells were allowed to adhere for 1 day and starved overnight in 0.1% FBS in HAM’s F10 
medium. Then, cells were exposed to 1 µM EdU along with or without 2–100 ng/ml recombinant 
VEGFA (493 MV, R&D Systems) for 8 hr before being fixed and stained by the Click-iT EdU Alexa 
Fluor 488 Imaging Kit (C10337, Thermo Fisher Scientific). For induction of apoptosis in myoblasts, 
(1–2 x 105) cells were allowed to adhere to the plates for 16 hr. Thapsigargin-mediated apoptosis 
was induced by 1 µM of thapsigargin (T9033, MilliporeSigma) dissolved in EtOH with or without 
VEGFA, 100 ng/ml recombinant FLT1-FC (7756-FL, R&D Systems), 1 µg/ml anti-FLT1 monoclonal 
antibody (Angio-Proteomie, MAB7072), inhibitors of FLK1, 3 µM ZM306416 (2499/1, R&D Systems) 
and 10 µM of SU5402 (3300/1, R&D Systems) and an inhibitor of NRP1, 30 µM of EG00229 (6986/10, 
R&D Systems) for 24 hours. UV light-mediated apoptosis was induced by exposing the cells to UV 
light in cell culture hood for 45 s without medium. After UV exposure, cell survival was assessed 
24 hr following culture in 0.1% FBS in HAM’s F10 medium with or without VEGFA using the Crystal 
violet Assay Kit (ab232855, Abcam) and quantified the Crystal violet dye after solubilization by 
absorbance at 570 nm. To induce differentiation of myoblasts, the myoblast medium was replaced 
with differentiation medium that contained DMEM supplemented with 5% horse serum with or 
without VEGFA or bFGF for 1 or 3 days followed by anti-sarcomeric myosin heavy chain antibody 
(MF-20, Developmental Study Hybridoma Bank).

AKT1 induction
The lentiviral pCCL-E4ORF1 and pCCL-myrAkt1 constructs were a kind gift from Dr. Jason Butler 
(Kobayashi et  al., 2010). A total of 293  FT cells (R70007, Thermo Fisher Scientific) were seeded 
in DMEM with 10% FBS and transfected with the lentivirus vectors along with pCMV-VSV-G (8454, 
Addgene), pRSV-Rev (12253, Addgene), and pMDLg/pRRE (12251, Addgene) using PolyJet transfec-
tion reagent (SL100688, Signagen Laboratories). The culture supernatant of the transfected 293 FT 
cells was added to MuSC-derived myoblast culture with 0.8 μg/ml polybrene (MilliporeSigma, H9268). 
pAKT1(+) cells were stained with anti-pAKT1 antibody (4060, Cell Signaling).

Western blotting
Protein extracts of MuSC-derived myoblast culture obtained with an NE-PER Nuclear and Cyto-
plasmic Extraction reagents (78833, Thermo Fisher Scientific) was used for western blotting. Protein 
concentration was determined by the Micro BCA Protein Assay Reagent kit (Thermo Fisher Scientific). 
Following electrophoresis, the proteins were transferred to an Immobilon P membrane (IPVH00010, 
EMD Millipore) overnight. pAKT1 was detected by Western blotting with anti-pAKT1 antibody (4060, 
Cell Signaling) followed by anti–rabbit IgG HRP (31460, Cell Signaling Technology). To verify equal 
loading proteins, the same blots were stripped and reprobed with anti-GAPDH HRP conjugated 
(3683, Cell Signaling) as a cytosolic marker. The reaction was developed using SuperSignal West 
Femto chemiluminescent substrate (PI37074, Fisher Scientific) in accordance with the manufacturer’s 
instructions. Protein signals were detected and quantitated by iBright FL1500 (A44241, ThermoFisher 
Scientific).

Apoptosis assay
Apoptosis was measured using measured using Annexin V-Biotin Apoptosis Detection Kit 
(BMS500BT-100, eBioscience) as per the manufacture’s instruction. Streptavidin-conjugated Alexa-
Fluro-488 was used for detection. Propidium Iodide (PI) was used in all assays except when Pax7tdT(+) 
cells were utilized or when ZombieNIR (423105, Biolegends) was used. FACS was performed on a 
Fortessa X-20 (BD Biosciences) equipped with a 355 nm, 405 nm, 488 nm, 561 nm, and 640 nm lasers. 
For detection of apoptotic cells in TA muscle sections 3  days following BaCl2 injection, TMX was 
injected into mdx:Vegfa+/+:Pax7tdT and mdx:Vegfa+/Hyper:Pax7tdT mice before BaCl2 injection to label 
MuSCs during muscle regeneration. To detect apoptotic cells, the TA muscle sections were incu-
bated with anti–activated caspase-3 antibody (ab214430, Abcam) followed by anti–rabbit Alexa-488 
antibodies (A11008, ThermoFisher Scientific) for double immunostaining. DAPI (10236276001, Milli-
poreSigma) was used for counterstaining of nuclei. Microscopic images were captured by a DP-1 
digital camera attached to BX51 fluorescence microscope with 10×, 20×or 40×UPlanFLN objectives 
with cellSens Entry 1.11 (all from Olympus).
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Immunostaining of cells
Immunostaining for PECAM1, VE-Cadherin, VEGFA, VEGFRs was performed on collagen coated 
coverslips. Other immunostaining was performed on 35 mm tissue culture plates. Cells were fixed with 
2% PFA for 5 min and immunostained as previously described (Verma et al., 2010). For membrane 
receptor staining, cells were permeabilized with 0.01% saponin (ICN10285525, ThermoFisher Scien-
tific) which was kept in the staining solution until the primary antibodies were washed off. At which 
time, 0.01% Triton-X was added to all the buffers. The antibodies used for this study are listed in Key 
Resources Table.

