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Abstract: 13 

 14 

Microbial foraging in patchy environments, where resources are fragmented into particles or 15 

pockets embedded in a large matrix, plays a key role in natural environments. In the oceans and 16 

freshwater systems, particle-associated bacteria can interact with particle surfaces in different 17 

ways: some colonize only during short transients, while others form long-lived, stable colonies. 18 

We do not yet understand the ecological mechanisms by which both short-term and long-term 19 

colonizers can coexist. Here, we address this problem with a mathematical model that explains 20 

how marine populations with different detachment rates from particles can stably coexist. In our 21 

model, populations grow only while on particles, but also face the increased risk of mortality by 22 

predation and sinking. Key to coexistence is the idea that detachment from particles modulates 23 

both net growth and mortality, but in opposite directions, creating a trade-off between them. 24 

While slow-detaching populations show the highest growth return (i.e., produce more net 25 

offspring), they are more susceptible to suffer higher rates of mortality than fast-detaching 26 

populations. Surprisingly, fluctuating environments, manifesting as blooms of particles (favoring 27 

growth) and predators (favoring mortality) significantly expand the likelihood that populations 28 

with different detachment rates can coexist. Our study shows how the spatial ecology of 29 

microbes in the ocean can lead to a predictable diversification of foraging strategies and the 30 

coexistence of multiple taxa on a single growth-limiting resource. 31 

 32 

  33 
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Introduction 34 

 35 

Microbes in nature are remarkably diverse, with thousands of species coexisting in any few 36 

milliliters of seawater or grains of soils 1,2. This extreme diversity is puzzling since it conflicts 37 

with classic ecological predictions. This puzzle has classically been termed "the paradox of the 38 

plankton," referring to the discrepancy between the measured diversity of planktons in the 39 

ocean, and the diversity expected based on the number of limiting nutrients3–6. Decades of work 40 

have helped, in part, to provide solutions for this paradox in the context of free-living (i.e., 41 

planktonic) microbes in the ocean. Many have suggested new sources of diversity, such as 42 

spatiotemporal variability, microbial interactions, and grazing7–9. However, in contrast with free-43 

living microbes, the diversity of particle-associated microbes — often an order of magnitude 44 

greater than free-living ones — has been overlooked10–12. In contrast with planktonic bacteria, 45 

which float freely in the ocean and consume nutrients from dissolved organic matter, particle-46 

associated microbes grow by attaching to and consuming small fragments of particulate organic 47 

matter (of the order of micrometers to millimeters). It is thus instructive to ask: what factors 48 

contribute to the observed diversity of particle-associated microbes, and how do these factors 49 

collectively influence the coexistence of particle-associated microbes?  50 

 51 

The dispersal strategies of particle-associated microbes can be effectively condensed into one 52 

parameter: the rate at which they detach from particles. This rate, which is the inverse of the 53 

average time that microbes spend on a particle, is the key trait distinguishing particle-associated 54 

microbial populations from planktonic ones13,14The detachment rates of such particle-associated 55 

taxa can be quite variable15,16. Bacteria with low detachment rates form biofilms on particles for 56 

efficient exploitation of the resources locally, while others with high detachment rates frequently 57 

attach and detach across many different particles to access new resources17. Therefore, to 58 

understand how diversity is maintained in particle-associated bacteria we must be able to 59 

explain how bacteria with different dispersal rates can coexist. In this study, we address this 60 

question. Specifically, we ask how two populations with different dispersal strategies can coexist 61 

while competing for the same set of particles. We address this question under a range of 62 

conditions relevant for marine microbes.  63 

 64 

We hypothesize that dispersal is key to the coexistence of particle-associated microbes and 65 

thus might explain their high diversity. The degree of species coexistence on particles depends 66 

on the balance between growth and mortality. On particles, net mortality rates can be higher 67 



than for planktonic cells because of the large congregation of cells on particles, which exposes 68 

them to the possibility of a large and sudden local population collapse. The collapse of a 69 

particle-attached population can be induced by a variety of mechanisms, including particles 70 

sinking below a habitable zone18, or predation of whole bacterial colonies by viruses or grazers . 71 

For instance, after a lytic phage bursts out of a few cells on a particle, virions can rapidly engulf 72 

the entire bacterial population, leading to its local demise11,19,20. Such particle-wide mortality 73 

may kill more than 30% of particle associated populations in the ocean21,22. The longer a 74 

population stays on a particle, the higher the chance it will be wiped out. This trade-off between 75 

growth and risk of mortality suggests that there could be an optimal residence time on particles. 76 

It is however unclear whether such a trade-off could enable the coexistence of populations with 77 

different dispersal strategies and, if so, under what conditions.  78 

 79 

Here we study this trade-off using mathematical models and stochastic simulations. These 80 

models reveal that the trade-off between growth and survival against predation can indeed lead 81 

to the stable coexistence of particle-associated microbial populations with different dispersal 82 

strategies (in our work, detachment rates). We also study how environmental parameters, such 83 

as the supply rate of new particles, determine the dominant dispersal strategy and the range of 84 

stable coexistence. Our results show that in bloom conditions, when the particle supply is high, 85 

fast dispersers that rapidly hop between particles are favored. In contrast, under oligotrophic 86 

conditions, when particles are rare, rarely detaching bacteria have a competitive advantage. 87 

Overall, our work shows that differences in dispersal strategies alone can enable the 88 

coexistence of particle-associated marine bacteria, in part explaining their impressive natural 89 

diversity.  90 

 91 

Results 92 

 93 

Overview of the model: To understand how differences in dispersal strategies affect bacterial 94 

coexistence, we developed a mathematical model that describes the population dynamics of 95 

bacteria colonizing a bath of particles with a chosen dispersal strategy. More specifically, in our 96 

model, bacterial cells attach to particles from a free-living population in the bulk of the bath; they 97 

then grow and reproduce while attached. Detachment is stochastic with a fixed rate. After 98 

detachment, cells re-enter the free-living population and repeat the process. During the time 99 

spent attached to particles, all bacteria on a particle may die with a fixed probability per unit 100 

time, corresponding to their particle-wide mortality rate (Figure 1A). Another important feature of 101 



the model is density-dependent growth, which means that per capita growth rates decrease with 102 

increasing population size. For this, we use the classic logistic growth equation, which contains 103 

a simple linear density dependence (Figure 1B; Methods). Free-living subpopulations cannot 104 

grow, but die at a fixed mortality rate due to starvation. The probability of a bacterium 105 

encountering particles controls bacterial attachment, which we calculate using random walk 106 

theory as the hitting probability of two objects with defined sizes23,24 (see Methods for details). 107 

