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Abstract Rap1 is the main protein that binds double-stranded telomeric DNA in Saccharomyces 
cerevisiae. Examination of the telomere functions of Rap1 is complicated by the fact that it also 
acts as a transcriptional regulator of hundreds of genes and is encoded by an essential gene. In this 
study, we disrupt Rap1 telomere association by expressing a mutant telomerase RNA subunit (tlc1-
tm) that introduces mutant telomeric repeats. tlc1-tm cells grow similar to wild-type cells, although 
depletion of Rap1 at telomeres causes defects in telomere length regulation and telomere capping. 
Rif2 is a protein normally recruited to telomeres by Rap1, but we show that Rif2 can still associate 
with Rap1-depleted tlc1-tm telomeres, and that this association is required to inhibit telomere 
degradation by the MRX complex. Rif2 and the Ku complex work in parallel to prevent tlc1-tm telo-
mere degradation; tlc1-tm cells lacking Rif2 and the Ku complex are inviable. The partially redundant 
mechanisms may explain the rapid evolution of telomere components in budding yeast species.

Editor's evaluation
The study clarifies the role of Rif2 in telomere homeostasis and how cells can extend telomeres and 
control senescence in the absence of the Rap1 binding to telomeres. The possibility of coping with 
telomere sequence modification through flexibility and redundancy of capping proteins is of general 
interest in terms of telomere evolution.

Introduction
Telomeres, nucleoprotein complexes located at the ends of eukaryotic chromosomes, protect chro-
mosome ends from degradation, from telomere-telomere fusion events, and from being recognized 
as double-stranded DNA breaks (Wellinger and Zakian, 2012; de Lange, 2018). In most eukaryotic 
species, telomeric DNA consists of tandem G/C-rich repeats of double-stranded DNA with the G-rich 
strand extending to form a 3′ single-stranded overhang. These repeats are bound by specialized 
proteins—some to the double-stranded region and others to the 3′ overhang—which are important 
for proper telomere function. Telomere length is maintained by a dynamic process of shortening and 
lengthening. Telomeres shorten due to incomplete DNA replication and nucleolytic degradation, and 
are lengthened by the action of a specialized reverse transcriptase called telomerase (Wellinger, 
2014). At its core, telomerase consists of a catalytic protein subunit and an RNA subunit, and extends 
telomeres by iterative reverse transcription of a short G-rich sequence to the 3′ overhang, using the 
RNA subunit as a template.
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Rap1 is the main double-stranded telomeric DNA-binding protein in the budding yeast Saccharo-
myces cerevisiae (Buchman et al., 1988; Conrad et al., 1990), with important roles in regulating telo-
mere length (Lustig et al., 1990; Conrad et al., 1990; Marcand et al., 1997), transcriptional silencing 
of subtelomeric genes (Kyrion et al., 1993), and preventing telomere-telomere fusions (Pardo and 
Marcand, 2005). Rap1 mediates these functions in part by recruiting additional proteins (i.e., Rif1, 
Rif2, Sir3, and Sir4) via its C-terminal domain (Hardy et al., 1992; Wotton and Shore, 1997; Moretti 
et al., 1994). Expression of a mutant Rap1 lacking the C-terminal domain, which retains the ability 
to bind telomeric sequences, mimics the deletion of the RIF and SIR genes in terms of telomere 
length regulation and subtelomeric gene silencing (Wotton and Shore, 1997; Kyrion et al., 1993). 
However, the telomeric functions of Rap1 are not limited to the recruitment of Rif and Sir proteins. 
For example, although Rif2 and Sir4 are important for the inhibition of telomere end-to-end fusions, 
Rap1 also inhibits fusions independently of Rif2 and Sir4 (Marcand et al., 2008). In addition, binding 
of Rap1 to telomeric repeats is thought to promote replication fork pausing and breakage of dicentric 
chromosomes at telomere fusions independently of the Rif and Sir proteins (Makovets et al., 2004; 
Guérin et al., 2019; Douglas and Diffley, 2021). Despite the central role of Rap1 in yeast telomere 
biology, its study is complicated by the fact that Rap1 is also a transcription factor that regulates the 
expression of a few hundred genes (Lieb et al., 2001). Moreover, RAP1 is essential for viability (Shore 
and Nasmyth, 1987), preventing analysis of a gene deletion mutant.

In this study, we examined the function of Rap1 at S. cerevisiae telomeres by expressing a mutant 
telomerase RNA subunit (tlc1-tm) that introduces [(TG)0–4TGG]nATTTGG mutant telomeric repeats 
instead of wild-type (TG)0-6TGGGTGTG(G)0-1 repeats (Chang et al., 2007; Förstemann and Lingner, 
2001). We find that Rap1 binds very poorly to mutant telomeric sequences, yet tlc1-tm cells are 
viable and grow similar to wild-type cells. The depletion of Rap1, not surprisingly, causes telomere 
length homeostasis defects. Unexpectedly, the overall levels of Rif2 at telomeres are unaffected. Rif2 
recruitment to tlc1-tm telomeres is dependent on the MRX complex, and Rif2 is crucial for preventing 
tlc1-tm telomeres from degradation by the MRX complex. The yeast Ku complex functions in parallel 
to protect tlc1-tm telomeres, and absence of both Rif2 and the Ku complex renders tlc1-tm cells invi-
able. Our findings reveal multiple redundant mechanisms that may have been important for the rapid 
evolution of telomere components in budding yeasts.

Results
Rap1 binds poorly to tlc1-tm sequences
To examine the function of Rap1 specifically at telomeres, we made use of a telomerase RNA mutant, 
tlc1-tm. Rap1 has a consensus DNA-binding sequence of 5′-CACCCAYACMYM-3′ (where Y is C or T, 
and M is A or C) containing an invariable CCC core (Graham and Chambers, 1994; Lieb et al., 2001). 
The template region of wild-type TLC1 is 3′-CACACACCCACACCAC-5′, resulting in the addition of 
(TG)0-6TGGGTGTG(G)0-1 telomeric repeats (Förstemann and Lingner, 2001). The tlc1-tm template 
region is 3′-CACCUAAACCACACAC-5′, resulting in [(TG)0–4TGG]nATTTGG mutant telomeric repeats 
(Chang et al., 2007). The lack of the GGG motif in the mutant repeat sequence should disrupt Rap1 
binding, yet the tlc1-tm mutant grows similar to a wild-type strain (Figure  1A). Telomeres in the 
tlc1-tm mutant are on average longer and more heterogeneous in length than in wild-type strains 
(Figure 1B), but the telomere profile of tlc1-tm is much less dramatically altered compared to most 
other TLC1 mutants with altered template sequences (Förstemann et al., 2003; Lin et al., 2004). 
Telomeres in tlc1-tm cells were previously reported to be slightly shorter than in wild-type cells, as 
measured by telomere PCR (Chang et al., 2007). This discrepancy is likely due to the tendency of PCR 
to amplify shorter fragments more efficiently than longer ones.

