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Abstract Large-scale multiparameter screening has become increasingly feasible and straight-
forward to perform thanks to developments in technologies such as high-content microscopy and 
high-throughput flow cytometry. The automated toolkits for analyzing similarities and differences 
between large numbers of tested conditions have not kept pace with these technological develop-
ments. Thus, effective analysis of multiparameter screening datasets becomes a bottleneck and a 
limiting factor in unbiased interpretation of results. Here we introduce compaRe, a toolkit for large-
scale multiparameter data analysis, which integrates quality control, data bias correction, and data 
visualization methods with a mass-aware gridding algorithm-based similarity analysis providing a 
much faster and more robust analyses than existing methods. Using mass and flow cytometry data 
from acute myeloid leukemia and myelodysplastic syndrome patients, we show that compaRe can 
reveal interpatient heterogeneity and recognizable phenotypic profiles. By applying compaRe to 
high-throughput flow cytometry drug response data in AML models, we robustly identified multiple 
types of both deep and subtle phenotypic response patterns, highlighting how this analysis could 
be used for therapeutic discoveries. In conclusion, compaRe is a toolkit that uniquely allows for 
automated, rapid, and precise comparisons of large-scale multiparameter datasets, including high-
throughput screens.
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Introduction
Technological developments have accelerated the generation of large-scale multiparameter screening 
data through methodologies such as high-content microscopy and high-throughput flow cytometry 
(Boutros et al., 2015; Saeys et al., 2016; Caraus et al., 2015). These technologies can test hundreds 
of samples (such as drug treatments) each with tens of thousands of events (e.g. cells) labeled for 
numerous biomarkers (such as cytoplasmic or membrane markers). However, analyzing this massive 
multiparameter data to provide an overview of similarities and differences between hundreds of 
samples is still a challenge (Boutros et al., 2015; Saeys et al., 2016; Caraus et al., 2015). This analyt-
ical challenge is further complicated by various sources of bias and noise often existing in the data, 
such as batch effect and signal drift (a gradual shift in the marker intensity across a multi-well plate) 
(Boutros et al., 2015; Saeys et al., 2016; Caraus et al., 2015).

There have been efforts to cluster samples from large-scale multiparameter (multidimensional) 
screening data. A simple approach is to use a representative value for each cell marker such as median 
fluorescence intensity (MFI) for clustering samples (Cossarizza et al., 2019). However, using a single 
representative value can easily lead to loss of information about biologically relevant variance within 
and between cell subpopulations. Meta-clustering with single-cell clustering algorithms has been 
suggested to cluster samples based on the similarity of the centroids of cell subpopulations iden-
tified in the individual samples (Qiu et  al., 2011; Levine et  al., 2015; Van Gassen et  al., 2015; 
Ogishi et al., 2021). While these algorithms are widely used in single-cell data analysis for clustering 
cells, they are not efficient for clustering of samples. This is because centroid-based analysis can be 
misleading when subclusters are not sufficiently distinct or the number of sub-clusters varies. Addi-
tionally, the heavy computing cost of meta-clustering makes it poorly suited for analyses of large 
datasets with many samples. Manual gating and machine learning based on prior knowledge have 
been used to cluster samples (Amir et al., 2019; Bruggner et al., 2014), but using prior knowledge 
for subpopulation identification can both lead to biased interpretations and failure to make de novo 

eLife digest Biology has seen huge advances in technology in recent years. This has led to state-
of-the-art techniques which can test hundreds of conditions simultaneously, such as how cancer cells 
respond to different drugs. In addition to this, each of the tens of thousands of cells studied can 
be screened for multiple variables, such as certain proteins or genes. This generates massive data-
sets with large numbers of parameters, which researchers can use to find similarities and differences 
between the tested conditions.

Analyzing these ‘high-throughput’ experiments, however, is no easy task, as the data is often 
contaminated with meaningless information, or ‘background noise’, as well as sources of bias, such 
as non-biological variations between experiments. As a result, most analysis methods can only probe 
one parameter at a time, or are unautomated and require manual interpretation of the data.

Here, Chalabi Hajkarim et al. have developed a new toolkit that can analyze multiparameter data-
sets faster and more robustly than current methods. The kit, which was named ‘compaRe’, combines 
a range of computational tools that automatically ‘clean’ the data of background noise or bias: the 
different conditions are then compared and any similarities are visually displayed using a graphical 
interface that is easy to explore.

Chalabi Hajkarim et al. used their new method to study data from patients with acute myeloid 
leukemia (AML) and myelodysplastic syndrome, two forms of cancer that disrupt the production of 
functional immune cells. The toolkit was able to identify subtle differences between the patients and 
categorize them into groups based on the proteins present on immune cells.

Chalabi Hajkarim et al. also applied compaRe to high-throughput data on cells from patients and 
mouse models with AML that had been treated with large numbers of specific drugs. This revealed 
that different cell types in the samples responded to the treatments in distinct ways.

These findings suggest that the toolkit created by Chalabi Hajkarim et al. can automatically, rapidly 
and precisely compare large multiparameter datasets collected using high-throughput screens. In 
the future, compaRe could be used to identify drugs that illicit a specific response, or to predict how 
newly developed treatments impact different cell types in the body.

https://doi.org/10.7554/eLife.73760
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discoveries. Dimension reduction methods (Lvd and Hinton, 2008; Amir et al., 2013; McInnes et al., 
2018) coupled with the Jensen-Shannon divergence (JSD) metric have also been used to cluster 
multidimensional samples (Amir et al., 2013). These algorithms including factor analysis and principal 
component analysis (PCA) still require excessive computing costs with an inherent information loss. 
It is also important to note that none of the methodologies developed so far efficiently correct for 
sources of bias and noise in large-scale multiparameter screening data.

Available computational toolkits (BioScience E, 2020; Potdar et al., 2020; Boutros et al., 2006) 
mostly allow for single-parameter or unautomated analyses of large-scale screening data using the 
aforementioned methods. In these toolkits, each well should be first represented by a single param-
eter such as cell counts or centroids or they require manual intervention. To provide a useful toolkit 
for precise and effective interpretation of small- to large-scale multiparameter screening data, we 
developed compaRe. This toolkit has several unique modules for quality control, bias correction, pair-
wise comparisons, clustering, and data visualization. The quality control and bias correction modules 
can effectively reveal and remove various sources of bias in the screening data. compaRe clusters 
samples by measuring the similarity between them using a dynamic mass-aware gridding algorithm. 
This algorithm increases the robustness of the toolkit to the size of data and signal shift (a technical 
term referring to batch effect and signal drift), while guaranteeing fast clustering, as it does not 
bear the computing cost of dimension reduction and subsampling. The toolkit is available both as a 