We assume that the detachment rate is an intrinsic property of a bacterial population and 108 

comprises its dispersal strategy independent of the abiotic environment. In our simulations, it is 109 

the only trait that varies between different bacterial populations. Growing evidence has shown 110 

that bacterial detachment rates differ significantly across marine bacterial communities from 111 

solely planktonic cells to biofilm-forming cells on particles16,17. Using this mathematical model, 112 

we asked how variation in detachment rate affects bacterial growth dynamics and the ability of 113 

multiple subpopulations to coexist on particles. For this, we simulated bacterial population 114 

dynamics on a bath of several particles and measured each population's relative abundance at 115 

a steady state (example in Figure 1C).  116 

 117 

Bacterial mortality determines optimal foraging strategies: Our model simulates growth, 118 

competition, and dispersal in a patchy landscape, similar to classical models of resource 119 

foraging, with the additional element of mortality, both within and outside patches (i.e., 120 

particles). We hypothesized that the inclusion of mortality could play an important role in 121 

affecting the success of a dispersal strategy (i.e., detachment rate), since it would alter the cost 122 

of staying on a particle. To investigate how mortality affects dispersal strategies, we studied its 123 

effect on the optimal strategy, which forms the focus of many classical models of foraging. 124 

According to optimal foraging theory (OFT), the optimal time spent on a particle is one that 125 

balances the time spent without food while searching for a new patch, with the diminishing 126 

returns from staying on a continuously depleting patch13,25. In our model, particles are 127 

analogous to resource patches, and the detachment rate is simply the inverse of the time spent 128 

on a particle (residence time). We assumed that the optimal strategy maximizes the total 129 

biomass yield of the population. 130 

 131 

As expected, OFT predicts the optimal detachment rate given a distribution of resources and 132 

search times, but only in the absence of mortality (Figure 2A). To test if our model agrees with 133 

the predictions of OFT, we calculated the optimal detachment rate (dopt) using simulations of our 134 

model in the absence of mortality and compared it with OFT predictions (Methods). We found 135 



that the optimal detachment rate, which outcompetes all other detachment rates, was consistent 136 

with OFT predictions across a wide range of particle numbers in our system (Figure 2A). 137 

Strikingly, in the presence of mortality, the optimal detachment rate (dopt) changed significantly, 138 

either increasing or decreasing depending on the type of mortality. When mortality was particle-139 

wide, the optimal detachment rate was much higher than predicted by OFT, often resulting in 140 

residence times that were many days shorter than the OFT prediction (Figure 2A). This is 141 

because it is more beneficial to detach faster when there is a higher risk of particle-wide 142 

extinction. In contrast, when mortality was only present in free-living populations (affecting 143 

individuals, not particles, at a constant per capita rate), the optimal detachment rate was much 144 

lower than predicted by OFT (Figure 2A). These results expand on our knowledge of OFT and 145 

explain that the source and strength of mortality – on individuals or on whole particles – can 146 

differently impact the optimal detachment rate. 147 

 148 

A trade-off between growth and mortality enables the coexistence of dispersal strategies:  149 

Having observed that mortality can greatly affect the success of a dispersal strategy, we next 150 

sought to understand whether it could enable the coexistence of bacterial populations with 151 

different strategies (detachment rates). Simulations where we competed a pair of bacterial 152 

populations with different detachment rates revealed that differences in detachment rates alone 153 

are sufficient to enable coexistence on particles (Figure 2B). We assessed coexistence by 154 

measuring the relative abundances of populations at equilibrium (Figure 2 – Figure supplement 155 

1). Interestingly, such a non-trivial coexistence only emerged in the presence of particle-wide 156 

mortality. In the absence of mortality on particles, we only observed trivial coexistence 157 

(coexisting populations had identical detachment rates, and for the purposes of the model, were 158 

one and the same; Figure 2 – Figure supplement 2). These results suggested that the presence 159 

of particle-wide mortality, where the entire population on a particle suffers rapid death, was 160 

crucial for populations with different dispersal strategies to coexist. 161 

 162 

To investigate the underlying mechanisms that may give rise to the coexistence of populations 163 

with different detachment rates, we quantified the growth return of particle-associated 164 

populations as well as their survival rate on particles (Figure 3A-3B). We calculated the average 165 

growth return based on the average number of offspring produced per capita during one single 166 

attachment-detachment event. The survival rate on particles was obtained by subtracting the 167 

mortality rate per capita from the offspring production rate per capita (Figure 3B; see Methods). 168 

The results revealed that a trade-off between bacterial growth return and survival rate emerged 169 



on particles, supporting the coexistence of populations with different detachment rates (Figure 170 