Because telomerase only adds repeats to the distal end of telomeres, the proximal region of tlc1-
tm telomeres still contains some wild-type repeats with the capacity to be bound by Rap1. Thus, we 
engineered strains in which the left arm of chromosome VII (VII-L) ends with a telomere that consists 
entirely of either wild-type or tlc1-tm telomeric sequence (Figure 1C). These strains were constructed 
by replacing the native VII-L telomere with the URA3 gene followed by 81 bp of wild-type or 84 bp of 
tlc1-tm telomeric seed sequence, which was lengthened in vivo by either wild-type or tlc1-tm mutant 
telomerase, respectively. As expected, the VII-L telomere containing only mutant sequence (VII-L-MUT) 
was longer and more heterogeneous than the wild-type control telomere (VII-L-WT) (Figure 1C). We 
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Figure 1. Rap1 binds poorly to tlc1-tm telomere sequences. (A) Exponentially growing cells of the indicated genotypes were diluted to an OD600 of 0.05 
and monitored for 8 hr. Three clones of each genotype were followed, and the average of the measurements at each time point is plotted. Error bars are 
too small to be visualized. (B) Telomere Southern blot analysis of strains of the indicated genotypes. Black arrowhead indicates a 1.8 kb DNA fragment 
generated from the BsmAI-digestion of plasmid pYt103 (Shampay et al., 1984). The major terminal restriction fragment is below the 1.8 kb control 
band. (C) Southern blot analysis of the artificial VII-L telomere, with either wild-type or tlc1-tm mutant sequence, using a probe to the adjacent URA3 
gene. Multiple clones were examined, with each clone propagated for 1–4 passages (each passage corresponds to approximately 25 generations). 
A wild-type strain (lacking the artificial VII-L telomere) was used as a control. (D, F, G) Chromatin immunoprecipitation coupled with quantitative PCR 

Figure 1 continued on next page
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assessed the association of Rap1 to the VII-L-WT or VII-L-MUT telomeres, as well as to native Y′ telo-
meres, by chromatin immunoprecipitation coupled with quantitative PCR (ChIP-qPCR). Binding of 
Rap1 is substantially reduced at the VII-L-MUT telomere (Figure 1D). Rap1 is more modestly reduced 
at Y′ telomeres due to the retention of some wild-type repeats at native telomeres. We confirmed the 
Rap1 ChIP-qPCR result by performing an electrophoretic mobility shift assay (EMSA) using recombi-
nant full-length Rap1 protein. We find that Rap1 shows a very poor binding capacity to the tlc1-tm 
oligonucleotides compared to the wild-type telomeric sequence (Figure 1E).

Cdc13 is the main sequence-specific single-stranded telomeric DNA binding protein in S. cere-
visiae (Nugent et al., 1996). Cdc13 requires a minimum of 11 nucleotides of GT-rich sequence for 
full binding affinity, with only three bases—forming a GNGT motif—recognized with high specificity 
(Eldridge et al., 2006). The GNGT motif is present in the tlc1-tm mutant sequence, so Cdc13 binding 
should not be altered. Consistent with this hypothesis, we find that Cdc13 associates equally well with 
both wild-type and mutant telomeres (Figure 1F).

The ability of tlc1-tm strains to survive with greatly reduced Rap1 telomere association was 
surprising given that Rap1 is the main telomere binding protein in S. cerevisiae, important for recruiting 
a number of other proteins to telomeres, and is encoded by an essential gene. However, the essential 
function of Rap1 is likely linked to its ability to bind nontelomeric sites in the genome where it acts as a 
transcriptional regulator of several hundred genes (Azad and Tomar, 2016). In addition, S. cerevisiae 
strains expressing a mutant telomerase that adds vertebrate TTAGGG telomeric repeats are devoid 
of Rap1, indicating that Rap1 is not essential for telomere capping (Alexander and Zakian, 2003; 
Brevet et al., 2003). In these strains, Tbf1 binds to the vertebrate repeats and is able to regulate 
telomere length homeostasis in a Rap1-independent manner (Alexander and Zakian, 2003; Berthiau 
et al., 2006). Thus, we assessed binding of Tbf1 to tlc1-tm telomeres. We find no change in the levels 
of Tbf1 at tlc1-tm telomeres compared to wild-type telomeres by ChIP-qPCR (Figure 1G), consistent 
with neither wild-type nor mutant telomere sequences containing the RCCCT Tbf1 consensus binding 
sequence (Preti et al., 2010), indicating that the loss of Rap1 is not compensated by recruitment of 
Tbf1. The Tbf1 association observed at the native Y′ telomeres is due to the presence of TTAGGG 
repeats at subtelomeric regions (Brigati et al., 1993), while the association observed at the artifi-
cial VII-L telomere is likely due to the presence of several RCCCT motifs in the adjacent sequence 
(Figure 1—figure supplement 1).

Loss of Rap1-mediated telomere length regulation at tlc1-tm telomeres
The decreased binding of Rap1 to tlc1-tm sequences likely explains the long, heterogeneous-sized 
telomeres in tlc1-tm strains because Rap1 negatively regulates telomerase through what is called 
the ‘protein counting’ model. This model posits that Rap1, through its recruitment of Rif1 and Rif2, 
inhibits telomerase; the longer a telomere is, the more Rap1, Rif1, and Rif2 will be present, and the 
stronger the inhibition of telomerase will be (Marcand et  al., 1997; Levy and Blackburn, 2004). 
Reduced binding of Rap1 would cause tlc1-tm telomeric sequences to not be recognized as telomeric 
in terms of Rap1-mediated telomere length regulation. To test this hypothesis, we again modified 
telomere VII-L to generate a telomere that would be seeded with either 84 bp or 300 bp of tlc1-
tm telomeric sequence, but in a TLC1 strain expressing wild-type telomerase so that the tip of the 
telomere would contain wild-type telomeric sequences. In both cases, the size of the telomere VII-L 

(ChIP-qPCR) analysis of the association of (D) protein A-tagged Rap1, (F) Myc-tagged Cdc13, and (G) Myc-tagged Tbf1 to six Y′ telomeres, the VII-L 
telomere, or to the non-telomeric ARO1 locus. Untagged wild-type and tlc1-tm strains were used as controls. The mean percentage of input ± SEM is 
shown (n = 3, *p<0.05, ***p<10–3). Source data are given in Figure 1—source data 1. Tbf1-binding motifs adjacent to the artificial VII-L telomere are 
shown in Figure 1—figure supplement 1. (E) Electrophoretic mobility shift assay (EMSA) of Rap1 protein incubated with radiolabeled oligonucleotides 
with either wild-type or tlc1-tm mutant telomeric sequence. The percentage of bound probe was determined by dividing the signal of the shifted band 
by the total signal (shifted plus unshifted). Uncropped blots for panels (B), (C), and (E) can be found in Figure 1—source data 2.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Chromatin immunoprecipitation.

Source data 2. Southern blots and EMSA.

Figure supplement 1. Tbf1-binding motifs adjacent to the artificial VII-L telomere.

Figure 1 continued
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terminal restriction fragment increased in size, with the magnitude of the increase roughly equivalent 
to the size of the tlc1-tm telomeric seed sequence, indicating that this sequence is not being sensed 
by the Rap1 protein counting mechanism (Figure 2A).

