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Abstract 9 In cooperative systems exhibiting division of labor, such as microbial communities, multicellular 10 organisms, and social insect colonies, individual units share costs and benefits through both 11 task specialization and exchanged materials. Socially exchanged fluids, like seminal fluid and 12 milk, allow individuals to molecularly influence conspecifics. Many social insects have a social 13 circulatory system, where food and endogenously produced molecules are transferred mouth-14 to-mouth (stomodeal trophallaxis), connecting all the individuals in the society. To understand 15 how these endogenous molecules relate to colony life, we used quantitative proteomics to inves-16 tigate the trophallactic fluid within colonies of the carpenter ant Camponotus floridanus. We 17 show that different stages of the colony life cycle circulate different types of proteins: young 18 colonies prioritize direct carbohydrate processing; mature colonies prioritize accumulation and 19 transmission of stored resources. Further, colonies circulate proteins implicated in oxidative 20 stress, ageing, and social insect caste determination, potentially acting as superorganismal hor-21 mones. Brood-caring individuals that are also closer to the queen in the social network (nurses) 22 showed higher abundance of oxidative stress-related proteins. Thus, trophallaxis behavior 23 could provide a mechanism for distributed metabolism in social insect societies. The ability to 24 thoroughly analyze the materials exchanged between cooperative units makes social insect col-25 onies useful models to understand the evolution and consequences of metabolic division of la-26 bor at other scales.  27 
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Introduction 33 In the course of social evolution, related organisms have formed cooperative entities such as 34 multicellular organisms or groups of social animals (1–3). In social animal groups, collective 35 decisions on movement, reproduction and even development are needed for survival (4, 5). 36 Some social groups have taken this coordination to a very high level: social insect societies de-37 velop and function as a single unit instead of as competing individuals, as ‘superorganisms’ par-38 alleling the development of multicellular organisms as a single unit rather than as a set of com-39 peting cells (6, 7). 40 In these superorganismal societies, reproductive queens and males function as the germline, 41 and workers as the soma. Similarly to different tissues in multicellular organisms, workers can 42 be further specialized and exhibit division of labor across different behavioral and morphologi-43 cal castes (8). While morphological castes are determined during development, the behavioral 44 caste of an individual worker typically changes during its lifetime. At the beginning of their adult 45 life, workers specialize inside the nest as nurses focusing on brood care, and as they age, they 46 switch to foraging outside of the nest (9). Social insect colonies also go through life stages. 47 Young colonies have an initial growth phase where they solely produce one type of worker, and 48 only later in their life cycle they may produce more specialized worker castes and finally, males 49 and queens (10). The switch to reproductive phase is a major life-history transition at the colo-50 ny level, and connected to female caste determination. In social Hymenoptera, determination of 51 whether a female larva develops into a queen or a worker, and what kind of worker exactly, is 52 controlled by intricate differences of gene expression of the same female genome, guided pri-53 marily by environmental factors, in particular nutrition and social cues, sometimes partially 54 influenced by genetics (11–14).  55 Coordinated function of tightly integrated groups such as social insect colonies, and subgroups 56 such as their different castes, has been described as social physiology (15), consisting of various 57 behavioral, morphological and molecular mechanisms that ensure cooperation and inclusive 58 fitness benefits for all group members. As a part of their social physiology, some social insect 59 societies have developed a form of social circulatory system (16), where nutrition and endoge-60 nously produced functional molecules, such as hormones, are transferred mouth-to-mouth from 61 the foregut of one individual to another (17, 18). This social fluid transfer is called stomodeal 62 trophallaxis (19). It ensures not only that food is distributed to all adults and larvae within the 63 colony, but also that all individuals of the colony are interconnected through shared bodily flu-64 ids. Trophallactic fluid of ants and bees typically contains endogenous proteins involved in di-65 gestion, immune defense and developmental regulation (17), indicating that this fluid transmits 66 more than food. 67 Molecular signals are important in controlling the colony life histories and guiding caste deter-68 mination both at the colony level and at the individual level. Queen pheromones are central sig-69 naling molecules acting across individuals (20–22). Juvenile hormone and vitellogenin are cen-70 tral signaling molecules in classical insect development that may also play across-individual 71 roles in some social insects (17, 18, 23, 24). Together with fundamental nutrient-response sig-72 naling pathways (insulin, TOR), these molecules establish the developmental trajectories of in-73 dividuals (25, 26). In solitary organisms, such molecules are produced and function solely with-74 in the organism’s own body. In contrast, in social Hymenoptera even the molecules traditionally 75 functioning within-individuals can be secreted to the crop and distributed among the society 76 members through trophallaxis and the social circulatory system (17). 77 
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Molecular components transmitted through trophallaxis, namely juvenile hormone and juvenile 78 hormone esterase-like proteins, have been shown to influence the development of ant larvae 79 (17, 18). Thus it is possible that molecules in trophallactic fluid may influence caste determina-80 tion, similarly to honeybee workers feeding larvae with royal jelly to direct their development 81 toward a queen fate (17, 27–30). The molecular functions of trophallactic fluid are still largely 82 unstudied, but it is known, for example, that social isolation changes its composition (17), with 83 some protein components of this fluid shifting with social environment. In medicine, such corre-84 lations are typically used to define biomarkers for specific conditions and treatments, and often 85 both accurately predict function and provide mechanistic insights (31). We propose that troph-86 allactic fluid could both reflect and affect the social environments of the colony, thus providing 87 important cues for collective decision making. However, it is not yet feasible to study the causes 88 and consequences of the molecular composition of trophallactic fluid, as it is still largely un-89 known how much and what kind of qualitative and quantitative variation is present.  90 If indeed trophallactic fluid acts as a form of social circulatory system, managing distributed 91 metabolic processes related to colony maturation, endogenously produced factors should corre-92 late with colony life stages. To test this, we analyzed the trophallactic fluid proteome of the car-93 penter ant Camponotus floridanus at different scales. Our aim is to demonstrate that trophallac-94 tic fluid proteomes are filled with biomarkers reflecting biotic and abiotic conditions at both the 95 colony and individual scale. 96 
Results 97 We sought to determine whether the endogenously produced proteins present in trophallactic 98 fluid create a robust biomarker-like signature of colony status. To assess this, we analyzed the 99 trophallactic fluid proteomes of colonies at different stages in the colony life-cycle (Young vs. 100 
Mature), of colonies in natural conditions or kept in the lab (Field vs. Lab), and between colonies 101 found on different nearby islands (East vs. West) (Figure 1, Supplemental file 1). Because troph-102 allactic fluid proteins may be differentially expressed, transmitted, and/or sequestered across 103 the social network of a colony, we also analyzed trophallactic fluid proteomes of single individ-104 uals in different colony ‘tissues’ – in-nest workers taking care of brood and out-of-nest workers 105 (Nurse vs. Forager). 106 
Overall proteome variation 107 Over the 73 colony and 40 single-individual trophallactic fluid samples analyzed, a total of 519 108 proteins were identified (Figure 2). Trophallactic fluid samples contained a set of 27 ‘core’ 109 trophallactic fluid proteins that were present in all samples regardless of life-cycle, life-stage or 110 environmental conditions. Fifty-seven percent of the 519 proteins we observed were present in 111 less than half of the samples. Even though the most common proteins displayed higher average 112 abundance, across the entire dataset, protein abundance did not correlate with the proportion 113 of samples containing the protein – even proteins present in only a small proportion of the sam-114 ples in some cases exhibited high abundance (Figure 2 – Figure Supplement 1). The overall pro-115 tein abundance was higher in colony samples relative to single individual samples, reflective of 116 the larger trophallactic fluid volume collected. The number of proteins identified for a given 117 sample correlated with trophallactic fluid sample volume (Pearson correlation test p < 0.03, r = 118 0.24 for colony samples and p < 0.01, r = -0.40 for single-individual samples).  119 Field-collected samples exhibited more variable proteomes than did lab-collected samples (Fig-120 ure 2b, gamma GLM posthoc p-values < 0.001, Figure 2 – source data 1). Further, colonies that 121 had been in the lab for more than one year showed less variable proteomes than did colonies 122 that had been in the lab for only six months (Figure 2b, gamma GLM z=-4.46, SE=0.04, p <0.001). 123 The trophallactic proteome variability of young and mature colonies did not differ significantly, 124 