Clustering

Bias correctionQC

Similarity calculationVisualization in GUI

Figure 1. compaRe is a comprehensive suite for multiparameter screening data. High-throughput flow cytometry generates massive multidimensional 
data from hundreds of samples. compaRe’s quality control (QC) module reveals several sources of bias in the assay such as signal (intensity difference 
between the top left and bottom right corners) and cell viability drifts. These two are corrected for in the bias correction modules within and between 
the plates. compaRe performs a pairwise similarity calculation between the samples using dynamic gridding and forming hypercubes (represented by 
distinct colors). The portions of the data within individual hypercubes are used to calculate similarity. Clustering is performed based on similarity. The 
graphical user interface (GUI) provides several ways to thoroughly explore and visualize the read-outs.

https://doi.org/10.7554/eLife.73760
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command-line version and a graphical user interface (GUI) version that provides various visualizations 
to help with the interpretation of its readouts.

compaRe performed robustly in the presence of background noise and batch effects even where 
these input data artifacts could not be corrected. compaRe analyses of multiparameter mass and flow 
cytometric data from acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) patient 
samples revealed interpatient heterogeneity and recognizable phenotypic profiles. When applied to 
high-throughput flow cytometry of the dose response of AML samples treated with various drugs, 
compaRe successfully corrected for various sources of bias and clustered the samples based on their 
response to treatment, allowing for detection of both drastic and subtle phenotypic responses.

Results
compaRe is a comprehensive toolkit for multiparameter screening data
compaRe is designed to analyze the data from small to large-scale multiparameter screening assays 
such as high-throughput flow cytometry, high-content microscopy, mass cytometry, and standard flow 
cytometry. The toolkit comprises several modules for quality control, bias correction, clustering, and 
visualization. Figure  1 shows the modules for a high-throughput flow cytometry of AML samples 
taken from a mouse model treated with various drugs. During quality control, several sources of bias 
such as autofluorescence, bioluminescence, carryover effect, edge effect, signal drift, and cell viability 
drift (drift in the number of live cells across the plate) were identified. The bias correction module 
could effectively correct for signal and cell viability drifts (two main sources of bias in high-throughput 
screening with fluorescent markers) using regression analysis (Figure 1, Materials and methods).

At the core of the compaRe toolkit is a module for pairwise comparisons of samples. It measures 
the similarity between two samples using a dynamic mass-aware gridding algorithm (Figure 1, Mate-
rials and methods). Given two samples, the algorithm divides the higher dimensional space (formed 
by, for example, cell surface markers) of the samples individually into several spatial units called hyper-
cubes. The average difference between proportions of data points present in corresponding hyper-
cubes across the samples is used to represent similarity. In this setting, the module becomes robust to 
signal shift and data size difference between the two samples (Appendix 1). This module generates a 
similarity (affinity) matrix for the clustering module.

The clustering module uses a graphical algorithm (Figure 1, Materials and methods). Initially, all 
nodes (samples) are connected forming a complete weighted graph wherein weights represent simi-
larity values. The graph is then pruned to remove potential false positive edges using a threshold 
inferred from negative controls (untreated samples). After constructing a linked graph, clustering 
is tantamount to finding maximal cliques (complete subgraphs that cannot be extended), each 
containing samples with similar responses. compaRe benefits from parallel computing and modular 
design. Its modular design allows the modules to run independently; thus, the similarity and clustering 
modules of compaRe can be potentially applied to any problem space.

compaRe is ultra-fast and robust to background noise and batch effect
To evaluate the robustness of compaRe’s comparison module to noise and batch effect, we bench-
marked it against JSD with UMAP (for simplicity just JSD) and meta-clustering with PhenoGraph (for 
simplicity just meta-clustering) (Levine et al., 2015). We analyzed the publicly available mass cytom-
etry data of a total of 21 bone marrow aspirate samples collected from 16 pediatric AML patients and 
five healthy adult donors labeled for detection of 16 cell surface markers (Levine et al., 2015). We 
introduced random noise with Gaussian distribution to the 16 parameters of each sample to simulate 
a batch effect. In this setting, although the added noise undermines similarity, the overall cell popu-
lation configuration remains intact, and consequently the simulated samples will still have the highest 
similarity with their original samples.

Even with the added noise, the comparison module correctly identified similar samples (Figure 2a). 
Conversely, the batch effect seriously compromised the performance of both meta-clustering and 
JSD, showing several maximum similarities other than the originals (Figure 2b and C). In additional 
comparison with FlowSOM and SPADE, other commonly used tools for flow cytometry, compaRe’s 
performance far exceeded their performance (Appendix 1—figure 1). This result demonstrates the 

https://doi.org/10.7554/eLife.73760
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advantage of using dynamic gridding for comparison of samples in the presence of noise or batch 
effect.

Notably, compaRe took only 25 min to analyze the 21 samples (210 pairwise comparisons), without 
subsampling or dimension reduction. Meanwhile, meta-clustering and JSD took 39  hr and 10  hr 
respectively. For the feasibility of JSD, we subsampled each sample to 100,000 cells (default value 
suggested in Amir et al., 2013). When we fixed this limit to 60% of each sample, the computing 
time of JSD increased to 3 days. To investigate the relation between run time and sample size, we 
compared each sample to itself and sorted measured times based on sample size (Figure 2d). The 
run time increased steeply for both meta-clustering and JSD as the sample size increased, while the 
increase for compaRe was almost unnoticeable.

To further show that compaRe can identify phenotypic changes from a high-dimensional dataset, 
we used a subset of the data with three healthy and two AML samples stained with 29 (15 membrane 
and 14 intracellular signaling) markers (Appendix 1—figure 2). Taking H1 as reference, we gradually 
removed 25%, 50%, 75%, and 100% of cells from a target cluster identified by PhenoGraph. The 
gradual removal can be regarded as a phenotypic change and the 75% reduction can potentially 
resemble a rare cell population (a small cluster of cells). As shown in the UMAP projections, the simi-
larity decreased concurrently and more drastically after 100% reduction when phenotypic changes 
were detected, indicating compaRe is sensitive to phenotypic changes and the existence of rare cell 
populations.

Figure 2. compaRe robustly measures the similarity between samples in the presence of batch effect. Similarity matrix generated by compaRe is 
shown in (a). Size and color of dots represent the level of similarity. Self-comparisons were removed. Noise was added (marked with *) to the original 
21 mass cytometry samples of bone marrow aspirates from 16 pediatric AML patients (S) and five healthy adult donors (H). Similarity matrices using JSD 
with UMAP and meta-clustering with PhenoGraph are shown in (b) and (c), respectively. The run time of comparing each sample to itself is shown in 
(d). Samples were sorted based on their size.

https://doi.org/10.7554/eLife.73760
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compaRe reveals interpatient similarity
Non-AML myeloid neoplasias such as MDS can evolve to become AML. Over time, about one-third 
of all MDS cases develop into AML (DeVita and Lawrence, 2015; Niederhuber et al., 2020). The 
risk of developing AML largely depends on the MDS subtype at the time of diagnosis, with high-risk 
MDS developing into AML more often than the lower-risk MDS subtypes (Greenberg et al., 2012). 
As many immunophenotypic abnormalities are not unique to MDS, several diagnostic flow cytometric 
antibody panels have been proposed (van Dongen et al., 2012; Alhan et al., 2016). The EuroFlow 
AML/MDS antibody panel (van Dongen et al., 2012) aims at the parallel identification and categoriza-
tion of AML and MDS. Both diseases are heterogeneous, affecting multiple cell lineages and multiple 
maturation stages. Therefore, this panel concerns major myeloid lineages (neutrophilic, monocytic 
and erythroid) and the detection of abnormal lymphoid maturation profiles in four tubes. The panel 
uses four backbone markers to identify myeloblasts and an additional set of 15 markers devoted to 
the characterization of myeloid lineages (Supplementary files 1 and 2).

