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Abstract Managing multiple goals is essential to adaptation, yet we are only beginning to 
understand computations by which we navigate the resource demands entailed in so doing. Here, 
we sought to elucidate how humans balance reward seeking and punishment avoidance goals, and 
relate this to variation in its expression within anxious individuals. To do so, we developed a novel 
multigoal pursuit task that includes trial-specific instructed goals to either pursue reward (without 
risk of punishment) or avoid punishment (without the opportunity for reward). We constructed 
a computational model of multigoal pursuit to quantify the degree to which participants could 
disengage from the pursuit goals when instructed to, as well as devote less model-based resources 
toward goals that were less abundant. In general, participants (n = 192) were less flexible in avoiding 
punishment than in pursuing reward. Thus, when instructed to pursue reward, participants often 
persisted in avoiding features that had previously been associated with punishment, even though 
at decision time these features were unambiguously benign. In a similar vein, participants showed 
no significant downregulation of avoidance when punishment avoidance goals were less abundant 
in the task. Importantly, we show preliminary evidence that individuals with chronic worry may have 
difficulty disengaging from punishment avoidance when instructed to seek reward. Taken together, 
the findings demonstrate that people avoid punishment less flexibly than they pursue reward. Future 
studies should test in larger samples whether a difficulty to disengage from punishment avoidance 
contributes to chronic worry.

Introduction
Adaptive behavior demands we flexibly shift between pursuit of multiple goals, but disengaging from 
one goal in order to pursue another is often challenging. Switching between different goals is compu-
tationally demanding as it requires us to disengage processing relevant to prior goals and recruit 
knowledge necessary to determine the best action to pursue new goals. Consider a teenager about 
to play for a championship of her basketball league, a coveted prize she is poised to attain. As the 
game begins, she suddenly remembers that earlier that day she again forgot to show up for a school 
exam, and consequently might end up getting expelled from school. Although current tasks demand 
she reallocate attention towards the basketball game, she persists in worry about a potential looming 
disaster awaiting when the game ends.

One possibility is that managing multiple goals is influenced by the valence of goal outcomes (i.e., 
goal valence) (Guitart-Masip et al., 2012). Thus, people might devote more resources to pursuing 
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goals involving potential punishment than to goals involving potential reward because of a tendency 
for losses to loom larger in magnitude than objectively equivalent gains (Novemsky and Kahneman, 
2018). At the same time, people may adapt to their present environment such that a tendency to 
prioritize punishment avoidance might be attenuated if reward seeking goals are more frequently 
encountered than punishment avoidance goals. Thus, our first aim was to determine whether compu-
tational strategies for multigoal pursuit differ as a function of goal valence. Specifically, we investi-
gated the degree to which individuals engage, and subsequently, disengage reward seeking and 
punishment avoidance goals under instruction, and how goal engagement and disengagement are 
impacted by the frequency with which the goals are encountered.

A striking example of a maladaptive preference for punishment avoidance manifests in individ-
uals with pathological anxiety (Bar-Haim et al., 2007; Berenbaum, 2010; Gagne and Dayan, 2021; 
Sharp and Eldar, 2019; Warren et  al., 2021). Such individuals tend to learn more quickly from 
punishment than reward (Aylward et al., 2019), and this can lead to avoidance of even moderately 
risky situations (Charpentier et al., 2017). Furthermore, evidence suggests that anxiety is associated 
with failing to terminate planning in relation to potential threats (Berenbaum et al., 2018; Hunter 
et al., 2022). However, anxiety-associated failures to effectively disengage punishment avoidance 
goals have not been examined in a task that tests people’s ability to engage or disengage from 
punishment avoidance goals at will. Such a test is required to disambiguate between underlying 
computational mechanisms explaining how these failures occur (Browning et al., 2015; Korn and 
Bach, 2019).

On the one hand, it is possible that in naturalistic settings anxious individuals allocate more 
resources toward punishment avoidance because they believe the environment demands it, and thus, 
if given explicit safety signals they would effectively disengage punishment avoidance, perhaps even 
more so than less anxious individuals (Wise and Dolan, 2020). On the other hand, anxious individuals 
might fail to disengage punishment avoidance even in the presence of explicit safety signals, evincing 
a more fundamental failure in exercising executive control. Importantly, both hypotheses are consis-
tent with anxious individuals opting for avoidance behavior in approach–avoidance conflict tasks (Loh 
et  al., 2017), but diverge in settings where punishment avoidance and reward seeking goals are 
unambiguously separated in time and space. Thus, our second aim was to explore potential compu-
tations involved in disengagement of punishment avoidance goals in anxiety.

We developed a novel multigoal pursuit task that required participants to learn by trial and error 
the probabilities that different actions lead to different task features. Learning was incentivized by 
occasionally coupling certain features with monetary punishment and other features with monetary 
reward (Figure 1). Critically, on each trial, participants were instructed either to avoid the punishment 
feature or to seek the reward feature, and these goals switched frequently, requiring participants 
to continuously adjust their behavioral policy. Unbeknownst to participants, we manipulated how 
frequently certain goals were encountered in each task block, allowing us to determine whether more 
costly decision-making resources are devoted to pursuing more frequent, and thus more reward-
impacting, goals in a resource rational (RR) manner (Lieder and Griffiths, 2019).

We report evidence that participants relied to varying degrees on three strategies. Whereas a 
model-based (MB) strategy was employed to learn the probabilities by which actions led to features 
for the purpose of flexibly pursuing instructed goals, there was also evidence for a model-free 
strategy that disregarded instructed goals and relied on points won or lost to reinforce actions (Lai 
and Gershman, 2021). Most interestingly, we find evidence for use of a novel strategy we term, ‘goal 
perseveration’ (GP), whereby participants learn feature probabilities akin to an MB strategy but utilize 
this knowledge in a less costly and less flexible way, so as to always avoid punishment (even when 
instructed to seek reward) and to always seek reward (even when instructed to avoid punishment). 
Strikingly, this GP strategy was used to a greater extent for punishment avoidance, suggesting that 
disengaging punishment avoidance is harder, perhaps for evolutionarily sensible reasons (Woody and 
Szechtman, 2011). By contrast, the more flexible MB strategy was leveraged to a greater degree 
during reward seeking. Furthermore, participants flexibly increased MB control toward reward seeking 
goals when they were more abundant.