3C-D). Populations that detach slowly from particles have higher growth returns but are also 171 

more susceptible to particle-associated mortality. In contrast, populations with low residence 172 

time on particles (high detachment rate) have low growth returns but they are less likely to die 173 

by predation or sink beyond the habitable zone. We next investigated whether such a trade-off 174 

was necessary to enable coexistence in our model.  175 

 176 

We developed a coarse-grained model to address the conditions under which we might observe 177 

coexistence between populations whose only intrinsic difference was their detachment rates in 178 

our system. Our simple model expands on classical literature which describes coexistence 179 

among various dispersal strategies in spatially structured habitats26–29. We simplified many 180 

details in favor of analytical tractability. Chiefly, we assumed that the growth dynamics on each 181 

particle were much faster than the dispersal dynamics across particles. This allowed us to 182 

replace detailed growth dynamics on single particles with a single number quantifying the 183 

bacterial population, N, after growth on each particle. In the model, we considered two particle 184 

associated populations that competed for a shared pool of particles. To keep track of 185 

populations, we quantified the number of particles they had successfully colonized as B1 and B2, 186 

respectively. Individuals from both populations could detach from particles they had already 187 

colonized and migrate to a number E of yet-unoccupied particles, with a rate proportional to 188 

their detachment rates, d1 and d2, respectively. Once migrated, individuals rapidly grew on 189 

unoccupied particles to their fixed per particle growth returns, N1 and N2. To model particle-wide 190 

mortality, we assumed a fixed per particle mortality rate, mp. The population dynamics for the 191 

system of particles could therefore be written as follows: 192 

 193 

𝑑𝐵𝑖

𝜕𝑡
= 𝑁𝑖𝑑𝑖𝐵𝑖𝐸 − 𝑚𝑝𝐵𝑖                              (1) 194 

 195 

At equilibrium (
𝜕𝐵𝑖

𝜕𝑡
= 0 ∀ 𝑖), either population can survive in the system if and only if its net 196 

colonization and mortality rates are equal (𝑁𝑖𝑑𝑖𝐸 ≈ 𝑚𝑝). Consequently, the product of the 197 

growth return per particle and the detachment rate of either population should be equal (𝑁1𝑑1 ≈198 

𝑁2𝑑2). By simplifying Eq. 1 at equilibrium, this model predicts that for two competing populations 199 

to coexist, their growth returns and detachment rates on particles must follow the relation: 200 

 201 



𝑁1

𝑁2
=  

𝑑2

𝑑1
                             (2) 202 

 203 

This relationship shows that coexistence demands a trade-off between the growth return (N) of 204 

a bacterial population, and its detachment rate (d), i.e., the inverse of an individual’s residence 205 

time on a particle. In other words, coexistence only emerges when the growth returns increase 206 

with the residence time on the particle (
𝑁1

𝑁2
~

𝑇1

𝑇2
). In agreement with this, simulations from our 207 

detailed model revealed that coexistence between two populations with different detachment 208 

rates only occurred in conditions where the two populations obeyed such a relationship, or 209 

trade-off (Figure 3C, grey region). We obtain the same relationship in Eq. 2 through an alternate 210 

calculation, where the relative abundances of both populations remains fixed, while the particle 211 

number varies. 212 

 213 

While the trade-off in Eq. 2 allows coexistence and is necessary condition for it, it does not hold 214 

across all parameter values, and does not allow any pair of detachment rates to coexist (Figure 215 

3C, white region). In particular, no detachment rate can coexist with the optimal detachment 216 

rate, thus rendering coexistence between any other set of detachment rates susceptible to 217 

invasion by this optimal strategy. Other strategies, when paired with the optimal strategy, 218 

disobey the condition in Eq. 2, and thus cannot coexist with it. Therefore, if detachment rates 219 

were allowed to evolve, only one population would survive in the long run – the one with the 220 

optimal detachment rate (Figure 2 – Figure supplement 3). Motivated by this observation, we 221 

next asked whether environmental fluctuations would render coexistence evolutionarily stable, 222 

or whether they would further destabilize the coexistence of populations with non-optimal 223 

dispersal strategies. 224 

 225 

Environmental fluctuations stabilize and enhance the diversity of dispersal strategies:  226 

The existence of a unique optimal strategy, even in the presence of particle-wide mortality 227 

(Figure 2A), suggests that the coexistence that we observed between populations with different 228 

detachment rates (Figure 2B) may not be evolutionarily stable. However, in the oceans, both the 229 

abundance of particles and the density of predators (such as phage) exhibit temporal and 230 

spatial fluctuations30–32, in turn affecting the foraging dynamics of particle-associated bacterial 231 

populations. We used our model to study how the particle-wide mortality rate affects the 232 

likelihood of two particle-associated bacterial populations to coexist (see Methods). Surprisingly, 233 



we found a negative correlation between the mortality rate and particle abundance that 234 

enhances the range of coexistence among different detachment rates (Figure 4A). At low 235 

mortality rates, slow detaching populations outcompete faster ones, as it is more advantageous 236 

to stay longer on particles and grow, i.e., these populations derive higher net growth returns. 237 

However, a higher mortality rate on particles allows faster-detaching populations to instead gain 238 

an advantage over the slow-detaching populations, since they can better avoid particle-wide 239 

mortality events. 240 

 241 

We extended our model to ask how variation in the total number of particles (or particle 242 

abundance) affect population dynamics and the coexistence range of populations with different 243 

dispersal strategies. The results indicated that an intermediate number of particles maximize the 244 

likelihood of coexistence of two populations with different dispersal strategies (Figure 4A). Here, 245 

we simulated a range of particle abundances, between 1 to 80 particles L-1, which corresponds 246 

to the commonly observed range of particle abundances in aquatic environments (mean ~25 247 

particles L-1; Figure 4 – Figure supplement 1). Low particle abundances (0 to 20 L-1) promote the 248 

growth of slow detaching populations while at high particle abundances, fast detaching 249 

populations dominate. The reason for this is the following: at particle abundances less than 20 250 