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nor did nurses’ and foragers’ (Figure 2b). Foragers had fewer identified proteins in their troph-125 allactic fluid than did nurses (Figure 2a, negative binomial z=3.72 SE=0.08 P=0.005), and there 126 were no significant differences among the main full colony samples (Figure 2 – source data 2). 127 When the principal components of the trophallactic fluid proteomes were analyzed, the samples 128 tended broadly to align with others of the same type, though clusters were not fully distinct 129 (Figure 3A and 3B). We developed a metric, self-similarity (S), to assess the depth of difference 130 within and across sample types (Figure 3C).  Because field-collected samples had more diverse 131 protein content even within sample types (Figure 2, 3A), the self-similarity in the Young vs. Ma-132 
ture comparison is low (Figure 3C). Single individual samples, and especially forager samples 133 were less complex, allowing a larger proportion of their dissimilarity to be explained by sample 134 type. Further, because our classification of nurse and forager is based on the individuals’ loca-135 tion on brood or out-of-nest, it is possible that some nurse-classified individuals were either 136 misclassified, transitioning from nurse to forager, or had trophallactic fluid in their crop un-137 characteristic of their behavioral caste. 138  139 
Comparisons of trophallactic fluid across conditions 140 In addition to characterizing the most abundant and core proteins of the trophallactic fluid (Fig-141 ure 4, Figure 4 – Figure Supplement 1), we wanted to robustly identify proteins that differ sig-142 nificantly in our comparisons despite the noise inherently present in this social fluid. To accom-143 plish this, we chose to overlay three distinct statistical approaches (Figure 1B): classical fre-144 quentist, empirical Bayes and machine-learning in the form of random forest classification. In 145 our main comparisons, Young vs. Mature colonies from the field, young colonies in the Field vs. 146 
Lab, and individual Nurses vs. Foragers in the lab, we found significant differences between 147 groups with all three analysis methods (Figure 5, Figure 5 – Figure Supplement 1, Figure 5 – 148 Figure Supplement 2, full results for the significantly differing proteins in Supplemental File 2 149 and for all proteins in Supplemental Files 3-5). 150 For the Young vs. Mature comparisons, there were 10, 10 and 30 differentially abundant pro-151 teins according to frequentist t-test, empirical Bayesian LIMMA and the random forest ap-152 proach, respectively. Similarly, for the Nurse vs. Forager comparison there were 21, 57 and 26 153 differentially abundant proteins, and when young colonies were brought to the laboratory and 154 resampled after six months, 17, 31 or 29 proteins had significantly different abundance. The 155 average accuracies of classification for comparisons with the random forest approach were: 156 
Young vs. Mature, 87%; Nurse vs. Forager, 93%; and Field vs. Lab, 91%. This indicates that our 157 trained classifier can predict whether a trophallactic fluid sample originates from a nurse or a 158 forager with 93% accuracy. We found no clear signature of spatial structure (East vs. West) in 159 the trophallactic fluid proteomes. The frequentist analysis between different sampling areas 160 found no significantly different proteins, and the random forest model did not reach high 161 enough accuracy for this dataset to be informative (58% classification accuracy). Only the em-162 pirical Bayes approach found eight proteins that significantly differed between the sampling 163 areas (Figure 5 – Figure Supplement 1, Supplemental Files 2 and 4). 164 To leverage the unique benefits of the different forms of analysis we focused our further anal-165 yses on proteins significantly different in two out of the three forms of analysis. Here, young and 166 mature colonies differed by 12 proteins, and nurses and foragers differed by 19 proteins (Figure 167 5). When young colonies were brought to the laboratory and resampled six months later, the 168 trophallactic fluid proteomes differed significantly by 20 proteins. Additionally, the single indi-169 vidual dataset showed that proteomes are affected both by colony of origin and by behavioral 170 role of the individual, with 60 proteins showing significant interaction between the two factors 171 (Supplemental File 3).  172 
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 173 
Functions of the proteins in trophallactic fluid 174 To investigate the functions of the proteins found in trophallactic fluid, we performed functional 175 enrichment analysis of gene ontology terms, pathways and protein-protein interaction (PPI) 176 networks of the trophallactic fluid proteins’ Drosophila melanogaster orthologs. The sixty most 177 abundant proteins in trophallactic fluid (Figure 4, Figure 4 – Figure Supplement 1) are predom-178 inantly involved in the biological processes of carbohydrate metabolism, lipid and sterol 179 transport (Figure 6, Figure 6 – Figure Supplements 1-3, FDR < 0.00038, FDR < 0.0013 and FDR < 180 0.0087 respectively). The larval serum protein complex was represented by 3 out of 4 members 181 in both the most abundant proteins and in the significantly differing proteins (hex-182 amerins/arylphorins: Lsp1beta, Lsp1gamma and Lsp2). A strong representation of the innate 183 immune system (Reactome pathway FDR < 6.57e-5) was evident as were lysosomal processes 184 (KEGG pathway, FDR < 3.21e-9).  185 Beyond the sixty most abundant proteins in trophallactic fluid, many others are of interest as 186 well.  A critical protein in insect physiology, vitellogenin is the 93rd most abundant protein in 187 trophallactic fluid, present in 77% and 88% of colony and single individual samples, respective-188 ly. Three of the 60 most abundant proteins had no similarity to Drosophila genes, and thus could 189 not be included in the functional enrichment analysis. One of them is a putative odorant recep-190 tor, another a G-protein alpha subunit, and the third showed no orthology to characterized pro-191 teins. None of these proteins significantly differed in more than one analysis for a given compar-192 ison.  193 Many of the trophallactic fluid proteins, abundant or significantly differing, were represented in 194 trophallactic fluid by multiple genes from the same protein family, in some cases part of tandem 195 repeats in the genome, indicative of relatively recent evolution. Multiple proteins of the same 196 family were found in the most abundant trophallactic fluid proteins (Figure 4, Figure 4 – Figure 197 Supplement 1): a family of cathepsinD-like proteins (six in the top 60; (17, 32) and a family of 198 Maltase-B1-like proteins (five in the top 60). In the list of significantly differing proteins (Figure 199 5, Figure 5 – Figure Supplement 2), we observed fewer members of these families and instead 200 saw three guanine deaminase proteins, all of which significantly differed in the Young vs. Mature 201 comparison. Other families that showed duplications were glucose dehydrogenases, CREG1 and 202 tobi-like proteins (target-of-brain-insulin).  203 There was an overlap of 16 proteins between the most abundant proteins and the proteins sig-204 nificant in two out of three of our statistical methods in any of the comparisons. The PPI net-205 work for our differentially abundant protein set (46 proteins, Figure 5) was similar to that of the 206 most abundant proteins (Figure 4) but with increased interaction in the networks of the pro-207 teins themselves beyond what would be expected by chance (PPI enrichment p-value < 2.35e-11 208 in differentially abundant proteins relative to p-value < 1.59e-9 in abundant proteins), with not-209 ed enrichment in oxidation-reduction processes (FDR < 0.0026) and stronger enrichment in 210 carbohydrate metabolic processes (FDR < 2.15e-6).  211 To better understand the functions of the significantly differing proteins in each comparison, we 212 analyzed the GO terms and PPI networks of proteins significant in two out of three statistical 213 methods separately for each of our three main comparisons (Figure 6, Figure 6 – Figure Sup-214 plements 1-3). The Nurse vs. Forager comparison yielded a network of proteins with more in-215 teraction than would have been predicted by chance (PPI enrichment p-value < 2.57e-4) as well 216 as a higher degree of PPI enrichment than the other two comparisons (Young vs. Mature p < 217 0.002 and Field v Lab p < 0.02). The orthologs of differentially abundant proteins found in the 218 behavioral caste comparison involved not only carbohydrate processing (FDR < 1.7e-4), but also 219 oxidation-reduction and malate metabolic processes (FDR < 0.023 and FDR < 0.02, respective-220 