Finally, in a series of exploratory analyses, we sought to determine whether and how anxious 
individuals express a preference for punishment avoidance goals. In so doing, we found preliminary 
evidence that the degree of reliance on a GP strategy to avoid punishment was positively associated 
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Figure 1. Multigoal pursuit task. (A) Key task components. Participants were instructed to learn the likelihood of observing two features (gold and 
black circles) after taking each of two actions (pressing ‘g’ or ‘j’ on the keyboard), and integrate this knowledge with instructed trial-specific goals 
denoting the present reward or punishment value of each feature. There were two possible goals: in one participants were instructed to seek the 
reward feature (reward feature = +1 point, punishment feature = 0) and in the other to avoid the punishment feature (reward feature = 0, punishment 
feature = −1 point). Thus, if the goal was to seek reward, participants should have selected the action most likely to lead to the reward feature (gold 
circle), irrespective of whether the action lead to the punishment feature (as the value of the latter is 0). Critically, whether each of the two features was 
present was determined independently, that is, for each action there were four different possible outcome configurations (both features present/reward 
feature only/punishment feature only/both features absent). To pursue goals, participants had to learn via experience four probabilities (left panel, all 
p(feature|action)) comprising the likelihood of observing each feature following each action (i.e., they were never instructed about these probabilities). 
Continued learning was required because the true probabilities of observing features for different actions drifted across trials according to semi-
independent random walks (bottom left). Although participants were instructed with a more neutral narrative (see Methods), here we refer to the gold 
circle as the reward feature and the black circle as the punishment feature. However, the gold circle was rewarding only for reward seeking goal trials 
(and of no value during punishment avoidance goal trials), whereas the black circle was punishing only during punishment avoidance goal trials (and of 
no value during reward seeking goal trials). In the actual task implementation, the color for the reward and punishment features, and the random walks 
each feature took, were counterbalanced across participants. (B) Phases of a single trial. First, participants were shown both fractals and the current goal, 
and asked to select an action (‘Decision’). After they took an action (here, clicking ‘j’, denoted by the red outline), participants were shown feedback, 
which comprised the feature outcomes, the present reward value of each feature, and the total points gained (possible total points were: (1) ‘You lost 1’, 
(2) 0, or (3) ‘You won 1’). Finally, participants were shown the feature outcomes they would have seen had they chosen the other action (‘Counterfactual’), 
which could be any of four possible feature combinations. (C) Goal abundance manipulation. A totality of 160 trials were divided into two equal length 
blocks, constituting reward- and punishment-rich contexts. In a reward-rich context, reward seeking trials outnumbered punishment avoidance trials, 
and the converse was true in a punishment-rich context. Note, both the sequence and order of blocks were counterbalanced across goal types to 
ensure neither factor could account for prioritizing a specific goal.

https://doi.org/10.7554/eLife.74402
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with dispositional worry, which appears to be unique to those expressing worry and not to individuals 
with obsessive–compulsive (OC) or somatic anxiety symptoms.

Results
Task description
We recruited a large online sample of participants (N = 192, excluding 56 who did not meet perfor-
mance criteria; excluded participants did not differ significantly on any psychopathology measure 
from the retained sample; see Methods) to play an online version of a novel multigoal pursuit task 
(Figure 1). At each trial, participants could take two possible actions, defined by fractal images, to 
seek or avoid certain features. The trial’s goal was defined by the effective reinforcement value of 
the features, which varied from trial to trial as instructed to participants explicitly at the beginning 
of each trial. Thus, in reward seeking trials, encountering a ‘reward’ feature (gold circle) gifted the 
participant one point whereas the ‘punishment’ feature (black circle) was inconsequential (value = 
0). By contrast, in punishment avoidance trials, the punishment feature took away one point whereas 
the reward feature had no value. Note that the reward value of either feature was continuously 
presented throughout the choice deliberation time (Figure 1B), ensuring that there should be no 
reason for participants to forget the present trial’s goal. To determine whether participants adapted 
their decision-making toward more frequently encountered goals, we designed our task such that one 
goal was more abundant in each half of the task.

After participants made a decision, they were shown the choice outcome feature, followed by a 
counterfactual feature outcome for the choice not made (Figure 1B). The probabilities linking features 
to actions varied over time, and participants could estimate these continuously drifting probabilities 
from experience by observing which features actions led to. Presenting both actual and counterfactual 
outcomes removed the need for participants to explore less-visited actions to gain information, thus 
ruling out information seeking as a normative explanation for deviations from optimal choice. Of note, 
this task design differs from influential two-factor learning paradigms (Mowrer, 1951) extensively 
used to study anxiety, in that in our task both action-feature and feature-value associations changed 
throughout the experiment, mandating continued learning and flexible decision-making.

Three computational strategies
Model based
We sought to identify computations individuals employed to learn and enact decisions in our task. A 
suitable computational strategy for this task is to continuously learn which task features follow each 
action irrespective of the instructed goal, and when deciding which action to take, rely specifically on 
knowledge about features relevant to the presently instructed goal. This strategy is an instance of a 
broader family of ‘model-based’ strategies that flexibly use knowledge about which actions lead to 
which states (Dolan and Dayan, 2013). By simulating an artificial MB agent, we show that a unique 
signature of MB control in our task manifests, when current and previous goals differ (henceforth 
referred to as ‘goal-switch’ trials), in the way the current goal determines whether observed features 
in the last trial impact subsequent action. For example, an MB agent will avoid an action leading to 
a punishment feature in the last trial only when the current instructed goal is to avoid punishment 
(Figure 2A, top row). Such behavior cannot be produced by the other strategies discussed subse-
quently unless the current and previous goals are the same.

Model-free
An MB strategy can be highly effective in our task, but it demands constant adaptation of one’s 
actions to frequently changing goals. Thus, we expect participants might resort to less costly, approx-
imate strategies (i.e., heuristics). One common heuristic simplifies MB strategies by learning which 
actions have higher expected value purely based on experienced rewards and punishments. This 
so-called ‘model-free’ (MF) reinforcement learning strategy is ubiquitously deployed in single-goal 
tasks (Daw et al., 2011; Sutton and Barto, 2018). In the present multitask setting, this would entail 
forgoing adaptation to the current goal and instead simply learning the overall expected values of 
the two available actions. Since the previous goal is what determines the value of the last observed 
features, a unique signature of an MF strategy is how a previous goal determines the impact of last 
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Figure 2. Behavioral signatures of computational strategies in simulated and real data. (A) Last outcome effects in 
simulated data. Each row comprises data generated by simulating one of the candidate computational strategies 
used to enact decisions in the present task (see Methods for parameters used). Each plot depicts the proportion of 
times the simulated agent takes a different action than that taken on the last trial (‘switch probability’), as a function 

Figure 2 continued on next page
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observed features on subsequent action, regardless of whether the goal has switched. For example, if 
an action led to a punishment on the last trial, then that action will tend to be avoided irrespective of 
the current goal (Figure 2A, bottom row).

