
Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 1 of 22

CompoundRay, an open-source tool for 
high-speed and high-fidelity rendering of 
compound eyes
Blayze Millward*, Steve Maddock, Michael Mangan

Department of Computer Science, University of Sheffield, Sheffield, United Kingdom

Abstract Revealing the functioning of compound eyes is of interest to biologists and engineers 
alike who wish to understand how visually complex behaviours (e.g. detection, tracking, and navi-
gation) arise in nature, and to abstract concepts to develop novel artificial sensory systems. A key 
investigative method is to replicate the sensory apparatus using artificial systems, allowing for inves-
tigation of the visual information that drives animal behaviour when exposed to environmental cues. 
To date, ‘compound eye models’ (CEMs) have largely explored features such as field of view and 
angular resolution, but the role of shape and overall structure have been largely overlooked due to 
modelling complexity. Modern real-time ray-tracing technologies are enabling the construction of a 
new generation of computationally fast, high-fidelity CEMs. This work introduces a new open-source 
CEM software (CompoundRay) that is capable of accurately rendering the visual perspective of bees 
(6000 individual ommatidia arranged on 2 realistic eye surfaces) at over 3000 frames per second. We 
show how the speed and accuracy facilitated by this software can be used to investigate pressing 
research questions (e.g. how low resolution compound eyes can localise small objects) using modern 
methods (e.g. machine learning-based information exploration).

Editor's evaluation
In this important work, the authors develop compelling new open source methods to study 
compound eye vision, with particular emphasis and examples in insects and appropriately 
supporting arbitrarily diverse spatial distributions, types and mixtures of types of ommatidia. The 
manuscript introduces example experiments to illustrate the use of the new methodology. This work 
supports future studies of invertebrate brains, a timely addition to the newly mapped connectomes 
of insect brains.

Introduction
Insects visually solve an array of complex problems including the detection and tracking of fast 
moving prey (Wiederman et al., 2017), long-distance navigation (Wehner, 2020), and even three-
dimensional (3D) depth estimation (Nityananda et al., 2018). These capabilities are realised using 
a sensory apparatus that is fundamentally different from those of mammals. Therefore revealing the 
functional properties of the insect visual system offers insights for biologists as well as inspiration for 
engineers looking to develop novel artificial imaging systems (Land and Fernald, 1992; Land, 1997; 
Arendt, 2003; Song et al., 2013).

Arthropods possess two primary visual sensors known as compound eyes. Each eye is constructed 
from a patchwork of self-contained light-sensing structures known as ommatidia, each featuring a lens, 
a light guide, and a cluster of photosensitive cells (Figure 1a). Ommatidia are physically interlocked 
with their neighbours, together forming a bulbous outer structure (the compound eye itself) that can 

TOOLS AND RESOURCES

*For correspondence: 
b.f.millward@sheffield.ac.uk

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 19

Preprinted: 23 September 2021
Received: 14 September 2021
Accepted: 12 October 2022
Published: 13 October 2022

Reviewing Editor: Albert 
Cardona, University of 
Cambridge, United Kingdom

‍ ‍ Copyright Millward et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.73893
mailto:b.f.millward@sheffield.ac.uk
https://doi.org/10.1101/2021.09.20.461066
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 2 of 22

vary in size, shape, and curvature, offering a range of adaptations for particular tasks and environ-
ments (Land and Nilsson, 2002; Figure 1b). The properties of the lens and photo-receptors are fixed 
for individual ommatidia but can vary across regions of an individual’s eye (Meyer and Labhart, 1993) 
as well as between individuals of different castes (Collett and Land, 1975) and species (Land, 1989). 
This arrangement of independent, interlocked light sensing elements and lenses differs greatly from 
the mammalian system that utilises a single lens to project a high-resolution image onto a retina.

Creation of compound eye models (CEMs), in both hardware or software, is a well-established 
mechanism to explore the information provided by compound eyes and assess their impact on 
behaviour. Insights derived from this methodology include demonstration of the benefits of a wide 
field of view (FOV) and low resolution for visual navigation (Zeil et al., 2003; Vardy and Moller, 2005; 
Mangan and Webb, 2009; Wystrach et al., 2016), and the role played by non-visible light sensing for 
place recognition (Möller, 2002; Stone et al., 2006; Differt and Möller, 2016) and direction sensing 
(Lambrinos et al., 1997; Gkanias et al., 2019). Yet, simulated CEMs tend to suffer from a common 
design shortcoming that limits their ability to accurately replicate insect vision. Specifically, despite 
differences in the sampling techniques used (e.g. see Mangan and Webb, 2009; Baddeley et al., 
2012 for custom sampling approaches, Neumann, 2002; Basten and Mallot, 2010 for rendering 
based cubemapping CEMs, and Polster et al., 2018 for ray-casting methods), all contemporary CEMs 
sample from a single viewpoint. In contrast, the distributed arrangement of ommatidia on distinct 3D 

Figure 1. The structure of the compound eye. 
 (a) A diagram of a single ommatidium, shown with the lensing apparatus at the top that guides light into the photo-sensitive cells below. (b) An image 
of a real compound eye consisting of hundreds of ommatidia, available in WikiMedia Commons copyright holder Moussa Direct Ltd., copyright year 
2001, distributed under the terms of a CC BY-SA 3.0 license (https://creativecommons.org/licenses/by-sa/3.0), and cropped with an added zoom 
indicator (red) from the original.

© 2001, Moussa Direct Ltd. Panel b is modified from an image of a real compound eye consisting of hundreds of ommatidia, available in WikiMedia 
Commons, distributed under the terms of a CC BY-SA 3.0 license

https://doi.org/10.7554/eLife.73893
https://creativecommons.org/licenses/by-sa/3.0
https://creativecommons.org/licenses/by-sa/3.0/


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 3 of 22

eye surfaces provides insects with a multi-viewpoint system that generates different information for 
different eye shapes.

To facilitate exploration of such features, e.g., the placement of ommatidia on arbitrary surfaces, 
an ideal rendering system would allow light to be sampled from different 3D locations through indi-
vidually configured ommatidia replicating the complex structure of real compound eyes. High-fidelity 
compound-vision rendering engines with some of these features (though notably slower than real 
time) were developed previously (Giger, 1996; Collins, 1998; Polster et  al., 2018) but were not 
widely adopted. Difficulties arising as a result of the computational complexity (and so execution time) 
of CEMs are diminishing as dedicated ray-casting hardware emerges that allows for the capture of 
visual data from multiple locations in parallel at high speed (e.g. Nvidia [Santa Clara, California, United 
States] RTX series GPUs [Purcell et al., 2005; Burgess, 2020]). Such systems present an ideal tool 
tferreo replicate insect vision in unprecedented accuracy at the speeds needed for effective explora-
tion of the compound eye design space itself. As outlined in Millward et al., 2020, a next-generation 
insect eye renderer should:

1.	 Allow for the arrangement of an arbitrary number of ommatidia at arbitrary 3D points.
2.	 Allow for the configuration of individual ommatidial properties (e.g. lens acceptance angle).
3.	 Perform beyond real time to allow exploration of the design space.

This paper presents a ray-casting-based renderer, CompoundRay, that leverages modern hardware-
accelerated ray-tracing (RT) graphics pipelines and fulfils all three of these criteria, allowing researchers 
in the fields of compound vision and biorobotics to quickly explore the impact varying eye designs 
have on an autonomous agent’s ability to perceive the world.

Materials and methods
Ray-casting-based insect eye renderer
A common approach for general real-time rendering such as that found in video games and interac-
tive displays follows polygon-projection-based methods inspired by the simple pinhole camera. As 
Figure 2a shows, these systems function by directly projecting the faces and vertices of the scene’s 3D 
geometry through a singular imaging point and on to a projection plane. In contrast, compound visual 
systems essentially form multiple pinhole-like viewing systems (Figure 2c), each with their own image 
point. This is similar to the effects that mirrors, lenses, and other reflective, diffracting, and refractive 

Figure 2. How different rendering approaches form differing image points (not to scale). (a) In three-dimensional (3D) projection-based rendering, the 
polygons that comprise the 3D geometry are projected down to a viewing plane, through one image point. (b) In 3D ray-casting-based rendering (used 
in this paper), rays are emitted into a scene and sample the 3D geometry they contact, potentially forming many image points. (c) A compound eye 
requires many image points in order to image its surroundings.

https://doi.org/10.7554/eLife.73893


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 4 of 22

surfaces have on light transport, in which multiple imaging points are formed as the result of light 
being diverted from its original course (Figure 2b). A polygon projection approach will struggle with 
these optical phenomena as the process directly transforms the faces of the 3D object from the scene 
onto the camera’s view plane, in effect applying a projection transform onto a plane or other regular 
surface forming a singular image point (Figure 2a).

Drawing on previous work from Polster et al., 2018, CompoundRay uses a ray-casting approach 
to rendering the insect visual perspective. Ray-based methods offer an alternative to projective trans-
form rendering: rays are sent out from the virtual viewpoint, simulating – in reverse – the paths of 
photons from the scene into the cone of vision, accumulating colour from the surfaces they interact 
with (Figure 2b). This allows for surfaces such as mirrors and lenses to accurately reflect light being 
rendered. The term ray-based methods here is used as an umbrella term for all rendering approaches 
that primarily use the intersection of rays and a scene in order to generate an image. In particular, we 
refer to ray casting as the act of sampling a scene using a single ray (as per Roth, 1982) – a process 
that CompoundRay performs multiple times from each ommatidium – and ray tracing as the act of 
using multiple recursive ray casts to simulate light bouncing around a scene and off of objects within, 
similar to early work in the field of shading (Appel, 1968; Whitted, 1979). In this work we do not 
recursively cast rays, instead only using a single ray cast to sample directly the environment from an 
arbitrary point in 3D space (in this case, over the sampling cone of an ommatidium).