L-1, the probability of free-living cells finding and attaching to particles is less than 50% of the 251 

probability at high particle abundances (100 L-1 in Figure 1 – Figure supplement 1). This makes 252 

particle search times very high, thus explaining how slow detaching strategies have an 253 

advantage. As the number of particles increases, the entire system can support more cells (has 254 

a higher carrying capacity). This drives a decrease in particle search times, and thus 255 

increasingly advantages faster detaching strategies.  256 

 257 

Interestingly, our results indicate that the optimal detachment rate (dopt) is affected by the 258 

particle abundance and increases with the number of particles in the system (Figure 4B). We 259 

thus hypothesized that fluctuations in particle abundance may also induce fluctuations in the 260 

optimal detachment rate, such that no specific detachment rate would be uniquely favored at all 261 

times. Thus, environmental stochasticity would constantly change the optimal detachment rate; 262 

low particle abundances would favor fast-detaching populations, while higher particle 263 

abundances would favor slow-detaching populations. Such a “fluctuating optimum” may create 264 

temporal niches and promote higher bacterial diversity on marine particles. To test this 265 

hypothesis using our model, we simulated competition between 100 populations with different 266 

detachment rates under a periodically varying particle abundance (Figure 4C). The chosen 267 



frequencies of variation in particle abundance (Fp) were selected to be consistent with the 268 

observed frequencies in the ocean, with periods ranging between 10 to 100 hr (Figure 4 – 269 

Figure supplement 2)33. We quantified the range of detachment rates, a proxy for bacterial 270 

diversity, that could coexist at equilibrium (Figure 4D). The results revealed that the scenario 271 

with fastest fluctuations in particle numbers (Fp = 10hr-1) supported higher diversity among 272 

populations with different detachment rates (Figure 4D). Consistent with the fluctuation periods 273 

observed in the ocean, our simulations showed that fluctuation at the daily scale is sufficient to 274 

support the coexistence of different dispersal strategies. Overall, our model provides a 275 

framework to study how environmental fluctuations contribute to observed diversity in the 276 

dispersal strategies of particle-associated populations in marine environments.   277 

 278 

Discussion 279 

 280 

In this study, we have shown a mechanism by which diverse dispersal strategies can coexist 281 

among bacterial populations that colonize and degrade particulate organic matter (POM) in 282 

marine environments using a mathematical model. In our model, coexistence among 283 

populations with different dispersal strategies emerges from a trade-off between growth return 284 

and the probability of survival on particles. Such a trade-off determines the net number of 285 

detaching cells from particles that disperse into the bulk environment and colonize new 286 

particles. While slow detaching populations are able to increase their growth return on particles 287 

and produce a relatively high number of offspring, they also experience higher mortality on 288 

particles that reduces their ability to colonize new particles. In contrast, faster-detaching 289 

populations can better avoid mortality by spending less time on particles, but this comes at the 290 

expense of lowering their growth return on a particle. Such populations can instead disperse 291 

and colonize a larger fraction of fresh yet-unoccupied particles. Interestingly, our results 292 

indicated that in the absence of mortality on particles, no coexistence is expected and there is a 293 

single dispersal strategy that provides the highest fitness advantage over dispersing 294 

populations, indicating that mortality on a particle is a key factor for the emergence of diverse 295 

dispersal strategies. Such correlated mortality with dispersal is the direct result of spatial 296 

structures created by particle-associated lifestyle, unlike the planktonic phase where predation 297 

probability per capita is expected to be uniform among planktonic cells. This study expands on 298 

the existing knowledge that spatial structure plays a critical role in promoting bacterial diversity 299 

in nature34–36, by incorporating the idea of particle-wide predation, which are events of correlated 300 

predation of an entire population on a particle. Such correlated predation could be an 301 



ecologically relevant mechanism that explains, in part, why we observe a higher diversity in 302 

particle-associated bacteria than planktonic bacteria in nature10–12. Our model assumes a 303 

general form of predation on particles that is insensitive to population type. However in the 304 

context of viral infection, field observations often show high strain specificity37–40 that is likely to 305 

contribute to higher diversity in particle-associated populations. Viral infection act as a driving 306 

force to create a continuous succession of bacterial populations on particles by replacing phage 307 

exposed populations with less susceptible ones. 308 

 309 

Consistent with the literature on optimal foraging theory14,41,42, our model predicts the existence 310 

of an optimal foraging strategy for bacterial population colonizing particles in marine 311 

environments. Building on previous studies13 that show the optimal detachment rate is a 312 

function of search time for new resources, our study suggests that optimal detachment rate 313 

could be significantly impacted by the predation rate on particles. Our results indicated that a 314 

high mortality rate on particles shifts the optimal foraging strategy to populations with fast 315 

detachment rates. This finding agrees with previous OFT models that considered mortality, 316 

showing that optimal foraging effort and residence time on patches decrease significantly as the 317 

density of predators increase43,44. Interestingly, we showed that the variability in optimal 318 

detachment rate due to environmental fluctuations in particle number and predation rate, could 319 

lead to evolutionarily stable coexistence among diverse dispersal strategies. Our results indicate 320 

that in the absence of any environmental fluctuations, there is a unique optimal dispersal 321 

strategy. However, the optimal dispersal strategy depends on the abundance of particles, and 322 

thus fluctuations in their abundance at ecological timescales could sustain multiple dispersal 323 

strategies for long times. This finding is consistent with previous theoretical and 324 

empirical studies showing that environmental fluctuations such as light and temperature may 325 

lead to the stable coexistence of species45–48. Our model also predicts a loss of diversity when 326 

particle abundances significantly increase, consistent with field observations from algal 327 

blooms49–51.  328 

 329 

While we simplified bacterial colonization dynamics on particles by only considering competitive 330 

growth kinetics, variants of our model suggest that coexistence between different dispersal 331 

strategies is also expected under more complex microbial interactions that are observed on 332 

marine particles, including cooperative growth dynamics (Figure 2 – Figure supplement 4). Such 333 

simplifications allowed us to explore the role of dispersal in maintaining microbial diversity in 334 

natural systems, in addition to previously observed factors such as metabolic interaction, 335 



resource heterogeneities and succession8,52,53. However, future studies, which can build on our 336 

model, could study how additional ecological factors contribute to bacterial marine diversity, 337 

such as complex trophic interactions leading to successional dynamics 18,52,54,55. Additionally, 338 

while we assumed diffusional searching for simplicity, extensions of our work could include 339 

more realistic bacterial search strategies, such as active motility and chemotaxis, which can 340 

play a big role in foraging in aquatic microorganisms56–58. Finally, though we assumed a fixed 341 

detachment rate for each population, dispersal strategies can be quite complex, depending on 342 