Unlike the backbone markers, the characterization markers are divided into each tube exclusively. 
This design was made so that characterization markers from different tubes can be inferred on the 
same backbone marker subpopulations, but the design makes it impossible to form a multiparameter 
dataset which is required for clustering methods. However, as compaRe’s comparison module can 
compare cell population morphologies even in subspaces, we were able to use it to measure similar-
ities between patient samples.

We analyzed 25 bone marrow mononuclear cell samples collected from 16 MDS patients and 9 
AML patients (Supplementary file 3). The comparison module provided a detailed overview of simi-
larities of samples. As expected, the AML samples exhibited a great amount of interpatient heteroge-
neity compared to the MDS samples (Figure 3a and b) with all MDS samples clustered together, and 
the AML samples spread over three clusters. To verify the performance of the module, we visualized 
the pairwise comparisons using UMAP projection (Figure 3c and Appendix 1—figures 3–26). The 
measured similarities perfectly matched the projections so that from top left to bottom right, as the 
similarity decreases, the degree of overlap decreases, and the number of exclusive cell populations 
increases.

We further investigated how different the three groups of the AML samples were (Figure 4 and 
Appendix 1—figure 27). AML samples 1 and 9 of the blue cluster were confirmed to have a high degree 
of monocytic differentiation with marked expression of the monocytic maturation markers CD14, CD35, 
CD64, and CD300e. The AML samples of the green cluster, on the other hand, represented a cluster of 
poorly differentiated AML cases with low expression of differentiation markers and high expression of 
the stem cell/progenitor markers CD34 and CD117. Unlike the blue cluster with high monocytic differ-
entiation, and the green cluster with poor monocytic differentiation, the AML samples 2 and 5 of the 
red cluster included both positive and negative populations of CD11b which is a common granulocytic 
and monocytic maturity marker, a feature observed in all MDS samples as well (Appendix 1—figure 27).

In conclusion, compaRe’s comparison module can be used to optimize true cytometric n-dimen-
sional immunophenotypic characterization of patient samples. Interpretation can then be performed 
in a conventional manner assisted by lower-dimensional projection tools such as PCA and UMAP that 
promptly provide a phenotypic profile of the patient samples.

Identifying cell-subtype-specific drug responses in mouse AML cells
We applied compaRe to high-throughput flow cytometry data to identify cell subtype-specific 
responses evoked by antineoplastic agents in leukemic spleen cells from an AML mouse model. 
Splenic cells were sorted for c-Kit cell surface expression, allowing for the enrichment of stem/
progenitor-type leukemic cells. On ex vivo expansion, these cells continuously expand and differen-
tiate in a similar way as in vivo with a clear stem cell/progenitor population and partial differentiation 
towards CD11b/Gr-1 or CD16/CD32-expressing myeloid cells. After ex vivo expansion, the leukemic 
cells were plated onto multi-well plates containing a library of 116 antineoplastic agents including 
surface and nuclear receptor inhibitors and activators, enzyme inhibitors and, cytotoxic chemotherapy 
in a five-point concentration range, as well as 20 negative control wells (Supplementary file 4). After 
72 hr of drug exposure, we stained the cells with fluorescently labeled antibodies against three cell 
surface markers (CD16/32, Gr-1 and CD11b) and quantified cell surface marker expression using a 
high-throughput flow cytometer.

https://doi.org/10.7554/eLife.73760
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Figure 3. compaRe highlights immunophenotypic similarities. (a) The similarity band plot visualizes the similarity between a sample specified by its row 
(band) and other samples measured by compaRe (H: higher-risk MDS, L: lower-risk MDS and A: AML). Each band was independently transformed by 
an exponential function to emphasize the highest and the lowest similarity values. (b) A graphical representation of the similarities. The graph nodes 
(samples) were clustered by a random walk. (c) The UMAP projection of A1 sample against the other patient samples is provided as an example. The 
other projections are given in Appendix 1—figures 3–26. The projections were sorted based on similarity.

https://doi.org/10.7554/eLife.73760
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Figure 4. Immunophenotypic profiles of two different groups of AML patients. Each row shows the UMAP projection of AML samples 1 and 9 (red and 
orange) vs AML samples 3, 4, 6-8 (blue) of the green cluster of Figure 3b stained by the markers available in each tube. 

https://doi.org/10.7554/eLife.73760
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compaRe corrected the intraplate signal drift, sources of bias in cell numbers, as well as inter-
plate sources of bias (Appendix 1—figure 28). After clustering and clique analysis, we obtained 134 
cliques, each sharing similar drug responses (Supplementary file 5).

To get an overview of the assay, we generated a dispersion map of the clusters (Figure 5a and b 
and Materials and methods). We identified a distinct response group characterized with decreased 
Gr-1 and concomitant increase of CD16/CD32 as compared to control (Group one in Figure 5a). Most 
of the cliques included in this response group consisted of drugs in high concentrations with cyto-
toxic/cytostatic effects. However, some drugs in this group had a milder effect on live cell numbers, 
and these were enriched for mitogen-activated protein kinase (MAPK) pathway-associated inhibitors 
(Figure 5c, Supplementary file 6). For instance, trametinib (2.5 nM) in clique 23 (C23) showed a 
marked decrease of Gr-1 and increase of CD16/CD32, further confirming the results of compaRe 
(Figure  5d). The MAPK pathway is a regulator of diverse cellular processes such as proliferation, 
survival, differentiation, and motility (Dhillon et al., 2007). Our findings suggest that MAPK signaling 
controls the differentiation and/or proliferation towards Gr-1-/CD16+ cells.

In high concentration, molibresib and birabresib, inhibitors of BET proteins BRD2, BRD3, and BRD4, 
caused a reduction in live cell counts but also a reduction of MFI in all the measured markers, which 
corresponds to the loss of differentiation marker positive cells (Gr-1+, CD11b+, CD16/CD32 high) 
(Figure 5b: C100, C110, Figure 5d). The BRD2/3/4 proteins regulate transcription via recognition 
of acetylated lysines on histones and concomitant recruitment of other transcription and chromatin 
remodeling factors to enhance transcriptional activity (Ferri et al., 2016). The enrichment of undiffer-
entiated cells could therefore be due to an early block in differentiation or that inhibition of BRD2/3/4 
has led to a general decrease of cell surface protein transcription.