Ray-based approaches can be incredibly computationally complex, as each ray (of which there can 
be thousands per pixel) needs to be tested against every object in the scene (which can be composed 
of millions of objects) to detect and simulate interactions. Thus, they have historically only been used 
in offline cases where individual frames of an animation can take many hours to render, such as in 
cinema (Christensen et al., 2018), and prior to that in architectural and design drafting (Appel, 1968; 
Roth, 1982). In recent years, however, graphics processing units (GPUs) have been increasing in capa-
bility. In order to better capture the photo-realistic offerings of ray-based rendering methods, GPU 
manufacturers have introduced dedicated programmable RT hardware into their graphics pipelines 
(Purcell et al., 2005). These RT cores are optimised for efficient parallel triangle-line intersection, 
allowing billions of rays to be cast in real time into complex 3D scenes.

As compound eyes consist of a complex lensing structure formed over a non-uniform surface, they 
naturally form a multitude of imaging points across a surface (Figure 2c). These projection surfaces 
are often unique and varied, meaning it is practically infeasible to find a single projective transform 
to produce the appropriate composite view in a single projection-based operation. As a result, ray-
based methods become the natural choice for simulating compound vision, as opposed to the more 
commonly seen projection-based methods. By utilising modern hardware, it is possible to effectively 
capture the optical features of the compound eye from the ommatidia up, in a high-fidelity yet perfor-
mant way.

Modelling individual ommatidia
As the compound eyes of insects contain many hundreds or even thousands of lenses (Figure 1b) and 
each acts to focus light to its own point (forming a unique perspective), ray-based methods become 
the natural technology to use to implement a simulator that can capture their unique sensory abil-
ities. Here, a single ommatidium is first examined, simulated, and then integrated into a complete 
compound eye simulation.

Each individual ommatidium in a compound eye captures light from a cone of vision (defined by 
the ommatidial acceptance angle), much in the way that our own eyes observe only a forward cone 
of the world around us. However, in the case of the ommatidium, all light captured within the cone of 
vision is focused to a singular point on a small photo-receptor cluster, rather than the many millions 
of photo-receptors in the human eye that allow for the high-resolution image that we experience – in 
this way, the vision of a singular ommatidium is more akin to the singular averaged colour of all that 
is visible within its given cone of vision – its sampling domain, much as a pixel from a photo is the 
average colour of all that lies ‘behind’ it.

CompoundRay uses Monte Carlo integration (Kajiya, 1986) to estimate the light intensity from 
the scene within the ommatidium’s sampling domain, effectively forming a small pinhole-type camera 
at the position of the ommatidium. These discrete samples must be accrued in alignment with the 
ommatidium’s sampling function – as the lens gathers more light from forward angles than those 

https://doi.org/10.7554/eLife.73893


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 5 of 22

diverging away from the ommatidial axis. Increasing the sample count will result in a more accurate 
estimate of the light converging on the point.

Previous works Collins, 1998; Polster et al., 2018 have implemented this approximation of the 
light sampling function by assuming the influence of individual light rays, distributed statically across 
the sampling cone, is modulated dependent on the angle to the ommatidial axis via a Gaussian 
function with a full width at half maximum equal to the acceptance angle of the ommatidium, as 
seen in Figure 3a. CompoundRay also uses the Gaussian function as a basis for sampling modula-
tion; however, unlike other works, it is not approximated via a static sampling pattern with weighting 
biasing the forward direction (as is seen in Figure 3a:i). Instead, sampling direction is modulated and 
chosen at random in relation to the Gaussian probability curve of the sampling function on a temporal, 
frame-by-frame basis. Each sample is assumed to have an equal weight, with the visual input to a 
single ommatidium then being formed as the average of all samples (Figure 3a:ii).

Static sampling can result in elements of the scene (in the case demonstrated in Figure 3b, dark 
grey circles) being aliased out of the final measurement of sensed light. Increasing per-ommatidium 
sampling rate can ease these aliasing problems (even in the case of a static sampling pattern) at close 
range but only serves to delay triggering aliasing until further distances where structural frequency 
again matches sampling pattern. Rather, by choosing to stochastically vary the sampled direction on a 
frame-by-frame basis removes the structured nature of any single frame’s aliasing, as that same view 
point will generate different aliasing artefacts on the next frame, having the net effect of reducing 
structured aliasing when considering sequences of frames (Figure 3c). One benefit of this approach 
is that averaging renderings from the same perspective becomes synonymous with an increased 
sampling rate, indeed, this is how the renderer increases sampling rate internally: by increasing the 
rendering volume for the compound perspective, effectively batch-rendering and averaging frames 
from the same point in time. However, as each ommatidium will sample the simulated environment 
differently for every frame rendered, small variations in the colour received at any given ommatidium 
occur over time. This point is explored further in the ‘Results’ section.

Figure 3. Ommatidial sampling distributions, statically and stochastically distributed. (a) The Gaussian sampling curve (red) with a full width at half 
maximum (FWHM) equal to the acceptance angle of each ommatidium. (i) Example statically distributed sampling rays, length indicates weight. (ii) 
Example stochastically distributed sampling rays, equal weight, distributed according to Gaussian distribution. (b) A concentric circular static sampling 
pattern (red dots) aliases away the three concentric dark grey rings present on a surface. (c) The per-sample colours as seen from a single ommatidium 
mapping to the samples in b, note the lack of any influence from the dark grey concentric rings, which have been aliased out.

https://doi.org/10.7554/eLife.73893


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 6 of 22

In the natural compound eye, light focused from each ommatidium’s sampling domain is trans-
ported via a crystalline cone and one or more rhabdomeres toward the receiving photo-receptor 
cluster – a process that has been modelled by Song et al., 2009. However, modelling the biophysical 
intricacies of the internal ommatidium structure is considered beyond the scope of this software and is 
considered a post-processing step that could be run on the generated image, considering each pixel 
intensity as a likelihood measure of photon arrival at an ommatidium.

From single ommatidia to full compound eye
By arranging the simulated ommatidia within 3D space so as to mimic the way real compound eyes 
are arranged, an image can be generated that captures the full compound eye view. For this task, 
per-ommatidium facet diameter and acceptance angle can be used to generate the cone of influence 
of each ommatidium, and simulated ommatidia can be placed at any position and orientation within 
the environment. As the system is using RT techniques to effectively simulate pinhole cameras at each 
individual ommatidium, orientation and position relative to the lens of each ommatidium can be set 
with a single per-ommatidium data point (consisting of the position, orientation, and lens proper-
ties), allowing each ommatidium to spawn rays independently of each other. This has the benefit of 
allowing the system to simulate any type of eye surface shape, and even multiple eyes simultaneously, 
fulfilling the first of the three defined criteria: allowing for the arrangement of an arbitrary number of 
ommatidia at arbitrary 3D points. The generated images can then be used to allow human viewers to 
visualise the information captured by the eye by projecting this visual surface onto a two-dimensional 
(2D) plane using orientation-wise or position-wise spherical equirectangular Voronoi diagrams of each 
ommatidium’s visual input. Alternatively, a simpler vectorised projection method that plots the visual 
inputs of each ommatidium in a vector can be used directly as a standardised input to computational 
models of insect neurobiology.

The CompoundRay software pipeline
The renderer is written in C++ and the Nvidia Compute Unified Device Architecture (CUDA) GPU 
programming language and allows for a 3D environment representing a given experimental setup to 
be rendered from the perspective of an insect. The core of the renderer runs in parallel on the GPU 
(the device) as a series of CUDA shader programs, which are driven by a C++ program running on the 
host computer (the host). Environments are stored in GL Transmission Format (glTF; Robinet et al., 
2014) files consisting of 3D objects and cameras, the latter of which can be of two types: compound 
(structured sets of ommatidia) or traditional (perspective, orthographic, and panoramic). Traditional 
cameras are implemented to aid the user in the design and analysis of their assembled 3D environ-
ment. Compound cameras contain all relevant information for rendering a view of the environment 
from the perspective of a compound eye. Each camera stores the information required for rendering 
its view (such as its orientation, position, FOV, or ommatidial structure) in an on-device data record 
data structure.

Figure 4 shows the operational design of the renderer from the device side. The renderer is built 
on top of Nvidia’s Optix (Parker et al., 2010) RT framework, which is a pipeline-based system: a pipe-
line is assembled, which then allows for parallel per-pixel rendering of the environment. A pipeline 
consists of a ray generator shader, a geometry acceleration structure (GAS), and numerous material 
shaders. A shader is a small program that is designed to be run in a massively parallel fashion. In a 
typical application, an individual shader program will be loaded onto a GPU and many thousands of 
instances of the program will be executed, with varying input parameters. The returned values of each 
instance are then returned to the ‘host-side’ of the application, allowing for the optimisation of tasks 
that are well suited to parallelisation.

A ray generator shader spawns rays to sample the environment with – these are dependent on the 
type, position, and orientation of the chosen camera. In the case of a panoramic camera (in the display 
pipeline), for instance, rays are spawned in a spherical manner around a central point (the position 
component of the currently selected camera’s ray generation configuration record). In the case of a 
compound eye (in the ommatidial pipeline), each ray is generated as a function of the relative position 
and direction of a single ommatidium to the eye’s position and orientation (note that the ‘eye’-type 
data records in Figure 4 contain links to per-eye ommatidial arrays that define the ommatidial config-
uration of the eye).

https://doi.org/10.7554/eLife.73893


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 7 of 22

A GAS stores the 3D geometry of the scene on the device in a format optimised for ray-geometry 
intersection and also provides functions to perform these intersection tests. Upon the intersection of 
a generated ray and the environment the material shader associated with the intersected geometry 
is run. These material shaders are responsible for the calculation and retrieval of the correct colour 
for the given geometry. For example, if a ray were to fall onto a blade of grass, the material shader 

Figure 4. Graphics processing unit (GPU)-side renderer operational diagram. Featured are the joined ommatidial and display rendering pipelines 
(including display buffers) as well as the on-device (running on the GPU) per-camera configuration records and related memory allocations. Data 
structure memory allocations are shown in grey (indicating in-place data) or purple (indicating pointers to other sections of data). Vertical stacks of 
memory indicate contiguously allocated structures. Data structures marked with an orange square are automatically updated as their host-side (running 
on the CPU) copies change; those with red circles are manually updated via application programming interface (API) calls. Circled numbers (1–4) 
indicate the path of processing through both pipelines required to display a compound eye view. FOV: field of views.

https://doi.org/10.7554/eLife.73893


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 8 of 22

would be expected to compute and return the colour green. We note that CompoundRay currently 
implements a simple texture lookup, interpolating the nearest pixels of the texture associated with 
the geometry intersected. Future extensions are presented in more detail in the ‘Discussion section.