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ly). These pathways have been implicated in the determination of lifespan (33). Indeed, two of 221 the 46 differentially abundant proteins over all comparisons have D. melanogaster orthologs 222 with the gene ontology term ‘determination of adult lifespan’ (Men, Sod1). The C. floridanus tet-223 raspanin, significantly more abundant in nurse trophallactic fluid, is a one-to-many ortholog to 224 the family of Tsp42E genes, one of which has also been implicated in determination of adult 225 lifespan in D. melanogaster.  226 As trophallactic fluid samples of young and mature colonies were distinguishable by principal 227 component analysis and our random forest classifier, we wanted to see if our trained classifier 228 could assess a change in maturity of our young colonies after they had spent six months in the 229 laboratory. Our random forest classifier assigned an average out-of-box maturity score to our 230 16 laboratory samples of 42% mature, reflecting the intermediate position of the laboratory 231 colony samples in Figure 3.  232  233 
Discussion 234 When an ant colony matures, the protein composition of trophallactic fluid changes in bi-235 omarker-like manner, suggesting that these proteins circulating amongst individuals play a role 236 in age-related colony metabolism and physiology. At the individual level, certain trophallactic 237 fluid proteins correlate with behavioral caste within the colony, a trait known to encompass 238 both individual task requirements and age (34–36). Trophallactic fluid complexity declines over 239 time when colonies are brought from the field to the laboratory. This may reflect dietary, micro-240 biome or environmental complexity – typical of traits that have evolved to deal with environ-241 mental cues and stressors (e.g. immunity, (37)). 242 Overall, our data reveal a rich network of trophallactic fluid proteins connected to the principal 243 metabolic functions of ant colonies and their life cycle. Pinpointing contexts that induce changes 244 in trophallactic fluid, along with the exact targets and functions of the proteins, are important 245 subjects for future work. Our establishment of biomarkers transmitted over the social circulato-246 ry system that correlate with social life will allow researchers to formulate and test hypotheses 247 on these proteins’ functional roles. 248 
Metabolism changes with maturity 249 We found that trophallactic fluid includes many enzymes involved in metabolism and protein 250 products of metabolism. Many are core trophallactic fluid proteins present in all samples, but 251 many also differ significantly among the colony and individual life stages. Some proteins abun-252 dant in mature colonies (Lsps, apolpp (38–40)) are major insect nutrient storage proteins (40) 253 that may be required to consolidate resources into large workers and sexuals, potentially acting 254 as superorganismal hormones. Proteins abundant in foragers and young colonies (Gld, tobi, 255 Amy, Mal, (41, 42)) are well-conserved enzymes for fast sugar processing. This suggests a func-256 tional role of trophallactic fluid in the social physiology of ant colonies.  257 Similar shifts in protein composition or gene expression can be seen in different tissues of mul-258 ticellular organisms as life-stage priorities change, for example in the midgut of drosophila fe-259 males after mating, where changes in expression are observed in many genes orthologous to the 260 proteins we found here (42). Additionally, Drosophila larval hemolymph proteome changes as 261 development unfolds (43), and many of these same proteins also appear in our comparisons of 262 worker trophallactic fluid. We suggest that regulation of larval development may at least in part 263 occur over the social network of ants, in line with previous experimental results (18). 264 
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Ageing and division of metabolic labor  265 Viewing the colony as a superorganism, the division of reproductive labor between different 266 types of workers (soma) and queens (germline) should result in different individuals requiring 267 differing resources and sustaining differing metabolic costs. Our results support this hypothesis. 268 We show that trophallactic fluid transmits numerous factors linked to ageing and coping with 269 oxidative stress, including two of the three most well-known antioxidant enzymes: superoxide 270 dismutase and glutathione peroxidase (44). These and other ageing-related proteins, such as 271 those in redox pathways and malate metabolism (33, 45), are especially elevated in nurses, the 272 individuals that are physically the closest to the brood and queen in the trophallactic network. 273 These results link trophallactic fluid to one of the main topics of evolutionary ecology: the lon-274 gevity-fecundity tradeoff between reproduction and coping with oxidative stress (44, 46, 47). 275 Social insect individuals seemingly escape this tradeoff with long-lived and highly reproductive 276 queens and short-lived, non-reproductive workers (44, 47, 48). We reveal a possible distributed 277 metabolism which could explain why social insects seem to subvert this tradeoff. If molecules 278 dealing with oxidative stress, or beneficial products of metabolism (nutrient storage proteins) 279 can be spread over the circulatory system, as our results show, certain individuals may bear the 280 costs that others in the network incur. This could account for some of the puzzling results on the 281 plasticity of senescence in social insects (49–51), and provides a new perspective to analyze the 282 regulatory changes of social insect reproductive castes with regard to ageing (34, 52–57). While 283 most previous work has focused almost exclusively on gene expression, we show that for spe-284 cies that engage in trophallaxis, expression studies are necessary but insufficient to understand 285 where in the colony the relevant genes act.  286 Our gene-set enrichment analysis showed significant enrichment in immunity-related proteins 287 characteristic of phagocytic hemocytes (58) in trophallactic fluid (‘innate immune system’, 288 ‘complement cascade’, ‘neutrophil degranulation’). These results indicate that hemocytes may 289 themselves be transmitted mouth-to-mouth, and generally shows the involvement of the social 290 circulatory system in colony-level immune responses with implications for social immunity. Our 291 results do not show clear caste differentiation in the abundance of immune-related proteins, as 292 did a study in honey bees in glands that produce trophallactic fluid proteins (59), though we do 293 see similar regulation of sugar processing enzymes and glutathione-S-transferases.  294 
Evolution of trophallactic fluid 295 Trophallactic fluid is one of many social fluids in biology – milk and seminal fluid are similar 296 examples of direct transfers of biological material between individuals. Such socially exchanged 297 materials often contain molecules that target receivers’ physiology beyond the fundamental 298 reason for the transfer (60, 61), and allow social effects to directly influence the evolutionary 299 process as indirect genetic effects (62–64). Some of the proteins we find to be significantly dif-300 fering in our comparisons have previously been implicated in these other social transfers. For 301 example, one of our protein hits is orthologous to Drosophila’s CG10433, a seminal fluid protein 302 (65) that impacts juvenile-hormone-associated hatch-rate post-mating (66). In another parallel 303 to a phylogenetically distant social fluid, trophallactic fluid’s most abundant protein is CREG1, a 304 secreted growth-associated glycoprotein also abundant in mammalian milk (67). Finding mo-305 lecular parallels in distinct behavioral processes hints at the fundamental role of these exchang-306 es in the evolution of social physiology, and possibly common adaptive requirements for bioac-307 tive social fluids.  308 Lysosomal pathways are enriched in our most abundant trophallactic fluid proteins and in our 309 set of significantly varying trophallactic fluid proteins between nurses and foragers, according 310 
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to the KEGG analysis. Lysosomes are acidic and can be major players in secretion, autophagic 311 flux and exocytosis (68–70) – processes that may be important for nurses that feed larvae by 312 trophallaxis. These significant lysosomal signatures we see in trophallactic fluid may indicate 313 the mechanism of secretion (71), or may give us cues of how this fluid has evolved. As trophal-314 lactic fluid has become acidified in formicine ants (72), lysosomal genes could have been dupli-315 cated and neofunctionalized to a new role in this acidic fluid, similarly to juvenile-hormone-316 esterase-like proteins in trophallactic fluid (18). The fact that many abundant trophallactic fluid 317 proteins represent clusters of related proteins from a few families (cathepsins, guanine deami-318 nases, maltases) suggests there has been adaptive evolution in the proteins arriving in this fluid. 319 
Conclusions 320 We show that the protein composition of ant trophallactic fluid varies across different external 321 contexts and internal conditions both at the colony and at the individual level, suggesting that 322 the dynamic trophallactic fluid proteome has key functions in social physiology and life cycle of 323 colonies. By describing the natural variation of trophallactic fluid we have laid the groundwork 324 for future studies on the possible functions of these proteins in controlling the colony life cycle, 325 senescence and behavior. 326  327 
Materials and methods 328 
Key Resources Table 
Reagent 
type (spe-
cies) or 
resource Designation Source or 

