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Abstract
Background: The large inter-individual variability in immune-cell composition and function deter-
mines immune responses in general and susceptibility o immune-mediated diseases in particular. 
While much has been learned about the genetic variants relevant for type 1 diabetes (T1D), the 
pathophysiological mechanisms through which these variations exert their effects remain unknown.
Methods: Blood samples were collected from 243 patients with T1D of Dutch descent. We applied 
genetic association analysis on >200 immune-cell traits and >100 cytokine production profiles in 
response to stimuli measured to identify genetic determinants of immune function, and compared 
the results obtained in T1D to healthy controls.
Results: Genetic variants that determine susceptibility to T1D significantly affect T cell composition. 
Specifically, the CCR5+ regulatory T cells associate with T1D through the CCR region, suggesting a 
shared genetic regulation. Genome-wide quantitative trait loci (QTLs) mapping analysis of immune 
traits revealed 15 genetic loci that influence immune responses in T1D, including 12 that have never 
been reported in healthy population studies, implying a disease-specific genetic regulation.
Conclusions: This study provides new insights into the genetic factors that affect immunological 
responses in T1D.
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Editor's evaluation
This study examines genetic and non-genetic factors influencing immune responses in type 1 
diabetes Key findings are: 1) age and season affect immune cell traits and cytokine production upon 
stimulation; 2) certain genetic variants that determine susceptibility to T1D significantly affect T cell 
composition, notably the CCR region that is associated with CCR5+ regulatory T cells; and 3) 15 
genetic loci that influence immune responses in T1D, most of which have not been seen previously 
in healthy populations. The results suggest mechanisms of T1D-specific genetic regulation.

Introduction
Type 1 diabetes (T1D) is a common, chronic, autoimmune disease, characterized by destruction of 
insulin-producing beta-cells in the pancreas that results in lifelong dependence on exogenous insulin 
and is associated with a high morbidity and mortality (Atkinson et al., 2014). The causes and immuno-
logical pathways responsible for T1D development are still incompletely understood, which hampers 
the efforts to identify an etiopathogenetic treatment.

Many studies have highlighted the role of environmental, genetical, and immunological factors 
in the pathogenesis of T1D (Pociot and Lernmark, 2016; Rewers and Ludvigsson, 2016). Envi-
ronmental factors such as being overweight, infections, microbiome composition, and dietary defi-
ciencies have been reported as risk factors for T1D (Rewers and Ludvigsson, 2016). In turn, the 
immunological pathogenesis (Cabrera et al., 2016) of T1D includes innate inflammation and adaptive 
immunity, such as enhanced T cell responses (Hundhausen et al., 2016). In the last two decades, large 
genome-wide association studies (GWAS) performed have underscored the contribution of genetic 
polymorphisms to T1D for the susceptibility, with ~60 genomic loci associated with T1D risk identified 
(Barrett et al., 2009; Bradfield et al., 2011; Cooper et al., 2008; Grant et al., 2009; Huang et al., 
2012; Onengut-Gumuscu et al., 2015; Ram et al., 2016). While these loci show significant enrich-
ment in specific immune-related biological pathways, such as cytokine signaling and T cell activation 
(Barrett et al., 2009; Cooper et al., 2008), the functional consequences of many of these loci and 
genetic variants are still unknown. We thus lack information that could link the genetic susceptibility 
factors to the immunological pathways potentially important for T1D pathogenesis. The genetically 
regulated inflammatory response signature in T1D may also be relevant for the inflammatory response 
in general and may become modified by the chronic hyperglycemic state.

In the present study we aimed to comprehensively describe the immunopathological consequences 
of the genetic variants linked to T1D susceptibility, using a high-throughput functional genomics 
approach. As a part of the Human Functional Genomics Project (HFGP) (Netea et  al., 2016), we 
carried out deep immunophenotyping in peripheral blood samples from a cohort of 243 T1D patients 
(300DM) using cell subpopulation composition and cytokine production upon stimulations as proxies 
of immunological function. Part of the results were then compared to those obtained in a population-
based cohort of 500 healthy individuals (500FG) that successfully characterized the impact of genetic 
factors (Aguirre-Gamboa et al., 2016; Li et al., 2016) on immune responses in healthy individuals. 
Here, we systematically evaluate the genetic regulation of the immune phenotypes in T1D and show 
how genetic variations affect immune-cell traits and cytokine production in response to stimulations. 
In total, we identify 15 genome-wide significant genomic loci (p-value < 5 × 10–8) associated with 
immune phenotypes in the 300DM cohort, including 12 novel loci that have never been reported in 
any healthy population study. These data provide a deeper understanding of the immune mechanisms 
involved in the pathophysiology of T1D and affecting the general inflammatory response and may 
open avenues toward the development of novel diagnostics and potentially immunotherapies.