To examine telomere length regulation in tlc1-tm strains further, we monitored telomerase-mediated 
telomere extension events at nucleotide resolution after a single-cell cycle using the inducible Single 
Telomere EXtension (iSTEX) assay (Strecker et al., 2017). At wild-type telomeres, telomerase extends 
only a subset of telomeres in each cell cycle, with a strong preference for the extension of short 
telomeres (Teixeira et al., 2004; Strecker et al., 2017). At tlc1-tm telomeres, we find that telomere 
extension frequency is dramatically increased, with nearly all (92%) of the telomeres being extended 
during a single-cell cycle (Figure 2B and C). This observation is consistent with the protein counting 
model; the depletion of Rap1 at tlc1-tm telomeres causes them to all be recognized as short telo-
meres in need of elongation.

tlc1-tm telomeres are rapidly degraded in the absence of telomerase
The increase in telomere extension frequency of tlc1-tm telomeres is much more dramatic than the 
increase seen in rif1∆, rif2∆, and pif1-m2 cells (Teixeira et al., 2004; Stinus et al., 2017), even though 
these mutants have similar or longer telomeres than the tlc1-tm mutant (e.g., see Figure  1B for 
comparison to rif1∆ and rif2∆). Ablation of Rap1 leads to readily detectable telomere degradation 
within a few hours (Vodenicharov et al., 2010), so we hypothesized that while decreased Rap1 at tlc1-
tm telomeres may favor their extension by telomerase, increased degradation may limit the length 
of tlc1-tm telomeres. If true, removal of telomerase should trigger rapid entry into senescence. To 
test this idea, we sporulated diploid strains that were heterozygous for EST2, which encodes the 
protein catalytic subunit of telomerase (Lingner et al., 1997), or TLC1, with either wild-type or mutant 
telomeres (i.e., est2Δ/EST2 versus est2Δ/EST2 tlc1-tm/tlc1-tm and tlc1Δ/TLC1 versus tlc1Δ/tlc1-tm), 
and performed senescence assays with the haploid meiotic progeny. In the presence of wild-type 
telomeres but absence of telomerase (est2Δ and tlc1Δ), telomeres shortened until the cells senesced 
after 60–70 population doublings, as expected (Figure 3A). A small subset of the senescent popu-
lation was then able to lengthen the telomeres by recombination-mediated mechanisms, forming 
so-called survivors (Lundblad and Blackburn, 1993). We found that cells containing mutant telomeres 
senesced rapidly, only ~40 population doublings after telomerase loss (Figure 3A, est2Δ tlc1-tm* and 
tlc1Δ*). We examined the telomere length of cells that had undergone ~30 population doublings after 
isolation of the haploid spores and found that, upon loss of telomerase, mutant telomeres became 
extremely heterogeneous and degraded (i.e., a continuous smear of telomeric DNA-hybridizing signal 
extending from the wells to the bottom; Figure 3B).

Rif1 and Sir4, but not Rif2 nor Sir3, association to tlc1-tm telomeres is 
decreased
Rap1, through its C-terminal domain, recruits Rif1, Rif2, Sir3, and Sir4 to telomeres (Hardy et al., 
1992; Wotton and Shore, 1997; Moretti et al., 1994). We reasoned that the reduction of Rap1 at 
the tlc1-tm telomeres should also decrease recruitment of Rif1, Rif2, Sir3, and Sir4, which we tested 
by ChIP-qPCR (Figure 4A). Consistent with this hypothesis, we find that Rif1 and Sir4 recruitment to 
the VII-L-MUT telomere is reduced compared to the VII-L-WT telomere (to 16% for Rif1 and 31% for 
Sir4). Surprisingly, the recruitment of neither Rif2 nor Sir3 is affected. Rif2 can interact with the Xrs2 
and Rad50 subunits of the MRX complex (Hirano et al., 2009; Hailemariam et al., 2019; Roisné-
Hamelin et al., 2021), which binds to DNA ends and telomeres (Oh and Symington, 2018); Rif2 can 
also interact directly with double-strand DNA (Cassani et al., 2016; Hailemariam et al., 2019). Sir3 
possesses multiple domains that can interact with histones (Gartenberg and Smith, 2016). Thus, Rif2 
and Sir3 may associate to tlc1-tm telomeres via Rap1-independent mechanisms.

Transcription is not affected at tlc1-tm telomeres
Rap1, through its recruitment of the Rif and Sir proteins, represses the transcription of non-coding 
telomeric repeat-containing RNA (TERRA) (Iglesias et al., 2011). Reduced levels of Rap1, Rif1, and 
Sir4 at tlc1-tm telomeres may alter TERRA transcription. However, we find no change in TERRA abun-
dance in tlc1-tm cells (Figure 4B). Rap1, through its recruitment of the Sir complex, also mediates the 
transcriptional silencing of subtelomeric genes (Moretti et al., 1994). The VII-L-WT and VII-L-MUT 

https://doi.org/10.7554/eLife.74090
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Figure 2. Telomere length regulation is disrupted in tlc1-tm cells. (A) Southern blot analysis of the artificial VII-L telomere using a probe to the adjacent 
URA3 gene. The telomere was seeded with either wild-type or tlc1-tm mutant sequence of the indicated lengths in a strain expressing wild-type TLC1. 
Multiple clones of each strain were examined. A wild-type strain (lacking the artificial VII-L telomere) was used as a control. The uncropped blot can 
be found in Figure 2—source data 1. (B) In vivo extension of tlc1-tm telomeres was examined using the inducible Single Telomere EXtension (iSTEX) 
assay. Telomere VI-R was amplified and sequenced after the induction of wild-type telomerase. Each bar represents an individual telomere. The black 
and red portions of each bar represent wild-type and tlc1-tm sequence, respectively, that is identical in sequence and thus present before telomerase 
induction. The length of the black/wild-type sequence is 48 bp. Sequence that is divergent from the black and red sequence is shown in gray and green. 
Gray represents newly added wild-type sequence after the induction of telomerase. Green represents divergent tlc1-tm sequence, most likely a result 
of homologous recombination. Telomeres are sorted based on the length of the undiverged (black plus red) sequence. (C) Telomere VI-R sequences 
obtained from the iSTEX analysis in (B) were binned into groups of 10 nt in size according to telomere length before telomerase induction. iSTEX data 
for the extension of wild-type telomeres were taken from previous studies (Strecker et al., 2017; Stinus et al., 2017) and included for comparison. 
Groups containing less than four telomeres were excluded from this analysis. Frequency of extension and average telomere length before telomerase 
induction were calculated and plotted for each group. Logarithmic regression curves for each dataset were also included in the plot. Telomeres shorter 
than 40 nt before telomerase induction, which are not efficiently recognized and extended by telomerase (Strecker et al., 2017), were removed from 
the regression analysis. Source data are given in Figure 2—source data 2.