Single muscle fiber isolation and staining
Extensor digitorum longus (EDL) muscle was dissected and digested with 0.2% collagenase type I 
(C0130, MilliporeSigma) for single muscle fiber isolation as previously described (Verma et al., 2010). 
Single muscle fibers were fixed with 2% PFA/PBS, permeabilized with 0.2% Triton-X100 and counter-
stained with DAPI. Anti-Pax7 antibody(+) or tdTomato(+) MuSCs per single muscle fiber were counted 
manually.

RNAscope
RNAscope for Flt1 transcripts was performed as previously described (Kann and Krauss, 2019) on 
single muscle fibers from Pax7tdT mice using the RNAscope Probe - Mm-Flt1 (C1) (415541, ACDBio). 
Briefly, isolated EDL fibers are fixed in 4% PFA, washed with PBS, and dehydrated in 100% methanol. 
Subsequently, fibers are rehydrated in a stepwise gradient of decreasing methanol concentrations in 
PBS/0.1% Tween-20. Fibers are treated with a proteinase for 10 min, followed by hybridization, ampli-
fication, and fluorophore conjugation steps.

Histology and immunostaining for sections
The mouse tibialis anterior (TA) muscle was used for all histological analysis. Tissues were frozen fresh 
using LiN2 chilled isopentane and stored at –80 °C. Eight μm thick transverse cryosections were used 
for all histological analysis. Hematoxylin & Eosin (HE) staining were performed as previously described 
(Verma et al., 2010). Sirius red (Direct Red 80, 365548, MilliporeSigma) staining was performed for 
muscle sections for fibrosis as previously described (Shimizu-Motohashi et al., 2015). Muscle sections 
were stained in Oil Red O solution (O1391-250ML, MilliporeSigma) as previously described (Wang 
et al., 2017). Anti-eMHC (F1.652, Developmental Study Hybridoma Bank) and anti-Laminin (L0663, 
MilliporeSigma) antibodies followed by anti-mouse Alexa-488 (A11001, ThermoFisher Scientific) and 
anti-rat Alexa-568 antibodies (A11077, ThermoFisher Scientific) were used for detection of regener-
ating muscle fibers. For capillary density measurement, anti-CD31 antibody (550274, BD Biosciences) 
was used for TA muscle sections followed by anti-rat Alexa-488 (A11006, ThermoFisher Scientific). 
Microscopic images were captured by a DP-1 digital camera attached to BX51 fluorescence micro-
scope with 10×, 20×or 40×UPlanFLN objectives with cellSens Entry 1.11 (all from Olympus). Photo-
shop (Adobe) and Fiji (NIH) were used for image processing and manually enumerating the fiber 
feret’s diameter (Schindelin et al., 2012).

Grip strength test
Forelimb grip strength test was performed following a previously published procedure (Aartsma-Rus 
and van Putten, 2014). Briefly, mice were gently pulled by the tail after fore limb-grasping a metal 
bar attached to a force transducer (Grip Strength Meter, 1027CSM-D52, Columbus Instruments). Grip 
strength tests were performed by the same blinded examiner. Five consecutive grip strength tests 
were recorded, and then mice were returned to the cage for a resting period of 20 min. Then, three 
series of pulls were performed each followed by 20 min resting period. The average of the three 
highest values out of the 15 values collected was normalized to the body weight for comparison.

Muscle perfusion
RBC flux was evaluated using the moorLabTM laser Doppler flow meter as previously described 
(Verma et al., 2010) with the MP7a probe that allows for collecting light from a deeper tissue level 
than standard probes according to the manufacturer’s instructions (Moor Instruments). The fur from 
the right hind leg was removed using a chemical depilatory. Readings were taken using the probe 
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from at least 10 different spots on the TA muscle. The AU was determined as the average AU value 
during a plateau phase of each measurement.