In this cell model, the leukemic stem-like cells are expected to be present within the differentiation 
marker negative population. These cells are potential targets for treatments against leukemia. We 
observed response group 2 (Figure 5a) had a higher MFI in marker Gr-1 as compared to control, the 
increase was very slight and seemed to be linked to toxic drug concentrations. However, three drugs, 
vincristine (C80), tazemetostat, and tretinoin clearly reduced the proportion of differentiation marker 
negative cells (Figure 5d). Interestingly, these three drugs have distinct modes of action: vincristine is 
a microtubule polymerization inhibitor, tazemetostat inhibits the histone methyltransferase EZH2, and 
tretinoin is a retinoic acid receptor agonist (Supplementary file 6).

Taken together, compaRe analysis of the high-throughput flow cytometry screening data allowed 
rapid identification of several distinct phenotypic responses in this mouse AML model, as well as the 
cellular signals that drive them. Drugs of different mechanism of action can still cluster together if the 
cellular processes they affect converge in a specific model. Drug response in association with genetic 
alterations can be one of the applications of compaRe. The genetic alteration could be visualized in 
the clusters that compaRe identifies.

Identifying highly selective signal transduction inhibitors in human AML 
cells
We further applied compaRe to the drug screening data from an AML patient sample. Primary AML 
bone marrow mononuclear cells were dispensed into a 384-multiwell plate containing a library of 
40 drugs and drug combinations in seven-point concentration ranges (Supplementary file 7). After 
72 hr of drug exposure, the cells were stained with fluorescently labeled antibodies against a panel of 
AML-related cell surface markers (CD45, CD34, CD38, CD117, HLA-DR, CD45-RA, CD3 and a mix of 
myeloid differentiation-related markers). A high-throughput flow cytometer was used to quantify cell 
surface marker expression.

compaRe analysis identified several distinct response groups (Figure 6a, Supplementary file 8). 
Response group one had notably higher MFIs in the CD34 and CD38 channels compared to controls. 
Interestingly, the increase in MFIs was due to a drug concentration-dependent appearance of a 
CD34+/CD38+ cell population that was barely detectable in the DMSO control samples (Figure 6b). 
The appearance of this CD34+/CD38+ population was also concomitant to a general increase in live 
cell count (Figure 6c). Altogether, seven different drugs had the same effect (Figure 6d), most of 
them being selective signal transduction inhibitors such as trametinib (MEK inhibitor), copanlisib (PI3K 
inhibitor), and PIM447 (PIM kinase inhibitor).

https://doi.org/10.7554/eLife.73760
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Figure 5. compaRe analysis identifies several distinct cell subtype-specific responses in a high-throughput flow cytometry screening of mouse AML cells. 
(a) A UMAP plot of cliques identified by compaRe. Cliques are colored by Gr-1 and CD16/CD32 MFIs. Group one is characterized with reduced Gr-1 and 
increased CD16/CD32 as compared with control. Group two has increased Gr-1 expression compared with control. (b) Heatmap of marker MFIs. Values 
are normalized between 0 and 1 per marker to make cross-comparisons possible. Cliques containing control, trametinib (2.5 nM) (C23), molibresib and 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.73760
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Response group 2 consisted of two drugs: birabresib and lenalidomide in different concentrations. 
These induced a decrease in the MFI of CD45-RA and CD45 channels (Appendix 1—figure 29a). 
In the case of lenalidomide, this response was likely due to cell toxicity and/or growth inhibition 
(Appendix 1—figure 29b). Interestingly, the birabresib response was very pronounced without the 

birabresib (C100 and C110), and vincristine (C80) are marked. (c) Waterfall plot of compounds belonging to response group 1, showing live cell count as 
a percentage of control treatment (DMSO). (d) Density scatter plots for Control (DMSO), C23, C100, and C80.

Figure 5 continued

Figure 6. Identification of drugs that induce expansion of CD34+/CD38+ cells in an AML patient sample. (a) UMAP of cliques identified by compaRe. 
Cliques are colored by CD34 and CD38 MFIs. Response groups of interest are indicated using a dashed line. (b) Example of response group 1: density 
scatter plot of markers CD34 and CD38 in different concentrations of PIM kinase inhibitor PIM447. (c) Count of live cells after 72 hr exposure to different 
concentrations of PIM kinase inhibitor PIM447. (d) Table of drugs that induced expansion of the CD34+/CD38+ cell population.

https://doi.org/10.7554/eLife.73760
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loss of live cell numbers, (Appendix 1—figure 29b) but with a decrease in the MFI in the cell differ-
entiation marker mix channel (Appendix 1—figure 29c).

compaRe also detected response group three as distinct from the controls. This group includes 
treatment with tretinoin (several concentrations), navitoclax, and mitoxantrone (low dose). Further 
validation showed the phenotypic response in group three is subtle but with a distinct increase in 
CD34+ cells (Appendix 1—figure 29d). This result highlights compaRe analysis is sensitive enough to 
identify these subtle changes.

Discussion
Technological advancements in multiparameter high-throughput screening have enabled testing 
thousands of biological conditions in a short amount of time. This requires algorithmic develop-
ment to analyze the large amount of data generated by such technologies. We developed an auto-
mated comprehensive toolkit, compaRe, for robust analysis of small- to large-scale multidimensional 
screening data with several modules for quality control, bias correction, comparison, clustering, and 
visualization.

The toolkit is unique in many ways. Its quality control and bias correction modules can correct 
for signal and cell viability drifts in large-scale fluorescence-based screening assays using regression 
analysis. Its comparison module utilizes a dynamic mass-aware gridding algorithm, which substantially 
reduces the computing cost and provides robustness to signal shift (batch effect and signal drift). 
Alternative approaches such as meta-clustering and JSD require both sub-sampling of the data, with 
the possible loss of valuable subpopulations, and considerably more computing time.

We tested the robustness of the comparison module to batch effect and noise through simulation. 
The module effectively circumvented the batch effect while JSD and meta-clustering significantly 
suffered from it. The poor accuracy of meta-clustering demonstrates the drawback of using cluster 
centroids for similarity comparison across samples while the poor performance of JSD indicates that 
this approach can work well only in the absence of signal shift. It is of particular note that compaRe 
does not need subsampling or dimension reduction of the input data.

Multiparameter cytometric analysis of immunophenotypes of AML and MDS patient samples by 
the comparison module coupled with the EuroFlow AML/MDS antibody panel revealed interpatient 
heterogeneity and recognizable phenotypic profiles. Even though EuroFlow markers are divided into 
several discrete tubes, compaRe’s comparison module can compare the cell population distribution 
to measure similarities between patient samples.