Figure 2 continued on next page
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telomeres possess a URA3 gene immediately adjacent to the telomeric repeats. Silencing of the URA3 
gene was monitored by assaying for growth in the presence of 5-fluoroorotic acid (5-FOA), which 
kills cells expressing URA3 (Figure 4C). Strains deleted for SIR2, which causes a defect in silencing 
(Aparicio et al., 1991), were used as controls. Because hypersensitivity to 5-FOA does not correlate 
with loss of silencing in some genetic backgrounds (Rossmann et al., 2011), we also measured URA3 
transcript levels by reverse-transcriptase quantitative PCR (Figure 4D). In both assays, we find no 
difference between VII-L-WT and VII-L-MUT, indicating that the reduced levels of Rap1 and Sir4 at 
tlc1-tm telomeres still allow functional silencing.

Rif2 prevents degradation of tlc1-tm telomeres
Rap1 regulates telomere length homeostasis through its recruitment of Rif1, Rif2, and Sir4. Rif1 
and Rif2 negatively regulate telomerase (Hardy et al., 1992; Wotton and Shore, 1997; Levy and 
Blackburn, 2004). In contrast, Sir4 functions in a pathway to recruit telomerase to telomeres (Hass 
and Zappulla, 2015). We tested what effect deleting RIF1, RIF2, and SIR4 would have on telomere 
length in tlc1-tm cells. Deletion of SIR4 results in a small decrease in telomere length in TLC1 cells, as 
expected (Hass and Zappulla, 2015), but no noticeable change in tlc1-tm cells (Figure 5A). The lack 
of an effect could be due to Sir4 already being reduced at tlc1-tm telomeres (Figure 4A). Deletion of 

The online version of this article includes the following source data for figure 2:

Source data 1. Southern blots.

Source data 2. iSTEX assay.
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indicated genotypes, derived from the sporulation of est2Δ/EST2 and est2Δ/EST2 tlc1-tm/tlc1-tm diploids (top panel) or tlc1Δ/TLC1 and tlc1Δ/tlc1-tm 
diploids (bottom panel). Cell density was measured every 24 hr, followed by dilution to 1 × 105 cells/ml. Mean ± SEM of four independent isolates per 
genotype is plotted. (B) Telomere Southern blot analysis of samples obtained at the first time point of the senescence assays in (A). Black arrowhead 
indicates the 1.8 kb telomere sequence-containing fragment loaded as control, as in Figure 1B. The uncropped blot can be found in Figure 3—source 
data 1.

The online version of this article includes the following source data for figure 3:

Source data 1. Southern blot.

https://doi.org/10.7554/eLife.74090
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RIF1 increases telomere length in both TLC1 and tlc1-tm cells (Figure 5B, Figure 5—figure supple-
ment 1), despite Rif1 also being reduced at tlc1-tm telomeres (Figure 4A). Rif1 may still impact tlc1-
tm telomeres because it plays a much bigger role in telomere length homeostasis than Sir4.

Deletion of RIF2 causes dramatic degradation of tlc1-tm telomeres, with a continuous smear of 
telomeric DNA-hybridizing signal observed (Figure 5B, Figure 5—figure supplement 1), similar to 
tlc1-tm cells upon loss of telomerase (Figure 3B). This finding, along with the observation that Rif2 is 
still present at tlc1-tm telomeres (Figure 4A), indicates that Rif2 has an important role in protecting 
tlc1-tm telomeres. Since uncapped telomeres expose chromosome ends to non-homologous end 
joining (NHEJ) and homologous recombination (HR), we tested whether the rif2∆ tlc1-tm telomere 
profile would change by deleting DNL4 or RAD52, which are required for NHEJ and HR, respectively 
(Wilson et al., 1997; Symington et al., 2014). The extensive smear was still observed in dnl4∆ rif2∆ 
tlc1-tm and rad52∆ rif2∆ tlc1-tm triple mutants, but was reduced in intensity, especially at low molec-
ular weight, in rad52∆ rif2∆ tlc1-tm (Figure 5C). rif2∆ tlc1-tm cells grow poorly, and this growth defect 
is exacerbated by additional deletion of RAD52; rad52∆ rif2∆ tlc1-tm spores mostly fail to germinate, 
and those that do grow even more poorly than rif2∆ tlc1-tm (Figure  5D and E), suggesting that 
Rad52-mediated HR helps cope with rif2∆ tlc1-tm uncapped telomeres. rad52∆ tlc1-tm cells also 
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Figure 4. Recruitment of Rif1 and Sir4, but not Rif2 nor Sir3, is significantly reduced at tlc1-tm telomeres. (A) Chromatin immunoprecipitation coupled 
with quantitative PCR (ChIP-qPCR) analysis of the association of Myc-tagged Rif1, Rif2, Sir4, and protein A-tagged Sir3 to six Y′ telomeres, the VII-L 
telomere, or to the non-telomeric ARO1 locus. Untagged wild-type and tlc1-tm strains were used as controls. (B) Total RNA was reverse transcribed and 
telomeric repeat-containing RNA (TERRA) from specific telomeres (I-L and XV-L) was analyzed by qPCR. TERRA values were normalized to ACT1 levels, 
and to the respective wild type (TLC1). (C) Tenfold serial dilutions of strains with the indicated genotypes were spotted on SC plates without or with 
5-fluoroorotic acid (5-FOA). (D) The expression of the subtelomerically integrated URA3 gene was measured in the indicated yeast strains by RT-qPCR. 
All data (except C) are shown as mean ± SEM (n = 3, ***p<10–3, ****p<10–4). Source data are given in Figure 4—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Chromatin immunoprecipitation.

Source data 2. Southern blot.

Figure supplement 1. Examining the effect of deleting SIR3 in tlc1-tm and tlc1-476A cells.

https://doi.org/10.7554/eLife.74090
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Figure 5. Rif2 prevents degradation of tlc1-tm telomeres. (A–C) Telomere Southern blot analysis of strains of the 
indicated genotypes. Black arrowhead indicates the 1.8 kb telomere sequence-containing fragment loaded as 
control, as in Figure 1B. A Southern blot analysis of the artificial VII-L telomere using a probe to the adjacent URA3 
gene in strains from (B) is shown in Figure 5—figure supplement 1. The slight differences in the telomere profile 

Figure 5 continued on next page
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have longer telomeres than tlc1-tm cells (Figure 5C), indicating that HR is important for maintaining 
tlc1-tm telomeres.

Interestingly, rif1∆ rif2∆ and rif1∆ rif2∆ tlc1-tm cells have very similar telomere profiles: very long 
telomeres but without the extensive degradation seen in rif2∆ tlc1-tm cells (Figure 5B). This observa-
tion is reminiscent of the elevated levels of telomere-telomere fusion seen in rif2∆ tel1∆ cells, and not 
in rif1∆ rif2∆ tel1∆ cells (Marcand et al., 2008), but it is currently unclear whether there is a common 
underlying mechanism that explains both observations.