reference Identifiers Additional 
information 

Other 
UniProt Ref-erence prote-ome (Cam-
ponotus flori-
danus); ac-cessed Febru-ary 2020 

UniProt UP000000311  

Other 
NCBI RefSeq Reference proteome (Camponotus 
floridanus), v7.5 

NCBI Ref-Seq GCF_003227725.1  
Biological samples (Campono-
tus florida-
nus) 

Trophallactic fluid (see de-tails in Sup-plementary File 1) 
This pa-per Supplementary File 1 Supplemen-tary File 1 

software, algorithm MaxQuant v1.6.2.10 MaxQuant RRID:SCR_014485  
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software, algorithm Perseus v1.6.15.0 Perseus RRID:SCR_015753  software, algorithm R 3.6.1 R RRID:SCR_001905  software, algorithm Matlab 2020b Math-works RRID:SCR_001622  software, algorithm R-package MASS 7.3-53 R Project RRID:SCR_019125  software, algorithm R-package LME4 R Project RRID:SCR_015654  
software, algorithm R-package multcomp 1.4-15 R Project RRID:SCR_018255  
software, algorithm LIMMA-pipeline-proteomics pipeline 3.0.0 GitHub 10.5281/zenodo.4050581  
software, algorithm sklearn v0.22.1 Scikit-learn RRID:SCR_019053  software, algorithm Python 3.7.6 Python RRID:SCR_008394  
software, algorithm SHapley Addi-tive ExPlana-tions package v0.37.0 GitHub RRID:SCR_021362  
software, algorithm OMA Browser (Jan 2020 re-lease) OMA Browser RRID:SCR_011978  
software, algorithm Flybase Flybase RRID:SCR_006549  software, algorithm STRING v11 STRING RRID:SCR_005223  
 329 
Study species 330 
Camponotus floridanus is a common species of carpenter ant in the south-eastern USA, and has 331 already been the focus of previous trophallactic fluid analyses (17, 18). They live in dead wood 332 or in man-made structures, often in urban habitats, and forage for honeydew, floral nectar, ex-333 tra-floral nectar, and arthropod prey. Each colony has a single, singly mated queen (73), and 334 polydomous nest-structures where queenless satellite nests are common. Colonies grow to tens 335 
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of thousands of workers and produce sexual brood only after multiple years of initial growth. 336 Large established colonies have two morphologically differentiated worker castes, with variably 337 sized small-headed minors focusing on brood care when young and foraging when old, and big-338 headed majors that engage in nest defense, foraging and food storage (74). 339 
Colony and sample identification  340 The species was identified based on worker and queen morphology (74–76). In line with previ-341 ous studies, we use the name C. floridanus with the knowledge that the taxonomy and nomencla-342 ture of the C. atriceps complex (to which it belongs) is not fully resolved (74).  343 We collected full young colonies (0-80 workers) and mature colony extracts (30-200 workers) 344 on several Florida Keys islands (Figure 1 and Supplementary File 1) in winter 2019 and 2020. A 345 colony was deemed “young” if the worker population was <100, primarily minors, and the 346 queen was found (meaning both that the species could be clearly identified and that the nest 347 was not a queenless satellite of an established colony), and “mature” if the colony was larger 348 (>1000 individuals visible) and the opened nest contained many large aggressive majors. Young 349 colonies lack majors (77) and individuals are generally less aggressive. We only collected ma-350 ture colony samples when we also found larval brood in the opened nest. In our study area, we 351 observed that young colonies are typically found nesting in different material than are mature 352 colonies. Young colonies are often found under stones or in lumps of clay-like mud associated 353 with crab burrows a short distance from the water, whereas the mature colonies were found 354 nesting in large pieces of damp rotting wood. 355 
Laboratory rearing 356 Young colonies were brought to the lab and maintained in fluon-coated plastic boxes with a 357 mesh-ventilated lid, at 25 °C with 60 % relative humidity and a 12 h light/dark cycle. Each colo-358 ny was provided with one or more glass tube for nesting, 10% sugar water, and a Bhatkar & 359 Whitcomb diet (78) and some Drosophila melanogaster. One week prior to proteomic sampling, 360 we substituted the honey-based food with maple syrup-based food to avoid contamination with 361 honeybee proteins (as in LeBoeuf et al 2016). 362 
Trophallactic fluid collection 363 Field samples of trophallactic fluid were collected within eight hours of ant collection. Of the 20 364 young colonies and 23 mature colonies, workers collected from two of the mature colonies (L 365 and N) were subdivided into six fragments to assess variation within a single colony (two sam-366 ples from major workers, two samples from brood-associated workers, and two samples from 367 the remaining minor workers). For all other analyses only one of these for each colony (referred 368 to as minors1) was used to avoid pseudo-replication. In the laboratory, the trophallactic fluid 369 samples underlying the Field vs. Lab comparison were sampled after six months in the lab. The 370 four colonies used for the single individual analyses had been in the lab for 18 months at the 371 time of trophallactic fluid collection.  372 Trophallactic fluid was obtained from CO2- or cold-anesthetized workers whose abdomens were 373 gently squeezed to force them to regurgitate the contents of their crops. This method of collec-374 tion was shown previously to correspond to the fluid shared during the act of adult-adult sto-375 modeal trophallaxis (17). For each colony, at least 30 individuals were sampled to obtain at least 376 10 µl of raw trophallactic fluid. For many young colonies only smaller samples were possible, 377 because of the low number of workers (Supplementary File 1). Young colony samples were only 378 used for further analysis if at least 2.5 µl of trophallactic fluid were collected. For single individ-379 