We investigated several types of responses evoked by different doses of antineoplastic agents in 
two high-throughput flow cytometry screening assays of an AML mouse model and an AML human 
patient. We could identify subtle but distinct phenotypic drug-induced changes. We also identified 
drugs with different mechanism of action but similar responses. In general, we showed that drugs will 
cluster together if the cellular processes they affect converge in a specific model.

The quality control and bias correction modules could successfully correct for signal and cell 
viability drifts in these studies. In our explored assays, signal drift was obviously associated with the 
order in which wells were read. It was caused by the time differences in antibody incubation across 
the plate as the high-throughput flow cytometer requires more than one hour to sample all wells in 
a 384-well plate. For high-density assay plate formats with large numbers of wells, this can cause 
gradual incremental influences in intensity and cell viability. Therefore, when aligning wells along the 
order that the flow cytometer sampled the wells, we found a linear trend in MFIs. We benefited from 
regression analysis to remove the effect of signal shifts.

During the analyses, the compaRe toolkit made it easy to explore and compare highly complex 
datasets in a substantially reduced timeline. It is equipped with multithreading and can run through 
command-line interface on a computer server or GUI on a desktop. The GUI provides the investigator 
with numerous interactive visualization tools including cell staining, graphical representation, and 
gating. In sum, it provides a total package for fast, accurate, and readily interpretable multiparameter 
screening data analysis.

https://doi.org/10.7554/eLife.73760
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Materials and methods
Mass cytometry of healthy and pediatric AML bone marrow aspirates
Mass cytometry dataset for 21 samples labeled with 16 surface markers collected from 16 pediatric 
AML patients obtained at diagnosis and five healthy adult donors (Levine et al., 2015) were down-
loaded from Cytobank Community with the experiment ID 44185. There are 378 FCS files in this 
experiment with one FCS file for each of 21 patients for each of 17 conditions (two basal replicates 
and 16 perturbations). All FCS files from a single patient had been pooled then clustered with the 
PhenoGraph algorithm. Each file includes a column named PhenoGraph that specifies the Pheno-
Graph cluster to which each event was assigned as an integer. A value of 0 indicates no cluster was 
assigned because the cells were identified as outliers during some stage of analysis. Using the Pheno-
Graph column, we determined centroids of cell clusters, and used PhenoGraph to meta-cluster them 
as described in Levine et al., 2015 To generate the similarity matrix, we adapted an approach similar 
to that of compaRe such that each meta-cluster as a spatial unit was treated like a hypercube. We set 
compaRe’s n to four for this assay (Materials and methods and Appendix 1).

High-throughput flow cytometry of AML mouse model
AML primary splenic cells from Npm1+/cA (Vassiliou et al., 2011); Flt3+/ITD (Lee et al., 2007); Dnmt3a+/- 
(Kaneda et al., 2004) Mx1-Cre+ (Kühn et al., 1995) moribund mice were sorted for c-Kit positivity 
and expanded ex vivo. AML cells were treated with a library of 116 chemotherapy and immuno-
therapy antineoplastic agents in a five-point concentration range (Supplementary file 4). Treated 
samples were stained with three informative cell surface antibodies (Supplementary file 9) and fluo-
rescence was detected using a high-throughput flow cytometer iQue Screener Plus (Intellicyt). We set 
compaRe’s n to five for this assay.

High-throughput flow cytometry of an AML human patient sample
Mononuclear cells were isolated from a donated human bone marrow aspirate from an AML patient 
(Danish National Ethical committee/National Videnskabsetisk Komité permit 1705391). The cells 
were treated with a library of 40 chemotherapy and targeted antineoplastic agents in a seven-point 
concentration range (Supplementary file 7) for 72 hr. Cells were subsequently incubated with fluores-
cently labeled antibodies targeting 11 informative cell surface proteins in eight fluorescence channels 
(Supplementary file 10). Samples were read using a high-throughput flow cytometer (iQue Screener 
Plus, Intellicyt). We set compaRe’s n to three for this assay.

Flow cytometry of AML and MDS patients
Clinical flow cytometry data using a slightly modified AML panel as described by the Euroflow Consor-
tium (van Dongen et al., 2012) from 25 bone marrow aspirates from MDS and AML patients from 
Rigshospitalet (Copenhagen, DK) were used for analysis. Each sample was analyzed using a total of 
four tubes (Euroflow AML panel tubes 1–4) with eight antibodies in each tube (Supplementary files 
1 and 2). Acquisition of data was performed on a FACS Canto (Becton Dickinson Immunocytometry 
Systems), and data analysis was done in the Infinicyt software (Cytognos, Salamanca, Spain). We set 
compaRe’s n to five for this assay.

Quality control (QC)
Multiwell plate heatmaps of medians come in handy in QC to reveal issues such as signal and cell 
viability drifts occurring during screening. However, as a typical heatmap has an equally spaced color 
palette, small but significant differences between wells may be obscured and not visible. There-
fore, we normalized the color palette by the distribution of the medians. Also, before clustering, we 
removed outliers in the negative controls that were different from the others in terms of similarity 
values measured by compaRe.

Correcting signal and cell viability drifts
Depending on the protocol by which wells are processed, time may become a major concern so that 
some specific wells may have lower or higher values than expected. To correct for these sources of 
bias, we employed a two-step correction: intra-plate shift (signal drift) correction and inter-plate shift 

https://doi.org/10.7554/eLife.73760
https://community.cytobank.org/cytobank/experiments/44185
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(batch effect) correction. For a given plate, we first fit a linear regression model and then vertically 
translate points (well values) with respect to the learned line as it rotates to the slope zero. After 
correcting for the intra-plate bias, the inter-plate bias is corrected by aligning medians of the plates, 
that is, translating to a common baseline.

Similarity calculation using dynamic gridding
To measure the similarity between two datasets, compaRe divides each dimension into n subsets for 
each dataset individually so that a dataset with d dimensions (markers) will be gridded into at most nd 
spatial units called hypercubes. compaRe grids only the part of the space encompassing data points, 
avoiding empty regions. It then measures the proportion of data points for either dataset within each 
of the corresponding hypercubes. The difference between the two proportions is indicative of the 
similarity within that relative spatial position represented by each hypercube. The similarity in the 
exclusive hypercubes is considered 0. We employed local outlier factor (Breunig et al., 2000) for 
anomaly detection and removing noise cells. Averaging these differences across all the hypercubes 
indicates the amount of similarity between the two datasets.

compaRe captures the configuration of data enabling it to measure similarity even without 
correcting for signal drift or batch effect (Appendix 1). This way, two technical replicates analyzed 
by two different instruments or configurations suffering from signal shift will still have the highest 
similarity. To generate a similarity matrix of multiple input samples, compaRe runs in parallel. The 
similarity matrix could then be used for identifying clusters of samples such as drugs with similar dose 
responses.