Materials and methods
Study cohort
This study mainly focuses on a 300DM cohort, and involves a 500FG cohort (part of HFGP; Netea 
et al., 2016). In the 300DM cohort, we collected blood samples from 243 T1D patients (132 males and 
111 females of Caucasian origin), following a previously described methodology (Aguirre-Gamboa 
et al., 2016; Ter Horst et al., 2016; Li et al., 2016). Participant’s ages ranged from 20 to 84 years. 
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Detailed information about the 500FG cohort can be found in the previous publications (Aguirre-
Gamboa et al., 2016; Ter Horst et al., 2016; Li et al., 2016).

Measurement of immune-cell composition
Myeloid and lymphoid immune-cell levels were measured by 10-color flow cytometry, and we calcu-
lated the parental and grandparental proportion of 73 manually annotated immune cells and the 
proportion of CD4+ T  cells, CD8+ T  cells, memory Tregs and monocytes carrying the chemokine 
receptors: CCR6 (CD196), CXCR3 (CD183), CCR4 (CD194), CCR5 (CD195), and CCR7 (CD197). 
In total, we ended up with 269 immune-cell traits for the 300DM cohort. We then used the same 
gating strategy of measuring cell subpopulations as 500FG (see Aguirre-Gamboa et al., 2016 and 
Figure 1—figure supplement 1).

Stimulation of PBMCs and measurement of cytokine production 
capacity
Isolated peripheral blood mononuclear cells (PBMCs) were washed twice with cold phosphate-buffered 
saline and suspended in Roswell Park Memorial Institute (RPMI) 1640 Dutch-modified culture medium 
(Gibco/Invitrogen, Breda, the Netherlands) supplemented with 50  mg/l gentamycin (Centraform), 
1 mM pyruvate (Gibco/Invitrogen), and 2 mM L-glutamine (Gibco/Invitrogen). Cells were counted on 
a Sysmex XN-450 Hematology Analyzer (Sysmex Corporation, Kobe, Japan).

For the in vitro stimulation experiments, 5 × 105 cells/well were cultured for 24 hr or 7 days at 
37°C and 5% CO2 in 96-well round-bottom plates (Greiner). For the 7-day cultures, the medium was 
supplemented with human pooled serum (pooled from healthy blood donors, end concentration 
10%). Supernatants were collected and stored in –20°C until used for ELISA.

The following stimulations were used: LPS (100 ng/ml, 1 ng/ml), Pam3cys, Borrelia mix, Candida 
albicans conidia, C. albicans hyphae, imiquimod (IMQ), Staphylococcus aureus, Streptococcus 
pneumoniae, palmitic acid (C16), C16+ monosodium urate crystals, Escherichia coli, Mycobacte-
rium tuberculosis, Borrelia burgdorferi, Coxiella burnetii, Cryptococcus neoformans, oxidized low-
density lipoprotein (OxLDL), OxLDL+ LPS, polyinosinic:polycytidylic acid, and Rhizopus microspores, 
Rhizopus oryzae (Li et  al., 2016). Concentrations of cytokines in response to various stimulations 

eLife digest Every year around the world, over 100,000 people are diagnosed with type 1 
diabetes. This disease develops when the immune system mistakenly destroys the cells that produce 
a hormone called insulin, leaving affected individuals unable to regulate their blood sugar levels. Type 
1 diabetes patients must rely on regular injections of manufactured insulin to survive.

The composition and activity of the human immune system is under genetic control, and people 
with certain changes in their genes are more susceptible than others to develop type 1 diabetes. 
Previous studies have identified around 60 locations in the human DNA (known as loci) associated 
with the condition, but it remains unclear how these loci influence the immune system and whether 
diabetes will emerge.

Chu, Janssen, Koenen et al. explored how variations in genetic information can influence the 
composition of the immune system, and the type of molecules it releases to perform its role. To do 
so, blood samples from 243 individuals of Dutch descent with type 1 diabetes were collected, and 
genetic associations were investigated.

The results revealed that a major type of immune actors known as T cells are under the control of 
genetic factors associated with type 1 diabetes susceptibility. For instance, a specific type of T cells 
showed shared genetic control with type 1 diabetes. In addition, 15 loci were identified that influ-
enced immune responses in the patients. Among those, 12 have never been reported to be involved 
in immune responses in healthy people, implying that these regions might only regulate the immune 
system of individuals with type 1 diabetes and other similar disorders. Finally, Chu, Janssen, Koenen 
et al. propose 11 genes within the identified loci as potential targets for new diabetes medication. 
These results represent an important resource for researchers exploring the genetic and immune basis 
of type 1 diabetes, and they could open new avenues for drug development.

https://doi.org/10.7554/eLife.73709
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were measured in PBMCs by ELISA kits, following the manufacturer’s protocol. Following our previ-
ously reported definition (Li et al., 2016), we considered IL-1β, IL-6, TNF-α, IL-8, IL-10, IL-1Ra, and 
MCP-1 to be monocyte-derived cytokines and measured them 24 hr after stimulation. Likewise, we 
considered INF-γ, IL-17, and IL-22 to be T cell-derived cytokines and measured them at 7 days after 
stimulation. For all cytokines commercially available kits were used (R&D Systems, Minneapolis, MN, 
or Sanquin, Amsterdam, the Netherlands).