RNA and genomic DNA isolation and qPCR
Cultured cells were washed with ice cold PBS and lysed on the place with Trizol. RNA was isolated 
using the DirectZol RNA Microprep Kit (R2062, Zymo Research) with on-column DNase digestion 
followed by cDNA synthesis using the Transcriptor First Strand cDNA synthesis kit (04379012001, 
Roche Molecular Diagnostics) using random primers. Genomic DNA for genotyping was isolated 
from mouse tail snips with lysis buffer containing Proteinase K (P2308, MilliporeSigma). qPCR was 
performed using GoTaq qPCR Master Mix (A6002, Promega). The input RNA amount was normalized 
across all samples and 18 S rRNA or HtatsF1 was used for normalization of qPCR across samples. 
Primer sequences are listed in Key Resources Table. All primers were synthesized as custom DNA 
oligos from Integrated DNA technologies (IDT).

Single-cell RNA sequencing and analysis
Cells for single-cell RNA-seq (scRNA-seq) were obtained from hind limb muscles of 2–3 month-old 
Pax7tdT:Flk1GFP mice following enzymatic digestion as previously described (Liu et al., 2015). Dead 
cells were excluded from the analysis using ZombieNIR (423105, Biolegends). TdTomato(+) and 
GFP(+) cells were sorted individually and then 20% of GFP(+) cells were spiked into 80% tdTo-
mato(+). We loaded ~5000 cells into 1 channel of the Chromium system for each of these samples 
and prepared libraries according to the manufacturer’s protocol using version 2.0 chemistry (10  x 
Genomics). Following capture and lysis, we synthesized cDNA and amplified for 12 cycles as per 
the manufacturer’s protocol (10 X Genomics). The amplified cDNA was used to construct Illumina 
sequencing libraries that were each sequenced with  ~300  K read/cell on one lane of an Illumina 
HiSeq 2500 machine. We used Cell Ranger 3.1 (10X Genomics) to process raw sequencing data. For 
A custom genome was constructed to include eGFP-SV40, tdTomato-WPRE-BGHPolyA and Pax7-
IRES-CreERT2 transgenes. Detailed step-by-step instructions can be found at https://github.com/​
verma014/10XCustomRef, (copy archived at Verma, 2020). We carried out analyses of the filtered 
data using Seurat suite version 3.0 Stuart et al., 2019 in RStudio Team, 2020. For cell imputation, we 
utilized ALRA through the Seurat wrapper with default settings (Linderman et al., 2022). Additional 
scRNA-seq datasets were obtained from GEO and analyzed using the same method as listed above. 
A myogenic score was calculated based on the expression of Myog, Pax7, Myod1, and Myf5. Step-by-
step instructions for the analysis can be found on https://github.com/verma014/10XCustomRef, (copy 
archived at Verma, 2020).

Background subtraction
10 x Genomics scRNA-seq platform uses many more droplets than cells and so following a run, there 
are many droplets that do not have cells. These droplets still get sequenced with some of the RNA 
that is in the solution. This floating RNA can be used to estimate the ‘background’ in each droplet. 
A better description of this can be found by the developers of 'SoupX' (Young and Behjati, 2020). 
Since Cdh5 expression has previously been verified in MuSCs using RNAscope, we were able to use it 
as a positive control to remove the background or ‘soup’ from our data. If Cdh5 is absent from MuSC, 
we know that the background subtraction was too aggressive and that subtracting the Soup is not 
reliable in our case. In addition, we know certain genes that are considered to be specific for MuSCs, 
muscle ECs or muscle fibers based on the bulk RNA-seq (Verma et al., 2018). The top 5 genes that 
are specific to these population (and also detected by 10 x) were selected and used to show the 
background in our data set was 14.40% and 13.89% for the D0 and D3 dataset, respectively. The step-
by-step instructions can be found on https://github.com/verma014/10XCustomRef, (copy archived at 
Verma, 2020).

Bulk RNA-seq and microarray analysis
FASTQ files were downloaded from SRA using SRA-toolkit. Sequences were trimmed using trimmo-
matic to remove adapter contamination and low-quality reads. Trimmed sequences were mapped to 
mouse mm10 using Hisat2 (Pertea et al., 2016). Transcript assembly was performed using StringTie 
(Pertea et al., 2016). Cell type specificity was determined as previously described (Verma et al., 
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2018). Microarray analysis was performed using the Affymetrix Transcriptome Analysis Console (TAC). 
Samples in each experiment were RNA normalized and the expression was acquired using the Affey-
metrix Expression analysis console with gene level expression. Heatmaps were generated in Prism 9 
(Graphpad, La Jolla, CA).