Goal perseveration
A MF strategy is relatively simple to implement but not particularly effective since it does not utilize 
the information provided by feature outcomes that currently have no reward or punishment value (i.e., 
a feature that is irrelevant given the trial’s goal or that is a counterfactual outcome of the unchosen 
action). An alternative strategy, that we term ‘goal perseveration’, might strike a better balance 
between simplicity and effectiveness. This strategy inherits the exact same knowledge of feature 
probabilities acquired by MB learning, but simplifies action selection by persistently avoiding punish-
ment and seeking reward, simultaneously, regardless of instructed goal. This, in principle, eliminates 
effortful goal switching while utilizing all available information about the changing action-feature 
mapping. Thus, rather than constituting a separate decision system in its own right, GP is best thought 
of as a behavior produced by a strategic cost-saving MB agent. In goal-switch trials, a GP strategy 
would manifest in the observed features having the same impact on subsequent actions regardless 
of the current or previous trial’s instructed goal. For example, a GP agent will avoid an action that led 
to a punishment feature at the last trial even if both previous and current goals were to seek reward 
(Figure 2A, middle row).

The benefits and costs of each strategy
MB strategies typically harvest more reward than heuristic strategies but are computationally costly, 
hence individuals will tend to use them to a greater extent when properly incentivized (Konovalov 
and Krajbich, 2020; Kool et al., 2017; Patzelt et al., 2019). To determine whether our task prop-
erly incentivized the use of an MB strategy, we simulated agents playing the task many times and 
computed the average amount of reward earned and punishment avoided with each computational 
strategy. This showed that an MB strategy in our task led to significantly more reward than the other 
strategies (Figure 3A; e.g., around 40% more than a GP agent), and only 15% worse than an ideal-
ized model that has access to the true feature probabilities for each action. The advantage of the MB 
strategy was due in large part to the task involving frequent goal switching (41.8% of trials). Finally, the 
least costly MF strategy also earns the least reward in the present task (Figure 3A).

of features experienced on the last trial for the chosen action (gold/black circles; a gray bar indicates the feature 
was absent), the previous goal (left vs. right plots), and the current goal (light vs. dark bars). (B) Last outcome 
effects in empirical data. Real participants’ switch probabilities as a function of last trial’s feature outcomes, 
and current and previous goals. For illustration, we overlay repeated measures t-tests of specific MB (difference 
between blue and black bars) and GP (green bars) predictions, broken down by goal valence. A more thorough 
analysis of strategies used by participants is shown in panel C. *p < 0.05, **p < 0.01, *****p < 10−5, *******p < 10−7 
. (C) Empirical evidence for each strategy. Posterior distributions derived from fitting a Bayesian linear mixed-
effects logistic regression evince main effects for MB (blue), GP (green), and MF (red) strategies. Evidence reflects 
MB and MF were leveraged for punishment avoidance and reward seeking goals whereas GP was leveraged for 
punishment avoidance goals, with only trending evidence it was used for reward seeking. (D) Effect of goal valence 
on strategy utilization. We estimated goal valence effects by examining the posterior distribution of differences 
between the parameters in panel C and found evidence indicating model-based utilization was greater for reward 
seeking, whereas goal-perseveration utilization was greater for punishment avoidance.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Resource rational simulations.

Figure supplement 2. Priors for group-level means and variances in our mixed-effects modeling for empirical 
data.

Figure supplement 3. Postpredictive check.

Figure 2 continued
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Empirical evidence of each computational strategy
Evidence of MB learning
To estimate whether participants leveraged each of the three strategies, we fit a Bayesian linear 
mixed-effects logistic regression to participant choices on goal-switch trials, wherein unique signa-
tures of each strategy are detectable. Besides accounting for each strategy’s signature, the regression 
controlled for the main effect of goal. The MB regression parameter predicted whether a participant 
switched to a new action on the current trial as a function of the interaction between the features 
observed last trial for chosen and unchosen actions and the instructed goal on the current trial (see 
Methods). Thus, we found a strong main effect of MB behavior (MB main effect mode = 0.59, confi-
dence interval [CI] = [0.43,0.76], pd = 1; Figure 2).

Figure 3. Task performance of distinct strategies. (A) Average total points gained by computational strategies. Punishment, reward, and total points 
(i.e., reward minus punishment) were averaged over 2000 simulations for each strategy. Strategies included model based (MB), model free (MF), and 
three versions of a goal perseveration (GP reward seeking with MB punishment avoidance [GP-R], GP punishment avoidance with MB reward seeking 
[GP-P], and GP for both reward and punishment goals [GP]). Details of parameters and models for each agent simulated are detailed in Methods. 
Each agent played the task 2000 times. Measures are range normalized such that 0 corresponds to performance of an agent that purely guesses and 
one corresponds to performance of the best-performing agent. (B) Punishment avoided by computational strategies. Here, the plot tallies successful 
attempts by agents to avoid punishment. The results illustrate that a hybrid agent that employs the goal-perseveration punishment avoidance 
strategy, and utilizes model-based control for reward seeking, avoids punishment as successfully as a fully model-based agent. (C) Reward earned by 
computational strategies. Here, the plot tallies successful attempts by agents to seek reward. This highlights that a hybrid agent that employs the goal-
perseveration punishment avoidance strategy gains less reward than a model-based agent.

https://doi.org/10.7554/eLife.74402


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Sharp, Russek et al. eLife 2022;11:e74402. DOI: https://doi.org/10.7554/eLife.74402 � 8 of 25

Examination of the data prior to regression analysis suggested a difference in utilization of MB 
control for reward seeking relative to punishment avoidance (Figure 2B). To determine whether an 
MB effect was present for both punishment avoidance and reward seeking goals, we enhanced the 
regression with separate MB parameters for the two goals. Posterior estimates showed that individ-
uals engaged MB control for both reward seeking (mode = −0.52, CI = [−0.69,−0.38], pd = 1) and 
punishment avoidance goals was highly trending (mode = 0.12, CI = [−0.01,0.28], pd = 0.96). More-
over, we found a larger MB effect for reward seeking than for punishment avoidance (mode = 0.41, 
CI = [0.20,0.62], pd = 1).

Evidence of MF learning
We next determined whether participants also used an MF strategy, as captured by a regression 
parameter reflecting an interaction between the features observed at the last trial for chosen actions 
and the instructed goal on the last trial (this interaction represents the reward or punishment incurred 
last trial). Posterior estimates showed a MF strategy was employed by participants (MF main effect 
mode = 0.24, CI = 0.14,0.36, pd = 1), both in response to reward (mode = −0.14, CI = [−0.23,−0.04]; 
Figure  2C, bottom row) and punishment (mode = 0.22, CI = [0.12,0.31]). We found no evidence 
that the valence of the feedback impacted MF behavior to a greater degree (mode = −0.08, CI = 
[−0.21,0.06], pd = 0.87).