11 

ual samples, workers with visibly full abdomens were chosen and the obtained sample volumes 380 ranged from 0.7 µl to 2.2 µl. An individual was classified as forager, when it was seen outside the 381 nest tube in the feeding area of an undisturbed laboratory nest box, and a nurse, when it re-382 mained in the nest tube even after the tube was removed from the original laboratory nest and 383 placed into a new one. For colonies from which individual samples were collected, a pooled 384 sample was also taken from individuals that remained after individual sampling. Samples were 385 collected with glass capillaries into 5 µl of 1 x Sigmafast Protease Inhibitor Cocktail (Sigma-386 Aldrich) with 50 mM Tris pH 9 in LoBind eppendorf tubes and were stored -80 C until further 387 analysis. The total proteomics sample number is 73 colony samples of following types: 23 ma-388 ture colonies with two of them sampled 6 times, 20 young colonies in the field, 16 young colo-389 nies in the laboratory, four laboratory colonies used for single individual sampling; and 40 indi-390 vidual samples: 20 nurses and 20 foragers.  391 
Protein mass spectrometry sample preparation and analysis 392 Samples were mixed with Laemmli sample buffer and pH was adjusted with 1 M Tris-Cl, pH 7. 393 After reduction with 1 mM DTT for 10 min at 75°C and alkylation using 5.5 mM iodoacetamide 394 for 10 min at room temperature protein samples were separated on 4-12% gradient gels (Ex-395 pressPlus, GeneScript). Each gel lane was cut into small pieces, proteins were in-gel digested 396 with trypsin (Promega) and the resulting peptide mixtures were processed on STAGE tips (79, 397 
80). 398 LC-MS/MS measurements were performed on a QExactive plus mass spectrometer (Thermo 399 Scientific) coupled to an EasyLC 1000 nanoflow-HPLC. HPLC-column tips (fused silica) with 75 400 µm inner diameter were self-packed with Reprosil-Pur 120 C18-AQ, 1.9 µm (Dr. Maisch GmbH) 401 to a length of 20 cm. A gradient of A (0.1% formic acid in water) and B (0.1% formic acid in 80% 402 acetonitrile in water) with increasing organic proportion was used for peptide separation (load-403 ing of sample with 0% B; separation ramp: from 5-30% B within 85 min). The flow rate was 250 404 nl/min and for sample application 650 nl/min. The mass spectrometer was operated in the da-405 ta-dependent mode and switched automatically between MS (max. of 1x106 ions) and MS/MS. 406 Each MS scan was followed by a maximum of ten MS/MS scans using normalized collision ener-407 gy of 25% and a target value of 1000. Parent ions with a charge state form z = 1 and unassigned 408 charge states were excluded from fragmentation. The mass range for MS was m/z = 370-1750. 409 The resolution for MS was set to 70,000 and for MS/MS to 17,500. MS parameters were as fol-410 lows: spray voltage 2.3 kV; no sheath and auxiliary gas flow; ion-transfer tube temperature 411 250°C. 412 The MS raw data files were uploaded into MaxQuant software (81), version 1.6.2.10, for peak 413 detection, generation of peak lists of mass error corrected peptides, and for database searches. 414 MaxQuant was set up to search both the UniProt (RRID:SCR_002380, www.uniprot.org) and 415 NCBI (RRID:SCR_003496, www.ncbi.nlm.nih.gov) databases restricted to C. floridanus (UniProt, 416 February 2020 version; NCBI RefSeq, version 7.5), along with common contaminants, such as 417 keratins and enzymes used for digestion. Carbamidomethylcysteine was set as fixed modifica-418 tion and protein amino-terminal acetylation and oxidation of methionine were set as variable 419 modifications. Three missed cleavages were allowed, enzyme specificity was trypsin/P, and the 420 MS/MS tolerance was set to 20 ppm. The average mass precision of identified peptides was in 421 general less than 1 ppm after recalibration. Peptide lists were further used by MaxQuant to 422 identify and relatively quantify proteins using the following parameters: peptide and protein 423 false discovery rates, based on a forward-reverse database, were set to 0.01, minimum peptide 424 length was set to 7, minimum number of peptides for identification and quantitation of proteins 425 was set to one which must be unique. The ‘match-between-run’ option (0.7 min) was used, 426 which helps improve the protein identifications especially for our single-individual samples. All 427 
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proteins labelled as contaminants, reverse or only identified by site were excluded and proteins 428 with scores less than 70 were removed. After the filtering, the dataset contained 519 proteins. 429 Quantitative analysis was performed using iBAQ values. Intensity-based absolute quantification 430 (iBAQ) is the quotient of sum of all identified peptides and the number of theoretically observa-431 ble peptides of a protein (82). 432 
Statistical analyses 433 Analyses of dataset characteristics were performed in Perseus v1.6.15.0 (83), R 3.6.1 (84) and 434 Matlab R2020b (Figures 2 and 3). Differences in protein numbers among the sample types were 435 analyzed with a negative binomial model, using the function nb.glm from the R-package MASS 436 7.3-53 (85). Proteome variability per sample type, as measured by the coefficient of variation of 437 the iBAQ abundance of each protein when present, was analysed with a generalized linear mod-438 el with gamma distribution and log-link with the R-package LME4 (1.1-26) (86). The package 439 multcomp 1.4-15 was used for post-hoc testing for both models. Pearson correlation tests were 440 used to check whether obtained protein number correlates with the sample volume. Because 441 significant correlation was found, all further analyses were done separately for the individual 442 samples that have small volume, and colony samples that have larger volume. Principal compo-443 nent analysis was run in Matlab on raw iBAQ values, for both the individual and the colony da-444 tasets.  445 Metric for self-similarity (S) within and across samples was calculated in Matlab2020b 446 (https://github.com/dradri/variation2021) as follows: pairwise standardized Euclidean dis-447 tances (dissimilarities, D) were calculated between each pair of samples based on square-root 448 transformed and median subtracted protein abundances; these dissimilarities were averaged 449 for each sample with the other samples within type𝐷௪௜௧௛∈and with the samples of the other 450 type 𝐷௔௖௥௢௦௦ and divided by the average dissimilarity to all other samples. Thus, self-similarity 451 was calculated as: 452 