Genotyping, quality control, and imputation
DNA samples of 224 Dutch T1D patients were collected and genotyped using the Infinium Global 
Screening Array. Genotype calling was performed using Opticall 0.7.0 (Shah et al., 2012) with default 
settings (call rate > 0.99). We then excluded two samples due to contamination or mislabeling, one 
sample from a related individual (identity be descent > 0.185) and six genetic outliers identified by 
either heterozygosity rate check (individuals with heterozygosity rate heterozygosity rate ±3 SD from 
the mean were excluded) or multidimensional scaling (MDS) plots of samples merging with 1000 
Genomes data. This left 215 samples for further analysis, and these samples show good consistency 
with European samples from 1000 Genomes data (Figure  1—figure supplement 2) according to 
standard protocol (Anderson et al., 2010). DNA samples from the 500FG cohort were genotyped 
by Illumina Human OmniExpress Exome-8 v1.0 single-nucleotide polymorphism (SNP) chip. Outliers 
were excluded according to population relationship, medication, and disease information. Details can 
be found in our previous studies in 500FG (Aguirre-Gamboa et al., 2016; Li et al., 2016). SNPs with 
a minor allele frequency (MAF) <0.001 were removed from each cohort, and samples with a Hardy-
Weinburg equilibrium (HWE) p-value < 1 × 10–5 were removed for the healthy cohort (500FG). We 
merged the 300DM cohort and 500FG cohort by taking shared genetic variants. We then imputed 
their genotypes using an online genotype imputation service provided by Michigan Imputation Server 
(https://imputationserver.sph.umich.edu)(​Das et  al., 2016) with HRC Panel 1.1 as reference. We 
excluded SNPs with low imputation quality (R2 < 0.3) and/or a MAF < 0.01 in all imputed samples 
and/or HWE p-values < 1 × 10–5 in healthy individuals, leaving 4,304,387 SNPs and 666 individuals in 
the merged cohort (N300DM = 215 and N500FG = 451).

Preprocessing the data
All statistical analyses were performed using the statistical programming language R. Immune-cell 
proportion was calculated by dividing counts of their parental by grandparental cell types (Supple-
mentary file 1A). An inverse rank transformation (Aguirre-Gamboa et  al., 2016; Orrù et  al., 
2013) was applied on the proportion values for genetic association analysis. Cytokine levels were 
log2-transformed.

Immune parameter quantitative trait locus mapping
After intersecting with available genotype data and excluding volunteers with a mixed background or 
other genetic background, 214 samples were left for immune parameter quantitative trait locus (QTL) 
mapping. We next evaluated covariates influencing immune function. Associations with age, gender, 
and seasonal effects were calculated following previously described methods (Aguirre-Gamboa et al., 
2016; Ter Horst et al., 2016; Li et al., 2016), in short, using Spearman’s correlation analysis and a 
linear regression model. Significance was declared after multiple-testing correction (FDR < 0.05). Age 
significantly associated with 129/269 immune-cell traits and 12/55 cytokine traits, gender associated 
with 59/269 immune-cell traits and 5/55 cytokine traits, and seasonal effects associated with 121/269 
immune-cell traits and 38/55 cytokine traits (Figure 4—figure supplement 1). We therefore took age, 
gender, and seasonal effects as covariates in the linear regression for both immune-cell proportion 
QTL mapping and cytokine QTL mapping. In addition, considering the effect of immune-cell propor-
tion on cytokine production, we took major cell types, including monocyte, lymphocyte, T cell, B cell, 
and NK cell proportion in PBMC as covariates in a linear model for cytokine QTL mapping, as we have 
done previously (Li et al., 2016). Linear regression was applied using the R package Matrix-eQTL 
(Shabalin, 2012) for immune parameter QTL mapping, and the software METAL (Willer et al., 2010) 
was applied to summary statistics for both cohorts for a meta-analysis, in which the model based on 
effect size and standard error with default settings were used. p-Values <5 × 10–8 were considered to 
be genome-wide significant. Calculated lambda values indicated no obvious inflations (0.977–1.026).

https://doi.org/10.7554/eLife.73709
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Extraction of the T1D GWAS SNP list
We downloaded a summary of T1D GWAS results from the GWAS-catalog (https://www.ebi.ac.uk/​
gwas/) (Buniello et al., 2019) in November 2019, and removed data from studies performed in non-
European-ancestry populations. Top SNPs from different studies that were in LD (r2 > 0.1) were consid-
ered as the same locus, and the SNPs with the lowest p-value were included in the analysis. We noticed 
that the effect directions of some SNPs were unclear or inconsistent between different studies. In this 
case, we assigned the direction from the most-recent GWAS (Onengut-Gumuscu et al., 2015).

GWAS analysis of the 300DM cohort for the known T1D loci
We extracted all proxies in strong LD with the top SNPs from published T1D GWAS (case-control) 
studies (r2 > 0.8) and performed a chi-square test on clinical status by using PLINK 1.9. Samples in 
300DM were taken as cases and samples in 500FG as controls.