Quantification and statistical analysis
Statistical analysis was performed using Prism 9 (Graphpad, La Jolla, CA) or RStudio (RStudio Team, 
2020). For comparison between two groups, an unpaired T-test was used. For comparison between 
multiple groups, a one-way ANOVA was used with multiple comparisons to the control. Distributions 
were compared using a chi-squared test. Graphing of the data was performed using Prism 9. Vector 
diagrams were modified using Graphic (Autodesk). All values are means ± SD unless noted otherwise. 
* indicates p<0.05, ** indicates p<0.01, *** indicates p<0.001.
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NCBI Gene Expression 
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Appendix 1

Appendix 1—key resources table 
Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Strain (Mus 
musculus) Flt1LoxP/LoxP

The Jackson 
Laboratory JAX: 028098

Mouse line obtained from 
Guo-Hua Fong

Strain (Mus 
musculus) VEGFA+/Hyper

The Jackson 
Laboratory JAX: 027314

Strain (Mus 
musculus) Pax7CreERT2/+

The Jackson 
Laboratory JAX: 017763

Strain (Mus 
musculus) mdx5cv

The Jackson 
Laboratory JAX: 002379

Strain (Mus 
musculus) Flk1GFP

The Jackson 
Laboratory JAX: 017006

Mouse line obtained from 
Masatsugu Ema

Strain (Mus 
musculus) R26RtdT

The Jackson 
Laboratory JAX: 007909

Strain (Mus 
musculus) VEGFALoxP/LoxP

Mouse line obtained from 
Napoleone Ferrara

Genetic reagent Lentiviral pCCL-E4ORF1 PMID:20972423 Viral vector production

Genetic reagent Lentiviral pCCL-myrAkt1 PMID:20972423 Viral vector production

Genetic reagent pCMV-VSV-G Addgene 8454 Viral vector production

Genetic reagent pRSV-Rev Addgene 12253 Viral vector production

Genetic reagent pMDLg/pRRE Addgene 12251 Viral vector production

Genetic reagent RNAscope Probe - Mm-Flt1 (C1) ACDBio 415541 RNAscope

Cell line (Homo 
sapiens) 293 FT

ThermoFisher 
Scoentific R70007 Viral vector production

Cell line (Mus 
musculus) C2C12

American Type 
Culture Collection 
(ATCC) CRL-1772 MuSC line

Cell line (Mus 
musculus) bEnd.3

American Type 
Culture Collection 
(ATCC) CRL-2299 EC line

Cell line (Mus 
musculus) C166

American Type 
Culture Collection 
(ATCC) CRL-2581 EC line

Antibody Anti-CD31-PE (Rat monoclonal)
ThermoFisher 
Scientific

12-0311-82; RRID: 
AB_465632 1:200

Antibody Anti-CD45-PE (Rat monoclonal)
ThermoFisher 
Scientific

12-0451-81; RRID: 
AB_465668 1:200

Antibody Anti-Sca-1-PE (Rat monoclonal)
ThermoFisher 
Scientific

A18486; RRID: 
AB_2535332 1:200

Antibody Anti-FLT1 (Mouse monoclonal) R&D systems
MAB4711; RRID: 
AB_2107038 1:200

Antibody Anti-FLT1-APC (Rat monoclonal) R&D systems
FAB4711A; RRID: 
AB_622149 1:200

Antibody Anti-FLK1 (Rat monoclonal) BD Biosceinces
555307; RRID: 
AB_395720 1:200

Antibody Anti-FLK1-APC (Rat monoclonal) BD Biosceinces
560070; RRID: 
C28AB_1645226 1:200

Antibody Anti-VE-cadherin (Rat monoclonal) BD Biosciences
555289; RRID: 
AB_2244723 1:200
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Antibody Anti-NRP1 (Rabbit monoclonal)
Cell Signaling 
Technology

3725; 
RRID:AB_2155231 1:200

Antibody Anti-NRP1-APC (Rat monoclonal) R&D systems FAB5994A 1:200

Antibody Anti-NRP2 (Rabbit monoclonal)
Cell Signaling 
Technology

3366; RRID: 
AB_2155250 1:200

Antibody Anti-NRP2-APC (Mouse monoclonal) R&D systems
FAB22151A; RRID: 
AB_10973479 1:200

Antibody Anti-Sca-1-PE (Rat monoclonal) eBiosciences
12-5981-81; RRID: 
AB_466085 1:200

Antibody
Anti-integrin a7-biotin (Mouse 
monoclonal) Miltenyi Biotec

130-101-979; RRID: 
AB_2652472 1:200

Antibody Anti-IgG-APC (Mouse)
ThermoFisher 
Scientific

PA5-33237; RRID: 
AB_2550652 1:200

Antibody Anti-IgG-APC (Rat)
ThermoFisher 
Scientific

17-4321-81; RRID: 
AB_470181 1:200

Antibody Anti-MyHC (Mouse monoclonal)

Developmental 
Study Hybridoma 
Bank

MF-20; RRID: 
AB_2147781 1:50

Antibody Anti-MyoD (Mouse monoclonal) DAKO
M3512; RRID: 
AB_2148874 1:200

Antibody Anti-Pax7 (Mouse monoclonal)

Developmental 
Study Hybridoma 
Bank

PAX7; RRID: 
AB_528428 1:20

Antibody Anti-pAKT (Rabbit monoclonal) Cell Signaling
4060; RRID: 
AB_2315049 1:500