Evidence of a GP strategy
Finally, we determined whether participants used a GP strategy, as captured by a regression param-
eter reflecting effects of reward and punishment features observed last trial irrespective of goal. We 
observed a strong GP effect (GP main effect mode = 0.26, CI = [0.14,0.40], pd = 1). Breaking the GP 
effect down by valence showed that GP was utilized for punishment avoidance (mode = 0.33, CI = 
[0.20,0.45], pd = 1), significantly more so than for reward seeking (mode = −0.11, CI = [−0.23,0.02], 
pd = 0.95; difference between goals: mode = −0.20, CI = [−0.37,−0.04], pd = 1).

Quantifying the contribution of each strategy to decision-making
The presence of unique signatures of MB, MF, and GP decision strategies in the empirical data pres-
ents strong evidence for the use of these strategies, but the signature measures are limited to exam-
ining goal-switch trials and, within those trials, examining the impact of features observed on the 
very last trial. To comprehensively quantify the extent to which participants utilized each strategy for 
reward seeking and punishment avoidance, we next developed a series of computational models that 
aim to explain all participant choices given the features observed on all preceding trials.

We first sought to determine whether each strategy explained unique variance in participants’ 
choices. To do so, we implemented a stepwise model comparison (see Methods for full details of the 
models) that began with a null model comprising only action perseveration (AP). Specifically, an AP 
strategy reflects the tendency of participants to stay with the action taken at the last trial, which has 
been found in various prior studies on single-goal reinforcement learning (Daw et al., 2011; Bayesian 
information criterion [BIC] = 38,273.53).

We subsequently investigated whether an MB strategy explained unique variance in participant’s 
choices above the null. To do so, we compared the null model to a similar model where we added an 
MB strategy. We found that the MB model explained significantly more variance than the null model 
(Δ iBIC = −3900.94), a finding that coheres with our expectation that participants would utilize an MB 
strategy to make choices.

Before considering additional strategies, we asked whether individuals adjusted how they utilized 
an MB strategy for reward seeking and punishment avoidance in a ‘resource rational’ (RR) fashion, 
based on how abundant each goal was in the task block (MBRR; Figure 2—figure supplement 1). 
Allowing the model to adjust in this way improved an index of model fit significantly (Δ iBIC = −175.95; 
Figure 4A) providing evidence that individuals reallocated MB resources toward goals that were more 
abundant.

We next tested whether a MF strategy explains unique variance in choice data beyond the MBRR 
model. To do so, we compared the MBRR model to a similar model that combined both MBRR and MF 
strategies. In controlling choice, the two strategies were combined via a weighted sum of the values 
they each assigned to a given action. Thus, a strategy’s weight quantifies the degree to which it was 

https://doi.org/10.7554/eLife.74402
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utilized. The MBRR+ MF models’ fit was superior to the MBRR model (Δ iBIC = −896.72; Figure 4A), 
providing evidence that individuals used both MF and MBRR strategies to inform their decisions.

Finally, we tested whether a GP strategy might explain additional variance beyond the MBRR and 
MF strategies. Enhancing the MBRR + MF with the addition of a GP strategy significantly improved 
model fit (Δ iBIC = −243.73; Figure 4A), indicating participants also used a GP strategy. Henceforth, 
we refer to this final MBRR + MF + GP model as the ‘winning model’ (see Methods for full model 
formalism). To further validate this winning model, we compared it to several alternative models 
that were found inferior in fitting the data, including models where we removed GP, MF, and MBRR 
processes to ensure the order in which we added each strategy did not impact the final result, and an 
alternative MF account wherein the goal was encoded as part of state representation (see Figure 4—
figure supplement 3 for model specifications and model comparison results). Ultimately, we showed 

Figure 4. Results from computational modeling. *p < 0.05, ***p < 0.001. (A) Stepwise model comparison. The plot compares all models to the winning 
model ‘MBRR+ GP + MF’. (B) Model-based utilization is greater for reward seeking than for punishment avoidance. Here and in panel C, distributions are 
compared in terms of their medians due to a heavy positive skew. (C) Goal-perseveration utilization is greater for punishment avoidance than for reward 
seeking. Panels B and C show the distributions of utilization weights that best fitted each individual participant’s choices.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Plots of symptom distributions and noting cutoff for clinical symptoms and percent of clinical symptoms.

Figure supplement 2. Parameter recovery.

Figure supplement 3. Alternative model descriptions and full model comparison.

Figure supplement 4. Correlations between fitted parameters.

https://doi.org/10.7554/eLife.74402
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that generating data from the winning model, using best-fitting participant parameters, could account 
for all but one of the mechanism-agnostic results reported in Figure 2C and D (Figure 2—figure 
supplement 3).

Punishment avoidance is less flexible than reward seeking
To investigate algorithmic differences between reward seeking and punishment avoidance, we used 
the winning model to extract the parameter values that best fit each participant. We focused our 
analysis on parameters quantifying the degree to which individuals utilized a particular strategy to 
pursue reward or avoid punishment goals. We validated that MB, GP, and MF inverse temperature 
parameters were recoverable from simulated experimental data, and that the degree of recoverability 
(i.e., the correlations of true and recovered parameter values, which were between 0.76 and 0.91; 
Figure  4—figure supplement 2) was in line with extant reinforcement learning modeling studies 
(Palminteri et al., 2017; Haines et al., 2020). Similarly, low correlations between estimated parame-
ters (all weaker than 0.16) demonstrate our experimental design and model-fitting procedure success-
fully dissociated between model parameters (Wilson and Collins, 2019).

In doing so, we found that individuals relied significantly more on an MB strategy for reward 
seeking relative to punishment avoidance (two-tailed p < 0.001, nonparametric test [see Methods]; 
Figure 4B). By contrast, individuals relied more heavily on GP for punishment avoidance relative to 
reward seeking (two-tailed p = 0.026, nonparametric test; Figure 4C). These results suggest partici-
pants did not adaptively ‘turn off’ the goal to avoid punishment to the same extent as they did so for 
the goal to pursue reward.