local conditions such as bacterial and nutrient density on particles; a more thorough exploration 343 

of the relative costs and benefits of such myriad of dispersal strategies remains another 344 

promising avenue for future work. Overall, our model provides a reliable framework to further 345 

study how diverse dispersal strategies and mortality could contribute to the emergence of 346 

complex community dynamics on marine particles and how environmental factors impact 347 

microbial processes in regulating POM turnover at the ecosystem level.  348 

 349 

Methods 350 

In this study, a population-based model is developed that represents the interactions between 351 

the bacterial cells with different detachment rates and particles in a chemostat system, where 352 

the total number of particles is kept constant. The following provides a detailed procedure of the 353 

modeling steps as represented schematically in Figure 1. We have made the simulation code 354 

available in the following GitHub repository: https://github.com/alieb-mit-edu/Bacterial-dispersal-355 

model 356 

 357 

Modeling Population Dynamics on Particles 358 

Our model simulates the dynamics of two competing particle-associated populations (𝐵𝑝) that 359 

colonize the same set of particles. Two populations (𝑖 and 𝑗) are assumed to be identical, except 360 

for their detachment rates, d, from a particle (𝑑𝑖 ≠ 𝑑𝑗). The dynamics of the particle-associated 361 

populations are determined by the rate at which cells attach to particles (𝛼) from the free-living 362 

population (𝐵𝐹), the growth rate of attached cells (𝜇) and detachment rate (𝑑), as follows:  363 

𝑑𝐵𝑝,𝑛,𝑖

𝜕𝑡
= 𝛼𝑖𝐵𝐹𝑖 + 𝜇𝑖(𝐵𝑝,𝑛)𝐵𝑝,𝑛,𝑖 − 𝑑𝑖𝐵𝑝,𝑛,𝑖                (3) 364 



where 𝑛 represents the particle index and its associated population, 𝑖. Eq. 3 can be formulated 365 

for any other population at the same particle. In a system with 𝑁𝑝 particles and M populations, 366 

we numerically solve a finite set of equations (𝑁𝑝 × M) at each time interval. The growth rate of 367 

population, i (𝜇𝑖) is a function of total particle associated cells (𝐵𝑝,𝑛), as described later in Eq. 6.  368 

From number conservation, the free-living bacterial pool 𝐵𝐹𝑖 of any population 𝑖 results from 369 

particle detachment and attachment dynamics. The rate of change of all free-living pools results 370 

from a combination of three factors: (1) the rate at which cells detach from the particles 𝑑𝑖, (2) 371 

the rate 𝛼𝑖 at which cells attach to the particles, and (3) a mortality rate due to starvation 𝑚𝐹𝑖, 372 

as: 373 

𝑑𝐵𝐹𝑖

𝜕𝑡
= ∑ 𝑑𝑖𝐵𝑝,𝑛,𝑖

𝑁𝑝

𝑛=1 − 𝑁𝑝𝛼𝑖𝐵𝐹𝑖 − 𝑚𝐹𝑖𝐵𝐹𝑖                          (4) 374 

We run all dynamical simulations until an equilibrium is reached and there are no noticeable 375 

changes in the population size of particle-associated and free-living cells, i.e., 
𝜕𝐵𝑝

𝜕𝑡
~0 and 376 

𝜕𝐵𝐹

𝜕𝑡
~0. 377 

Bacteria-particle encounter rate 378 

We assume that a bacterial cell can attach to the particle it encounters and stay attached for a 379 

period of time (“residence time”). The encounter probability of a spherical cell with radius 𝑟𝑐 and 380 

a spherical particle with a radius of 𝑟𝑝 at a given time 𝑡 can be calculated using the hitting 381 

probability from random walk theory23,24:  382 

𝑃𝑒(𝑖) =
𝑅

𝑟𝑐,𝑝
𝑒𝑟𝑓𝑐 (

𝑟𝑐,𝑝−𝑅

√4𝐷.𝑡
)                                                    (5) 383 

where R is the total radius (𝑅 = 𝑟𝑝 + 𝑟𝑐)  and D is an effective diffusion coefficient (𝐷 = 𝐷𝑐 + 𝐷𝑝) 384 

for a bacterial cell (c) starting at a distance (𝑟𝑐,𝑝). The diffusion coefficient can be calculated from 385 

an empirical model: 𝐷 = 𝑘𝐵𝑇 6𝜋µ𝑟⁄ , where 𝑘𝐵 ≈ 1.38 × 10−23 𝐽 𝐾−1 is Boltzmann’s constant, 386 

T=293 K is the ambient temperature,  𝜇 = 1.003 𝑚𝑃𝑎 𝑠 is the viscosity of water at the given 387 

ambient temperature. In aquatic environments, the size of marine snow (>100 µm) is often a lot 388 

larger than the cell size, we thus assume that the effective diffusion is generally controlled by 389 

cell diffusion coefficient (𝐷 ≈ 𝐷𝑐). From Eq. 5, we calculate the total number attaching cells to a 390 



particle at a given time (t) from free living cells of population i by multiplying the hitting 391 

probability to the total number of free-living cells.  392 

Growth and reproduction on particles 393 

We assume that per capita access to particulate resources decreases in proportion to the total 394 

number of cells that colonize the surface. This leads us to model bacterial competition on a 395 

given particle, n, with a linear negative density-dependent growth function.  396 

 397 

In this model, we assume that the bacterial growth on the particle is competitive in which the 398 

growth rate, μi is not constant but changes as a function of the total biomass on a particle. The 399 

negative density-dependent growth is modeled by assuming a linear function with the total 400 

particle associated cells (𝐵𝑝,𝑛 = ∑ 𝐵𝑝,𝑛,𝑖) on particle, n, 401 

 402 

{
𝜇𝑖 = 𝜇max (1 −

𝐵𝑝,𝑛

𝑁𝑡
)