Two pipelines are used in the renderer: an ommatidial pipeline and a display pipeline. The omma-
tidial pipeline handles sampling of the environment through the currently active compound eye, 
saving all samples from all ommatidia to a buffer stored within the eye’s ‘raw ommatidial view’ portion 
of its data record. First, it generates per-ommatidium rays (Figure 4 -1) via instances of the ommatidial 
ray generation shader. It then uses these to sample the environment through the GAS and appropriate 
material shaders, finally storing each ommatidium’s view as a vector of single-pixel tri-colour samples 
in the raw ommatidial view buffer (Figure 4 -2).

Conversely, the display pipeline handles the generation of the user-facing display buffer (Figure 4 
–4). In the case of generating a compound eye view display, ommatidial projector shaders are 
spawned (one per output pixel) and used to lookup (orange arrow connecting Figure  4 parts 2 
and 3) and average the values associated with each given ommatidium from the per-camera raw 
ommatidial view buffer. These values are then re-projected into a human-interpretable view – in 
the case of the image seen at Figure 4 –4, using an equirectangular orientation-wise projection of 
the Voronoi regions of each ommatidium. However, for practical applications, this re-projection can 
be to a simple vector of all ommatidial values, allowing an algorithm to examine the data on a per-
ommatidium basis, much in the same way that a real neural circuit would have direct access to the 
light sensors within the eye. In the case where the current camera is non-compound the display pipe-
line becomes the only active pipeline, handling the initiation of ray generation, GAS intersection, and 
materials shading for any given camera view in a single pass using a standard 2D camera projection 
model (simple pinhole, equirectangular panoramic, or orthographic). By referencing both with GPU 
video and RAM pointers, both pipelines are able to share a common GAS and material shaders so 
as to save device memory.

A full compound eye rendering (as indicated via numbered red circles in Figure 4) consists of first 
rendering the ommatidial view via the ommatidial pipeline to the current camera’s raw ommatidial 
view buffer using the associated eye data record. After this, the raw ommatidial view buffer is re-pro-
jected onto the display buffer as a human-interpretable view via the ommatidial projector shaders 
within the display pipeline. Alternatively, for debugging purposes, rendering can be performed using 
a traditional camera rather than via an eye model, skipping steps 1 and 2 and instead simply rendering 
to the display view by passing fully through the display pipeline using the data record associated with 
the selected camera.

Scene composure and use
Using the glTF file format for scene storage allows the experimental configuration of 3D models, 
surface textures, and camera poses to be packed into a single file (although per-eye ommatidial 
configurations are stored separately as comma-separated value (CSV) files and linked to within the 
glTF file to avoid file bloat, retaining the readability of the glTF file). The glTF format is a JavaS-
cript object notation (JSON)-based human-readable file format for 3D scene storage that is readily 
supported by a number of popular 3D editors and has allowances for extensions within its specifica-
tion. As such, all configurable parts of the scene that relate to CompouundRay are placed within each 
camera’s reserved ‘extras’ property. The renderer is programmed to ingest these extra properties, 
expanding the scene definition beyond standard glTF without compromising the readability of scene 
files by other third-party 3D modelling suites.

While the software comes packaged with a stand-alone executable that can load and render 
compound eye scenes, this is not the most powerful way of using the tool. When compiled, a shared 
object library is also generated that can then be called from more accessible languages, such as 
Python (Van Rossum and Drake, 2009). Through the use of this, Python’s ctypes system and a helper 
library that is bundled with the code, can be used directly with Python and the Numpy (Harris et al., 
2020) mathematical framework. This allows for a significantly wider experimental scope through auto-
mated configuration – for instance, one can programmatically move an insect eye around a simulated 
world extracting views directly from the renderer to be used alongside neural modelling frameworks 
accessible under Python. This is the recommended way of using the rendering system due to the 
increased utility that it affords.

https://doi.org/10.7554/eLife.73893


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 9 of 22

Example inter-eye comparison method
To demonstrate the utility of CompoundRay for modern, data-intensive scientific analysis, we designed 
an example experiment. We note that any data outcomes are secondary to the validation of the tool 
and experimental procedure. Three virtual eye models were created, based on increasing simplifica-
tions of real-world eye data. The virtual eye models were assembled based on one (Apis mellifera) 
of eight scans of real-world samples (two Apis mellifera, six Bombus terrestris) taken by Baird and 
Taylor, 2017, with the 3D surface shape used to derive sample points and axial directions for each 
of the 6374 ommatidia present in both eyes. This model was used as a baseline ‘real’ model, from 
which two simplified derivatives, ‘split’ and ‘single’ were created. These were created by editing the 
eye’s ommatidial positions to either converge on two or one single point (Figure 5 i-iii, i-iii) to mimic 
assumptions made in past simulated compound vision studies (Franz et al., 1998; Baddeley et al., 
2012; Nityananda et al., 2016; Polster et al., 2018). The three variations on the real eye design were 
then assessed against each other for their ability to resolve the 3D position of a target point within a 
simple black and white environment by training a multi-layer perceptron (MLP) network with two fully 
connected hidden layers to estimate the point’s position, encoding the relationship between visual 
scene and relative location - a task that was taken as a proxy for the eye’s ability to perform basic 
small-point spatial awareness tasks. The accuracy of the network’s ability to represent this encoding at 
any given point within a sampling volume (forming an error volume as seen in Figure 5c) could then be 
compared to another, producing maps of difference in utility of a given eye design over the sampling 
volume when compared to another (Figure 11b, c). The results of this experiment are presented in the 
later section ‘Example experiment: Apis mellifera visual field comparison’.

Comparing the views from varying ommatidial eye designs presents a number of challenges. In 
particular, the differing surface shapes and ommatidial counts between any two eyes make direct 
comparison very challenging as a result of the lack of a one-to-one correspondence between the 
ommatidia of each eye. Due to these challenges, the method of indirect comparison via a proxy variable 
was chosen. In this example comparison method, we propose using the task of small-point localisation 

Figure 5. An example pipeline for exploring eye designs leveraging CompoundRay’s ability to produce large quantities of data. (a) A camera is placed 
at various locations within an environment consisting of a single small point in an entirely white world. (b) Images (and the associated relative position 
of the camera in the ‍x‍, ‍y‍, and ‍z‍ axes) are collected from each location through the differing eye designs that are being compared (here ‘realistic’, ‘split’, 
and ‘single’ designs). (c) A simple multi-layer perceptron neural network is trained to predict the the relative position (‍x′‍, ‍y′‍, and ‍z′‍) given a compound 
eye view. The quality of this encoding can then be interrogated by sampling uniformly across the test volume forming an error volume, here presented 
directly as the L1 loss (the sum of all absolute errors between the output of the network and each axis of the ground truth relative position vector) for 
any given point.

https://doi.org/10.7554/eLife.73893


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 10 of 22

as a basis for measuring eye utility, as similar tasks have formed key parts of many behavioural studies 
(van Praagh et al., 1980; Juusola and French, 1997; Nityananda et al., 2016). As shown in Figure 5, 
a camera simulating the desired eye design is placed within a matte white environment with a small 
matte black sphere (in this case, 2 mm in diameter) placed at its centre. The camera can then be 
moved around a sampling volume (here 50 mm3), and a pair consisting of the view from the eye and 
the relative ‍x‍, ‍y‍, and ‍z‍ offset, forming its relative position. A neural network can then be trained on a 
sufficient number of pairs encode the mapping from eye view to relative position (localisation).

The non-Euclidian surface geometry of the compound eye makes convolutional neural network 
architectures (which typically operate over euclidian 2D or 3D space [Li et al., 2021]) inappropriate, 
as doing so would require a conversion from eye surface to a 2D surface, potentially introducing 
biases (as further elaborated in the ‘Discussion’ section). Graph neural networks (Scarselli et al., 2009) 
– neural networks that operate independent of assumptions of implicit spatially uniform sampling, 
instead operating over data structured in a graph – provide a method of operating over the 3D 
surface of the eye. However, the simpler approach of flattening the visual field into a single vector 
(with each element representing a single ommatidium’s view sample) was taken here. This approach 
chosen as the task of self-localisation from a single dark point in a light environment becomes a 
simple pattern matching task due to every position in the field producing a unique view, not requiring 
translation or rotation invariant feature recognition, all of which can be encompassed in a simple fully 
connected MLP network with two or more hidden layers (Lippmann, 1987). Furthermore, the views 
were passed to the network as one-dimensional black and white images to reduce on computational 
cost when running the experiment, as the environment was purely black and white, resulting in the 
red, green, and blue components to each ommatidial sample being identical.