Finally, we examined whether individuals prioritized punishment avoidance and reward seeking 
goals based on their relative abundance. To do so, we extracted computational parameters controlling 
a shift in MB utilization across task blocks for both goal types. Each of these utilization change param-
eters was compared to a null value of 0 using a nonparametric permutation test to derive valid p 
values (see Methods). This analysis revealed that individuals were sensitive to reward goal abundance 
(mean = 0.50, p = <0.001) but not to punishment goal abundance (mean = −0.13, p = 0.13). This result 
comports with previous results which highlighted a difficulty disengaging from punishment avoidance. 
Moreover, this result points to why our winning model, that allowed MB utilization weights to change 
across task block, explained participant data better than a model that kept MB utilization weights 
constant.

Preliminary evidence chronic worry is associated with greater 
perseverance of punishment avoidance
In a set of exploratory analyses, we sought to investigate how anxiety might be related to a prioriti-
zation of punishment avoidance goals. To do so, we assayed participants using self-report measures 
of chronic worry (Meyer et al., 1990) and somatic anxiety (Casillas and Clark, 2000) and OC symp-
toms (Figure 4—figure supplement 1). For each regression model, we computed p values using a 
nonparametric permutation test wherein we shuffled the task data with respect to the psychopa-
thology scores, repeating the analysis on each of 10,000 shuffled datasets to derive an empirical null 
distribution of the relevant t-statistics.

We first report the bivariate relations between each form of psychopathology and inverse tempera-
ture parameters reflecting tendencies to utilize MB and GP punishment avoidance. Given that individ-
uals with OCD and anxiety symptoms may overprioritize threat detection, it is conceivable that there is 
a relationship between all three forms of psychopathology and MB punishment avoidance. However, 
we found no significant or trending relationships between any form of psychopathology and MB 
control for punishment avoidance (Figure 5A, left column). An alternative possibility is that individuals 
with anxiety suffer from a dysregulation in goal pursuit, reflecting a failure to disengage punishment 
avoidance when instructed to do so. On this basis, we explored whether worry and somatic anxiety 
are positively associated with GP for punishment avoidance. In so doing we found initial evidence of 
a potential relationship between the tendency to worry and punishment avoidance perseveration (B = 
2.15, t = 1.4, p = 0.16; Figure 5A, right column).

To provide a more specific test of our key hypotheses, we removed variance of noninterest in order 
to sensitize our analyses to the unique relationships between forms of psychopathology and types 
of punishment avoidance. Firstly, generalized, as opposed specific obsessive, worry is thought to be 
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particularly associated with difficulty in disengaging from worry (Berenbaum, 2010), since it lasts signifi-
cantly longer in both clinical (Dar and Iqbal, 2015) and community samples (Langlois et al., 2000). 
Thus, we dissociated generalized from obsessive worry using the same approach taken in previous 
studies (Doron et al., 2012; Stein et al., 2010), namely, by including a measure of OCD symptoms 
as a control covariate. Controlling for OCD symptoms has the additional benefit of accounting for 
known relations between OCD and poor learning of task structure, reduced MB control, and perse-
verative tendencies (Gillan et al., 2016; Seow et al., 2021; Sharp et al., 2021). Secondly, another 
potentially confounding relationship exists between worry and somatic anxiety (Sharp et al., 2015), 
likely reflecting a general anxiety factor. Thus, we isolated worry by controlling for somatic anxiety, as 
commonly done in studies seeking to quantify distinct relationships of worry and somatic anxiety with 
cognitive performance (Warren et al., 2021) or associated neural mechanisms (Silton et al., 2011). 
Finally, we controlled for covariance between computational strategies that might reflect general task 
competencies. This included the utilization of MB (including learning rates and inverse temperatures) 
since observed anticorrelations in the empirical data (Figure 4—figure supplement 4) between GP 
and MB may derive from causal factors such as attention or IQ, as well as a general tendency to miti-
gate cognitive effort by using less costly strategies (AP, MF, and GP inverse temperatures; Figure 4—
figure supplement 4).

This analysis showed a stronger relationship between worry and punishment perseveration (β = 
3.14 (1.38), t = 2.27, p = 0.04, Figure 5B). No other significant relationship was observed between 
punishment perseveration or MB punishment avoidance and psychopathology (Figure 5C). Of note, 
we additionally found no association between the parameter governing how MB punishment was 
modulated by task block and levels of worry, both when including worry alone (β = 2.5 (1.91), t = 1.31, 
p = 0.19) and when controlling for the same covariates as detailed above (β = 1.46 (1.65), t = 0.88, p = 
0.38). Ultimately, we validated the full model using a fivefold cross-validation procedure which showed 

Figure 5. Exploratory relationships between threat-related psychopathology and goal-directed control for punishment avoidance. Each row reflects a 
different regression model, where the score for each psychopathology measure in the left column is the dependent variable, and inverse temperature 
parameters reflecting model-based (‘MB Punish’) and goal-perseveration (‘GP Punish’) punishment avoidance are the regressors. Each effect is 
presented in the following format: β (standard error), p value. (A) Bivariate relationships without control covariates. (B) Regression coefficients when 
controlling for co-occurring levels of psychopathology as well as for general valence-independent levels of utilization of MB (inverse temperature and 
learning rate) and non-MB (AP, MF, and GP inverse temperatures) strategies. In all tables, p values are uncorrected for multiple comparisons.
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that regressing worry onto the aforementioned covariates (using a ridge regression implementation) 
explains significantly more variance in left out test-set data (R2 = 0.24) relative to the models of the 
bivariate relationships between worry and GP Punishment (R2 = 0.01) and MB Punishment (R2 = 0.00).

It is important to note that all aforementioned p values testing our key hypotheses (Figure 5B) are 
corrected for multiple comparisons using a correction procedure designed for exploratory research 
(Rubin, 2017), which only controls for number of statistical tests within each hypothesis. Using a 
more conservative Bonferroni error correction for all four regression models, as typically employed in 
hypothesis-driven confirmatory work (Frane, 2020), resulted in a p value for the key effect of worry 
and punishment perseveration that no longer passed a conventional significance thresholds (p = 0.08). 
Thus, future work with a more targeted, hypothesis-driven approach needs to be conducted to ensure 
our tentative inferences regarding worry are valid and robust.

To illustrate the consequences of GP punishment avoidance on pursuit of reward in anxious partic-
ipants, we simulated a GP + MB agent that adaptively engages reward-relevant information when 
instructed to, but perseverates in avoiding punishment during reward seeking. We show that such a 
strategy is as good as an MB agent in avoiding punishment, but comes with the cost of suboptimal 
reward seeking (Figure  3B and C). This trade-off mirrors the negative consequence of real-world 
threat avoidance in trait anxious individuals (Aderka et al., 2012). Moreover, this gives a potential 
normative explanation of punishment perseveration in anxious individuals; namely, if anxious individ-
uals prioritize avoiding threat, they can do so just as well using punishment perseveration as using an 
MB strategy while expending fewer resources.