Rif2 protects tlc1-tm telomeres by inhibiting the MRX complex
TEL1 is epistatic to RIF2 with respect to telomere length regulation; while rif2∆ cells have long telo-
meres, tel1∆ and rif2∆ tel1∆ cells have very short telomeres (Craven and Petes, 1999). Thus, we 
tested whether the same would be true in terms of the telomere degradation seen in rif2∆ tlc1-tm 
cells. Deletion of TEL1 shortens the telomeres of tlc1-tm cells, but does not affect the telomere profile 
of rif2∆ tlc1-tm cells (Figure 5B), indicating that Rif2 does not inhibit Tel1 to prevent the degradation 
of tlc1-tm telomeres. Recent studies have shown that Rif2 attenuates Tel1 activity at telomeres by 
inhibiting the MRX complex (consisting of Mre11, Rad50, and Xrs2), which is responsible for recruiting 
Tel1 to telomeres (Hailemariam et al., 2019; Sabourin et al., 2007). Rif2 discharges the ATP-bound 
state of Rad50, thereby making the MRX complex incapable of activating Tel1 (Hailemariam et al., 
2019). Similarly, Rif2 enhancement of Rad50 ATPase activity limits MRX-mediated tethering of DNA 
ends during double-strand break (DSB) repair (Cassani et al., 2016). Rif2 also inhibits MRX-mediated 
resection of telomeric DNA ends (Bonetti et al., 2010a; Bonetti et al., 2010b). Rif2 inhibition of 
the MRX complex involves a direct interaction between the BAT/MIN motif of Rif2 with the ATPase 
domain of Rad50 (Roisné-Hamelin et al., 2021; Khayat et al., 2021). Therefore, we hypothesized 
that Rif2 could be inhibiting MRX-mediated degradation of tlc1-tm telomeres. Consistent with this 
idea, we find that Mre11 is about fivefold more associated with the VII-L-MUT telomere in comparison 
with the VII-L-WT telomere (Figure 6A), and that the telomere degradation observed in rif2∆ tlc1-tm 
cells is absent in rad50∆ rif2∆ tlc1-tm cells (Figure 6B).

The rad50∆ tlc1-tm and rad50∆ rif2∆ tlc1-tm cells (also cdc13-1 tlc1-tm cells, discussed below) show 
a telomere profile reminiscent of type II survivors, which maintain their telomeres in a telomerase-
independent manner that relies on recombination-mediated amplification of telomeric sequence 
(Lundblad and Blackburn, 1993; Teng and Zakian, 1999). Independently generated isogenic isolates 
of type II survivors will have similar but slightly different telomere profiles, much like that observed in 
different isolates of isogenic tlc1-tm strains (as seen in rad50∆ tlc1-tm and rad50∆ rif2∆ tlc1-tm cells, 
but also in tlc1-tm strains in general). However, Rad50 is required for type II survivor formation (Chen 
et al., 2001), and this effect is still observed in rad50∆ tlc1-tm and rad50∆ rif2∆ tlc1-tm strains with an 
additional deletion of RAD52, which is required for HR and survivor formation (Lundblad and Black-
burn, 1993; Claussin and Chang, 2015; Figure 5—figure supplement 2A). Interestingly, the severe 
growth defect of rad52∆ rif2∆ tlc1-tm strains (Figure 5D) is suppressed by an additional deletion 
of RAD50 (Figure 5—figure supplement 2B). At present, we do not know the reason for the slight 
telomere profile differences seen between different isolates of isogenic tlc1-tm strains, but it may be 
related to a previous observation that the very tip of the telomere has unique sequence features that 
affect telomere capping and length regulation (Grossi et al., 2001).

of isogenic tlc1-tm strains are examined further in Figure 5—figure supplement 2. The uncropped blots can 
be found in Figure 5—source data 1. (D) Colony sizes of haploid meiotic progeny derived from the sporulation 
of rad52∆/RAD52 rif2∆/RIF2 and rad52∆/RAD52 rif2∆/RIF2 tlc1-tm/tlc1-tm diploid strains were measured and 
normalized to wild-type (top panel) or tlc1-tm (bottom panel). The number of colonies analyzed is indicated in 
parenthesis. Error bars show SEM. (E) Tenfold serial dilutions of strains with the indicated genotypes were spotted 
on a YPD plate and grown at 30°C.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Southern blot.

Figure supplement 1. Rif2 protects tlc1-tm telomeres from degradation.

Figure supplement 2. Slight differences in the telomere profile of isogenic tlc1-tm strains are not due to Rad52-
dependent homologous recombination.

Figure 5 continued
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Figure 6. Rif2 protects tlc1-tm telomeres by inhibiting the MRX complex and acts in parallel with the Yku complex. (A, C) Chromatin 
immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) analysis of the association of Myc-tagged Mre11 and Yku70 to six Y′ telomeres, the 
VII-L telomere, or to the non-telomeric ARO1 locus. Untagged wild-type and tlc1-tm strains were used as controls. The mean percentage of input ± 
SEM is shown (n = 3, **p<0.01). Source data are given in Figure 6—source data 1. (B, D) Telomere Southern blot analysis of strains of the indicated 

Figure 6 continued on next page
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Rif2 and the Yku complex act in parallel to protect tlc1-tm telomeres
The CST (Cdc13-Stn1-Ten1) and Yku (Yku70-Yku80) complexes are also important for inhibiting nucle-
olytic degradation at telomeres (Garvik et al., 1995; Grandin et al., 1997; Grandin et al., 2001; 
Gravel et al., 1998), and their importance might be increased at tlc1-tm telomeres. Cdc13 and Yku70 
are present at similar levels at VII-L-WT and VII-L-MUT telomeres (Figure 1F, Figure 6C). The cdc13-1 
temperature-sensitive mutant causes an accumulation of single-stranded telomeric DNA (Garvik 
et al., 1995), and is defective even at the permissive temperature of 23°C (Paschini et al., 2012). 
cdc13-1 tlc1-tm cells do not exhibit the extensive telomere degradation seen in rif2∆ tlc1-tm cells 
(Figure 6B). Independently generated cdc13-1 tlc1-tm cells show slightly different telomere profiles. 
However, unlike rad50∆ tlc1-tm and rad50∆ rif2∆ tlc1-tm cells, this heterogeneity disappears upon 
deletion of RAD52 (Figure 6—figure supplement 1A). cdc13-1 rad52∆ tlc1-tm triple mutants grow 
very poorly (Figure 6—figure supplement 1B), suggesting that Rad52-mediated HR plays a role in 
maintaining cdc13-1 tlc1-tm telomeres. In contrast to cdc13-1 tlc1-tm cells, we observe extensive 
telomere degradation in yku70∆ tlc1-tm cells (Figure 6D). Telomere degradation is not seen in exo1∆ 
yku70∆ tlc1-tm cells, suggesting that the Yku complex inhibits the Exo1 exonuclease to protect tlc1-
tm telomeres. rif2∆ yku70∆ tlc1-tm cells are not viable (Figure 6E), indicating that Rif2 and the Yku 
complex function in parallel to protect tlc1-tm telomeres.

Rif2 recruitment to tlc1-tm telomeres requires a DNA end and the MRX 
complex
The telomere degradation seen in rif2∆ tlc1-tm cells has also been observed in other tlc1 template 
mutants, such as the tlc1-476A mutant (Figure 7A), even without deletion of RIF2 (Chan et al., 2001; 
Lin et al., 2004). The tlc1-476A mutant changes the invariable CCC core of the template region to 
CAC, causing the addition of long stretches of TG dinucleotide repeats, occasionally interrupted by 
a TGG trinucleotide, that are predicted to disrupt Rap1 binding even more so than tlc1-tm repeats 
(Chan et al., 2001; Graham and Chambers, 1994). We find that tlc1-476A mutants are completely 
dependent on Rif2 for survival as tlc1-476A rif2∆ double mutants are inviable (Figure 7B).