For the purposes of our example experiment any encoding sufficiently capable of representing 
the mapping of visual input to relative location could have been used. The example MLP network we 
provide is specific to the example scenario given and as such should only be referred to as a starting 
point when considering a neural-network-based abstracted comparison method. We designed an 
MLP with 2 hidden layers (1000 and 256 neurons, with rectified linear activation functions to act as 
non-linearities) and a final linear output layer of 3 neurons to represent the x, y, and z components of 
the relative position vector. The hidden layers act to encode the non-linear relation between the views 
and the relative position of the eye, with the count at each layer chosen to provide a gradual decline 
in complexity from input visual field size to the 3D output vector.

The data was standardised using z-score normalisation across all training points for each eye on 
both input and output dimensions before training to ensure learning was weighted equally over all 
dimensions of the input vector and to reduce bias on output vectors. As each eye sample had a 
differing number of ommatidia, the size of the input vector (and as such the first layer weight vector) 
for the neural network differed from eye to eye. Batched stochastic gradient descent was then used to 
optimise the sum of all absolute errors between the output of the network and each axis of the ground 
truth relative position vector (the L1 loss function). This error could then be observed with respect to 
the experimental sampling volume to assess the eye design’s task-specific performance across the 
sampling space (Figure 5c). A batch size of 64 was selected in order to train at an appropriate speed 
while balancing efficient use of available hardware (Golmant et al., 2018); however, in practice, any 
commonly used batch size would be suitable.

For each eye design, 100,000 image position pairs were generated for training purposes. Of these, 
80,000 were used for training, and 20,000 were used as a validation dataset in order to plot training 
progress. For each derivative eye design, the neural network was trained across 100 epochs (Figure 
11a shows the error over the validation set during training). A total of 100 epochs were chosen as by 
this point in training no significant further training gains are made, as can be seen inFigure 11a.

Results
The analysis that follows first assesses the performance of CompoundRay with respect to the three 
criteria defined in the ‘Introduction’, before showing its utility in an example experiment. Performance 
is benchmarked in two 3D environments: a lab environment inspired by those used in insect cognitive 
experiments (Ofstad et al., 2011); and a 3D scan of a real-world natural environment covering an 
area of a number of square kilometers. The natural environment was constructed using structure-from-
motion photogrammetry using photos captured from a drone over rural Harpenden, UK (3D model 

https://doi.org/10.7554/eLife.73893


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 11 of 22

subject to upcoming publication, available via contact of Dr. Joe Woodgate, Queen Mary University 
of London).

Criterion 1: arbitrary arrangements of ommatidia
Criterion 1 states that the renderer must support arbitrary arrangements of ommatidia within 3D 
space. Figure 6 shows two different environments rendered using three differing eye designs, from a 
simple spherical model with spherical uniformly distributed ommatidia that more closely aligns with 
current compound eye rendering methods, to a hypothetical arbitrary arrangement similar to that 
of the now long-extinct Erbenochile erbeni. While Figure  6a&b is still possible to simulate using 
traditional projection-based methods due to their ommatidial axes converging onto one central spot, 
6 c demonstrates an eye with multiple unique focal points across an irregular surface which must be 
rendered from the viewpoint of each ommatidium independently.

Criterion 2: inhomogeneous ommatidial properties
Criterion 2 states that it should be possible to specify heterogeneous ommatidial optical properties 
across an eye, such as the enlarged facets as found in robberflies (Wardill et al., 2017). As demon-
strated in Figure 7, the renderer achieves this by allowing for shaping of the acceptance cone of each 
ommatidium. In doing so, Figure 7 also demonstrates the importance of heterogeneous ommatidial 
configurations.

Figure 7a&b shows a non-uniform eye design with homogeneous, globally identical, ommatidial 
acceptance angles. It can be seen that in Figure 7b, where the acceptance angle is lower, aliasing occurs 

Figure 6. Rendering from eyes with ommatidia placed on arbitrary surfaces in one lab environment and one three-dimensional scan of a natural 
outdoor environment. Renderings are projected to two-dimensional using a spherical orientation-wise Voronoi latitude/longitude mapping (orientation-
wise equirectangular spherical mapping). (a) Spherically uniformly distributed ommatidia. (b) Ommatidia clumped to form a horizontal acute zone (c) A 
design inspired by the Erbenochile erbeni.

https://doi.org/10.7554/eLife.73893


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 12 of 22

as objects are only partially observed through any given ommatidium, causing blind spots to form, 
introducing noise into the image. Conversely, in Figure 7a, where the acceptance angle is large, the 
image becomes blurry, with each ommatidium oversampling portions of its neighbour’s cone of vision. 
Figure 7c, however, demonstrates a heterogeneous ommatidial distribution, in which the acceptance 
angles toward the dorsal and ventral regions of the eye are larger compared with the angles of those 
around the eye’s horizontal acute zone. This mirrors what is seen in nature, where ommatidial FOV is 
seen to vary in order to encompass the entirety of an insect’s spherical visual field (Land and Nilsson, 
2002). As can be seen in the generated image, this is important as it appropriately avoids creating blind-
spots in the dorsal and ventral regions while also avoiding oversampling (blurring) in the horizontally 
acute region, resulting in a much clearer picture of the observed environment (before the visual data is 
passed into any insect visual processing neural circuits) while also minimising the required number of 
ommatidia. The data presented in Figures 6 and 7 clearly demonstrates differences in visual information 
provided by different ommatidial layouts, reinforcing the need for realistic eye modelling methods.

Figure 7. A single environment as viewed through: (a and b) eye designs with homogeneous ommatidial acceptance angles, note the blurred edges 
in (a) and sharp aliased edges in (b). (c) An eye with heterogeneous ommatidial acceptance angles. Below each output image is a three-dimensional 
depiction of the field of view of the specific array of ommitidia making up each eye: (a) oversampled, homogeneous eye; (b) undersampled, 
homogeneous eye; (c) evenly sampled, heterogeneous eye. Model (c) has the benefit of being able to leverage the most useful aspects of (b) and (a). 
Renderings are projected to wo-dimensional using an orientation-wise equirectangular spherical mapping.

https://doi.org/10.7554/eLife.73893


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 13 of 22

Criterion 3: speed
Minimum sample count
Criterion 3 states that to rapidly explore the information content of various eye designs any such 
rendering system should be able to perform at real time or faster. However, speed of the system is 
dependent on the number of rays required to render a given scene from a given eye; higher total ray 
counts will require more compute power. As discussed in the section ‘Modelling individual omma-
tidia’, per-ommatidial sampling choice can have a dramatic impact on the image generated, meaning 
that lower ray counts – while increasing speed – will decrease the accuracy of the image produced. As 
a result, it is important to be able to define some minimum number of samples required for any given 
eye in any given environment in a reliable and repeatable manner. Previous works Polster et al., 2018 
have attempted to establish a baseline number of samples required per ommatidium before addi-
tional samples become redundant only via qualitative visual analysis of the results produced. Here we 

Figure 8. A single viewpoint viewed using variable samples per ommatidium. Top: How changing sample count changes the generated image. Note 
that the left side (with only 1 sample per ommatidium) is more ‘jagged’ than the right side image (70 samples per ommatidium) due to aliasing. Middle: 
Relative standard deviations of each ommatidium across 1000 frames, where difference is measured as the Euclidean distance between the two colours, 
this highlights the significantly larger standard deviation at points of high visual contrast in the image. Bottom: Plot of the average standard deviation of 
an eye per sample rays per ommatidium, normalised to one steradian. The standard deviation decreases as per-ommatidium sampling rate increases.

https://doi.org/10.7554/eLife.73893


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 14 of 22

perform quantitative analysis of images produced by the renderer in order to more definitively define 
this baseline (Figure 8).

Unlike previous works, the temporally stochastic nature of CompoundRays’ sampling approach can 
be used to aid the measurement of impact that sampling rate has on the final image. By measuring the 
per-ommatidium spread (here, standard deviation) of the Euclidean distance of the received colour 
as plotted in RGB colour space over a range of frames captured from a static compound camera, the 
precision of the light sampling function approximation can be measured. To control for the varying 
FOV of each ommatidium (which impacts the number of samples required, as larger FOVs require more 
sampling rays to accurately capture the ommatidium’s sampling domain), we normalize the measure 
of spread recorded at each ommatidium against its degree of coverage, in steradians, expressing the 
solid angle subtended by the ommatidium’s FOV at the eye’s centre. That is, a steradian measures the 
solid angle within a sphere, in the same same way that a radian measures 2D angles within a circle.

Figure  8 shows this measure of variance within the compound eye across a range of sample-
rays-per-ommatidium, from 1 to 700. As the number of samples increases, the variance decreases 
logarithmically. We propose iteratively increasing samples until the maximum variance falls below a 
defined threshold value. Here, we use a threshold of 1%, meaning that the maximum expected stan-
dard deviation of the most deviant ommatidium on an eye (normalised to one steradian) should be 
no greater than 1% of the maximum difference between two received colours, here defined as the 
length of vector [255, 255, 255]. This method allows for standardised, eye-independent configuration 
of per-ommatidial sampling rate.

However, the required number of samples per eye is highly positively correlated with the visual 
frequency and intensity of the simulated environment at any given point, with locations exhibiting 

Figure 9. Standard deviation, averaged over all ommatidia in an eye, mapped over the natural and lab environments, showing a range of ‘hotspots’ 
of high variance in renderings. These hotspots must be accounted for when calculating minimum sample ray count. Inserts bottom left and right: the 
maximum (over all ommatidia) standard deviation recorded in the eye at each location.

https://doi.org/10.7554/eLife.73893


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 15 of 22

high contrast seen from a distance requiring higher sampling rates in order to properly resolve. 
This can be seen in the skyline in Figure  8, which remains dominant throughout the majority of 
the sampling rates, consistently forming the source of the highest spread. Figure 9 shows how the 
perceived variance changes over two example environments. The varying environment presents an 
obstacle in our attempts to standardise sampling rates, as deriving a suitable minimum sampling rate 
at one point in an environment – e.g., where the visual frequency was, on average, low – could lead 
to aliasing occurring in more visually complex areas of the same environment, potentially introducing 
bias for or against certain areas if analysis on the generated data were sensitive to the variance 
introduced.