Impact of T1D GWAS loci on immune phenotypes
To detect the impact of T1D GWAS loci on immune-cell populations, we grouped all traits into four 
categories (B cells, T cells, monocytes, and NK cells), and counted the number of suggestive associ-
ations (p-value < 0.05) between the 63 top SNPs from T1D GWAS loci and immune-cell traits. 1000 
permuted sets of the 63 SNPs were randomly selected from independent SNPs (r2 > 0.2) pruned from 
all genotyped SNPs. We then compared the associations of the 63 top GWAS SNPs with the associa-
tions between the 1000 permutated sets and the same category of immune traits.

We further applied a multivariate linear model to estimate the proportion of variance of each 
immune phenotype explained by the top SNPs from T1D GWAS loci. We repeated this analysis 
on 1000 permuted sets of the 63 independent SNPs, which were used as reference set. We then 
compared the null distribution with the variance explained by 63 top SNPs from T1D GWAS loci. The 
p-value was calculated by the percent of explained variance from permuted sets greater than the 
variance explained by the 63 T1D GWAS SNPs.

Gene expression analysis on CCR5 and its corresponding ligands genes
Normalized gene expression data in PBMCs and pancreas from T1D and controls were acquired from 
https://www.ebi.ac.uk/gxa (Papatheodorou et al., 2020). A Student’s t-test was applied to compare 
gene expression between groups.

Post-QTL analysis
An R package ggplot2 was used to generate Manhattan plots and boxplots. Locus zoom plots were 
made using an online tool (http://locuszoom.org; Pruim et  al., 2010). We used R package coloc 
(Giambartolomei et al., 2014) to perform colocalization analysis with T1D GWAS summary statistics 
and immune parameter QTL profiles. For pathway analysis, genes located within ±10 kb of genome-
wide significant SNPs (p-value < 5 × 10–8) were extracted and analyzed using the FUMA online tool 
(Watanabe et al., 2017) (https://fuma.ctglab.nl). ANNOVAR was used to annotate genetic variants 
(Wang et al., 2010).

Other packages used in this paper
Pheatmap was used to make heatmaps. Scatter plots and bar plots were generated using ggplot2.

Results
Interrelationship between immune-cell counts and cytokine production 
in T1D
We collected blood samples from 243 T1D patients (300DM cohort), following a previously described 
methodology (Aguirre-Gamboa et al., 2016; Ter Horst et al., 2016; Li et al., 2016). The baseline 
characteristics of the 300DM and a cohort of healthy individuals (500FG) are shown in Supplementary 
file 1B. Their median age was 53.5 years (range 20–85), and they had a median diabetes duration 
of 28 years (range 1–71 years). Hence, the cohort generally consisted of middle-aged people with 
long-standing T1D. We measured 72 types of immune cells covering both lymphocytes and monocyte 

https://doi.org/10.7554/eLife.73709
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lineages and 10/6 (300DM/500FG) different cytokines released in response to stimulation with four 
types of human pathogens in both cohorts (Figure 1A).

Nonmetric MDS plots illustrate the interrelationship among immune-cell abundances (Figure 1B) 
and cytokine production levels (Figure 1C) in T1D patients. We observed a separation of the B cell 
subpopulations cluster from the T cell, monocyte, and NK cell population clusters. This suggests that 
T cells, monocytes, and NK cells have more interplay than B cells at baseline, which is consistent with 
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Figure 1. Overview of data and experimental design. (A) Schematic study design. (B,C) Cell-type (B) and cytokine-type (C) relationship visualized by 
nonmetric multidimensional scale (NMDS) analysis in 300DM. (B) Cell traits (red) cluster separately from T cell and monocyte traits (B) and cytokines with 
the same cellular origins cluster together (C). In panel (B), small dots indicate the proportion of subpopulations and large dots indicate counts of their 
parental cell types. Circles represent the calculated centroid of the grouped cell and cytokine types at confidence level 0.95. (D) Heatmap of correlation 
coefficients between immune-cell counts (y-axis) and cytokine production in response to stimulations (x-axis) in T1D patients. Significant correlations 
(FDR < 0.05) are labeled by dots, with color indicating correlation coefficients. Positive correlations (red) are observed between monocyte traits and 
monocyte-derived cytokines (top left), and between adaptive immune-cell counts and T cell-derived cytokines (bottom right). Negative correlations 
(blue) are observed between adaptive immune-cell counts and monocyte-derived cytokines.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Heterozygosity check (left, x-axis: Proportion of missing genotypes, y-axis: Heterozygosity rate) and ancestry clustering (right, C1: 
component 1, C2: component 2 in multiple dimensional scaling plot). 

Figure supplement 2. Flow cytometry gating strategy of the chemokine receptor panel.

Figure supplement 3. Correlation between cell counts and cytokine production in healthy individuals. 

https://doi.org/10.7554/eLife.73709
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our previous finding in a healthy cohort (500FG; Aguirre-Gamboa et al., 2016). Furthermore, cyto-
kine features are clustered based on their cellular origins, with a partially overlapping cluster between 
monocyte-derived cytokines and T cell-derived cytokines (Figure 1C). This may suggest activation of 
a co-regulatory network of monocyte-derived and T cell-derived cytokine production capacity in T1D.