𝑆 = ቤ𝐷௪௜௧௛௜௡ − 𝐷௔௖௥௢௦௦𝐷௔௟௟ ቤ  453 To establish the proteins whose abundance differs significantly between sample types, samples 454 were subdivided according to three main comparisons (Figure 1): Young vs. Mature colonies 455 from the field, young colonies in the Field vs. Lab six months later, and individual Nurses vs. For-456 
agers in the lab. In addition, the extent of spatial effects was analyzed for the field-collected 457 
Young vs. Mature dataset by dividing the sampling locations to two areas (East vs. West). For the 458 colony data, the differing sample volumes may account for a small proportion of the significant 459 differences in the Young vs. Mature comparison, and to lesser extent in the Field vs. Lab compari-460 son, where sample volume is collinear with the sample type. Our analyses may miss some of the 461 proteins more abundant in the young field collected colonies which have the smallest sample 462 volumes. 463 Quantitative proteomic comparisons between sample types were performed independently 464 with three different approaches to robustly identify significantly differing proteins: 1) classical 465 frequentist t-tests, 2) linear models with empirical Bayes variance correction, and 3) machine-466 learning paired with modified Shapley values. Our approach is designed to be at the same time 467 conservative and to find most of the differing proteins among our comparisons of the trophal-468 lactic fluid. The frequentist t-tests are the most conservative, and they miss some interesting 469 proteins due to their strict model expectations that allow only to use the most common pro-470 
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teins. The empirical Bayes approach to cope with sample variance is a more flexible method that 471 allows use of the entire dataset, finding important hits also among the rarer proteins, although 472 the high amount of missing values, where iBAQ equals zero, makes the model less powerful for 473 these proteins (87). The machine learning approach paired with modified Shapley values, alt-474 hough less well explored in the current proteomics literature, is promising for its ability to find 475 multivariate patterns that the other methods miss, and results in interpretable classification. 476 For each comparison, we report the full results of all three analyses in Supplemental File 2 (sig-477 nificantly differing proteins only) and Supplemental Files 3-5 (all results). Our results and dis-478 cussion sections focus on the proteins that appear significantly different based on two out of 479 three analysis methods (Figure 5). 480  481 
Classical frequentist analysis 482 Within each dataset only proteins present in over 70% of the samples were analyzed. Out of an 483 original 519 proteins, the final datasets for each comparison contained the following number of 484 proteins: Young vs. Mature, 172; Field vs. Lab, 137; and Nurse vs. Forager, 136. All data were log2 485 transformed and median-centered, and missing data were imputed by random sampling from 486 normal distribution with 2SD downward shift and 0.3 width for each sample. For colony da-487 tasets, we used the permutation-based FDR of 0.05, and for the single individual dataset that 488 contained more borderline-significant proteins, we used a more stable Benjamini-Hochberg 489 FDR with a stricter threshold of 0.01. S0 parameter (similar to fold-change) was set to 2 for all 490 analyses. All comparisons were run as two-sample t-tests, with the Field vs. Lab as paired.  491 For the individual dataset, the combined effects of colony identity and behavioral role (Nurse vs. 492 
Forager) and their interaction were analyzed with two-way ANOVA, with Benjamini-Hochberg 493 FDR corrections performed in R with the base R 3.6.1 command ‘p.adjust’. Both factors were 494 also analyzed separately with multiple- and two-sample t-tests (for colony identity and behav-495 ioral role, respectively). To allow comparison to the other statistical methods, only the simple 496 
Nurse vs. Forager analysis without the interaction was used for combining the lists of signifi-497 cantly different protein abundances. Our balanced sampling guarantees the results of this sim-498 pler model are robust enough to find the most descriptive proteins for nurse and forager troph-499 allactic fluid, even when the more complex interactive patterns are lost. 500 
Empirical Bayesian analysis 501 We implemented LIMMA (Linear Models for Microarray Data), a method for two-group compar-502 ison using empirical Bayes methods to moderate the standard errors across proteins (87), on 503 our score-filtered iBAQ proteomic datasets with the LIMMA-pipeline-proteomics pipeline 3.0.0 504 (http://doi.org/10.5281/zenodo.4050581) developed for R 4.0.2. Data were median-505 normalized before comparison and all comparisons were run with a log2 fold change cutoff of 2.  506 
Random forest and SHAP analysis 507 We used random forest models (sklearn.ensemble.RandomForestClassifier version 0.22.1, (88)) 508 to classify samples into one of two groups for each comparison. These analyses were performed 509 in Python 3.7.6 in a Jupyter notebook (https://github.com/dradri/variation2021). For each 510 comparison, ten analyses were performed, each with a different seed. For each seed, the dataset 511 was split into 80% training set and 20% test set, and a model was fit, tested and accuracy com-512 puted. If accuracy was below 85%, hyper-parameter tuning was performed with GridSearchCV 513 (sklearn 0.22.1), and the model re-fit. A seed and its corresponding model were not retained for 514 
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further analysis if accuracy could not be improved above 75%. Accuracies for East vs. West 515 ranged from 33-89% and over 20 seeds, only one could be improved above 75%. The typical 516 parameters: max_depth, 3 or 5; max_features, 'auto'; min_samples_leaf, 3; min_samples_split, 8 517 or 12; n_estimators, 100 or 500. Samples were classified with out-of-box scores (Supplemental 518 File 4). The average accuracies of classification for comparisons were: Young vs. Mature, 87%; 519 
Nurse vs. Forager, 93%; Field vs. Lab, 91%; East vs. West, 58%.  520 To understand which proteins contributed to the classification, we used SHAP (SHapley Addi-521 tive exPlanations, shap package v0.37.0 for Python 3), a game theory tool that explains the out-522 put of machine learning models (89). To analyze the importance of each protein in a given com-523 parison (feature importance), we averaged the absolute value of the Shapley values per protein 524 across the data to derive the feature importance. Then for each protein, we averaged the feature 525 importances over each of the ten seeded models. Proteins that have no impact on the model 526 classification receive a feature importance value of 0. When ranked according to average feature 527 importance, the data had an approximate Pareto distribution with an inflection point typically 528 at feature importance of ~0.15. Thus, because there is no established cutoff for significance in 529 this form of analysis, we chose to include as ‘significant’ in further analyses all proteins with a 530 feature importance of > 0.15 (Supplemental File 5). 531 For random forest predictions, models trained on the classification between young and mature 532 colonies were used to classify the same young colonies after six months in the laboratory. Out-533 of-box scores were averaged over five seeded models.  534 
Orthology, gene ontology, and protein network analyses 535 Because little functional work has been done in ants, we analyzed gene ontology terms for the 536 
Drosophila orthologs to our genes of interest. Orthologs to C. floridanus trophallactic fluid pro-537 teins were determined with OMA (“Orthologous MAtrix” Jan 2020 release (90)). If no ortholog 538 was found within OMA for a given gene, the protein sequence was protein BLASTed against Dro-539 
sophila melanogaster. In some cases, no ortholog could be found. Annotations were compiled 540 from NCBI RefSeq and UniProt annotations. 541 GO analysis was performed using both Flybase (91) and STRING v11 (92). STRING was also used 542 for protein-protein interaction and pathway analyses, including KEGG and Reactome (SI Table 543 4-6). The protein-protein interaction enrichment analysis in STRING used a hypergeometric test 544 with Benjamini-Hochberg corrected FDR. Only 43 out of the 60 most abundant proteins had 545 sufficient annotation for use by STRING while 44 of the 46 differentially abundant proteins had 546 sufficient annotation.  547  548 
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Figures and legends 560 