Graphical clustering of samples
To cluster samples, we developed a graphical clustering algorithm in which initially all nodes (samples) 
are connected forming a weighted complete graph wherein edges represent similarity between 
nodes. This graph is then pruned to remove potential false positive edges for a given cutoff inferred 
from negative controls. The optimal cutoff turns out to be the minimum weight in the maximum 
spanning tree of negative control nodes. After pruning, some samples may end up being connected 
to the negative controls (biologically inactive agents) and some disconnected (active agents). After 
constructing this graph, clustering is tantamount to finding maximal cliques among potent agents. 
In addition to maximal cliques, it also reports communities (a clique is a subset of a community). 
Communities can be seen as loose clusters. In a community, unlike a clique, similarity is not necessarily 
transitive meaning that if A is similar to B and B is similar to C, A is not necessarily similar to C. If these 
were three drugs within a community, concluding they had an equal response was not necessarily right 
unless they would form a clique.

Dispersion graph and Dispersion map
compaRe visualizes the similarity of samples in the form of a dispersion graph by constructing their 
maximum spanning tree (Appendix 1, Appendix 1—figure 30). compaRe also uses UMAP to repre-
sent a dispersion map of clusters. The map is constructed using the centroid (median) of each clique. 
An informative map shows different groups by coloring the centroids according to their value. These 
groups are mostly the identified communities the cliques come from.

Availability of data
Mass cytometry datasets were downloaded from Cytobank Community with the experiment ID 44185. 
AML mouse and human high-throughput flow cytometry data have been deposited in FLOWRepos-
itory with the repository IDs FR-FCM-Z357 and FR-FCM-Z3DP respectively. Flow cytometry data of 
AML and MDS patients have been deposited in FLOWRepository with the repository ID FR-FCM-
Z3ET. Acquisition, installation and more technical details are available in compaRe’s online tutorial 
on (https://github.com/morchalabi/COMPARE-suite, swh:1:rev:df2feaf6aa982e0f6f077eb85f26ac-
ce6bb61063, Chalabi, 2022b). Similarity measurement and clustering modules as stand-alone tools 
have been merged into a separate R package and are available for download at (https://github.com/​
morchalabi/compaRe, swh:1:rev:594106b1e34c17b405064f1a0f9fb39975a4ec79, Chalabi, 2022a).
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Morteza C H, 
Ella K, Mikhail O, 
Konstantinos D, 
Sandra L G, Francesca 
A, Kasper D R, Kirsten 
G, Kristian H, Krister 
W, Kyoung-Jae W

2021 AML/MDS Flow Cytometry https://​flowrepository.​
org/​id/​FR-​FCM-​Z3ET

Flowrepository, FR-FCM-
Z3ET

Morteza C H, 
Ella K, Mikhail O, 
Konstantinos D, 
Sandra L G, Francesca 
A, Kasper D R, Kirsten 
G, Kristian H, Krister 
W, Kyoung-Jae W

2021 AML Mouse High-
throughput Flow Cytometry

https://​flowrepository.​
org/​id/​FR-​FCM-​Z357

Flowrepository, FR-
FCM-Z357

Morteza C H, 
Ella K, Mikhail O, 
Konstantinos D, 
Sandra L G, Francesca 
A, Kasper D R, Kirsten 
G, Kristian H, Krister 
W, Kyoung-Jae W

2021 AML Human High-
throughput Flow Cytometry

https://​flowrepository.​
org/​id/​FR-​FCM-​Z3DP

Flowrepository, FR-FCM-
Z3DP
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The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Levine JH, Simonds 
EF, Bendall SC, Davis 
KL, Amir el AD, 
Tadmor MD

2015 Data-Driven Phenotypic 
Dissection of AML Reveals 
Progenitor-like Cells that 
Correlate with Prognosis

https://​premium.​
cytobank.​org/​
cytobank/​
experiments

Cytobank, 44185
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Appendix 1

High-throughput flow cytometry of AML mouse model
Leukemic spleen cells were sorted for c-Kit positivity from Npm1+/cA; Flt3+/ITD; Dnmt3a+/-; Mx1-Cre+ 
moribund mice. Shortly, c-Kit+ splenic cells were expanded for two passages in StemPro-34 SFM 
media (Gibco) with 100 µM 2-Mercaptoethanol (Gibco), 20 ng/ml murine SCF, 10 ng/ml murine IL-3 
and 10 ng/ml IL-6 added (Peprotech), with complete media change every two/three days. Aliquots 
of one million cells were frozen down in 90% media 10% DMSO. Frozen aliquots were taken up and 
expanded for one week before drug screening. 5000 cells in 25 µl of media per well was seeded into 
384-well plates (Greiner) containing a library of 116 compounds (Supplementary file 4) in a five-
point concentration range. After 72 h incubation at 37 °C, 15 µl of medium was aspirated from each 
well and antibodies (Supplementary file 9) were added to drug plates using acoustic dispensing. 
Plates were incubated 40 min at RT, covered from light. Next, dead cell dye 7-AAD (BD) was added, 
and samples were read using a high-throughput flow cytometer iQue Screener Plus (Intellicyt). To 
remove noise from the data by excluding the most broadly toxic treatments, doublets and dead cells 
were omitted (Appendix 1—figure 31) and only samples with at least 1,000 live cells were selected 
for further analyses (selected 465 wells out of 600).

High-throughput flow cytometry of human AML
Donated MNCs from human bone marrow aspirates (Danish National Ethical committee/National 
Videnskabsetisk Komité permit 1705391) were thawed and allowed to rest overnight in assay media: 
StemSpan II-SFEM (StemCell), 100 U/ml penicillin/streptomycin (Thermo), including the following 
human recombinant cytokines from Preprotech (unless otherwise stated), 50  ng/ml Flt3 ligand 
(StemCell), 10 ng/ml IL3, 10 ng/ml IL-1beta, 20 ng/ml IL6, 20 ng/ml G-CSF, 20 ng/ml GM-CSF, and 
10 ng/ml SCF, and the following compounds diluted in DMSO (Merck) 1 µM UM729 (Selleckchem) 
and 500 nM StemRegenin-1 (MedChemExpress). Before being counted and re-suspended in fresh 
assay media at a density of 5 × 105 cells/ml. A 20 µl/well was plated in 384-well conical bottom 
plates (Greiner Bio-One) containing 25 nl of compounds (Supplementary file 7) in DMSO. After 
72 hr incubation at 37 °C, 95% RH, 5% CO2 antibodies and viability dye were added to the plates 
using acoustic dispensing (Echo, Labcyte). Plates were incubated for 1.5 hr covered from light at RT. 
The samples were then run on an iQue Screener Plus (Intellicyt) high-throughput flow cytometer. The 
data was gated to remove noise, doublets, and dead cells (Appendix 1—figure 30). The antibodies 
and stains used are described in Supplementary file 10.