𝜇𝑖 = 0,     𝐵𝑝,𝑛 > 𝑁𝑡

                (6) 403 

Where 𝐵𝑝,𝑛 = ∑ 𝐵𝑝,𝑛,𝑖, represents the total number of particle-attached cells, µi represents that 404 

growth rate of population i, 𝜇𝑚𝑎𝑥 indicates the maximal growth rate, in the absence of 405 

competition, and Nt represents the particle-specific carrying capacity. The net growth rate is 406 

assumed to be zero if more cells colonize a particle where bacteria have reached their carrying 407 

capacity; this occurs when bacteria have fully covered a particle’s surface, such that the death 408 

or detachment of any cell is quickly replaced by the growth of another cell. The model assumes 409 

that free living cells cannot grow. We performed a sensitivity analysis to competitive growth 410 

kinetic parameterizations (maximum growth rate μmax and carrying capacity, Nt) and showed that 411 

coexistence among bacterial detachment strategies is robust for a wide range of parameters 412 

(Figure 2 – Figure supplement 5).  413 

Offspring production on the particle only occurs when particle associated cells accumulate a 414 

total biomass that is larger than the biomass of a single cell (𝑚𝑑). For simplicity, we only 415 

measured biomass based on the dry mass of the cells. The biomass accumulation rate on a 416 

particle for population i is proportional to the available biomass on the particle, n and its 417 

exponential growth rate (
𝑑𝐵𝑝,𝑛,𝑖

𝑑𝑡
= 𝐵𝑝,𝑛,𝑖𝜇𝑖). With this, the total number of offspring (𝑁𝑜,𝑖) on a 418 

particle for a time interval of, ∆𝑡 can then be calculated as: 419 



     420 

{
𝑁𝑜,𝑖 =

𝐵𝑝,𝑛,𝑖𝜇𝑖

𝑚𝑑
∆𝑡,     𝐵𝑝,𝑛,𝑖𝜇𝑖∆𝑡 >  𝑚𝑑     

𝑁𝑜,𝑖 = 0,                                                         
  (7) 421 

Particle-wide bacterial mortality 422 

In the model, a general form of mortality on particles is considered that accounts for mortality 423 

induced by predation or particle sinking, taking cells beyond their preferred habitat. A constant 424 

fraction of particles (mp) is randomly selected at each time interval (Δt) and their associated cells 425 

are removed from the particle. This fraction represents the particle-scale mortality rate (mp). To 426 

maintain particle number equilibrium, a fraction mp of uncolonized particles is introduced into the 427 

system and colonized by free-living populations (𝐵𝑝,𝑛,𝑖=0). 428 

 429 

 430 

 431 

Mortality of free-living cells is assumed to be caused by loss of biomass over a prolonged period 432 

of starvations from the absence of substrate uptake in the free-living phase. As described in Eq. 433 

4, free-living cells (BF) lose a constant fraction of their biomass (𝑚𝐹𝑖) every time step as the cell 434 

maintenance. Note that though detachment of cells from a particle appears similar to mortality 435 

on particles, in the former, detached cells move to the free-living pool, while in the latter, cells 436 

die and do not add to either pool. 437 

Particle degradation and turnover  438 

We assume that a particle contains a finite amount of resources that is degraded by bacterial 439 

cells with a constant yield of converting the resources into biomass. From a previous study, we 440 

assume that the yield is about 5% and a significant fraction of particle degradation products are 441 

lost to the environment before being taken up by the cells17.   442 

  443 

Optimal residence time from optimal foraging theory 444 

Optimal foraging theory describes the dispersal behavior of microbial populations in patchy 445 

environments assuming maximized growth return using the marginal value theorem. According 446 

to optimal foraging theory, the growth return of particle-associated bacteria is maximized if a 447 

bacterial cell detaches from the particle when its time-averaged uptake rate reaches its 448 

instantaneous uptake rate. We applied this assumption to obtain the optimal residence time on 449 

particles by tracking individual cells in our model and numerically calculating their instantaneous 450 



uptake rate (𝑢(𝑡)) on a particle from the attachment time (𝑡𝑎) to detachment using our 451 

population-based model. The residence time (𝑡𝑟) is considered optimal when the following 452 

equation is satisfied13: 453 

 454 

𝑢(𝑡𝑟) = ∫
𝑢(𝑡)𝑑𝑡

(𝜏𝑠+(𝑡𝑟(𝜏𝑠)−𝑡𝑎))

𝑡𝑟

𝑡𝑎
                            (8) 455 

 456 

where 𝜏𝑠 is the search time and a function of the number of particles in the system. We 457 

calculated the search time from Eq.5 when the probability of the cell and particle encounter is 458 

above 95% (Figure 1 – Figure supplement 1).  459 

 460 
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Figures 469 

 470 



 471 

Figure 1:  Schematic representation of the mathematical model simulating slow and fast 472 

dispersal strategies of bacterial populations that colonize particulate organic matter (A). 473 

The model assumes that the predation on a particle or sinking out of system’s boundaries kills 474 

it’s all associated populations. After infection, the non-colonized particle is then recolonized by 475 

free-living populations. As resources on a particle are consumed, its associated populations are 476 

dispersed and are added to the free-living populations. In this case, the old particle is replaced 477 

by a new un-colonized particle in the system. (B) The growth kinetics on a single particle is 478 

assumed to be density-dependent and decreases linearly as a function of the number of cells 479 

colonizing the particle. Nt represents the carrying capacity of the particle. C) The dynamics of 480 

particle-associated cells and their corresponding growth rates are shown for a system with 1000 481 

particles. The mean values over many particles and an example of dynamics on a single particle 482 

are illustrated.   483 



 484 

Figure 2. Variation in bacterial detachment strategies allow coexistence in the particle 485 

system. (A) Optimal residence time predicted by the population-based model and optimal 486 

foraging theory (Methods). Three scenarios with various particle-wide mortality (mp) and 487 

mortality on free living populations (mF) are simulated with the following rates: (i) particle-wide 488 

mortality (mp= 0.05 hr-1, mF= 0.02 hr-1), (ii) free living mortality (mp= 0 hr-1, mF= 0.05 hr-1) (iii) no 489 

mortality (mp= 0 hr-1, mF= 0 hr-1. To calculate optimal residence time based on optimal foraging 490 

theory (OFT), we used our model and tracked individual cells attaching to a particle. The time-491 

averaged uptake rate of the attached cell and its instantaneous uptake rate were calculated. 492 