Discussion
Using a novel multigoal pursuit task, we investigated computational strategies humans leverage to 
navigate environments necessitating punishment avoidance and reward seeking. Our findings indicate 
the use of a strategy that avoids goal switching wherein individuals learn a model of the task but use it 
in a goal-insensitive manner, failing to deactivate goals when they are irrelevant. This less flexible, but 
computationally less costly, strategy was leveraged more in order to avoid punishment as opposed 
to a pursuit of reward. Beyond trial-to-trial perseverance, inflexibility in punishment avoidance mani-
fested in a lack of blockwise adjustment to the abundance of punishment goals. By contrast, we found 
that a flexible MB strategy was used more for reward seeking, and was flexibly modulated in an RR 
way in response to an abundance of reward seeking goals changing between task blocks. Finally, we 
demonstrate preliminary evidence that a greater GP reliance for punishment avoidance in those indi-
viduals with greater chronic worry.

The strategic deployment of GP primarily toward punishment avoidance indicates such behavior 
is not merely a reflection of a noisy or forgetful MB system. Our finding that humans use less flexible 
computational strategies to avoid punishment, than to seek reward, aligns with the idea of distinct 
neural mechanisms supporting avoidance and approach behavior (McNaughton and Gray, 2000; 
Lang et  al., 1998). Moreover, comparative ethology and evolutionary psychology (Pinker, 1997) 
suggest there are good reasons why punishment avoidance might be less flexible than reward 
seeking. Woody and Szechtman, 2011 opined that ‘to reduce the potentially deadly occurrence of 
false negative errors (failure to prepare for upcoming danger), it is adaptive for the system to tolerate 
a high rate of false positive errors (false alarms).’ Indeed, we demonstrate that in the presence of 
multiple shifting goals, perseverance in punishment avoidance results in false positives during reward 
seeking (Figure 3B), but avoids ‘missing’ punishment avoidance opportunities because of lapses in 
goal switching (Figure 3C). Future work could further test these ideas, as well as potential alternative 
explanations (Dayan and Huys, 2009).

GP may thus in fact constitute an RR strategy (Lieder and Griffiths, 2019) for approximating 
MB control. To illustrate this, consider that MB learning is computationally demanding in our task 
specifically because goals switch between trials. When the goals switch, an MB agent must retrieve 
and use predictions concerning a different feature. Additionally, the agent needs to continuously 
update its predictions concerning features even when they are not presently relevant for planning. 
GP avoids these computationally costly operations by pursuing goals persistently, thus avoiding 
switching and ensuring that features are equally relevant for planning and learning. In this way, GP 
saves substantial computational resources compared to MB yet is able to perform relatively well on 
the task, achieving better performance than MF. Additionally, if a participant selectively cares about 
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avoiding losses (for instance, due to loss aversion), GP can perform as well as MB. Thus, we propose 
the GP heuristic reflects a strategic choice, which can achieve good performance while avoiding the 
substantial resource requirements associated with MB control. In this sense it fulfils a similar role as 
other proposed approximations to MB evaluation including MF RL (Sutton and Barto, 2018), the 
successor representation (Dayan, 1993; Momennejad et al., 2017), mixing MB and MF evaluation 
(Keramati et al., 2016), habitual goal selection (Cushman and Morris, 2015), and other identified 
heuristics in action evaluation (Daw and Dayan, 2014).

Our exploratory findings that an inflexibility in punishment avoidance was more pronounced in 
individuals with chronic worry is suggestive of a computational deficit that may serve to unify several 
known effects relating trait worry to failure to terminate threat processing. For example, in para-
digms that explicitly instruct participants to ignore threat-irrelevant information, such as the dot-
probe (Asmundson and Stein, 1994) and modified emotional Stroop (Dalgleish, 1995; van den Hout 
et al., 1995) tasks, individuals with trait worry have difficulty inhibiting processing of threat (Bar-Haim 
et al., 2007). Moreover, increased GP punishment avoidance may be involved in the overactivity of 
threat-related circuitry in anxious individuals during tasks where threat is not present (Grupe and 
Nitschke, 2013; Nitschke et al., 2009). However, we note that there was a significant positive skew 
in the somatic arousal measure, which although likely due to random sampling error (given that other 
symptom measures were highly representative of population distributions), may nonetheless limit our 
ability to generalize findings from the present sample to the population.

Our findings go beyond previous findings that report, in single-goal reinforcement learning tasks, 
that anxiety is associated with altered MF but intact MB control (Gillan et al., 2019). Our findings 
suggest a conflict between punishment avoidance and reward seeking may be necessary to uncover 
how knowledge of task structure is used in anxiety. Indeed, prior approach–avoidance conflict para-
digms have found that trait anxiety is positively associated with neural correlates of punishment avoid-
ance (rejected gambles that could result in loss) (Loh et al., 2017) and avoidant behavior (Bach, 2015).

A limitation of our task is that differences in strategy utilization for reward seeking and punishment 
avoidance (see Methods) could in part reflect differences in sensitivity to reward versus punishment. 
However, reward and punishment sensitivity cannot account for the effects we observe across strate-
gies, since on the one hand, punishment avoidance was greater for GP, whereas reward seeking was 
greater within an MB framework. Greater punishment sensitivity compared to reward sensitivity would 
predict the same direction of valence effect for both behavioral strategies. Moreover, knowledge 
of reward features had a greater net impact on choice across both goal-oriented strategies (sum of 
weights across both MB and GP strategies is greater for reward seeking). That said, we recognize that 
differences in outcome sensitivity, which are algorithmically equivalent to differences in the magni-
tude of external incentives, may cause a shift from one strategy to another (Kool et al., 2017). Thus, 
an open question relates to how reward and punishment sensitivity might impact flexibility in goal 
pursuit.

Future work can further address how humans manage multigoal learning in the context of larger 
decision trees with multiple stages of decisions. In such environments, it is thought people employ a 
successor feature learning strategy, whereby the long-run multistep choice features are stored and 
updated following feedback (Tomov et al., 2021). Such multistep tasks can be enhanced with shifting 
reward seeking and punishment avoidance goals to determine how altered strategies we identify with 
pathological worry might relate to trade-offs between MB and successor feature strategies for predic-
tion. Another possibility is that punishment-related features capture involuntary attention in our task 
because they are tagged by a Pavlovian system, and this interacts with an MB system that learns task 
structure. Indeed, prior work (Dayan and Berridge, 2014) has discussed possibilities of MB Pavlovian 
hybrid strategies.