Antibody Anti-VEGFA (Rabbit monoclonal) Abcam
Ab52917; RRID: 
AB_883427 1:500

Antibody Anti-mouse IgG Alexa488
ThermoFisher 
Scientific

A-11001; RRID: 
AB_2534069 1:1000

Antibody Anti-rat IgG Alexa488
ThermoFisher 
Scientific

A-11006; RRID: 
AB_141373 1:1000

Antibody Anti-rabbit IgG Alexa488
ThermoFisher 
Scientific

A-11008; RRID: 
AB_143165 1:1000

Antibody Anti-rabbit IgG Alexa568
ThermoFisher 
Scientific

A-11011; RRID: 
AB_143157 1:1000

Antibody Anti-mouse IgG Alexa568
ThermoFisher 
Scientific

A-11004; RRID: 
AB_2534072 1:1000

Antibody Anti-rat IgG Alexa568
ThermoFisher 
Scientific

A-11077; RRID: 
AB_2534121 1:1000

Antibody Anti-biotin beads Miltenyi Biotec
130-090-485; RRID: 
AB_244365 MACS (1:500)

Antibody Anti-PE beads Miltenyi Biotec
130-048-801; RRID: 
AB_244373 MACS (1:500)

Antibody Anti-Activated Caspase-3 Abcam
ab214430; RRID: 
AB_2938798 1:200

Antibody Anti-phosphoAKT1 Cell Signaling
4060; RRID: 
AB_2315049 1:200 for IHC, 1:1000 for WB

Antibody Anti-GAPDH HRP conjugated Cell Signaling
3683; RRID: 
AB_1642205 1:10000
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Antibody Anti-eMHC (Mouse monoclonal)

Developmental 
Study Hybridoma 
Bank

F1.652; RRID: 
AB_528358 1:200

Antibody Anti-Laminin-2 (Rat monoclonal) MilliporeSigma
L0663; RRID: 
AB_477153 1:500

Sequence-based 
reagent (Oligo 
DNA) ​TTAA​​ACGA​​ACGT​​ACTT​​GCAG​​ATG

Integrated DNA 
Technologies (IDT) N/A qPCR Vegfa 92 bp (Forward)

Sequence-based 
reagent (Oligo 
DNA) AGAG​GTCT​GGTT​CCCG​AAA

Integrated DNA 
Technologies (IDT) N/A qPCR Vegfa 92 bp (Reverse)

Sequence-based 
reagent (Oligo 
DNA) ​GCAG​​AGCC​​AGGA​​ACAT​​ATAC​​ACA

Integrated DNA 
Technologies (IDT) N/A qPCR mFlt1 103 bp(Forward)

Sequence-based 
reagent (Oligo 
DNA)

​GAGA​​TCCG​​AGAG​​AAAA​​TGGC​​
CTTT​

Integrated DNA 
Technologies (IDT) N/A qPCR mFlt1 103 bp (Reverse)

Sequence-based 
reagent (Oligo 
DNA) ​GCAG​​AGCC​​AGGA​​ACAT​​ATAC​​ACA

Integrated DNA 
Technologies (IDT) N/A qPCR sFlt1 73 bp (Forward)

Sequence-based 
reagent (Oligo 
DNA) CAGT​GCTC​ACCT​CTAA​CG

Integrated DNA 
Technologies (IDT) N/A qPCR sFlt1 73 bp (Reverse)

Sequence-based 
reagent (Oligo 
DNA) ​CAGT​​GGTA​​CTGG​​CAGC​​TAGA​​AG

Integrated DNA 
Technologies (IDT) N/A

qPCR KDR/Flk1 66 bp 
(Forward)

Sequence-based 
reagent (Oligo 
DNA) ​ACAA​​GCAT​​ACGG​​GCTT​​GTTT​

Integrated DNA 
Technologies (IDT) N/A

qPCR KDR/Flk1 66 bp 
(Reverse)

Sequence-based 
reagent (Oligo 
DNA)

​TCCT​​GGGA​​AACT​​GGTA​​TATC​​
TATG​A

Integrated DNA 
Technologies (IDT) N/A qPCR Nrp1 75 bp (Forward)

Sequence-based 
reagent (Oligo 
DNA) ​CATT​​CCAG​​AGCA​​AGGA​​TAAT​​CTG

Integrated DNA 
Technologies (IDT) N/A qPCR Nrp1 75 bp (Reverse)

Sequence-based 
reagent (Oligo 
DNA) ATGG​CTGG​ACAC​CCAA​TTT

Integrated DNA 
Technologies (IDT) N/A qPCR Nrp2 67 bp (Forward)

Sequence-based 
reagent (Oligo 
DNA) ATGG​TTAG​GAAG​CGCA​GGT

Integrated DNA 
Technologies (IDT) N/A qPCR Nrp2 67 bp (Reverse)

Sequence-based 
reagent (Oligo 
DNA)

​CACC​​TGGA​​GAGG​​ATGA​​AGAA​​
GAA

Integrated DNA 
Technologies (IDT) N/A qPCR Myh3 298 bp (Forward)

Sequence-based 
reagent (Oligo 
DNA)