Ultimately, the varying visual complexity poses a challenge. In an ideal scenario maximum per-
ommatidium frame-to-frame variation caused by visual complexity should be a controllable factor. 
In the examples presented in this paper, we worked to minimise this variation to a point at which 
the most variable ommatidial response had a standard deviation of 1% or less of the total maximal 
difference in colour. One way of achieving this would be to keep a running measure of the standard 
deviation of each ommatidium and dynamically adapt sampling rates to ensure that no ommatidium 
had such a high sampling spread (adaptive antialiasing). In this work, however, we define a minimum 
sampling count for a given environment by performing a search for that environment’s point of 
highest visual complexity (indicated by highest per-ommatidium deviation) – with this location found, 
sampling rate can be increased until deviation decreases to acceptable limits (in this case, within 1%). 
Figure 9 shows plots of the relative variation in standard deviation over the lab and (partial) natural 
environments.

Figure 10. The average frames per second (FPS; 500 samples) per total number of rays dispatched into the scene for 3 different graphics cards in the 
2 environments depicted in Figure 6. Marked are expected FPS values for a desert ant (Schwarz et al., 2011), honey bee (Greiner et al., 2004), and 
dragonfly (Labhart and Nilsson, 1995; Land and Nilsson, 2002). Averaged data is smoothed using a 1-dimensional box filter acting over 10 samples, 
clipped at the beginning and end. 

https://doi.org/10.7554/eLife.73893


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 16 of 22

Performance
Figure 10 shows the rendering speed, in frames per second, against the number of sample rays being 
emitted in each frame when running using a selection of high-end consumer-grade graphics cards and 
our two sample environments. Marked on the graph are the total per-frame sample counts required 
by common insect eyes, chosen to encourage a maximum per-ommatidium standard deviation of 1%.

As can be seen, performance improves significantly when the renderer is able to utilise the next-
generation RT hardware available in the newer RTX series of NVidia graphics cards, consistently 
outperforming older cards in the larger natural environment and outperforming in the smaller lab 
environment when using more than 30,000 rays. Counterintuitively, the previous generation of NVidia 
graphics cards was found to outperform the RTX series in the (relatively small) lab environment at 
lower ray counts (below 30,000). This appears to be due to static overhead involved with the use 
of the RTX series’ RT cores, which may also be the cause of the small positive trend seen between 
1000 and 8000 samples when using the 2080Ti. Another potentially counterintuitive result that can 
be seen here is the higher performance of the dragonfly eye in the natural (high polygon) environ-
ment versus in the low-polygon laboratory environment. This is because the laboratory environment 
produces significantly higher visual contrast (emphasised in Figure  9) due to its stark black/white 
colour scheme, resulting in a requirement of almost double the number of rays per steradian to target 
1% standard deviation, resulting in higher ray counts overall, particularly in models with a high number 
of ommatidia.

Example experiment: Apis mellifera visual field comparison
Leveraging the speed of CompoundRay, an example data-driven comparative analysis was performed 
between a realistic eye model and two simplified derivatives. We note that the data outcomes should 
be considered as pilot data, with the focus being on proving the tool and its usability. As laid out in the 
section ‘Example inter-eye comparison method’, this experiment used an MLP network to estimate 
the relative position of a 2 mm sphere within a 50 mm3 test area using only the visual information 
provided from each of the eye models, with neural network performance acting as a measure of eye 
configuration utility. The models were split into the ‘real’ eye model (Figure 5i), an eye pair based 
directly on the measurements of Baird and Taylor, 2017; the ‘split’ eye model (Figure 5ii), an eye pair 
retaining per-ommatidial headings (ommatidial axial directions), but sampled from the centre points 
of each eye (as per approaches common in insect binocular vision study); and finally the ‘single’ eye 
model, an eye pair sampled from a single point between the two eyes (Figure 5iii). We hypothesise 
that the ‘real’ eye design will outperform the ‘split’ and ‘single’ eye models by increasing margins, as 
for each of the latter two designs the data relating to the surface shape and relative positions of the 
eyes is increasingly reduced.

In terms of total error over the validation set, we observed that – as expected – the ‘real’ eye 
design appears to offer a higher utility (lower total error when trying to locate the relative position of 
the sphere), ultimately decreasing its network’s validation error quicker and to a lower minimum after 
100 epochs when compared to both the ‘split’ and ‘single’ eye designs (Figure 11a). Interestingly, 
despite an initial slow in learning rate, the ‘single’ eye design eventually achieved a similar utility score 
on the validation set than that of the ‘split’ eye design.

To qualitatively assess the performance of each eye across the entire 50 mm3 sampling cube, a 
further 1,000,000 samples were taken at regular intervals forming an error volume for each eye design 
by measuring the error between the trained neural network’s relative position and the real relative 
position (the error volume for the ‘real’ eye is pictured in Figure 5c). In this case, to demonstrate 
versatility, CompoundRay was used in real time to generate these views, rather than simply being 
used in an offline manner to generate these benchmarking datasets.

The most obvious region of high error is that outside of the insect’s FOV. As these eyes were 
designed with uniform average acceptance angles, this is larger than might be expected of a real 
bee eye. Comparing the ‘real’ eye to its ‘single’ and ‘split’ counterparts by means of comparing 
the absolute difference between their error volumes (creating the difference volumes shown from 
top-down in Figure 11b&c), patterns emerge. Seemingly, the most significant region of difference 
between the ‘real’ eye model and the ‘single’ eye model can be seen around the edges of the eye’s 
field of vision. As this difference follows the entirety of the edge of the eye’s field of vision, this 
appears to be likely due to parallax – the ‘real’ eye samples from two points, allowing it slightly 

https://doi.org/10.7554/eLife.73893


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 17 of 22

extended range of vision compared to that of the ‘single’ eye model, resulting in slightly different 
ranges of FOV between the two, with this difference increasing the further from the eye the point is. 
In the ‘real’ vs ‘split’ comparison image, however, there are two regions of higher error (highlighted 
in red circles in Figure 11c) toward the forward-facing regions of the eye’s vision. These indicate a 
region of improved visual information when using a full eye surface as compared to simple two-point 
sampling of the environment.

Figure 11. The results of a sample experiment comparing the relative effectiveness of three progressively simplified dual-eye designs – a ‘real’ design 
built from data collected from real-world Apis mellifera (Baird and Taylor, 2017) and two progressively simplified designs: the ‘split’ design, collapsing 
ommatidial viewing points onto two eye centres, and the ‘single’ design, projecting all ommatidial viewing points onto one central position (figurative 
examples shown in Figure 5i–iii). (a) The validation error graphs over 100 epochs of training for each eye design. The majority of learning occurs 
between epoch 0 and 60, and by epoch 100 all networks have converged in optimal-approximating states. (b) The absolute relative differences across 
the error volumes (see Figure 5c) between the ‘real’ and ‘single’ eye designs, as seen from the top. (c) As in (b), but between the ‘real’ and ‘split’ 
designs.

https://doi.org/10.7554/eLife.73893


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 18 of 22

Discussion
This paper has introduced a new compound eye perspective rendering software, CompoundRay, that 
addresses the need for a fast, compound eye perspective rendering pipeline (Stürzl et al., 2015; 
Taylor and Baird, 2017; Millward et al., 2020). In particular, the tool supports arbitrary instantiation 
of heterogeneous ommatidia at any place in space and can perform rendering tasks at speeds in the 
order of thousands of frames per second using consumer-grade graphics hardware. We have demon-
strated the utility afforded by the software and highlighted the importance of using higher-fidelity 
compound eye perspective rendering systems by demonstrating the visual differences introduced 
by altering these traits. It has also set a grounding for reasonable use of the software to ensure 
reproducibility and reduce biasing introduced as a result of the variety present in simulated environ-
ments and compound eye designs while warning of potential dangers that might arise during data 
analysis. With the introduction of the CompoundRay rendering library, it is possible to simulate in a 
timely manner the visual experience of structurally diverse compound eyes in complex environments, 
digitally captured or otherwise manually constructed. CompoundRay is provided as an open-sourced 
library (https://github.com/BrainsOnBoard/compound-ray).

This work lays the technical foundations for future research into elements of compound eye 
design that have previously been given little consideration. In particular, CompoundRay can act as 
the previously missing step to integrate recently catalogued real eye designs (Baird and Taylor, 
2017; Bagheri et  al., 2020) into mapped insect environments (Stürzl et  al., 2015; Risse et  al., 
2018) to explore the information provided to insects in their natural surroundings. Similarly, the 
ability to configure ommatidial properties individually and with respect to eye surface shape enables 
new investigations into the benefits of asymmetric compound eyes such as those found in robber 
flies (Wardill et al., 2017) and crabs (Zeil et al., 1986). Furthermore, we see opportunities to model 
the recently reported microsaccadic sampling in fruit flies (Juusola et al., 2017), as well as aid with 
similar vision-centric neurological studies (Viollet, 2014; Wystrach et al., 2016; Kemppainen et al., 
2021).

Our example study demonstrated the utility of CompoundRay for this strand of research. Beyond 
its ability to replicate insect vision in unprecedented detail, its image generation speeds facilitate 
use of contemporary data-driven methods to explore the eye design space. For example, we used 
over 3.3  million training images, which CompoundRay rendered in only 2  hr. The insights gained 
from more thorough analysis of the insect visual perspective—and its design relative to visual feature 
extraction—will help guide the development of artificial visual systems by considering not only visual 
post-processing steps but also the intrinsic structure and design of the image retrieval system itself. 
CompoundRay is explicitly designed to be highly configurable to allow members of the research 
community to pursue their specific research questions.