To examine how Rif2 is able to associate with the Rap1-depleted telomeres of tlc1-tm cells, we first 
asked whether a DNA end is required. We inserted 300 bp of either wild-type or tlc1-tm telomeric 
sequence at an internal genomic locus on chromosome III (III-ITS; chromosome III interstitial telomeric 
sequence) and assessed Rif2 association by ChIP-qPCR. We find that Rif2 associates with the wild-
type ITS, but not the tlc1-tm ITS (Figure 7C), indicating that Rap1-independent recruitment of Rif2 to 
tlc1-tm sequence requires a DNA end. Since the MRX complex binds to DNA ends and telomeres (Oh 
and Symington, 2018), and Rif2 is known to interact with both Rad50 and Xrs2 (Hirano et al., 2009; 
Hailemariam et al., 2019; Roisné-Hamelin et al., 2021), Rif2 recruitment to tlc1-tm telomeres might 
require the MRX complex. Consistent with this hypothesis, we find that Rif2 association to the tlc1-tm 
telomeres is lost in rad50∆ strains (Figure 7D).

Since Rap1 is not completely absent at tlc1-tm telomeres, we asked whether the Rap1-Rif2 inter-
action was still important for protecting tlc1-tm telomeres. We transformed rif2∆ and rif2∆ tlc1-tm 
cells with a centromeric plasmid expressing Rif2 or a Rif2-L44R,V45E,E347R mutant that is unable to 
interact with Rap1 (Shi et al., 2013). The cells were then passaged for approximately 100 generations, 

genotypes. Black arrowhead indicates the 1.8 kb telomere sequence-containing fragment loaded as control, as in Figure 1B. (B) Parental diploid 1 
is rad50∆/RAD50 rif2∆/RIF2; parental diploid 2 is rad50∆/RAD50 rif2∆/RIF2 tlc1-tm/tlc1-tm. The last six lanes are derived from cells grown at 22°C. 
(D) Parental diploid 1 is exo1∆/EXO1 yku70∆/YKU70; parental diploid 2 is exo1∆/EXO1 yku70∆/YKU70 tlc1-tm/tlc1-tm. The uncropped blots can be 
found in Figure 6—source data 2. (E) Colony sizes of haploid meiotic progeny derived from the sporulation of rif2∆/RIF2 yku70∆/YKU70 and rif2∆/RIF2 
yku70∆/YKU70 tlc1-tm/tlc1-tm diploid strains were measured and normalized to wild-type (top panel) or tlc1-tm (bottom panel). The number of colonies 
analyzed is indicated in parenthesis. Error bars show SEM. Representative images of dissected tetrads are shown on the right. Each column of colonies 
arose from a single tetrad.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Chromatin immunoprecipitation.

Source data 2. Southern blots.

Figure supplement 1. Examining the effect of deleting RAD52 in cdc13-1 tlc1-tm.

Figure 6 continued
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which was sufficient for Rif2, but not Rif2-L44R,V45E,347R, expression to partially restore the telomere 
profile and suppress the growth defect of rif2∆ tlc1-tm cells (Figure 7—figure supplement 1). Thus, 
the Rap1-Rif2 interaction is still important in tlc1-tm cells. Alternatively, the L44R, V45E, and E347R 
mutations may disrupt Rif2 protection of tlc1-tm telomeres in a manner independent of its ability to 
interact with Rap1.

Discussion
In this study, we investigated the consequences of depleting Rap1 from S. cerevisiae telomeres. Our 
findings suggest that impairing Rap1 binding does not significantly affect cell proliferation. The deple-
tion of telomeric Rap1 causes defects in telomere length regulation and telomere capping. Surpris-
ingly, Rif2 is still recruited to Rap1-depleted telomeres, and its recruitment is dependent on the MRX 
complex. tlc1-tm telomeres become extensively degraded in the absence of Rif2 or the Yku complex, 
and rif2∆ yku70∆ tlc1-tm triple mutants are inviable.

A B

yku70∆

rif2∆ yku70∆

tlc1-476A

rif2∆ tlc1-476A

yku70∆ tlc1-476A

rif2∆ yku70∆ tlc1-476A

tlc
1-

47
6A

21.2 kb

5.0 kb

4.3 kb

3.5 kb

2.0 kb

1.6 kb

1.4 kb

1.9 kb

0.95 kb
0.83 kb

w
ild

 ty
pe

tlc
1-

tm

N
or

m
al

iz
ed

 c
ol

on
y 

si
ze

0

0.2

0.4

0.6

0.8

1

wild
 ty

pe (n
=12)

rif2
∆ (n=7)

tlc
1-476A (n=9)

rif2
∆ tlc

1-476A (n=0)

yku70∆ (n=11)

rif2
∆ yku70∆ (n=7)

yku70∆ tlc
1-476A (n=5)

rif2
∆ yku70∆ tlc

1-476A (n=0)

ARO1

***

0

0.1

0.2

III-ITS

%
 in

pu
t

Untagged III-ITS-WT
Untagged III-ITS-MUT
Rif2-13Myc III-ITS-WT
Rif2-13Myc III-ITS-MUT

C D
Untagged  VII-L-WT
Untagged VII-L-MUT
Rif2-13Myc VII-L-WT
Rif2-13Myc VII-L-MUT

****

****

0

0.2

0.4

%
 in

pu
t

0.6

VII-L ARO16 Y’

rad50∆

Figure 7. Rif2 association to tlc1-tm telomeres requires the MRX complex. (A) Telomere Southern blot analysis of strains of the indicated genotypes. 
Black arrowhead indicates the 1.8 kb telomere sequence-containing fragment loaded as control, as in Figure 1B. The uncropped blot can be 
found in Figure 7—source data 1. (B) Colony sizes of haploid meiotic progeny derived from the sporulation of a rif2∆/RIF2 yku70∆/YKU70 tlc1-
476A/TLC1 diploid strain were measured and normalized to wild type. The number of colonies analyzed is indicated in parenthesis. Error bars 
show SEM. Representative images of dissected tetrads are shown on the right. Each column of colonies arose from a single tetrad. (C) Chromatin 
immunoprecipitation coupled with quantitative PCR (ChIP-qPCR) analysis of the association of Myc-tagged Rif2 to a 300 bp ITS located on chromosome 
III containing either wild-type or tlc1-tm sequence. The mean percentage of input ± SEM is shown (n = 3, ***p<10–3). (D) ChIP-qPCR analysis of the 
association of Myc-tagged Rif2 to six Y′ telomeres, the VII-L telomere, or to the non-telomeric ARO1 locus in a rad50∆ background. Untagged strains 
were used as controls. The mean percentage of input ± SEM is shown (n = 3, ****p<10–4). Source data for ChIP experiments are given in Figure 7—
source data 2.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Southern blots.