In relation to why GP punishment avoidance may specifically be associated with chronic worry, we 
suggest that failures to disengage punishment avoidance may serve to explain so-called ‘termination’ 
failures in chronic worry (Berenbaum, 2010). The causal role of GP in failures to terminate worry 
episodes could avail of the fact that such failures are dissociable from a tendency to suffer ‘initiation’ 
failures, which involve worrying too easily in response to many stimuli (Berenbaum et  al., 2018). 
Although the perseveration of worry may appear relevant to obsessions in OC symptoms, punishment 
avoidance in OC has been empirically demonstrated to be specific to idiographic domains of potential 
threat (e.g., sanitation Amir et al., 2009), an issue the present study did not investigate. Additionally, 
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we did not find that GP was associated with somatic anxiety possibly due perhaps to random sampling 
error as we had an unusually low percentage meeting a threshold for mild symptomatology (4.7%; 
typical convenience samples are typically in the range of 12–18 Sharp et al., 2015; Telch et al., 1989). 
More importantly, somatic anxiety is thought to involve lower-order cognitive processes than those 
likely involved in multigoal pursuit (Sharp et al., 2015). Given that present results are preliminary 
in nature, future studies will need to test a prediction that chronic worry is associated with punish-
ment perseveration in a larger sample. This should also include testing whether this association holds 
in a clinical population, as variation in symptoms in a clinical population may relate to punishment 
perseveration differently (Imperiale et  al., 2021; Groen et  al., 2019). Additionally, doing so may 
be enhanced by including parameters relating worry to punishment perseveration within the model-
fitting procedure itself, and so better account for uncertainty in the estimation of such covariance 
(Haines et al., 2020).

In conclusion, we show humans are less flexible in avoiding punishment relative to pursuing reward, 
relying on a GP strategy that persists in punishment avoidance even when it is irrelevant to do so, and 
failing to deprioritize punishment avoidance goals when they are less abundant. Moreover, we show 
that GP is augmented in individuals with chronic worry, hinting at a candidate computational explana-
tion for a persistent overprioritization of threat in anxiety.

Materials and methods
Sample and piloting
Prior to disseminating the task, we conducted a pilot study varying the number of features and actions 
participants could choose. We first found that less than half of individuals we recruited performed 
above chance levels when individuals had to learn a task with three actions and nine feature probabil-
ities. We thus reduced the complexity of the task and found that including only two actions and four 
features allowed most participants to leverage an MB strategy.

Two hundred and forty-eight participants were recruited through Prolific services online Prolific 
recruiting service (https://www.prolific.co/) using the final task design from English-speaking countries 
to ensure participants understood task instruction. After expected data-scrubbing, our sample size 
had >99% power to detect valence differences in reinforcement learning parameters, conservatively 
assuming a medium effect size relative to large effects found previously (to account for differences 
between multigoal and single-goal settings; e.g., Palminteri et al., 2017; Lefebvre et al., 2017). 
Moreover, our sample had >80% power to detect small-medium effect sizes relating computational 
parameters and individual differences in anxiety ( Sharp et  al., 2021). Participants gave written 
informed consent before taking part in the study, which was approved by the university’s ethics review 
board (project ID number 16639/001). The final sample was 37% male, with a mean age of 33.92 years 
(standard deviation [SD] = 11.97). Rates of mild but clinically relevant levels of OCD (45%) and worry 
(40%) comported with prior studies (Sharp et al., 2021), indicating good representation of individual 
variation in at least some psychopathological symptoms.

Data preprocessing
Eleven participants completed less than 90% of the trials and were removed. We next sought to 
define participants that did not understand task instructions. To do so, we computed the proportion 
of times participants switched from the last action taken as a function of the feature outcomes of 
that action and the current goal. We used these proportions to define four learning signals, two for 
each goal. Note, the term ‘average’ henceforth is shorthand for ‘average switching behavior across 
all trials’. Facing reward goals, participants should (1) switch less than average if they observed a 
reward feature last trial and (2) switch more if they did not observe a reward feature last trial. Facing 
punishment goals, participants should (1) switch more than average if they observed a punishment 
feature last trial and (2) switch less than average if they did not observe a punishment feature last 
trial. We removed six additional participants because their switch behavior was the exact opposite 
as they should be for each of these four learning signals. When facing a reward goal, they switched 
more than average having observed a reward feature last trial and switched less than average having 
not observed a reward feature last trial. Moreover, when facing a punishment goal, they switched less 
having observed a punishment feature last trial and switched more than average having not observed 
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a punishment feature last trial. We additionally removed participants that: (1) treating a punishment 
feature as a reward feature (i.e., show the opposite of the two learning signals for punishment; 13 
participants) and (2) treating reward feature as a punishment feature (show the opposite of the two 
learning signals for reward; 26 participants). Excluded subjects performed significantly worse in terms 
of choice accuracy. To derive accuracy, we computed the percentage of choices subjects made in 
line with an ideal observer that experienced the same outcome history (in terms of features) as each 
participant. On average, excluded subjects chose correctly 49.6% of time, whereas included subjects 
chose correctly 63.5% of time (difference between groups: t(190) = 9.66, p < 0.00001).

Indeed, these errors in following task structure are fundamental failures that result in average 
performance that is as poor or worse than an agent that purely guesses which action to take at each 
trial (Figure 6). Doing so resulted in our final sample of n = 192, with a low percentage of removed 
participants (22%) compared to similar online computational studies (Tomov et  al., 2021). Impor-
tantly, removed participants were no different in terms of mean scores on key measures of psychopa-
thology (greatest mean difference found in OCD; Welch’s t = −0.96, p = 0.33).

Additionally, including such subjects would reduce our sensitivity to estimating differences in the 
utilization of GP and MB for goals of differing valence, as such subjects treated the task as if there was 
only a single goal, or that the goals were opposite of their instructed nature. Moreover, given their 
model of the task, such subjects could approach the task optimally using a MF strategy, and thus were 
not incentivized to use goal-directed strategies at all.