 561 Figure 1: Schematic of study design. A. Four comparisons, Young vs. Mature, Nurse vs. Forager, 562 
Field vs. Lab, and East vs. West, analyzed in this study with sample numbers indicated in paren-563 theses. In all comparisons sample numbers indicate colonies with the exception of Nurse vs. For-564 
ager, where samples are from single individuals, ten each from four colonies. Palm trees indi-565 cate field samples and boxes indicate laboratory samples. B. Schematic of analysis approach to 566 find robustly differing proteins in each comparison. Sample information can be found in Sup-567 plementary File 1. 568   569 
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 570 Figure 2: Protein presence in trophallactic fluid varies with biotic and abiotic factors. A. Mean + 571 SD of the proportion of proteins present in samples of a given type. Proportion of proteins pre-572 sent in all samples of a given type are highlighted in black. B. Coefficient of variation (standard 573 deviation/mean), calculated for the iBAQ values greater than zero of all the proteins identified 574 by sample type. Sample sizes per type are given under their names. Mature L and Mature N are 575 mature colonies that were sampled six times to assess within-colony variation in colony sam-576 ples. Significance of comparisons based on gamma GLM (A) or negative binomial GLM (B): NS 577 indicated when p > 0.05 significant, ** p <0.01, *** p < 0.001 (full results in Figure 2 – source 578 data 1 and 2). 579   580 
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 581 Figure 3: Similarity across trophallactic fluid proteome samples of colonies and single individu-582 als. Principal component analysis for all proteins for (A) colony samples and (B) single individu-583 al samples from the four colonies. Symbols representing the four colonies represented in (B) 584 can be found in maroon in (A). C. Ranked Self-similarity S for each sample type comparison. Self-585 similarity is the absolute value of the difference between dissimilarity within and across sam-586 ples divided by the average dissimilarity of all samples (by standardized Euclidean distance of 587 protein abundance). Samples with higher S are more similar to samples of the same type, while 588 samples with an S of zero are equidistant to the centroids of the two sample groups.  589   590 
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 591 Figure 4: The sixty most abundant proteins in trophallactic fluid over 73 colony and 40 single 592 individual samples. Ranking of abundance (including missing values). From left to right, Dro-593 
sophila melanogaster orthologs, proportion of samples in which the protein was identified in 594 colony samples and single individual samples, average iBAQ abundance across all samples, log2 595 of the fold change in abundance between types for a given comparison, the comparisons for 596 which the protein was significant in two out of three methods are marked with yellow dots, an-597 notation terms. Annotation terms are bolded for the 25 out of 27 core trophallactic fluid pro-598 teins that are amongst the 60 most abundant proteins. The additional but less abundant core 599 proteins are a cathepsin (26-29-p) and a myosin heavy chain (Mhc). For protein accession num-600 bers, see Figure 4 – Figure Supplement 1.   601 
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 602 Figure 5: All proteins that significantly differ in two out of three of the analysis methods (fre-603 quentist, empirical Bayes and random forest classification with SHAP values). From left to right, 604 Venn diagrams of significance overlap between methods, Drosophila melanogaster orthologs , 605 proportion of samples in which the protein was identified in colony samples and single individ-606 ual samples, average iBAQ abundance across all samples calculated without missing values, log2 607 of the fold change in abundance between types for a given comparison, the comparisons for 608 which the protein was significant in two out of three methods are marked with yellow dots, an-609 notation terms. Annotation terms are in bold for the core trophallactic fluid proteins present in 610 all samples. For visualization of each analysis method, see Figure 5 – Figure Supplement 1. For 611 protein accession numbers, see Figure 5 – Figure Supplement 2. For all the 135 proteins signifi-612 cantly differing in any analysis, see Supplemental File 2. For full model results, see Supplemental 613 Files 3-5. 614   615 
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 616 Figure 6: Gene set enrichment analysis of trophallactic fluid. Significant terms for Drosophila 617 
melanogaster orthologs of (A) the 60 most abundant trophallactic fluid proteins, trophallactic 618 fluid proteins significantly differing between (B) Young vs. Mature, (C) Nurse vs. Forager, and (D) 619 
Field vs. Lab, with -log10(FDR) indicated on y-axes. Deep purple indicates GO biological process; 620 blue, GO molecular function; turquoise, GO cellular compartment; lime green, Reactome path-621 way; orange, KEGG pathway. Circle size indicates strength, log10(observed proteins / expected 622 proteins in a random network of this size). Full results can be found in Figure 6 – Figure Sup-623 plements 1-3.  624  625 626 
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Legends for Supplementary Figures, Files and source code 627  628 Supplemental File 1: The sampling scheme  629 Trophallactic fluid (TF) sampled for proteomics analysis. Date (field) indicates when the colony 630 extract was collected from the field site, Date (TF sampling) indicates the date of the 631 trophallactic fluid collection. Volume and ants indicate the volume collected and the number of 632 ants collected from for each sample. The lab2019 colonies were used for single individual 633 trophallactic fluid samples. For the two mature colonies that were sampled six times, * marks 634 the sample that was used in the main datasets. 635  636 Figure 2 - Figure Supplement 1: Protein abundance and commonness  637 Protein abundances of the 519 proteins, calculated without missing values (where no matching 638 spectra were detected), in A) the colony dataset, and B) in the single individual dataset. The 639 proteins highlighted in red are the most abundant ones when calculated including missing 640 values in both datasets combined, as shown in Figure 3. The red dashed line shows the cut-off 641 used for classical frequentist statistical analyses – for the empirical Bayes and machine learning 642 analyses all proteins were included.  643  644 Figure 2 - source data 1: Coefficient of variation by sample type  645 Post-hoc comparisons of gamma GLM on coefficient of variation by sample type. 646  647 Figure 2 - source data 2: Protein number by sample type  648 Post-hoc comparisons of negative binomial GLM on protein number explained by sample type. 649  650 Figure 3 – source code: Matlab source code to produce self-similarity scores, plots and PCA plots 651 that make up Figure 3, https://github.com/dradri/variation2021.  652  653 Figure 3 – source data 1: Matlab MAT data file based on iBAQ values, gene names, and sample 654 classes to produce self-similarity scores, plots and PCA plots that make up Figure 3.  655  656 Figure 4 - Figure Supplement 1: Most abundant proteins with accession numbers  657 The sixty most abundant proteins in trophallactic fluid over 73 colony and 40 single individual 658 samples. Ranking of abundance included zero values. From left to right, accession numbers, 659 proportion of samples in which the protein was identified in colony samples and single 660 individual samples, average iBAQ abundance across all samples, log2 of the fold change in 661 abundance between types for a given comparison, the comparisons for which the protein was 662 significant in two out of three methods are marked with yellow dots, annotation terms. 663 Annotation terms are bolded for the 25 out of 27 core trophallactic fluid proteins that are 664 amongst the 60 most abundant proteins. The additional but less abundant core proteins are a 665 cathepsin (26-29-p) and a myosin heavy chain (Mhc). 666  667 Figure 5 - Figure Supplement 1: Visualization of all results.  668 Venn diagrams summarizing statistical methods, frequentist volcano plots, empirical Bayes 669 volcano plots, example SHAP value plots of feature importance the top 20 proteins. Each SHAP 670 plot is for one of the ten models trained. For significant proteins, see Supplemental file 2, for full 671 model results, see Supplemental files 3-5. 672  673 Figure 5 - Figure Supplement 2: Significantly differing proteins in two out of three analyses with 674 accession numbers  675 All proteins that significantly differ in two out of three of the analysis methods (frequentist, 676 empirical Bayes and random forest classification with SHAP values). From left to right, 677 accession numbers, proportion of samples in which the protein was identified in colony samples 678 and single individual samples, average iBAQ abundance across all samples calculated without 679 zero values, log2 of the fold change in abundance between types for a given comparison, the 680 
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comparisons for which the protein was significant in two out of three methods are marked with 681 yellow dots, annotation terms. 682  683 Figure 5 – source code: Jupyter notebook to run random forest analyses, 684 https://github.com/dradri/variation2021.  685  686 Figure 6 - Figure Supplement 1: Network characteristics for all gene set enrichment analyses  687 The detailed results for each network are presented in Figure 6 - Figure Supplement 2 (for 60 688 most abundant proteins) and Figure 6 - Figure Supplement 3 (for significantly differing 689 proteins, divided by comparison). 690  691 Figure 6 - Figure Supplement 2: Gene set enrichment analysis for the most abundant 692 trophallactic fluid proteins  693 Gene set enrichment analysis results for the D. melanogaster orthologs of the 60 most abundant 694 trophallactic fluid proteins. Observed gene count indicates how many proteins in the network 695 are annotated with the term. Background gene count indicates how many proteins in total have 696 this term, in this network and in the background. Strength describes how large the enrichment 697 effect is: log10(observed proteins / expected proteins in a random network of this size). False 698 Discovery Rate describes how significant the enrichment is. P-values are corrected for multiple 699 testing within each category using the Benjamini–Hochberg procedure. 700  701 Figure 6 - Figure Supplement 3: Gene set enrichment analysis for the significantly differing 702 proteins  703 Gene set enrichment analysis results for the D. melanogaster orthologs of the trophallactic fluid 704 proteins significantly differing in two out of three of our statistical methods, first combined and 705 then separately for the three main comparisons. Observed gene count indicates how many 706 proteins in the network are annotated with the term. Background gene count indicates how 707 many proteins in total have this term, in this network and in the background. Strength describes 708 how large the enrichment effect is:                  log10(observed proteins / expected proteins in a 709 random network of this size). False Discovery Rate describes how significant the enrichment is. 710 P-values are corrected for multiple testing within each category using the Benjamini– Hochberg 711 procedure. The significant annotations are indicated for GO: Biological process (GO:BP), GO: 712 Molecular function (GO:MF), GO: Cellular component (GO:CC), Reactome pathways and KEGG 713 pathways. 714  715 Supplemental file 2: All 135 significantly differing proteins  716 This supplemental file combines into a single sheet the results and additional information for all 717 of the significantly differing proteins in our four comparisons (Young vs. Mature, Nurse vs. 718 Forager, Field vs. Lab, East vs. West), by all of the three statistical methods (classical, empirical 719 Bayes, machine learning). Protein accession numbers, presence in colony and individual 720 datasets, abundance when present, fold changes by comparison and significance both by 721 comparison and by model are shared. 722  723 Supplemental files 3-5: Full statistical results  724 These supplemental files share the full results of all the models run.  725  726 Supplemental file 3: Full frequentist statistical results  727 Statistical results for the classical frequentist models; the imputed data are also shared.  728  729 Supplemental file 4: Full empirical Bayes statistical results  730 For the empirical Bayes LIMMA models, results are shared as raw output tables.  731  732 Supplemental file 5: Full random forest statistical results  733 