To obtain a comprehensive interaction map between immune cells and cytokines, we correlated 
each of the immune-cell counts with each of the cytokine production profiles (IL-1β, IL-6, TNF-α, IL-10, 
IL-1RA, IL-8, MCP-1, IFNγ, IL-17, and IL-22) in response to 21 stimulations. Cytokine levels were hier-
archically clustered based on correlation coefficients with immune-cell counts (Figure 1D). In line with 
the functional relationship between immune cells and cytokines, we observed positive correlations 
between monocyte lineages and monocyte-derived cytokines (IL-1β, IL-6, TNF-α, IL-10, IL-1RA, IL-8, 
and MCP-1) and between T cell subsets and T cell-derived cytokines (IFNγ, IL-17, and IL-22) (indicated 
by red color in Figure 1D). We also found a negative correlation between monocyte-derived cyto-
kines production in response to four distinct types of stimulations (bacteria, fungi, non-microbial, and 
TLR ligands) and lymphocyte counts (blue, Figure 1D). We observed similar correlation patterns in 
500FG (Figure 1—figure supplement 3). This correlation is in line with a previous finding that a high 
abundance of adaptive immune cells at baseline is associated with lower production of monocytes-
derived cytokines after stimulation (Kim et al., 2007), and this is not altered by T1D status. Overall, 
the interrelationships between immune cells and cytokines in response to stimulations are roughly 
similar between T1D and healthy individuals.

Impact of T1D GWAS SNPs on immune phenotypes in T1D patients
Considering that T1D is a multifactorial disease with a genetic component, we tested whether the 
known risk variants of T1D affect immune phenotypes and function. We first checked SNPs within 
the HLA locus in our association studies on cell proportion and cytokine production level. Consis-
tent with our previous findings in 500FG, we did not observe any significant associations of HLA 
allelic variants in 300DM. We then acquired non-HLA genetic loci from published GWAS of European 
background were acquired from the GWAS-catalog (November 2019)(Buniello et al., 2019). Among 
these, genetic variants in 63 independent T1D loci were present in our data, and we found that 13 of 
these 63 were indeed associated with susceptibility to T1D with nominal significance (p-value < 0.05) 
(Supplementary file 1C).

We next investigated whether these genetic risk loci for T1D affect immune parameters and func-
tion. The quantile-quantile plot of the association of the 63 T1D GWAS loci with different cell types 
and cytokines illustrates an inflated deviation from an expected uniform distribution (Figure  2A, 
Figure 2—figure supplement 1). We further tested whether this deviation can be explained by chance 
by comparing the association of immune traits with T1D GWAS SNPs with that of 1000 randomly 
selected independent SNPs (Figure 2B, Materials and methods). The p-value shows that the T1D 
GWAS SNPs are enriched in association with T cell traits in the T1D cohort (p-value = 0.007).

A pair-wise association analysis between T1D GWAS loci and immune phenotypes shows that 
261 out of 269 immune-cell phenotypes and 53 out of 55 cytokine-stimulation pairs are suggestively 
associated with at least one T1D GWAS locus (p-value < 0.05, Supplementary file 1d and e). We 
further applied a permutation-based approach to test whether immune phenotypes were significantly 
influenced by the cumulative effects of these 63 GWAS loci (Materials and methods). Compared to 
random sets of independent SNPs, the 63 T1D GWAS loci explain significantly more of the variance 
in 27 cell sub-proportions and 15 cytokine production traits (p-value < 0.05, Figure 2C, Figure 2—
figure supplement 2A, B,). As shown in the heatmap (Figure 2C, arrowhead), one T1D risk allele, 
rs11574435-T, which is in strong LD (r2=0.95) with the T1D GWAS SNP rs113010081 (Onengut-
Gumuscu et al., 2015), is associated with a higher percentage of many CCR5+ CD4+ T cell traits and 
a lower percentage of CCR5− CD4+ T cell traits.

Chemokine signaling pathways regulate the migration of cells from the circulation (PBMCs) to the 
tissue (pancreas). To further validate the importance of chemokine signaling mediated by CCR5 in 
T1D, we illustrated the transcriptional changes on CCR5 and its corresponding ligand genes using 
publicly available data from transcriptome analysis in PBMCs and pancreatic tissue from T1D patients 
and controls (Planas et al., 2010; Yang et al., 2015) (see also Materials and methods). This identi-
fied significant expression changes of CCR5, CCL5, and CCL4 in T1D patients, which suggests the 
involvement of this chemokine ligand-chemokine receptor pathway (Figure 3A). In addition, another 

https://doi.org/10.7554/eLife.73709
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top SNP, rs35092096, within the CCR gene region has the strongest effects on many CCR5 Treg 
proportions in T1D. For example, minor allele T in rs35092096 associates with a higher ratio of CCR6+ 
CCR7− CCR5+ Tregs/CCR6+ Tregs (Figure 3B and C). Together with the observed regulation from 
a GWAS locus within the CCR region on CCR6+ CCR7− CCR5+ Treg proportion, we tested whether 
CCR6+ CCR7− CCR5+ Tregs and T1D share the same causal variants/genomic regions by integrating 
the cell proportion QTL of CCR6+ CCR7− CCR5+ Tregs and the latest T1D GWAS profile via colo-
calization analysis (Giambartolomei et al., 2014). The result strongly supports that CCR6+ CCR7− 
CCR5+ Tregs share the same regulatory genomic region with T1D, although the causal SNP might be 
different (Figure 3D, H3=0.95). Altogether, these results support a role for the CCR region in Treg 
function in the pathogenesis of T1D.