Source data 2. Chromatin immunoprecipitation.

Figure supplement 1. Expression of a Rif2-L44R,V45E,E347R mutant suppresses neither the telomere degradation nor slow growth of rif2∆ tlc1-tm cells.
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Telomere capping is essential for cell viability; yeast cells cannot survive the loss of a single telo-
mere (Sandell and Zakian, 1993). Telomere capping is executed by telomere-binding proteins, so 
it was surprising to find that yeast cells can survive when Rap1, the main protein that binds double-
stranded telomeric DNA, is significantly reduced at telomeres. Previous studies have reported that 
telomeres of S. cerevisiae expressing mutant telomerase that adds TTAGGG repeats are devoid of 
Rap1; however, the absence of Rap1 in this situation appears to be compensated by the binding of 
Tbf1 to the TTAGGG sequence (Alexander and Zakian, 2003; Brevet et al., 2003; Berthiau et al., 
2006). In contrast, there is no change in Tbf1 binding at tlc1-tm telomeres (Figure 1G). The differ-
ence between yeast telomeres with TTAGGG repeats and tlc1-tm telomeres is further highlighted by 
the fact that Rif2 is absent at the former (Alexander and Zakian, 2003), but is crucial for telomere 
protection of the latter. In addition, multiple viable tlc1 template mutants, including tlc1-tm, result 
in the addition of mutant telomeric sequence that does not conform to the consensus binding sites 
of both Rap1 and Tbf1 (Prescott and Blackburn, 2000; Förstemann et al., 2003; Lin et al., 2004), 
supporting the notion that telomeres can remain sufficiently capped in the absence of both proteins.

Previously studied tlc1 template mutations that abolish Rap1 binding to the resulting mutant telo-
mere sequences generally fall into two categories; they either cause telomere shortening or they 
cause rapid telomere elongation, which in some cases is accompanied by extensive telomere degra-
dation (Prescott and Blackburn, 2000; Lin et al., 2004), similar to that seen in rif2∆ tlc1-tm mutants 
(Figure 5B). The first category is likely due to a loss of telomerase enzymatic activity because most 
tlc1 template mutations result in a reduction in the nucleotide addition processivity of telomerase 
(Förstemann et al., 2003). The extent of telomere elongation and degradation in the second cate-
gory appears to be correlated with the decrease in Rap1 binding (Prescott and Blackburn, 2000). 
Rap1 association to fully mutant tlc1-tm telomeres is reduced to approximately 13% compared to 
wild-type telomeres (Figure  1D). We suspect that this level of Rap1 prevents the more extensive 
elongation and degradation seen in several other tlc1 template mutants (e.g., tlc1-476A; Figure 7A) 
that likely have even less Rap1 telomere association (Prescott and Blackburn, 2000; Lin et al., 2004). 
Consistent with this hypothesis, tlc1∆ cells derived from the sporulation of tlc1-tm/tlc1∆ diploids with 
mutant telomeres also exhibit extensive degradation (Figure 3B), which is likely the result of further 
reducing Rap1 telomere association due to telomere shortening.

Our findings build upon previous work to show that Rap1 and Rif2 inhibit the MRX complex 
to prevent telomere degradation. First, decreased telomere association of Rap1 in tlc1-tm cells 
(Figure 1D) is accompanied by an increase in Mre11 telomere association (Figure 6A), which is consis-
tent with a previous report showing that Rap1 binding inhibits Mre11 recruitment (Negrini et al., 
2007). Second, the telomere degradation observed in rif2∆ tlc1-tm cells is eliminated by deletion 
of RAD50 (Figure 6B), which is consistent with previous studies showing that Rif2 inhibits the MRX 
complex by discharging the ATP-bound form of Rad50 (Cassani et al., 2016; Hailemariam et al., 
2019). Rif2 and the Yku complex have previously been shown to separately inhibit the resection of 
telomeric ends in TLC1 cells, but rif2∆ yku∆ double mutants remain viable (Bonetti et al., 2010a; 
Bonetti et al., 2010b). In contrast, we find that rif2∆ yku70∆ tlc1-tm cells are inviable (Figure 6E), 
indicating that Rap1 has an important role alongside Rif2 and the Yku complex to inhibit telomere 
degradation. Furthermore, the inviability of tlc1-476A rif2∆ double mutants (Figure 7B) indicates that 
Rap1 and Rif2 are more important than the Yku complex in this regard.

The redundant capping mechanisms offer an explanation for the rapid evolution of the telomere 
sequence and telomere-binding proteins in budding yeast species of the Saccharomycotina subdi-
vision, of which S. cerevisiae is a member (Steinberg-Neifach and Lue, 2015). Alterations in the 
template region of telomerase RNA or in the DNA-binding domain of telomere-binding proteins are 
more easily tolerated if there are redundant mechanisms to ensure sufficient telomere capping and, 
therefore, cell viability. Indeed, the budding yeast Kluyveromyces lactis can also tolerate changes 
to the template region of its telomerase RNA that disrupts binding to Rap1 (Krauskopf and Black-
burn, 1996). The more distantly related fission yeast Schizosaccharomyces pombe can also survive 
without its main telomere-binding protein, Taz1 (Cooper et al., 1997), suggesting that redundancy 
of telomere capping mechanisms has also evolved independently outside of the Saccharomycotina 
subdivision.

The association of Rif2 to Rap1-depleted tlc1-tm telomeres was unexpected given the well-
characterized role of the Rap1 C-terminal domain in recruiting Rif2 to telomeres (Wotton and Shore, 
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1997; Shi et al., 2013). We find that this Rap1-independent recruitment of Rif2 is dependent on the 
MRX complex (Figure 7D), which itself is increased at tlc1-tm telomeres (as determined by ChIP-qPCR 
analysis of Mre11; Figure 6A). The MRX complex plays a central role in the repair of DSBs (Oh and 
Symington, 2018), so why does Rif2 play such a negligible role? It has recently been reported that 
Rif2 and Sae2 have opposing roles in regulating the MRX complex, and the role of Rif2 in DSB repair 
is more readily detected in the absence of Sae2 (Marsella et al., 2021). While Sae2 has a prominent 
role in DSB repair, it has a minor role at telomeres; the inverse is true of Rif2 at DSBs and telomeres 
(Bonetti et al., 2021). Thus, Sae2 appears to limit Rif2 function at DSBs, and Rif2 may limit the role of 
Sae2 at telomeres. In wild-type cells, the prominent role of Rif2 at telomeres can be explained by its 
recruitment by Rap1. However, it is unclear how Rif2 maintains its prominent role at telomeres without 
Rap1-dependent recruitment. One possibility is that there is preferential recruitment of Sae2 to DSBs 
compared to telomeres. Further studies are needed to examine this hypothesis.