​AAGA​​CTTG​​ACTT​​TCAC​​TTGG​​AGTT​​
TA TC

Integrated DNA 
Technologies (IDT) N/A qPCR Myh3 298 bp (Reverse)

Sequence-based 
reagent (Oligo 
DNA) ​TTCG​​GAAG​​CTCC​​TTCT​​GTTT​

Integrated DNA 
Technologies (IDT) N/A qPCR Htatsf1 79 bp (Forward)

Sequence-based 
reagent (Oligo 
DNA) ​CCAG​​AGTC​​TGAA​​TACA​​ATGG​​TCA

Integrated DNA 
Technologies (IDT) N/A qPCR Htatsf1 79 bp (Reverse)

Sequence-based 
reagent (Oligo 
DNA)

​CGCA​​CGGC​​CGGT​​ACAG​​TGAA​​
ACTG​

Integrated DNA 
Technologies (IDT) N/A

qPCR 18 S rRNA 343 bp 
(Forward)
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Sequence-based 
reagent (Oligo 
DNA)

​CGCA​​CGGC​​CGGT​​ACAG​​TGAA​​
ACTG​

Integrated DNA 
Technologies (IDT) N/A

qPCR 18 S rRNA 343 bp 
(Reverse)

Sequence-based 
reagent (Oligo 
DNA)

​CTTG​​CTCA​​CCAT​​GGTC​​AGCT​​
GCTG​

Integrated DNA 
Technologies (IDT) N/A

Genotyping Myh3 Exon1 WT/
MUT-103bp (Reverse)

Sequence-based 
reagent (Oligo 
DNA) ​CACT​​TTTA​​ACTT​​CGAC​​CCTG​​AGCC​

Integrated DNA 
Technologies (IDT) N/A

Genotyping Myh3 Exon2 WT/
MUT-103bp (Reverse)

Sequence-based 
reagent (Oligo 
DNA)

​GGCC​​AGAC​​TCTC​​TTTC​​TCAA​​
GTGC​

Integrated DNA 
Technologies (IDT) N/A

Genotyping Myh3 Exon2 WT-
135bp (Forward)

Sequence-based 
reagent (Oligo 
DNA) ​GCAG​​AATT​​GCCT​​GTTA​​TCCC​​TCCC​

Integrated DNA 
Technologies (IDT) N/A

Genotyping Myh3 Exon3 WT-
135bp (Reverse)

Sequence-based 
reagent (Oligo 
DNA) ​GCTG​​CTGT​​TGAT​​TACC​​TGGC​

Integrated DNA 
Technologies (IDT) N/A

Genotyping Pax7CreERT2 
(Common)

Sequence-based 
reagent (Oligo 
DNA) ​CAAA​​AGAC​​GGCA​​ATAT​​GGTG​

Integrated DNA 
Technologies (IDT) N/A

Genotying Pax7CreERT2 MUT-
235bp (Reverse)

Sequence-based 
reagent (Oligo 
DNA) CTGC​ACTG​AGAC​AGGA​CCG

Integrated DNA 
Technologies (IDT) N/A

Genotying Pax7CreERT2 WT-
419bp (Reverse)

Sequence-based 
reagent (Oligo 
DNA) ​GGCA​​TTAA​​AGCA​​GCGT​​ATCC​

Integrated DNA 
Technologies (IDT) N/A

Genotying R26RtdT (9103) 
MUT-196bp (Forward)

Sequence-based 
reagent (Oligo 
DNA) CTGT​TCCT​GTAC​GGCA​TGG

Integrated DNA 
Technologies (IDT) N/A

Genotying R26RtdT (9105) 
MUT-196bp (Reverse)

Sequence-based 
reagent (Oligo 
DNA) ​AAGG​​GAGC​​TGCA​​GTGG​​AGTA​

Integrated DNA 
Technologies (IDT) N/A

Genotying R26RtdT (9020) 
WT-297bp (Forward)

Sequence-based 
reagent (Oligo 
DNA) ​CCGA​​AAAT​​CTGT​​GGGA​​AGTC​

Integrated DNA 
Technologies (IDT) N/A

Genotying R26RtdT (9021) 
WT-297bp (Reserve)

Sequence-based 
reagent (Oligo 
DNA)

​AGCA​​GCAC​​GACT​​TCTT​​CAAG​​
TCCG​

Integrated DNA 
Technologies (IDT) N/A

Genotying Flk1GFP-161bp 
(Forward)

Sequence-based 
reagent (Oligo 
DNA)

​CTCC​​TTGA​​AGTC​​GATG​​CCCT​​
TCAG​

Integrated DNA 
Technologies (IDT) N/A

Genotying Flk1GFP-161bp 
(Reserve)

Sequence-based 
reagent (Oligo 
DNA) ​CGCT​​TTTT​​GTCA​​GTCA​​TCTT​​CA

Integrated DNA 
Technologies (IDT) N/A

Genotying Flt1Loxp/Loxp 
(FlpeEX3F) WT-223bp/MUT-
641bp (Forward)