The residence time with similar instantaneous and time-averaged uptake rates is assumed to be 493 

optimal residence time based on OFT (see method for details). In our population-based model, 494 

the optimal residence time is assumed to be a residence time that maximizes the growth return 495 

from the particles. (B) The relative abundance of population one is shown for competition 496 

experiments of two populations with different detachment rates. The relative abundance is 497 

measured at the equilibrium, where no changes in the sizes of both populations are observed. 498 

The area with white color represents the conditions where either one of the populations is 499 

extinct. The mortally on particles is assumed 0.02hr-1. (inset) Phase diagram of the coexistence 500 

as a function of detachment rates for two competing populations. dopt. represents the optimal 501 

detachment rate that the coexistence range nears zero. (B) The attachment rates are kept 502 

constant at 0.0005hr-1. The number of particles is assumed to be 60 L-1. The carrying capacity of 503 



the particle is assumed to be 5e106. Simulations are performed using our population-based 504 

mathematical model. 505 

 506 

  507 



 508 

 509 

 510 

 511 

Figure 3. The trade-off between bacterial growth return and survival on the particles 512 

determine the coexistence range of competing populations. (A) The growth return of a 513 

single cell on a particle is calculated based on the number of offsprings produced during a 514 

single attachment/detachment event. (B) The growth rate on particles slows down as the 515 

particle is populated by offspring cells or new attaching cells that limit the net growth return from 516 

a particle. (C) The ratio of growth returns and survival of population one to population two per 517 

capita as a function of their radios of residence times is shown. The residence time on the 518 

particle is assumed to be the inverse of each population's detachment rate. The relative 519 

abundance of population one is shown for its corresponding simulations. The data are shown for 520 

the simulations where detachment rate of population 2 was kept constant at 0.2 hr-1. Constant 521 

residence time for the population two (4hr) is considered while varying the residence time of the 522 

first population across simulations. 1:1 line represents a coarse-grained model for the 523 

coexistence criteria of two competing populations. 524 

 525 

 526 

  527 



 528 

Figure 4. Particle abundance and predation rate shape the coexistence of populations 529 

with different dispersal strategies on the particle system. (A) The coexistence probability is 530 

shown for a range of particle abundances and predation rates. The coexistence probability is 531 

calculated by performing multiple competition experiments across populations with various 532 

detachment rates and quantifying the number of conditions that the coexistence between two 533 

populations is found. (B) For three particle abundances in Figure 4A, the relative abundance of 534 

population one is shown in competition experiments of two populations. The numbers in circles 535 

refer to conditions in Figure 4A. Simulations are assumed to be at the equilibrium when no 536 

changes in the size of either population are observed. The area with white color represents the 537 

conditions where either one of the populations is extinct. (C) A sine function is introduced to 538 



represent particle abundance fluctuations. (D) The coexistence range represents a range of 539 

detachment rates for populations that coexist at the equilibrium. Populations with relative 540 

abundances less than 5% of the most abundant population is assumed extinct. (E) The 541 

coexistence range is shown as a function of particle fluctuation period. The attachment rate and 542 

mortality rates are assumed to be ~0.0005hr-1 and ~0.045 hr-1. 543 

 544 

 545 
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Supplementary Figure Legends 695 

 696 

Figure 1 – Figure supplement 1. (A) Encounter probability of a bacterial cell and a particle as 697 

a function of cell-particle distance, Dc,p. An analytical model based on the hitting probability of 698 

two objects from random walk theory is used to obtain the encounter probability (Eq. 5). 699 

Bacterial cell and particle sizes are assumed to be 1 and 100µm, respectively. Simulations are 700 

performed for two time-intervals of 1 and 10 seconds.  (B) The rate of free living bacterial cells 701 

attachment to particles as a function of time for various number particle availability in the 702 

environment. 703 

 704 

Figure 2 – Figure supplement 1. Two examples of population dynamics are shown wherein 705 

both populations reach a stable coexistence (I), while in the other scenario (II), one population is 706 

extinct. The detachment rates of the populations B1 and B2 in scenarios  I and II are (0.7hr-1, 707 

0.2hr-1) and (0.7hr-1, 1hr-1), respectively. These population dynamics correspond to the 708 

conditions simulated in Figure 2A. 709 

 710 

Figure 2 – Figure supplement 2. The relative abundance of population one is shown when no 711 

mortality on particles is considered for competition experiments of two populations with different 712 

detachment rates. The parameters for the simulations are selected similar to Figure 2A, except 713 

with no particle-wide mortality. 714 

 715 

Figure 2 – Figure supplement 3. In the absence of environmental fluctuations, competition 716 

experiment between populations with different detachment rates shows an emergence of an 717 

optimal detachment strategy that outcompete other populations. The relative abundances of 718 

populations with different detachment rates are shown over time. The simulations start with 100 719 

populations with the same relative abundances that they only differ in their detachment rates. In 720 

this simulation, bacterial cells colonize 1000 particles with a constant attachment rate 721 

(~0.0005hr-1). Two mortality rates are simulated (low: 0.04hr-1 and high 0.08hr-1) 722 