Like Rif2, Sir3 is normally recruited to telomeres via the C-terminal domain of Rap1 (Moretti et al., 
1994), so it was also unexpected to still find Sir3 associated to Rap1-depleted tlc1-tm telomeres and 
subtelomeric gene silencing intact (Figure 4). Sir3 was recently reported to inhibit DSB resection via 
two pathways, one dependent on the assembly of heterochromatin and the other involving direct 
physical interaction and inhibition of Sae2 (Bordelet et al., 2021). Deletion of SIR3 in tlc1-tm cells 
increased telomere length, but did not cause telomere degradation seen in rif2∆ tlc1-tm cells, and 
did not affect cell growth (Figure 4—figure supplement 1). Deletion of SIR3 in tlc1-476A cells affects 
neither telomere profile nor cell growth. Thus, the presence of Sir3 at tlc1-tm telomeres serves a 
different purpose than Rif2. It will be interesting to examine the significance of Sir3 at Rap1-depleted 
telomeres.

Materials and methods
Yeast strains and plasmids
Standard yeast media and growth conditions were used (Sherman, 2002; Lundblad and Struhl, 
2010). Yeast strains used in this study are listed in Supplementary file 1A. The artificial VII-L telomere 
was created essentially as previously described (Gottschling et al., 1990) by transforming restriction-
digested pVII-L URA-TEL plasmid into yeast. To obtain different versions of the VII-L telomere, this 
plasmid was modified by replacing the original 81  bp of telomeric repeats with oligonucleotides 
containing wild-type or tlc1-tm telomeric sequence of different length (Supplementary file 1B). Myc 
and protA C-terminal epitope-tagged proteins were created by integrative transformation of 13 
copies of the human c-myc (Myc) epitope or the Staphylococcal protein A IgG binding domain.

Southern blotting
Southern blots to detect native telomeres were performed essentially as previously described (van 
Mourik et al., 2018). Yeast genomic DNA was isolated using a Wizard Genomic DNA Purification 
Kit (Promega) and digested with XhoI. For each sample, 4 µg of digested genomic DNA, along with 
1.25 ng of BsmAI-digested pYt103 (Askree et al., 2004), was separated on a 0.8% (w/v) agarose 
gel and transferred to a Hybond-N+ membrane (GE Healthcare). The membrane was hybridized to 
telomere-specific digoxigenin-labeled probe (wild-type probe: 5′-​CACC​ACAC​CCAC​ACAC​CACA​
CCCACA-3′; tlc1-tm mutant probe: 5′-​ACCA​CACC​ACAC​CACA​CACA​CCACAC-3′). For detection of 
the artificial VII-L telomere, a similar procedure was performed, except that 6 µg yeast genomic DNA 
was digested with EcoRV and the membrane was hybridized at 42°C with a digoxigenin-labeled probe 
complementary to URA3 sequence. Unless otherwise mentioned (i.e., Figures 1C and 3B), all strains 
were propagated for at least 100 generations before Southern blot analysis.

Chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR)
ChIP-qPCR was performed essentially as previously described (Graf et al., 2017). For protein A ChIP, 
IgG Sepharose 6 Fast Flow beads (GE Healthcare) were used. For Myc ChIP, nProtein A Sepharose 4 
Fast Flow beads (GE Healthcare) were used; after preclearing, 9 µl anti-c-Myc Monoclonal antibody 
(Clontech/Takara) were added to each sample. qPCR was performed using a LightCycler 480 II (Roche) 
and SYBR-Green (Thermo Scientific) detection with an annealing temperature of 60°C (40 cycles). 
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Primers are listed in Supplementary file 1C. Measured Cq values were corrected to input and graphs 
were created using R. All strains were propagated for ~50 generations before ChIP-qPCR analysis.

Electrophoretic mobility shift assay (EMSA)
The recombinant S. cerevisiae Rap1 full-length protein was expressed in Escherichia coli BL21 cells 
as previously described (Wahlin and Cohn, 2000). The ability of Rap1 to bind the tlc1-tm telomeric 
sequences was assessed by EMSA with two double-stranded (ds) oligonucleotides containing repre-
sentative sequences; Mut-1 5'-​GTCATACGTCACAC​TGTG​GTGT​GTGG​TGTG​GTGT​GTGG​TGGT​
GGTG​TGTGT-3' (37 bp) and Mut-2 5'-​GTCATACGTCACAC​TGTG​GTGT​GTGT​GGTG​TGTG​GATT​TGGT​
GTGTGG-3' (34 bp). The respective G-rich forward strands and C-rich reverse strands were annealed 
in 1  mM Tris-HCl, pH 8.0, 0.1  mM MgCl2 by boiling for 2  min and slowly cooling down to room 
temperature. The correct annealing was guided by the 14 nt non-telomeric region indicated in italics. 
A ds-oligonucleotide with wild-type telomeric sequence was used as the positive binding control: 
5'-TGTGGTGTGTGGGTGTGTG-3' (19 bp). The 5' ends of ds-probes were radioactively labeled with 
[γ-32P]-ATP using T4 polynucleotide kinase (New England Biolabs), purified on Illustra Microspin G-25 
columns (GE), and diluted in 10 mM Tris-HCl, pH 7.5. In binding assays, 10 fmol of labeled probe was 
mixed with 1.5 µg competitor mix (0.5 µg each of sheared E. coli DNA [~250 bp], salmon sperm DNA, 
and yeast t-RNA) in 1× binding buffer (10 mM Tris-HCl, pH 7.5, 7 mM MgCl2, 8% glycerol), and varying 
amounts (~0.1–0.4 µg) of Rap1 protein extract, in a total of 15 µl. The binding reaction was incubated 
at 25°C for 15 min and then loaded onto 4% polyacrylamide gels (29:1 acrylamide:bis-acrylamide) 
and run in 1× TBE (89 mM Tris-borate, 2 mM EDTA, pH 8.0), 150 V at 4°C. Radioactive signals from 
dried gels were visualized with a Typhoon FLA 9500 biomolecular imager (GE Life Sciences). Quan-
tification of signals in the respective lanes was performed using the ImageQuant TL software. Bands 
were automatically detected with the settings: minimum slope 15, median filter 10, % maximum peak 
0. Background subtraction was performed using the ‘rolling ball’ method with a radius of 200. The 
fraction of bound probe (%) was calculated in each lane as (shifted signal)/(total signal of shifted and 
unshifted bands).

iSTEX assay
iSTEX was performed essentially as previously described (Strecker et  al., 2017), except that the 
starting PGALL-EST1 strain contained the tlc1-tm allele. This strain was then transformed with a PCR 
product containing the wild-type TLC1 allele and immediately grown on media containing glucose, 
which shut off expression of EST1. Successfully transformed cells were cultured in YPD media and 
eventually arrested in late G1 phase by the addition of alpha factor (Sigma-Aldrich). Cells were washed 
and resuspended in YPGal to induce the expression of wild-type telomerase, allowing the extension of 
tlc1-tm mutant telomeres during a single cell division.

Liquid culture senescence assay
Senescence assays in liquid culture were performed essentially as previously described (van Mourik 
et al., 2016).

TERRA and URA3 level analysis by quantitative reverse transcription 
and PCR
TERRA levels were measured essentially as previously described (Graf et  al., 2017), while URA3 
and ACT1 levels were measured by one-step RT-PCR with specific primers (Supplementary file 1C) 
following the standard protocol of the RNeasy Mini kit (QIAGEN). All strains were propagated for at 
least 100 generations before analysis.
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