Overall, we observe that T1D GWAS loci influence immune-cell proportion and cytokine produc-
tion capacity, again stressing the importance of T cell immunity in genetic regulation of T1D.

Figure 2. Impact of type 1 diabetes (T1D) genome-wide association studies (GWAS) single-nucleotide polymorphisms (SNPs) on immune phenotypes. 
(A) Quantile-quantile (Q-Q) plots of quantitative trait locus (QTL) profiles of 62 T1D GWAS loci grouped by cell populations. The distribution of p-values 
of associations with T cells traits (blue) shows a significant deviation from an expected uniform distribution (dashed line). (B) Histogram showing number 
of associations observed (red line) and those in permutations (blue bars). (C) Heatmap of QTL profiles of cell proportion carrying certain chemokine 
receptors across 62 T1D GWAS loci, colored by −log10(p-values) and effect direction of the T1D risk allele. Arrowhead indicates a T1D risk allele 
rs11574435-T.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Qqplots of QTL profiles of 62 T1D GWAS loci grouped by cytokine types.

Figure supplement 2. Impact of T1D GWAS SNPs on immune phenotypes.

https://doi.org/10.7554/eLife.73709
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Genetic regulation of immune phenotypes in T1D
To further explore potential genetic regulation of immune phenotypes on the whole-genome level, 
we performed QTL mapping in 300DM. This identified nine genome-wide significant QTLs (p-value 
< 5 × 10–8) associated with immune-cell proportion, including four associated with T cell subpopu-
lations expressing specific chemokine receptors (e.g., rs35092096 and rs7614884) (Figure 4A, top 
and middle panels, Supplementary file 1F). Pathway analysis of the cell proportion QTLs showed 
significant enrichment in chemokine and cytokine signaling-related biological pathways (FDR < 0.05, 
Figure 4—figure supplement 2A), highlighting the effects of immune signaling genes in cell propor-
tion regulation.

In parallel, we detected six significant genomic loci associated with cytokine production in response 
to stimulations by QTL mapping in 300DM (Figure 4A, bottom panel, Supplementary file 1F). Cyto-
kine production QTLs are significantly enriched in TLR-related pathways (FDR < 0.05, Figure  4—
figure supplement 2). A missense variant, rs5743618, on the TLR1 gene, affects IL-6 production in 
response to S. pneumoniae in PBMC. Previously, we had observed that the TLR locus has a strong 

Figure 3. Genetic impact on CCR5-mediated chemokine signaling in type 1 diabetes (T1D). (A) Expression of CCR5, CCL5, and CCL4 in peripheral 
blood mononuclear cells (PBMCs) (top) and pancreas (bottom) is altered in T1D patients (blue, green, and purple) compared to healthy controls (red). 
(B) Locus zoom plot showing that single-nucleotide polymorphisms (SNPs) around rs35092096 located in the CCR region are associated with CCR6+ 
CCR7− CCR5+ Treg proportion. (C) Boxplot showing that CCR6+ CCR7− CCR5+ Treg proportion differs in different rs35092096 genotypes (TT: red, TG: 
green, and GG: blue). (D) Two locus zoom plots showing colocalization between CCR6+ CCR7− CCR5+ Treg proportion quantitative trait locus (QTL) 
profiles (top, red) and T1D genome-wide association studies (GWAS) profile (bottom, blue) within CCR regions.

https://doi.org/10.7554/eLife.73709
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Figure 4. Genetic regulators of immune phenotypes. (A) Three Manhattan plots showing genetic regulators of immune-cell proportion (top), proportion 
of immune cells expressing CCR (middle) and cytokines production in response to stimulations (bottom). p-Values of single-nucleotide polymorphisms 
(SNPs) identified in meta-analysis are colored red. (B) Locus zoom plot showing a type 1 diabetes (T1D)-specific regulatory locus around rs4744112 that 
effects CCR6+ CXCR3+ CCR4 T helper1 proportion. (C) Boxplot showing how CCR6+ CXCR3+ CCR4 T helper1 proportion varies in different rs4744112 
genotypes (TT: red, TG: green, and GG: blue).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Enriched pathways of QTLs found for immune phenotypes. 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.73709
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effect on cytokine levels in controls (Li et al., 2016). Our results support the reported function of TLRs 
in detecting pathogens (including bacterial pathogens) and triggering the release of inflammatory 
cytokines (Fitzgerald and Kagan, 2020).