Sequence-based 
reagent (Oligo 
DNA)

​GTGC​​CACT​​GACC​​TAAC​​ATGT​​
AAGA​G

Integrated DNA 
Technologies (IDT) N/A

Genotying Flt1Loxp/Loxp 
(FlpeInt3R) WT-223bp/MUT-
641bp (Reverse)

Sequence-based 
reagent (Oligo 
DNA) CCA TAG ATG TGA CAA GCC AAG

Integrated DNA 
Technologies (IDT) N/A

Genotyping VEGFAHyper 
(24286) WT-254bp (Forward)

Sequence-based 
reagent (Oligo 
DNA) ACC CGG GGA TCC TCT AGA AC

Integrated DNA 
Technologies (IDT) N/A

Genotyping VEGFAHyper 
(25307) MUT-199bp (Forward)
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Sequence-based 
reagent (Oligo 
DNA) GAC CGT GCT TGG TCA CCT

Integrated DNA 
Technologies (IDT) N/A

Genotyping VEGFAHyper 
(25308, Common) WT-254bp/
MUT-199bp (Reverse)

Sequence-based 
reagent (Oligo 
DNA) ​CCTG​​GCCC​​TCAA​​GTAC​​ACCT​T

Integrated DNA 
Technologies (IDT) N/A

VEGFALoxP/LoxP (muVEGF 
419 .F) WT-106bp/MUT-148bp 
(Forward)

Sequence-based 
reagent (Oligo 
DNA) ​TCCG​​TACG​​ACGC​​ATTT​​CTAG​

Integrated DNA 
Technologies (IDT) N/A

VEGFALoxP/LoxP (muVEGF 
567 .R) WT-106bp/MUT-148bp 
(Reverse)

Sequence-based 
reagent (Oligo 
DNA) ​GAAG​​CTCC​​CAGA​​GACA​​AGTC​

Integrated DNA 
Technologies (IDT) N/A

mdx5cv (0981) WT/MUT-180bp 
(Forward)

Sequence-based 
reagent (Oligo 
DNA) ​TCAT​​GAGC​​ATGA​​AACT​​GTTC​​TT

Integrated DNA 
Technologies (IDT) N/A

mdx5cv (0981) WT/MUT-180bp 
(Reverse)

Commercial 
assay or kit GoTaq qPCR Master Mix Promega, A6002 qPCR

Commercial 
assay or kit

Click-iT EdU Alexa Fluor 488 
Imaging Kit Thermo Scientific C10337 EdU staining

Commercial 
assay or kit Crystal violet Assay Kit Abcam ab232855 Cell viability assay

Commercial 
assay or kit

Transcriptor First Strand cDNA 
Synthesis Kit

Roche-Sigma-
Aldrich 4379012001 cDNA synthesis

Commercial 
assay or kit

Annexin V-Biotin Apoptosis 
Detection Kit eBioscience BMS500BT-100 Appotosis assay

Commercial 
assay or kit DirectZolTM RNA Microprep Kit Zymo Research R2062 RNA isolation

Commercial 
assay or kit Midi Fast Ion Plasmid Kit IBI Scientific IB47111 Plasmid DNA isolation

Commercial 
assay or kit H&E Staining Kit Abcam ab245880 Histology

Commercial 
assay or kit

SuperSignal West Femto 
chemiluminescent substrate Fisher Scientific PI37074 Western Blotting

Commercial 
assay or kit

NE-PER Nuclear and Cytoplasmic 
Extraction reagents

Thermo Fisher 
Scientific 78833 Protein extraction

Chemical 
compound, drug bFGF

Thermo Fisher 
Scientific PHG0263 MuSC culture (20 ng/ml)

Chemical 
compound, drug Bovine serum albumin (BSA)

Jackson Immuno 
Research 10001620 FACS/Immunostaining (1–2%)

Chemical 
compound, drug Chicken embryo extract MP-Biomedical 92850145

Single muscle fiber culture 
(0.5%)

Chemical 
compound, drug Collagen BD Biosciences 354236 Culture dish coating (0.01%)

Chemical 
compound, drug Collagenase type I Sigma-Aldrich C0130

Single myofiber isolation 
(0.2%)

Chemical 
compound, drug Collagenase type II

Worthington 
Biochemical Corp CLD-2

FACS and MuSC/ES isolation 
(0.2%)

Chemical 
compound, drug

DAPI (4’,6-diamidino-2-phenylindole 
dihydrochloride)

Thermo Fisher 
Scientific D1306 DNA staining (1 µg/ml)

Chemical 
compound, drug

Dulbecco’s Modified Eagle’s 
Medium (DMEM)

Thermo Fisher 
Scientific 41966 Single myofiber and ES culture
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Chemical 
compound, drug EdU

Thermo Fisher 
Scientific C10340 Cell proliferation (1 μM)