In our example study, we compared eye designs using an MLP network as a utility function, 
bypassing the need to directly compare the images generated by two differing eye designs. This was 
done as the task of directly comparing two dissimilar eye designs – either analytically using a compar-
ison program or qualitatively via human observation – is non-trivial. Compound eyes are inherently 
different from our own, and the CompoundRay rendering system allows for large-scale data collection 
on arbitrary compound surfaces. We note that with this comes the risk of anthropomorphising the 
data received when directly observing it, or placing bias on one area over another when comparing 
programmatically. At its base level, the eye data gathered is most ‘pure’ when considered as a single 
vector of ommatidial samples, much in the same way that the neural systems of any insect will inter-
pret the data. In contrast, all the images that we have presented here have been projected onto a 
2D plane in order to be displayed. Great care must be taken when considering these projections, as 
they can introduce biases that may be easy to overlook. For instance, in Figure 6a&b, orientation-
wise spherical projection mapping was used to artificially place the ommatidia across the 2D spaces, 
forming panoramic Voronoi plots of observed light at each ommatidium. In these projections, much as 
is seen in 2D projections of Earth, the points at the poles of the image are artificially inflated, giving a 
bias in terms of raw surface area affected toward ommatidia present in the ventral and dorsal regions 
of the eye. Not only do these visual distortions warp the image produced, but if that image is used as 
the basis for algorithmic comparison (e.g., as the input to an image difference function [Philippides 
et  al., 2011]) then that too, will be effected by these projection biases. In the case where direct 
comparison between two eyes with entirely dissimilar surfaces is attempted, the problems can be 

https://doi.org/10.7554/eLife.73893
https://github.com/BrainsOnBoard/compound-ray


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 19 of 22

magnified further, as the projections of each eye will introduce biases that may interact in unexpected 
ways.

These projection biases highlight how fundamentally difficult it is to directly compare eye designs 
that do not share an underlying surface structure, unless those surfaces happen to be affine trans-
formations of one another (they are affinely equivalent). For any surfaces that are affinely equivalent, 
the surface itself can be used as a projection surface. In this way, for instance, the outputs of two 
cubic eyes could be compared to each other by performing all comparison calculations on the cube’s 
surface, interpolating between points where an ommatidia exists on one eye but not another. It is 
trivial to directly compare compound eye images from eyes with the same structure in terms of omma-
tidial placement, and eyes with surfaces that are affinely equivalent can also be compared; however, 
further precautions must be taken when comparing the images from two or more eyes that do not 
have compatible projection surfaces so as not to unduly bias a portion of one surface over any other. 
If direct comparison between two eye designs is required, and their surfaces are not affine transfor-
mations of each other, then intermediate surfaces to perform calculations over must be found within 
the interpolation from one surface to the other, with a significant amount of care taken to reduce as 
much as possible projection artefacts forming between the two. However, we recommend instead 
taking a proxy metric as demonstrated here (using a localisation task) to measure differences between 
eye-accessible information content.

By basing CompoundRay around the conceptually simple approach of ray-casting and adhering 
to open standards, the rendering system has been designed with open development in mind. In the 
future, the library could be extended to further enhance biological realism by adding non-visible 
spectral (e.g. ultraviolet) lighting (Möller, 2002; Stone et al., 2006; Differt and Möller, 2015) and 
polarisation (e.g.Gkanias et al., 2019) sensitivities, as well as more realistic photo-receptor response 
characteristics (e.g. Song et  al., 2009). Similarly, new technologies could be rapidly evaluated by 
simulating the input to novel imaging systems (e.g. dynamic; Viollet and Franceschini, 2010 or 
heterogeneous pixel arrays) and processing pipelines (e.g. event-based retinas; Gallego et al., 2022). 
In addition, environmental features such as shadow casting, reflection, and refractions present obvious 
extensions as well the introduction of features such as adaptive anti-aliasing and increasing the projec-
tions available to users. Currently, CompoundRay returns all output images in an eight-bit colourspace, 
which aligns with most contemporary display equipment. However, we note that the underlying GPU 
implementation operates on 32-bit floating-point variables which if exposed to the high-level Python 
API could improve the system’s ability to represent visual sensors that experience a wider bandwidth 
of light (hyperspectral visual systems). It is hoped that as further efforts are conducted to map the eye 
structures of insects, CompoundRay will serve as a key tool in uncovering the intricacies of these eye 
designs in a modern, data-driven way.

Acknowledgements
Thanks to Dr James Knight (University of Sussex) for his input and feedback on the manuscript, and Dr 
Joe Woodgate (Queen Mary University of London) for provision of the natural environment 3D model. 
Graphics cards were supplied by the Brains on Board research project (EP/P006094/1) and project 
partner NVidia. Grant funding was provided by EPSRC awards EP/P006094/1 and EP/S030964/1. For 
the purpose of open access, the author has applied a Creative Commons Attribution (CC BY) licence 
to any Author Accepted Manuscript version arising.

Additional information

Funding

Funder Grant reference number Author

Engineering and Physical 
Sciences Research Council

EP/P006094/1 Blayze Millward

Engineering and Physical 
Sciences Research Council

EP/S030964/1 Michael Mangan

https://doi.org/10.7554/eLife.73893


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 20 of 22

Funder Grant reference number Author

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Blayze Millward, Conceptualization, Software, Investigation, Visualization, Methodology, Writing - 
original draft; Steve Maddock, Supervision, Validation, Writing - review and editing; Michael Mangan, 
Conceptualization, Supervision, Funding acquisition, Methodology, Writing - review and editing

Author ORCIDs
Blayze Millward ‍ ‍ http://orcid.org/0000-0001-9025-1484
Steve Maddock ‍ ‍ http://orcid.org/0000-0003-3179-0263

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.73893.sa1
Author response https://doi.org/10.7554/eLife.73893.sa2

Additional files
Supplementary files
•  Transparent reporting form 

Data availability
The manuscript is a computational study, with all modelling code and data accessible on GitHub at 
https://github.com/ManganLab/eye-renderer. Use of the natural environment was kindly provided by 
Dr. JoeWoodgate, Queen Mary University of London and is subject to upcoming publication. As such, 
instead included in the CompoundRay repository is a stand-in natural 3D terrain model. As all models 
are used for demonstrative purpose, this stand-in model offers little difference to the natural model 
used, bar it's subjectively lower-quality aesthetics.

References
Appel A. 1968. Some techniques for shading machine renderings of solids the April 30--May 2, 1968. spring joint 

computer conference. . DOI: https://doi.org/10.1145/1468075.1468082
Arendt D. 2003. Evolution of eyes and photoreceptor cell types. The International Journal of Developmental 

Biology 47:563–571 PMID: 14756332. 
Baddeley B, Graham P, Husbands P, Philippides A. 2012. A model of ant route navigation driven by scene 

familiarity. PLOS Computational Biology 8:e1002336. DOI: https://doi.org/10.1371/journal.pcbi.1002336, 
PMID: 22241975

Bagheri ZM, Jessop AL, Kato S, Partridge JC, Shaw J, Ogawa Y, Hemmi JM. 2020. A new method for mapping 
spatial resolution in compound eyes suggests two visual streaks in fiddler crabs. The Journal of Experimental 
Biology 223:jeb210195. DOI: https://doi.org/10.1242/jeb.210195, PMID: 31822556

Baird E, Taylor G. 2017. X-Ray micro computed-tomography. Current Biology 27:R289–R291. DOI: https://doi.​
org/10.1016/j.cub.2017.01.066, PMID: 28441557

Basten K, Mallot HA. 2010. Simulated visual homing in desert ant natural environments: efficiency of skyline 
cues. Biol Cybern 102:413–425. DOI: https://doi.org/10.1007/s00422-010-0375-9, PMID: 20300942

Burgess J. 2020. Rtx on—the NVIDIA Turing GpU. IEEE Micro 40:36–44. DOI: https://doi.org/10.1109/MM.2020.​
2971677

Christensen P, Fong J, Shade J, Wooten W, Schubert B, Kensler A, Friedman S, Kilpatrick C, Ramshaw C, 
Bannister M, Rayner B, Brouillat J, Liani M. 2018. RenderMan: an advanced path-tracing architecture for movie 
rendering. ACM Transactions on Graphics 37:1–21. DOI: https://doi.org/10.1145/3182162

Collett TS, Land MF. 1975. Visual control of flight behaviour in the hoverflysyritta pipiens L. Journal of 
Comparative Physiology ? A 99:1–66. DOI: https://doi.org/10.1007/BF01464710

Collins S. 1998. Reconstructing the visual field of compound eyes. Rocamora SP (Ed). Eurographics Rendering 
Workshop. Springer Wien. p. 81–92. DOI: https://doi.org/10.1007/978-3-7091-6858-5

Differt D, Möller R. 2015. Insect models of illumination-invariant skyline extraction from UV and green channels. 
Journal of Theoretical Biology 380:444–462. DOI: https://doi.org/10.1016/j.jtbi.2015.06.020, PMID: 26113191

Differt D, Möller R. 2016. Spectral skyline separation: extended landmark databases and panoramic imaging. 
Sensors 16:10. DOI: https://doi.org/10.3390/s16101614, PMID: 27690053