24 

Accuracy, seed, and mean feature importances for each gene are reported for each model 734 trained for the random forest analyses. 735  736   737 
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Figure 4 - Figure Supplement 1: Most abundant proteins with accession numbers 

The sixty most abundant proteins in trophallactic fluid over 73 colony and 40 single 
individual samples. Ranking of abundance included zero values. From left to right, 
accession numbers, proportion of samples in which the protein was identified in colony 
samples and single individual samples, average iBAQ abundance across all samples, log2 
of the fold change in abundance between types for a given comparison, the comparisons 
for which the protein was significant in two out of three methods are marked with yellow 
dots, annotation terms. Annotation terms are bolded for the 25 out of 27 core trophallactic 
fluid proteins that are amongst the 60 most abundant proteins. The additional but less 
abundant core proteins are a cathepsin (26-29-p) and a myosin heavy chain (Mhc). 
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Figure 5 - Figure Supplement 1: Visualization of all results. 
Venn diagrams summarizing statistical methods, frequentist volcano plots, empirical Bayes 
volcano plots, example SHAP value plots of feature importance the top 20 proteins. Each 
SHAP plot is for one of the ten models trained. For significant proteins, see Supplemental 
file 2, for full model results, see Supplemental files 3-5.  
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Figure 5 - Figure Supplement 2: Significantly differing proteins in two out of three 
analyses with accession numbers 

All proteins that significantly differ in two out of three of the analysis methods (frequentist, 
empirical Bayes and random forest classification with SHAP values). From left to right, 
accession numbers, proportion of samples in which the protein was identified in colony 
samples and single individual samples, average iBAQ abundance across all samples 
calculated without zero values, log2 of the fold change in abundance between types for a 
given comparison, the comparisons for which the protein was significant in two out of three 
methods are marked with yellow dots, annotation terms. 
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Figure 6 - Figure Supplement 1: Network characteristics for all gene set enrichment 
analyses 

The detailed results for each network are presented in Figure 6 - Figure Supplement 2 (for 
60 most abundant proteins) and Figure 6 - Figure Supplement 3 (for significantly differing 
proteins, divided by comparison).  

Proteins used N nodes N edges

Avg. local 
clustering 
coefficient

Avg. node 
degree:

60 most abundant 41 32 0.361 1.56
Significant in 2/3, in any comparison 44 44 0.312 2
Significant in 2/3, Nurse vs forager 19 6 0.158 0.632
Significant in 2/3, Young vs mature 10 4 0.5 0.8
Significant in 2/3, Field vs lab 20 11 0.583 1.1



Figure 6 - Figure Supplement 2: Gene set enrichment analysis for the most abundant 
trophallactic fluid proteins 

(Next two pages) Gene set enrichment analysis results for the D. melanogaster orthologs 
of the 60 most abundant trophallactic fluid proteins. Observed gene count indicates how 
many proteins in the network are annotated with the term. Background gene count 
indicates how many proteins in total have this term, in this network and in the background. 
Strength describes how large the enrichment effect is: log10(observed proteins / expected 
proteins in a random network of this size). False Discovery Rate describes how significant 
the enrichment is. P-values are corrected for multiple testing within each category using 
the Benjamini–Hochberg procedure. 
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Figure 6 - Figure Supplement 3: Gene set enrichment analysis for the significantly 
differing proteins 

(Next three pages) Gene set enrichment analysis results for the D. melanogaster orthologs 
of the trophallactic fluid proteins significantly differing in two out of three of our statistical 
methods, first combined and then separately for the three main comparisons. Observed 
gene count indicates how many proteins in the network are annotated with the term. 
Background gene count indicates how many proteins in total have this term, in this 
network and in the background. Strength describes how large the enrichment effect is:                  
log10(observed proteins / expected proteins in a random network of this size). False 
Discovery Rate describes how significant the enrichment is. P-values are corrected for 
multiple testing within each category using the Benjamini– Hochberg procedure. The 
significant annotations are indicated for GO: Biological process (GO:BP), GO: Molecular 
function (GO:MF), GO: Cellular component (GO:CC), Reactome pathways and KEGG 
pathways. 
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