Next, to identify the consistent immune phenotype QTLs within T1D patients and healthy indi-
viduals and expand our understanding of genetic regulation of immune phenotypes, we performed 
a meta-analysis by integrating the QTLs obtained from the 300DM and 500FG cohorts. In total, 
we identified 10 novel genetic loci associated with immune-cell proportion (Figure 4A, top panel, 
colored in red) and three novel genetic loci that were associated with cytokine production (Figure 4A, 
bottom panel, colored in red). This included a CD5 locus that was significantly associated with IgD+ 
CD5++ proportion in B cells (Supplementary file 1F), which may be important as recent studies have 
reported the relevance of IgD+ CD5++ B cells in T1D (Saxena et al., 2017) and other autoimmune 
diseases such as Graves’ disease (Van der Weerd et al., 2013).

To summarize, we identified 28 genetic loci associated with either immune-cell traits or cytokine 
production phenotypes. Among them, the genes within 11 loci (±250 kb window) are known drug 
targets according to the public drug database (Finan et al., 2017), including COL13A1, CCR family 
genes, ROR2, NOS1, IL-10, IL-6, STK33, NELL1, FCGR2A, CD5, and TLR1 (Supplementary file 1F). 
Some of these genes are already therapeutic targets in other autoimmune diseases, for example, the 
STK33 inhibitor for rheumatoid arthritis treatment (Rolf et al., 2015).

It is also worth mentioning that, as far as we know, 12 out of the 28 significant loci we identi-
fied have never been reported in other healthy individual population cohorts according to PhenoS-
canner V2 (Kamat et al., 2019) (p-value < 1 × 10–5, November 2019). Nor were they identified in 
the 500FG cohort (p-value < 0.05). One example effect of one of these T1D-specific loci is that of 
rs4744112 located on chromosome 9, which influences CCR6+ CXCR3+ CCR4− Th1-like helper 
proportion (Figure  4B), with minor allele G leading to a decrease in these cells relative to major 
allele T (Figure 4C). rs4744112 is located within the transcriptional starting site and enhancer regions 
(Kundaje et al., 2015) of ROR2.

Functional clues from the associated variants in T1D patients
To understand the mechanism behind the genetic regulation of immune response in T1D, we next 
explored the function of the identified genetic factors behind immune phenotypes. We noticed that 
SNPs within the 28 immune parameter QTLs are mostly located in intergenic and intronic regions 
(Figure 4—figure supplement 3), suggesting that the genetic variants we identified influence immune 
phenotypes through regulatory effects rather than by altering protein structure alteration. Moreover, 
according to public databases (Carithers and Moore, 2015; Westra et al., 2013), 7 out of the 28 loci 
influence gene expression in blood (Supplementary file 1F), including rs7512140: FCGR2B/FCRLB, 
rs35092096: CCR1/CCR3, rs4744112: ROR2/SPTLC1, rs10840031: TRIM66, rs800139: C11orf21, 
rs1518110: IL10, and rs56350303: AC091814.2. These indicate the potential functional genes behind 
the identified genetic loci.

Discussion
The present study applied a high-throughput functional genomics approach to identify the associa-
tions between genetic factors and inflammatory phenotype in patients with T1D. The results confirm 
a correlation between baseline immune-cell populations and ex vivo cytokine production in response 
to bacterial, fungal, non-microbial, and TLR ligand stimulations. We provide evidence for a direct link 
between T1D GWAS loci and immune functionality, particularly through circulating T cell subpopula-
tions. We show that T cell alteration is largely driven by T1D genetics, while B cells do not show a signif-
icant association with T1D GWAS loci. The association between the proportion of CCR5+ Tregs and 
T1D susceptibility through CCR genes suggests that T1D-associated genetic variants contribute to 
alteration of immune function through a cumulative effect. Finally, out of 28 genome-wide significant 

Figure supplement 2. Functional annotation of the immune phenotypes associated SNPs (P < 5 × 10-8).

Figure supplement 3. Impact of age, gender and seasons on immune phenotypes. 

Figure 4 continued
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genetic loci regulating immune-cell proportions and cytokine production, we identified 12 immune 
phenotype QTLs specific to 300DM. We also found 11 druggable genes as candidates for thera-
peutic intervention. Altogether, this study provides several novel insights into the genetic variability 
of immune traits in T1D.

The correlation we found between baseline immune cells and cytokine production in response 
to bacterial, fungal, non-microbial, and TLR ligand stimulations suggests that steady-state immune-
cell abundance and alteration of immune-cell proportion also affect immune response. This is in line 
with earlier findings on the regulation between immune cells and cytokine production (Kim et al., 
2007). This finding has two important consequences: (1) immune response variability could be partly 
explained by variations in steady state and (2) treatment of steady-state immune cells before stimula-
tion could also influence immune response after stimulation.

Studies comparing T1D patients and healthy controls show that immune-related genes are phys-
ically located in T1D loci or are differentially expressed. More studies highlight the importance of T 
cell immunity in T1D pathology (Farh et al., 2015). In our study, we provide evidence for a direct link 
between T1D GWAS loci and immune functionality, particularly for circulating T cell subpopulations. 
We show that T cell alteration is largely genetically driven, while, interestingly, B cells do not show 
a significant association with T1D GWAS loci. It is thus tempting to speculate that the occurrence of 
auto-antibodies in T1D patients has limited pathophysiological relevance and is merely a marker of 
an autoimmune process mainly driven by T cells, as has been suggested before (Martin et al., 2001).