Signal and cell viability drifts correction in compaRe
To correct signal drift, we employed a two-step correction: intra-plate correction and inter-plate 
correction. For a given plate, we first fit a linear regression model and then vertically translate points 
(MFIs) with respect to the leaned line as it rotates to slope zero. This is because the relative distance 
between the points must be retained as much as possible, and no point must be translated to 

‍x+y−‍
 

quadrant after correction. To make sure the learned line is not affected by outliers, we first removed 

them using the interquartile range. In this way, a point at ‍
(
y, x

)
‍ is translated to 

‍

(
y b

mx+b , x
)
‍
 after intra-

plate correction. The correction coefficient ‍
b

mx+b‍ derives from the ratio of y-coordinates of any point 
on the regression line before and after translation: ‍

y∗
y = b

mx+b‍ where ‍y∗‍ is translated ‍y‍, ‍m‍ is the slope 
and ‍b‍ is the intercept of the line. This ratio holds true for all other points in the ‍xy‍-plane.

After correcting for intra-plate signal drift, inter-plate signal drift is corrected by aligning MFI 
medians of the plates, that is, translating to a common baseline. Let ‍b∗‍ be the baseline, and ‍b‍ be the 
median of corrected MFIs in a plate, then the inter-plate correction coefficient is given by ‍

b∗
b ‍ , and 

a point at ‍
(
y, x

)
‍ is translated to 

‍

(
y b∗

b , x
)
‍
 . The same approach is employed for correcting cell viability 

bias (Appendix 1—figure 28).

Similarity measurement in compaRe
compaRe can measure the similarity between two datasets with many variables (dimensions) and 
observations (data points). compaRe divides each dimension into ‍n‍ subsets so that a dataset with 
‍d‍ dimensions will be divided into at most ‍nd‍ spatial units called hypercubes. The hypercubes are 
formed for either dataset individually. It, then measures the proportion of the observations within 
each of the corresponding hypercubes. The difference between the two proportions is indicative of 
the similarity within that relative spatial position represented by that hypercube so that for two similar 

https://doi.org/10.7554/eLife.73760
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datasets this difference is near zero in the majority of the hypercubes. Averaging these differences 
across all the hypercubes indicates the amount of similarity between the two datasets.

It is important to compare two samples across their corresponding hypercubes representing the 
same relative spatial positions. This means a universal numbering rule is required to ensure having 
corresponding hypercubes for the two samples in the end. This problem can be modeled as a tree 
that at each level ‍l‍ (dimension) grows ‍nl‍ new branches (divisions) (Appendix 1—figure 32). However, 
as the number of branches increases exponentially with ‍l‍, implementing the tree is infeasible. To 
overcome this problem, we instead employed a dynamic algorithm in which the hypercube number 
of each observation is dynamically updated at each iteration. In this approach, the child node number 
must be found from its parent’s, that is, previous iteration.

Rewriting the branch numbers to include more information reveals that if 

‍
rl−1 =

(
n0 + . . . + nl−2

)
+ fl−1 + sl−1nl−2

‍
 is the parent node’s number, the child node’s number will 

be 
‍
rl =

(
n0 + . . . + nl−2 + nl−1

)
+
(
nfl−1 + sl−1

)
+ slnl−1

‍
 where ‍l‍ is the child’s level, ‍fl = 0, . . . , nl−1 − 1‍ 

is the number of families behind, and ‍sl = 0, ..., l − 1‍ is the number of siblings behind. Therefore, to 
find child node ‍rl‍, we first need to calculate ‍fl−1‍ and ‍sl−1‍ of its parent as follows:

	﻿‍
sl−1 =

⌊
rl−1−

(
n+...+nl−2

)

nl−2

⌋

‍�
(1)

	﻿‍
fl−1 = rl−1 −

(
n0 + . . . + nl−2

)
− sl−1nl−2

‍� (2)

It can be noticed that ‍rl−1‍ and ‍sl‍ are always known, ‍fl = nfl−1 + sl−1‍ , and 
‍

(
n0 + ... + nl−1

)
− 1

‍
 is 

actually the largest node number at the ‍l‍ th level. Therefore, the problem we need to dynamically 
solve for each child at each dimension as the tree grows is:

	﻿‍
rl =

(
n0 + . . . + nl−1

)
+ fl + slnl−1

‍� (3)

Since the similarity metric decreases for each exclusive hypercube, it is important to rid the 
two samples of outliers lying significantly far from the subpopulations of observations. However, 
at the same time we need to make sure smaller subpopulations (like rare cell subpopulations) are 
not mistaken for outliers. We employed local outlier factor which is a powerful tool for anomaly 
detection. Figure 1 shows an actual AML dataset with three surface markers dissected by compaRe 
wherein each distinct color corresponds to data points within one abstract hypercube.

compaRe captures the morphology of high dimensional data enabling it to measure similarity 
even in the presence of moderate signal shift. For example, two technical replicates analyzed by two 
different instruments or configurations suffering from signal shift will still have the highest similarity 
by compaRe unless the shift is severe or has modified the morphology of the cell populations which 
practically does not happen as a result of batch effect or signal drift. This strategy helps compaRe 
circumvent signal drift or batch effect left uncorrected. Considering that any signal drift correction 
is essentially an approximate method, this feature is an advantage for compaRe, because together 
with the correction method they create a synergistic effect.

compaRe is a mass-aware approach meaning it forms hypercubes only around concentrations 
of data points avoiding areas which are devoid of data points. This substantially speeds up the 
process by saving a lot of CPU time and memory space making it feasible to compare datasets with 
numerous variables. As an example, dividing each dimension blindly into just three regions yields 
more than 1.5 billion regions for consideration for a dataset with as few as 19 surface markers. In 
practice, however, it turns out many of these regions are empty so using a mass-aware gridding 

instead of blind gridding improves the comparison complexity from 
‍
Θ
(

nd
)
‍
 to 

‍
O
(

nd
)
‍
 (asymptotic 

notations to represent algorithmic complexity). Even if no region is empty, since compaRe benefits 
from dynamic programming, it can still finish the process quite fast. Changing ‍n‍ tunes the level of 
smoothing so that a value between 3–5 works for most assays.

Dynamic programming is key for reducing processing power. In general, the goal is to bin/
grid data into relative expression groups (hypercubes). Gridding can be implemented by a simple 
algorithm dividing each dimension in each iteration. However, as pointed out above, after a couple 
of rounds, this naïve algorithm turns out to be infeasible. Therefore, one need a more efficient 

https://doi.org/10.7554/eLife.73760
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algorithm for implementing gridding. Dynamic programming turned out to be quite effective. What 
makes dynamic programming very effective is its ability to memorize the values computed in the 
previous iterations avoiding recomputing potentially expensive algebraic operations (Appendix 
1-equation 3).