Chemical 
compound, drug F-10 Ham's media Sigma-Aldrich N6635 MuSC culture

Chemical 
compound, drug Fetal calf serum (FCS) Atlas Biological FS-0500-AD

MuSC/EC/Single muscle fiber 
culture (10% or 20%)

Chemical 
compound, drug Horse serum

Thermo Fisher 
Scientific 26050088

2% (coating), 5% 
(Differentiation culture)

Chemical 
compound, drug L-glutamine

Thermo Fisher 
Scientific 25030 Culture medium (20 mM)

Chemical 
compound, drug Matrigel

Corning Life 
Sciences 354230

Single muscle fiber culture 
(1:20)

Chemical 
compound, drug Penicillin/streptomycin Life Technologies 15140 Culture medium (1 X)

Chemical 
compound, drug Tamoxifen (TMX) Sigma-Aldrich T5648

Cre recombinase (60 mg/
kg i.p.)

Chemical 
compound, drug 4-hydroxy tamoxifen (4-OHT) Sigma-Aldrich H6278 Culture (1 µM)

Chemical 
compound, drug Cardiotoxin (CTX) Sigma-Aldrich V9125 Muscle injury (10 µM)

Chemical 
compound, drug DraIII

New England 
Biolabs R3510S DNA digestion (500 U/ml)

Chemical 
compound, drug ZombieNIR Biolegends 423105 FACS (0.1%)

Chemical 
compound, drug recombinant VEGFA R&D Systems 493 MV Culture (2–100 ng/ml)

Chemical 
compound, drug Thapsigargin Sigma-Aldrich T9033 Culture (1 µM)

Chemical 
compound, drug FLT1-FC R&D Systems 7756-FL Culture (100 ng/ml)

Chemical 
compound, drug ZM306416 R&D Systems 2499/1 Culture (3 µM)

Chemical 
compound, drug SU5402 R&D Systems 3300/1 Culture (10 µM)

Chemical 
compound, drug EG00229 R&D Systems 6986/10 Culture (30 µM)

Chemical 
compound, drug PolyJet transfection reagent

Signagen 
Laboratories SL100688

DNA transfection (10 µl for 
6 cm plate)

Chemical 
compound, drug Polybrene MilliporeSigma H9268 Viral infection (0.8 μg/ml)

Chemical 
compound, drug Saponin

ThermoFisher 
Scientific ICN10285525 Immunostaining (0.01%)

Chemical 
compound, drug Direct Red 80 Sigma-Aldrich 365548 Histology (0.1%)

Chemical 
compound, drug Proteinase K Sigma-Aldrich P2308 DNA isolation (40 µg/mL)

Chemical 
compound, drug Oil Red O solution Sigma-Aldrich O1391-250ML Histology (0.5%)

Chemical 
compound, drug Trizol

ThermoFisher 
Scientific 15596026 RNA isolation
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Reagent type 
(species) or 
resource Designation

Source or 
reference Identifiers Additional information

Software, 
algorithm Photoshop 2020 Adobe

https://www.adobe.​
com/products/​
photoshop.html Imaging analysis

Software, 
algorithm Fiji NIH

https://imagej.net/​
software/fiji/ Imaging analysis

Software, 
algorithm cellSens Entry 1.11 Olympus

https://www.olympus-​
lifescience.com/en/​
software/cellsens/ Microscopy

Software, 
algorithm Prism 9 GraphPad

https://www.​
graphpad.com/​
support/faq/prism-​
900-release-notes/ Data analysis and statistics

Software, 
algorithm RStudio RStudio

https://www.rstudio.​
com Data analysis and statistics

Software, 
algorithm Autodesk Graphic Autodesk

https://www.graphic.​
com Vector design

Software, 
algorithm

BioRender: Scientific Image and 
Illustration Software ​BioRender.​com

https://www.​
biorender.com Illustrator

Other Anti-biotin beads Miltenyi Biotec
130-090-485; 
RRID:AB_244365 MACS

Other Anti-PE beads Miltenyi Biotec
130-048-801; 
RRID:AB_244373 MACS

Other Cell culture plate, 24 well Sarstedt 83.3922 Single myofiber culture

Other Tissue culture dish Sarstedt 83.39 MuSC/ES culture

Other Tissue culture dish Sarstedt 83.3901 MuSC/ES culture

Other Tissue culture dish Sarstedt 83.3902 MuSC/ES culture

Other LD column Miltenyi Biotec 130-042-901 MACS

Other MS column Miltenyi Biotec 130-042-201 MACS

Other Fortessa X-20 BD Biosciences FACS

Other BD FACSAria BD Biosciences FACS

Other moorLabTM laser Doppler Moor Instruments MOORVMS-LDF Laser Doppler flow

Other Grip strength meter
Columbus 
Instruments 1027CSM-D54 Forelimb muscle force

Other iBright FL1500
ThermoFisher 
Scientific A44115 Western blotting

Other
Olympus IX81 Inverted Fluorescense 
microscope Olympus Microscope

Other
Olympus BX51 Fluorescense 
microscope Olympus Microscope
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