Franz MO, Schölkopf B, Mallot HA, Bülthoff HH. 1998. Where did I take that snapshot? scene-based homing by 
image matching. Biol Cybern 79:191–202. DOI: https://doi.org/10.1007/s004220050470

https://doi.org/10.7554/eLife.73893
http://orcid.org/0000-0001-9025-1484
http://orcid.org/0000-0003-3179-0263
https://doi.org/10.7554/eLife.73893.sa1
https://doi.org/10.7554/eLife.73893.sa2
https://github.com/ManganLab/eye-renderer
https://doi.org/10.1145/1468075.1468082
http://www.ncbi.nlm.nih.gov/pubmed/14756332
https://doi.org/10.1371/journal.pcbi.1002336
http://www.ncbi.nlm.nih.gov/pubmed/22241975
https://doi.org/10.1242/jeb.210195
http://www.ncbi.nlm.nih.gov/pubmed/31822556
https://doi.org/10.1016/j.cub.2017.01.066
https://doi.org/10.1016/j.cub.2017.01.066
http://www.ncbi.nlm.nih.gov/pubmed/28441557
https://doi.org/10.1007/s00422-010-0375-9
http://www.ncbi.nlm.nih.gov/pubmed/20300942
https://doi.org/10.1109/MM.2020.2971677
https://doi.org/10.1109/MM.2020.2971677
https://doi.org/10.1145/3182162
https://doi.org/10.1007/BF01464710
https://doi.org/10.1007/978-3-7091-6858-5
https://doi.org/10.1016/j.jtbi.2015.06.020
http://www.ncbi.nlm.nih.gov/pubmed/26113191
https://doi.org/10.3390/s16101614
http://www.ncbi.nlm.nih.gov/pubmed/27690053
https://doi.org/10.1007/s004220050470


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 21 of 22

Gallego G, Delbruck T, Orchard G, Bartolozzi C, Taba B, Censi A, Leutenegger S, Davison AJ, Conradt J, 
Daniilidis K, Scaramuzza D. 2022. Event-based vision: A survey. IEEE Transactions on Pattern Analysis and 
Machine Intelligence 44:154–180. DOI: https://doi.org/10.1109/TPAMI.2020.3008413, PMID: 32750812

Giger AD. 1996. PhD thesis: Honeybee vision: analysis of pattern orientation. The Australian National University.
Gkanias E, Risse B, Mangan M, Webb B. 2019. From skylight input to behavioural output: a computational 

model of the insect polarised light COMPASS. PLOS Computational Biology 15:e1007123. DOI: https://doi.​
org/10.1371/journal.pcbi.1007123, PMID: 31318859

Golmant N, Vemuri N, Yao Z, Feinberg V, Gholami A, Rothauge K, Mahoney MW, Gonzalez J. 2018. On The 
Computational Inefficiency Of Large Batch Sizes For Stochastic Gradient Descent Technical report. ICLR.

Greiner B, Ribi WA, Warrant EJ. 2004. Retinal and optical adaptations for nocturnal vision in the halictid bee 
megalopta genalis. Cell and Tissue Research 316:377–390. DOI: https://doi.org/10.1007/s00441-004-0883-9, 
PMID: 15064946

Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, Wieser E, Taylor J, Berg S, 
Smith NJ, Kern R, Picus M, Hoyer S, van Kerkwijk MH, Brett M, Haldane A, Del Río JF, Wiebe M, Peterson P, 
Gérard-Marchant P, et al. 2020. Array programming with numpy. Nature 585:357–362. DOI: https://doi.org/10.​
1038/s41586-020-2649-2, PMID: 32939066

Juusola M, French AS. 1997. Visual acuity for moving objects in first- and second-order neurons of the fly 
compound eye. Journal of Neurophysiology 77:1487–1495. DOI: https://doi.org/10.1152/jn.1997.77.3.1487, 
PMID: 9084613

Juusola M, Dau A, Song Z, Solanki N, Rien D, Jaciuch D, Dongre SA, Blanchard F, de Polavieja GG, Hardie RC, 
Takalo J. 2017. Microsaccadic sampling of moving image information provides Drosophila hyperacute vision. 
eLife 6:e26117. DOI: https://doi.org/10.7554/eLife.26117, PMID: 28870284

Kajiya JT. 1986. The rendering equation the 13th annual conference. ACM SIGGRAPH Computer Graphics. . 
DOI: https://doi.org/10.1145/15922.15902

Kemppainen J, Scales B, Haghighi KR, Takalo J, Mansour N, McManus J, Leko G, Saari P, Hurcomb J, Antohi A, 
Suuronen JP, Blanchard F, Hardie RC, Song Z, Hampton M, Eckermann M, Westermeier F, Frohn J, Hoekstra H, 
Lee CH, et al. 2021. Binocular Mirror-Symmetric Microsaccadic Sampling Enables Drosophila Hyperacute 
3D-Vision. bioRxiv. DOI: https://doi.org/10.1101/2021.05.03.442473

Labhart T, Nilsson DE. 1995. The dorsal eye of the dragonfly sympetrum: specializations for prey detection 
against the blue sky. Journal of Comparative Physiology A 176:437–453. DOI: https://doi.org/10.1007/​
BF00196410

Lambrinos D, Kobayashi H, Pfeifer R, Maris M, Labhart T, Wehner R. 1997. An autonomous agent navigating with 
a polarized light COMPASS. Adaptive Behavior 6:131–161. DOI: https://doi.org/10.1177/105971239700600104

Land MF. 1989. Variations in the structure and design of compound eyes. Stavenga DG, Hardie RC (Eds). In 
Facets of Vision. Berlin Heidelberg, Berlin, Heidelberg: Springer. p. 90–111. DOI: https://doi.org/10.1007/​
978-3-642-74082-4_5

Land MF, Fernald RD. 1992. The evolution of eyes. Annual Review of Neuroscience 15:1–29. DOI: https://doi.​
org/10.1146/annurev.ne.15.030192.000245, PMID: 1575438

Land MF. 1997. Visual acuity in insects. Annual Review of Entomology 42:147–177. DOI: https://doi.org/10.​
1146/annurev.ento.42.1.147, PMID: 15012311

Land MF, Nilsson DE. 2002. Animal Eyes. Oxford University Press.
Li Z, Liu F, Yang W, Peng S, Zhou J. 2021. A survey of convolutional neural networks: analysis, applications, and 

prospects. IEEE Transactions on Neural Networks and Learning Systems. . DOI: https://doi.org/10.1109/​
TNNLS.2021.3084827

Lippmann RP. 1987. An introduction to computing with neural nets. IEEE ASSP Magazine 4:4–22. DOI: https://​
doi.org/10.1109/MASSP.1987.1165576

Mangan M, Webb B. 2009. Modelling place memory in crickets. Biol Cybern 101:307–323. DOI: https://doi.org/​
10.1007/s00422-009-0338-1, PMID: 19862550

Meyer EP, Labhart T. 1993. Morphological specializations of dorsal rim ommatidia in the compound eye of 
dragonflies and damselfies (Odonata). Cell & Tissue Research 272:17–22. DOI: https://doi.org/10.1007/​
BF00323566

Millward B, Maddock S, Mangan M, Sheffield Robotics, The University Of Sheffield, Department of Computer 
Science, The University Of Sheffield. 2020. Towards Insect Inspired Visual Sensors for Robots. UKRAS20 
Conference. . DOI: https://doi.org/10.31256/Do2Ik3H

Möller R. 2002. Insects could exploit UV-green contrast for landmark navigation. Journal of Theoretical Biology 
214:619–631. DOI: https://doi.org/10.1006/jtbi.2001.2484, PMID: 11851371

Neumann TR. 2002. Modeling insect compound eyes: space-variant spherical vision. Poggio TA (Ed). Biologically 
Motivated Computer Vision. Springer. p. 360–367. DOI: https://doi.org/10.1007/3-540-36181-2

Nityananda V, Bissianna G, Tarawneh G, Read J. 2016. Small or far away? size and distance perception in the 
praying mantis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 
371:20150262. DOI: https://doi.org/10.1098/rstb.2015.0262, PMID: 27269605

Nityananda V, Tarawneh G, Henriksen S, Umeton D, Simmons A, Read JCA. 2018. A novel form of stereo vision 
in the praying mantis. Current Biology 28:588–593. DOI: https://doi.org/10.1016/j.cub.2018.01.012, PMID: 
29429616

Ofstad TA, Zuker CS, Reiser MB. 2011. Visual place learning in Drosophila melanogaster. Nature 474:204–207. 
DOI: https://doi.org/10.1038/nature10131, PMID: 21654803

https://doi.org/10.7554/eLife.73893
https://doi.org/10.1109/TPAMI.2020.3008413
http://www.ncbi.nlm.nih.gov/pubmed/32750812
https://doi.org/10.1371/journal.pcbi.1007123
https://doi.org/10.1371/journal.pcbi.1007123
http://www.ncbi.nlm.nih.gov/pubmed/31318859
https://doi.org/10.1007/s00441-004-0883-9
http://www.ncbi.nlm.nih.gov/pubmed/15064946
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://www.ncbi.nlm.nih.gov/pubmed/32939066
https://doi.org/10.1152/jn.1997.77.3.1487
http://www.ncbi.nlm.nih.gov/pubmed/9084613
https://doi.org/10.7554/eLife.26117
http://www.ncbi.nlm.nih.gov/pubmed/28870284
https://doi.org/10.1145/15922.15902
https://doi.org/10.1101/2021.05.03.442473
https://doi.org/10.1007/BF00196410
https://doi.org/10.1007/BF00196410
https://doi.org/10.1177/105971239700600104
https://doi.org/10.1007/978-3-642-74082-4_5
https://doi.org/10.1007/978-3-642-74082-4_5
https://doi.org/10.1146/annurev.ne.15.030192.000245
https://doi.org/10.1146/annurev.ne.15.030192.000245
http://www.ncbi.nlm.nih.gov/pubmed/1575438
https://doi.org/10.1146/annurev.ento.42.1.147
https://doi.org/10.1146/annurev.ento.42.1.147
http://www.ncbi.nlm.nih.gov/pubmed/15012311
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/MASSP.1987.1165576
https://doi.org/10.1109/MASSP.1987.1165576
https://doi.org/10.1007/s00422-009-0338-1
https://doi.org/10.1007/s00422-009-0338-1
http://www.ncbi.nlm.nih.gov/pubmed/19862550
https://doi.org/10.1007/BF00323566
https://doi.org/10.1007/BF00323566
https://doi.org/10.31256/Do2Ik3H
https://doi.org/10.1006/jtbi.2001.2484
http://www.ncbi.nlm.nih.gov/pubmed/11851371
https://doi.org/10.1007/3-540-36181-2
https://doi.org/10.1098/rstb.2015.0262
http://www.ncbi.nlm.nih.gov/pubmed/27269605
https://doi.org/10.1016/j.cub.2018.01.012
http://www.ncbi.nlm.nih.gov/pubmed/29429616
https://doi.org/10.1038/nature10131
http://www.ncbi.nlm.nih.gov/pubmed/21654803