 723 

Figure 2 – Figure supplement 4. Cooperative growth kinetics restricts the coexistence range 724 

among two populations with different dispersal strategies. (A) Schematic representation of 725 

various growth kinetics on particles as a function of the number of bacteria on particles. (B) The 726 

coexistence range among two populations is shown as a function of the detachment rate of the 727 

second population. The coexistence range represents a range of detachment rates for both 728 



populations that coexist at the equilibrium. Inset panel represents the relative abundance of 729 

population 1 for different detachment rates. Detachment rates with relative abundances less 730 

than 5% is assumed extinct. The mortally on particles is assumed 0.02hr-1. The attachment 731 

rates are kept constant at 0.0005hr-1. The number of particles is assumed to be 60L-1. The 732 

carrying capacity and maximum growth rates are assumed, Nt=5×106 and µmax = 0.50 hr-1, 733 

respectively. 734 

 735 

Figure 2 – Figure supplement 5. The sensitivity of coexistence among bacterial detachment 736 

strategies to competitive growth kinetic parameterizations (Eq. 6: maximum growth rate μmax 737 

and carrying capacity, Nt). The relative abundance of population one is shown for competition 738 

experiments of two populations with different detachment rates and for two different values of 739 

maximum growth rates and carrying capacities. The area with white color represents the 740 

conditions where either one of the populations is extinct. The mortally on particles is assumed 741 

0.02hr-1. The attachment rates are kept constant at 0.0005hr-1. The number of particles is 742 

assumed to be 60L-1. 743 

 744 

Figure 4 – Figure supplement 1. Particle abundance distributions extracted from the field 745 

observations. The particle abundances are extracted over many field observations across many 746 

aquatic environments at different geographical locations (Möller et al. 2012; Ashijan et al., 2005; 747 

Gallager et al., 2004; Norrbin et al., 1996). The mean particle abundance over these field data is 748 

approximately 25 per liter. 749 

 750 

Figure 4 – Figure supplement 2. The durations of environmental fluctuation periods for particle 751 

abundances are extracted from field data33. (A) The fluctuations in particle abundance are 752 

characterized by quantifying fluctuation periods from the time difference between two 753 

neighboring local minimum and maximum, as illustrated in the schematic. (B) Probability 754 

distribution functions for fluctuation periods in particle abundances obtained from field 755 

observations. 756 
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 767 

Figure 1 – Figure supplement 1. (A) Encounter probability of a bacterial cell and a particle as a 768 

function of cell-particle distance, Dc,p. An analytical model based on the hitting probability of two 769 

objects from random walk theory is used to obtain the encounter probability (Eq. 5). Bacterial 770 

cell and particle sizes are assumed to be 1 and 100µm, respectively. Simulations are performed 771 

for two time-intervals of 1 and 10 seconds.  (B) The rate of free living bacterial cells attachment 772 

to particles as a function of time for various number particle availability in the environment.  773 
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 781 

Figure 2 – Figure supplement 1. Two examples of population dynamics are shown wherein both 782 

populations reach a stable coexistence (I), while in the other scenario (II), one population is 783 

extinct. The detachment rates of the populations B1 and B2 in scenarios  I and II are (0.7hr-1, 784 

0.2hr-1) and (0.7hr-1, 1hr-1), respectively. These population dynamics correspond to the 785 

conditions simulated in Figure 2A. 786 
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 789 

 790 

Figure 2 – Figure supplement 2. The relative abundance of population one is shown when no 791 

mortality on particles is considered for competition experiments of two populations with different 792 

detachment rates. The parameters for the simulations are selected similar to Figure 2A, except 793 

with no particle-wide mortality. 794 



 795 

 796 

Figure 2 – Figure supplement 3. In the absence of environmental fluctuations, competition 797 

experiment between populations with different detachment rates shows an emergence of an 798 

optimal detachment strategy that outcompete other populations. The relative abundances of 799 

populations with different detachment rates are shown over time. The simulations start with 100 800 

populations with the same relative abundances that they only differ in their detachment rates. In 801 

this simulation, bacterial cells colonize 1000 particles with a constant attachment rate 802 

(~0.0005hr-1). Two mortality rates are simulated (low: 0.04hr-1 and high 0.08hr-1) 803 
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 805 

 806 

Figure 2 – Figure supplement 4. Cooperative growth kinetics restricts the coexistence range 807 

among two populations with different dispersal strategies. (A) Schematic representation of 808 

various growth kinetics on particles as a function of the number of bacteria on particles. (B) The 809 

coexistence range among two populations is shown as a function of the detachment rate of the 810 

second population. The coexistence range represents a range of detachment rates for both 811 

populations that coexist at the equilibrium. Inset panel represents the relative abundance of 812 

population 1 for different detachment rates. Detachment rates with relative abundances less 813 

than 5% is assumed extinct. The mortally on particles is assumed 0.02hr-1. The attachment 814 

rates are kept constant at 0.0005hr-1. The number of particles is assumed to be 60L-1. The 815 

carrying capacity and maximum growth rates are assumed, Nt=5×106 and µmax = 0.50 hr-1, 816 

respectively. 817 

 818 



 819 

Figure 2 – Figure supplement 5. The sensitivity of coexistence among bacterial detachment 820 

strategies to competitive growth kinetic parameterizations (Eq. 6: maximum growth rate μmax and 821 

carrying capacity, Nt). The relative abundance of population one is shown for competition 822 

experiments of two populations with different detachment rates and for two different values of 823 

maximum growth rates and carrying capacities. The area with white color represents the 824 

conditions where either one of the populations is extinct. The mortally on particles is assumed 825 

0.02hr-1. The attachment rates are kept constant at 0.0005hr-1. The number of particles is 826 

assumed to be 60L-1.  827 
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 834 

Figure 4 – Figure supplement 1. Particle abundance distributions extracted from the field 835 

observations. The particle abundances are extracted over many field observations across many 836 

aquatic environments at different geographical locations (Möller et al. 2012; Ashijan et al., 2005; 837 

Gallager et al., 2004; Norrbin et al., 1996). The mean particle abundance over these field data is 838 

approximately 25 per liter. 839 

 840 

 841 

 842 

Figure 4 – Figure supplement 2. The durations of environmental fluctuation periods for particle 843 

abundances are extracted from field data33. (A) The fluctuations in particle abundance are 844 

characterized by quantifying fluctuation periods from the time difference between two 845 

neighboring local minimum and maximum, as illustrated in the schematic. (B) Probability 846 

distribution functions for fluctuation periods in particle abundances obtained from field 847 

observations. 848 
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