Importantly, we reveal that the effects of different GWAS loci on immune phenotypes vary. Despite 
the strong effects of the CCR locus (mean absolute effect sizes = 0.017 [cell proportion] and 0.15 
[cytokine production]), we observed much weaker individual effects for other T1D GWAS loci on 
immune-cell proportion parameters (mean absolute effect size = 0.0060) and/or cytokine production 
(mean absolute effect size = 0.10) (Figure  2C and Figure  2—figure supplement 2). This finding 
indicates that T1D-associated genetic variants might alter immune function through a cumulative 
effect. Considering the complexity of the immune system, this may be an alternative explanation for 
our finding that T1D-associated genetic variants that affect immune functions differ from the genetic 
variants that affect immune-cell proportion and cytokine production capacity.

Despite the limited sample size, we identified 28 genome-wide significant genetic loci regulating 
immune-cell proportions and cytokine production in T1D patients and health. Among them, we found 
12 immune phenotype QTLs in 300DM but not in healthy volunteers, suggesting a distinct regulatory 
mechanism of immune parameters and functions in disease compared to health. More importantly, 
our results highlight 11 druggable genes as candidates for therapeutic intervention.

The data presented in our study were generated from PBMC. While these likely reflect overall 
immune function, some immune-cell types may not be captured and the findings refer to changes in 
circulating factors that may not necessarily reflect changes occurring in relevant immune organs such 
as pancreatic islets, gut, or lymph nodes. Nonetheless, islet-infiltrating immune cells do originate 
from circulating blood cells, while circulating chemokines/cytokines are important in activating and 
recruiting immune cells. Hence, the circulating level of immune cells and cytokine production capacity 
are probably relevant for local tissue immunity.

We acknowledge that our study has limitations. First, 300DM and 500FG were recruited and 
measured 2 years apart, albeit in an identical setting and following the same protocol in the same lab. 
There may thus be some differences in the absolute immune-cell counts or cytokine levels due to a 
batch effect. Therefore, this study was not designed as a case-control study, but the healthy controls 
were used to compare genetic associations identified in the T1D cohort. Second, young people are 
overrepresented in 500FG. Although we regressed age out in both cohorts, there may still be a bias 
in the genetic mapping. Third, our investigation on circulating cytokines in this study was focused on 
the variation of inflammatory responses, which are mediated by innate immune cells and are antigen-
independent. Future study could focus on the stimulation of PBMC with beta-cell autoantigens such 
as insulin or GAD65 peptides, to assess specific T and B cell functional responses. Finally, our T1D-
specific analyses should be viewed as exploratory because they have not been validated in a separate 
cohort. Our study has also strengths. We applied cutting-edge technologies to assess immune-cell 
function and genetic variation, and this is the first study to comprehensively combine ‘omics’ tech-
nologies with abundant phenotyping in a rather large group of participants (N=215) to explain intra-
individual variation in immune responses. Moreover, we stimulated mononuclear cells with ligands of 

https://doi.org/10.7554/eLife.73709
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pattern recognition receptors, such as TLR2 and TLR4, known to induce effective inflammation. These 
stimulations yield significant releases of cytokines allowing detailed quantification of various inflam-
matory pathways in each subject.

In conclusion, by applying a novel high-throughput functional genomics approach, we have shown 
that genetic factors regulate immune responses in T1D patients. We show genetic susceptibility to 
immune phenotypes in patients with T1D and highlight the importance of T cell immunity in the 
genetic regulation of T1D. We also identify specific cell populations (CCR5+ Tregs) that are likely 
involved in pathophysiology of T1D. Together, these findings may provide an avenue toward identifi-
cation of novel preventive and therapeutic treatments.

Data and code availability
All the raw data on immune phenotypes and summary statistics generated directly from genetic data 
needed to precisely reproduce published results are deposited in Dryad (https://doi.org/10.5061/​
dryad.4f4qrfjd0). Custom scripts for generating summary statistics and all results are deposited 
in GitHub (https://github.com/Chuxj/Gf_of_ip_in_T1D, copy archived at swh:1:rev:1e39df29db-
f38a94b9e2325827ac94043d190be7; Chux, 2021). Individual genetic data and other privacy-
sensitive individual information are not publicly available because they contain information that 
could compromise research participant privacy. For data access, please contact Prof. Cees Tack (​
Cees.​Tack@​radboudumc.​nl). This original data is available for qualified researchers, that is, senior 
investigators employed or legitimately affiliated with an academic, non-profit, or government insti-
tution who have a track record in the field. We would ask the researcher to sign a data access 
agreement that needs to be signed by applicants and legal representatives of their universities. 
In addition, we would require a research proposal, to ensure that ‘Applications for access to Data 
must be Specific, Measurable, Attainable, Resourced and Timely.’ The applicant must implement 
the proposed research within the designed time frame and the data must be deleted after finishing 
the proposal.
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