 Tools and resources﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Neuroscience

Millward et al. eLife 2022;11:e73893. DOI: https://​doi.​org/​10.​7554/​eLife.​73893 � 22 of 22

Parker SG, Bigler J, Dietrich A, Friedrich H, Hoberock J, Luebke D, McAllister D, McGuire M, Morley K, 
Robison A, Stich M. 2010. OptiX: a general purpose ray tracing engine. ACM Transactions on Graphics 
29:1–13. DOI: https://doi.org/10.1145/1778765.1778803

Philippides A, Baddeley B, Cheng K, Graham P. 2011. How might ants use panoramic views for route navigation? 
The Journal of Experimental Biology 214:445–451. DOI: https://doi.org/10.1242/jeb.046755, PMID: 21228203

Polster J, Petrasch J, Menzel R, Landgraf T. 2018. Reconstructing the Visual Perception of Honey Bees in 
Complex 3-D Worlds. arXiv. https://​arxiv.​org/​abs/​1811.​07560

Purcell TJ, Buck I, Mark WR, Hanrahan P. 2005. Ray tracing on programmable graphics hardware. ACM 
SIGGRAPH 2005 Courses. . DOI: https://doi.org/10.1145/1198555.1198798

Risse B, Mangan M, Stürzl W, Webb B. 2018. Software to convert terrestrial lidar scans of natural environments 
into photorealistic meshes. Environmental Modelling & Software 99:88–100. DOI: https://doi.org/10.1016/j.​
envsoft.2017.09.018

Robinet F, Arnaud R, Parisi T, Cozzi P. 2014. GlTF: designing an open-standard runtime asset format. Engel W 
(Ed). GPU Pro 5: Advanced Rendering Techniques. CRC Press. p. 18–522.

Roth SD. 1982. Ray casting for modeling solids. Computer Graphics and Image Processing 18:109–144. DOI: 
https://doi.org/10.1016/0146-664X(82)90169-1

Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. 2009. The graph neural network model. IEEE 
Transactions on Neural Networks 20:61–80. DOI: https://doi.org/10.1109/TNN.2008.2005605, PMID: 
19068426

Schwarz S, Narendra A, Zeil J. 2011. The properties of the visual system in the Australian desert ant melophorus 
bagoti. Arthropod Structure & Development 40:128–134. DOI: https://doi.org/10.1016/j.asd.2010.10.003, 
PMID: 21044895

Song Z, Coca D, Billings S. 2009. Biophysical Modeling of a Drosophila Photoreceptor. Lecture Notes in 
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 
Bioinformatics). Springer. DOI: https://doi.org/10.1007/978-3-642-74082-4_5

Song YM, Xie Y, Malyarchuk V, Xiao J, Jung I, Choi KJ, Liu Z, Park H, Lu C, Kim RH, Li R, Crozier KB, Huang Y, 
Rogers JA. 2013. Digital cameras with designs inspired by the arthropod eye. Nature 497:95–99. DOI: https://​
doi.org/10.1038/nature12083, PMID: 23636401

Stone T, Mangan M, Ardin P, Webb B. 2006. Sky segmentation with ultraviolet images can be used for 
navigation. Robotics. . DOI: https://doi.org/10.15607/RSS.2014.X.047

Stürzl W, Grixa I, Mair E, Narendra A, Zeil J. 2015. Three-Dimensional models of natural environments and the 
mapping of navigational information. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, 
and Behavioral Physiology 201:563–584. DOI: https://doi.org/10.1007/s00359-015-1002-y, PMID: 25863682

Taylor GJ, Baird E. 2017. INSECT VISION: SEGMENTATION TO SIMULATIONS. In 3rd International Conference 
on Tomography of Materials and Structures. .

van Praagh JP, Ribi W, Wehrhahn C, Wittmann D. 1980. Drone bees fixate the Queen with the dorsal frontal part 
of their compound eyes. Journal of Comparative Physiology 136:263–266. DOI: https://doi.org/10.1007/​
BF00657542

Van Rossum G, Drake FL. 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA.
Vardy A, Moller R. 2005. Biologically plausible visual homing methods based on optical flow techniques. 

Connection Science 17:47–89. DOI: https://doi.org/10.1080/09540090500140958
Viollet S, Franceschini N. 2010. A hyperacute optical position sensor based on biomimetic retinal micro-

scanning. Sensors and Actuators A 160:60–68. DOI: https://doi.org/10.1016/j.sna.2010.03.036
Viollet S. 2014. Vibrating makes for better seeing: from the fly’s micro-eye movements to hyperacute visual 

sensors. Frontiers in Bioengineering and Biotechnology 2:9. DOI: https://doi.org/10.3389/fbioe.2014.00009, 
PMID: 25152883

Wardill TJ, Fabian ST, Pettigrew AC, Stavenga DG, Nordström K, Gonzalez-Bellido PT. 2017. A novel interception 
strategy in a miniature robber fly with extreme visual acuity. Current Biology 27:854–859. DOI: https://doi.org/​
10.1016/j.cub.2017.01.050, PMID: 28286000

Wehner R. 2020. Desert Navigator. Harvard University Press. DOI: https://doi.org/10.4159/9780674247918
Whitted T. 1979. An improved illumination model for shaded display. the 6th annual conference. . DOI: https://​

doi.org/10.1145/800249.807419
Wiederman SD, Fabian JM, Dunbier JR, O’Carroll DC. 2017. A predictive focus of gain modulation encodes 

target trajectories in insect vision. eLife 6:e26478. DOI: https://doi.org/10.7554/eLife.26478, PMID: 28738970
Wystrach A, Dewar A, Philippides A, Graham P. 2016. How do field of view and resolution affect the information 

content of panoramic scenes for visual navigation? A computational investigation. Journal of Comparative 
Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology 202:87–95. DOI: https://doi.org/10.​
1007/s00359-015-1052-1, PMID: 26582183

Zeil J, Nalbach G, Nalbach HO. 1986. Eyes, eye stalks and the visual world of semi-terrestrial crabs. Journal of 
Comparative Physiology A 159:801–811. DOI: https://doi.org/10.1007/BF00603733

Zeil J, Hofmann MI, Chahl JS. 2003. Catchment areas of panoramic snapshots in outdoor scenes. Journal of the 
Optical Society of America. A, Optics, Image Science, and Vision 20:450–469. DOI: https://doi.org/10.1364/​
josaa.20.000450, PMID: 12630831

https://doi.org/10.7554/eLife.73893
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1242/jeb.046755
http://www.ncbi.nlm.nih.gov/pubmed/21228203
https://doi.org/10.1145/1198555.1198798
https://doi.org/10.1016/j.envsoft.2017.09.018
https://doi.org/10.1016/j.envsoft.2017.09.018
https://doi.org/10.1016/0146-664X(82)90169-1
https://doi.org/10.1109/TNN.2008.2005605
http://www.ncbi.nlm.nih.gov/pubmed/19068426
https://doi.org/10.1016/j.asd.2010.10.003
http://www.ncbi.nlm.nih.gov/pubmed/21044895
https://doi.org/10.1007/978-3-642-74082-4_5
https://doi.org/10.1038/nature12083
https://doi.org/10.1038/nature12083
http://www.ncbi.nlm.nih.gov/pubmed/23636401
https://doi.org/10.15607/RSS.2014.X.047
https://doi.org/10.1007/s00359-015-1002-y
http://www.ncbi.nlm.nih.gov/pubmed/25863682
https://doi.org/10.1007/BF00657542
https://doi.org/10.1007/BF00657542
https://doi.org/10.1080/09540090500140958
https://doi.org/10.1016/j.sna.2010.03.036
https://doi.org/10.3389/fbioe.2014.00009
http://www.ncbi.nlm.nih.gov/pubmed/25152883
https://doi.org/10.1016/j.cub.2017.01.050
https://doi.org/10.1016/j.cub.2017.01.050
http://www.ncbi.nlm.nih.gov/pubmed/28286000
https://doi.org/10.4159/9780674247918
https://doi.org/10.1145/800249.807419
https://doi.org/10.1145/800249.807419
https://doi.org/10.7554/eLife.26478
http://www.ncbi.nlm.nih.gov/pubmed/28738970
https://doi.org/10.1007/s00359-015-1052-1
https://doi.org/10.1007/s00359-015-1052-1
http://www.ncbi.nlm.nih.gov/pubmed/26582183
https://doi.org/10.1007/BF00603733
https://doi.org/10.1364/josaa.20.000450
https://doi.org/10.1364/josaa.20.000450
http://www.ncbi.nlm.nih.gov/pubmed/12630831

	CompoundRay, an open-­source tool for high-­speed and high-­fidelity rendering of compound eyes
	Editor's evaluation
	Introduction
	Materials and methods
	Ray-casting-based insect eye renderer
	Modelling individual ommatidia
	From single ommatidia to full compound eye
	The CompoundRay software pipeline
	Scene composure and use
	Example inter-eye comparison method

	Results
	Criterion 1: arbitrary arrangements of ommatidia
	Criterion 2: inhomogeneous ommatidial properties
	Criterion 3: speed
	Minimum sample count
	Performance
	Example experiment: ﻿Apis﻿ ﻿m﻿﻿ellifera﻿ visual field comparison


	Discussion
	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References