To generate a similarity matrix of multiple input samples, compaRe runs in parallel for the samples 
in the upper-triangular submatrix using a multithreading approach. The similarity matrix could then 
be used for identifying clusters of samples such as drugs with similar dose responses like predicting 
the mechanism of action of drugs in development.

Appendix 1—figure 1. Performance of meta-clustering with SPADE FlowSOM in the presence of batch effect. 
Similarity matrices generated by FlowSOM and SPADE are shown in (a) and (b) respectively. Size and color of dots 
represent the level of similarity. Self-comparisons were removed. Noise was added (marked with *) to the original 
21 mass cytometry samples of bone marrow aspirates from 16 pediatric AML patients (S) and five healthy adult 
donors (H).

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 2. Phenotypic characterization in a high-parameter heterogeneous population of cell 
types. Cells from a target cluster (an immunophenotypic cell population) were gradually removed to contort its 
configuration. We used a dataset of 3 healthy and two pediatric AML bone marrow mononuclear cell samples from 
the data provided in the 6th reference. Samples were stained with 29 (15 membrane and 14 intracellular signaling) 
markers. Taking H1 as reference, we gradually removed 25%, 50%, 75% and 100% (phenotypic changes) of cells 
from the target cluster identified by PhenoGraph. To capture the higher heterogeneity harbored in the AML 
samples, we set compaRe's n to 4 while we set it to 3 for healthy samples. Each column was scaled individually 
retaining mutual differences.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 3. UMAP projections of A2 sample against all other patient samples. From top left to bottom 
right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number of 
exclusive cell populations increases.

Appendix 1—figure 4. UMAP projections of A3 sample against all other patient samples. From top left to bottom 
right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number of 
exclusive cell populations increases.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 5. UMAP projections of A4 sample against all other patient samples. From top left to bottom 
right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number of 
exclusive cell populations increases.

Appendix 1—figure 6. UMAP projections of A5 sample against all other patient samples. From top left to bottom 
right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number of 
exclusive cell populations increases.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 7. UMAP projections of A6 sample against all other patient samples. From top left to bottom 
right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number of 
exclusive cell populations increases.

Appendix 1—figure 8. UMAP projections of A7 sample against all other patient samples. From top left to bottom 
right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number of 
exclusive cell populations increases.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 9. UMAP projections of A8 sample against all other patient samples. From top left to bottom 
right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number of 
exclusive cell populations increases.

Appendix 1—figure 10. UMAP projections of A9 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 11. UMAP projections of H1 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.

Appendix 1—figure 12. UMAP projections of H2 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 13. UMAP projections of H3 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.

Appendix 1—figure 14. UMAP projections of H4 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 15. UMAP projections of H5 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.

Appendix 1—figure 16. UMAP projections of L1 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 17. UMAP projections of L2 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.

Appendix 1—figure 18. UMAP projections of L3 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 19. UMAP projections of L4 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.

Appendix 1—figure 20. UMAP projections of L5 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 21. UMAP projections of L6 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.

Appendix 1—figure 22. UMAP projections of L7 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 23. UMAP projections of L8 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.

Appendix 1—figure 24. UMAP projections of L9 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.
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Appendix 1—figure 25. UMAP projections of L10 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.

Appendix 1—figure 26. UMAP projections of L11 sample against all other patient samples. From top left to 
bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 
of exclusive cell populations increases.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 27. Band plots of AML and MDS patient samples. The immunophenotype of each patient 
sample is shown in a multiparameter band-dot plot (HrMDS: higher-MDS, LrMDS: lower-MDS). Rectangles gate 
positive and/or negative populations of monocytic maturation markers as well as the CD11b marker.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 28. Correcting signal and cell viability drift. (a) Intra- and inter-plate signal drift correction. 
Accumulation of green-blue tiles in the bottom right corner of the left heatmap shows signal drift in CD11b 
expression for drugs in plate 1. Sorting median expressions (MFIs) of wells into reading order (column wise left to 
right) reveals a linear slope. After correction, the slope becomes non-positive (intra-plate correction). Still, there 
are different baselines between the two plates. Matching median lines of corrected values of all plates correct for 
this bias (inter-plate correction). (b) Intra- and inter-plate cell viability correction. Accumulation of green tiles in the 
bottom right corner of the left heatmap shows cell viability drift (7-AAD marker). We follow similar steps with (a) for 
cell viability correction.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 29. Birabresib treatment leads to loss of CD45 and CD45-RA expression without loss of 
live cell numbers. (a) Birabresib response as density scatter plot, CD45 vs CD45-RA. (b) Count of live cells per 
different concentrations of lenalidomide and birabresib. (c) Heatmap of birabresib response in all marker channels. 
(d) Example of response group 3: density scatter plots of DMSO-control vs. tretinoin 375 nM in different marker 
channels.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 30. Dispersion graph. The (maximum spanning) tree demonstrates the dispersion of tens 

of potent antineoplastic agents around the control node containing negative controls (DMSO) and impotent 

agents. The drug library was analyzed by high-throughput flow cytometry coupled with compaRe in an AML human 

sample. Edge color and label show the amount of similarity between the agents. Impotent drugs are those which 

were similar enough to negative controls for a cutoff inferred during clustering. As the tree branches and spreads, 

drugs with stronger potency, usually with higher doses, tend to lie farther from the control node. Using the graph, 

the investigator can easily pick potent agents such as hits. The graph may also be potentially used to investigate 

different paths for mechanism of action, leading to different branches.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 31. Removal of noise, dead cells and doublet cells from mouse and human AML sample 
drug screening data. (a) AML mouse model drug screening. (b) AML human sample drug screening. Cells were 
separated from debris using a side scatter height (SSC-H) vs forward scatter height (FSC-H) plot. Singlet cells were 
determined from FSC-H vs forward scatter area (FSC-A) plot. Live cells were separated from dead cells using a 
dead-cell-labelling dye, either 7-AAD or DRAQ7.

https://doi.org/10.7554/eLife.73760
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Appendix 1—figure 32. Demonstration of compaRe algorithm using a 2-dimensional table. It first forms an 
abstract square grid (red) encompassing all the data points within the range (1.1, 9.6). At the top level, all the cells 
(table rows) are in the region number (RN) 0. First iteration divides the first dimension formed by CD1 marker into 
3 ( = ‍n‍) subsets. Assuming a left-first numbering rule, the RN column is dynamically updated (blue column) for 
each subset using some information such as current RN (grey column), current dimension and possible number of 
families and siblings behind. For instance, child node 12 has parent node 3, could have two siblings (node 6, node 
9) and two families (parent 1, parent 2) behind, although children 11 and 9 were never born as marked with ☓. Final 
leaves are called hypercubes (HCs). The corresponding grid on the biplot demonstrates that two regions which 
were devoid of data points have not been assigned any hypercube. For comparing two samples, they are first 
jointly normalized between a range. The tree graph is just for better visualization and will not be implemented. 

https://doi.org/10.7554/eLife.73760
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