To determine whether our relatively strict subject exclusion policy might have affected the results, 
we conducted a sensitivity analysis on a larger sample (n = 248; 98% retention) including subjects that 

Figure 6. Excluded participants’ strategies perform similar to or worse than purely guessing. To motivate our exclusion criteria, we simulated task 
performance by agents that falsify these criteria and calculated their average winnings over 5000 simulations each. The guessing agent chooses 
according to a coin flip. The models instantiating strategies used by excluded subjects comprise those that treat reward features as punishment features 
(‘Mistake Reward for Punishment’), treat punishment features as if they were reward features (‘Mistake Punishment for Reward’) or incorrectly reverse the 
treatment of feature types (‘Complete Reversal of Features’). Each model performed as poorly, or significantly worse, than a model that purely guesses, 
demonstrating a fundamental failure in these strategies for the present task. By contrast, a GP-only agent (‘GP’) that ignores goal-switching instructions 
does significantly better than a guessing model, and only a little worse than a pure model-based agent (‘MB as instructed’).
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mistreated the instructed value of certain features. To account for these subjects’ behavior, we used 
normal priors to allow negative inverse temperature parameters. Fitting these revised models to our 
data, we again demonstrate that our winning model was the best-fitting model compared to all other 
models. Second, we show that the GP valence effect held and even came out stronger in this larger 
sample. Thus, the mean difference in GP utilization for punishment and reward goals was 0.24 in our 
original sample and 0.50 in the larger sample (p < 0.0001). Finally, we show the MB valence effect also 
held in this larger sample (original sample mean difference between MB reward and MB punishment 
= 2.10; larger sample mean difference = 1.27, both p values <0.0001).

Symptom questionnaires
Before participants completed the online task, they filled out three questionnaires covering transdi-
agnostic types of psychopathology. Chronic worry was measured via the 16-item Penn State Worry 
Questionnaire (Meyer et al., 1990). Anxious arousal was measured with the 10-question mini version 
of the Mood and Anxiety Symptom Questionnaire – Anxious Arousal subscale (Casillas and Clark, 
2000). Obsessive compulsiveness was measured with the Obsessive Compulsive Inventory – Revised 
(Foa et al., 2002).

Multigoal pursuit task
To examine how people learn and utilize knowledge about the outcomes of their actions in order to 
seek reward and avoid punishment, we designed a novel multigoal pursuit task. The task consisted 
of 160 trials. On each trial, participants had 4 s to make a choice between two choice options (repre-
sented as fractal images; (Figure 1B)). Choosing a fractal could then lead to two independent outcome 
features, a gold feature and a black feature. Any given choice could thus lead to both features, neither 
feature, or one of the two features. The chances that a choice led to a certain feature varied according 
to slowly changing probabilities (Figure 1A). These probabilities were partially independent of one 
another (i.e., the rank correlation between any pairs of correlation did not exceed 0.66; full span: [0.0
2,−0.17,0.24,0.28,−0.66,0.43]). The same sequence of feature probabilities (probability of encoun-
tering a given feature conditioned on a given choice) was used for all participants. This sequence was 
generated by starting each sequence at a random value between 0.25 and 0.75, and adding indepen-
dent noise (normally distributed mean = 0.0, SD = 0.04) at each trial to each sequence, yet bounding 
the probabilities to be between 0.2 and 0.8. To incentivize choice based on feature probabilities, we 
ensured that in resultant sequences the probability of reaching a given feature differed between the 
two choices by at least 0.27 for each feature, on average across the 160 trials.

To manipulate participant’s goals, throughout the task, one of the two outcome features (which we 
refer to as the reward feature) either provided 1 or 0 point, and the other outcome feature (which we 
refer to as the punishment feature) would either provide 0 points or take away one point. The number 
of points that a given outcome feature provided on a given trial was determined by trial-specific 
instructed goals (on the screen on which choice options were presented, Figure 1B). A punishment 
avoidance goal meant the punishment feature took on the value of −1 and the reward feature took 
on the value of 0, whereas the reward seeking goal meant the punishment feature took on a value of 
0 and the reward feature took on the value of +1. This information was presented in a color (gold or 
silver) matching the corresponding outcome feature’s color. Importantly, the color the feature took on 
and the probability trajectory for either feature were counterbalanced across participants. Participants 
were instructed in advance that one feature in the task might tend to provide points and the other 
feature might tend to take away points, but they were not told which features these would be.

To manipulate goal abundance, the frequency of which feature was set to the nonzero outcome 
varied in the first half versus the second half of the experiment (Figure 1C). In one half of the experi-
ment (punishment context), the punishment feature took away a point (and the reward feature did not 
provide a point) on 65% of trials, and in the other half (reward context) the reward feature provided 
a point on 65% of trials. Which context occurred in the first versus second half of the experiment was 
counterbalanced across participants.

After the participant observed which outcome features of a choice they received (2  s), they 
observed the number of points they received (1  s), including the individual reward value of each 
feature received, in white, as well as a sentence summarizing their total earnings from that trial (e.g., 
‘You lost 1’). Following this, in order to eliminate the need for exploratory choices, the participant was 
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shown the features they would have received, had they chosen the alternative choice option (2 s). 
There was then a 1-s intertrial interval.

Clinical analyses
Although the computational parameters were nonindependently estimated by our hierarchical model-
fitting procedure, it is vital to note this does not compromise the validity of the least-squares solution 
to the regressions we ran. Indeed, Friedman, Hastie et al., 2009 show that, ‘Even if the independent 
variables were not drawn randomly, the criterion is still valid if the dependent variables are condi-
tionally independent given the [independent variable] inputs’ (p. 44). However, we note that it is in 
practice difficult to determine whether such conditional independence is met. In each regression, we 
excluded the learning rate for counterfactual feedback, as well as learning rate for value in the MF 
system, due to high collinearity with other parameters (see Methods). We verified low multicollinearity 
among included parameters (variance inflation factor <5 for independent variables Akinwande et al., 
2015). We report all bivariate correlations between fitted parameters in Figure 4—figure supple-
ment 4.

Algorithms defining MB, MF, and GP strategies
We first describe how each learning system in the winning model derived action values. Then, we 
describe how action values were integrated into a single decision process. Together, these comprise 
the best-fitting model that we report on in Results.

MB system
An MB agent learns each of the four semi-independent transition probabilities of reward and punish-
ment features given either of the two actions one can choose. Each trial, this agent updates their prior 
estimate of observing a feature given an action (either ‘press g’ or ‘press j’) incrementally via a feature 
prediction error and a learning rate, ‍αchosen‍ . Here, an agent pressed ‘g’, observed a punishment 
feature, and updated the probability of observing a punishment feature conditional on choosing to 
press ‘g’:

	﻿‍

P
(
f = punish|press = g

)
t+1 =

P
(
f = punish|press = g

)
t + αchosen(1 − P(f = punish|press = g)t)‍�

(1)

Here, the ‘t’ subscript refers to the trial, and ‘1’ in the parentheses means that the participant 
observed a punishment feature. If the feature was not present, the absence would be coded as a ‘0’. 
This same coding (one for feature observation, 0 if absent) was also used to encode the presence or 
absence of a reward feature.

The model learns similarly from counterfactual feedback, albeit at a different rate. Thus, at each 
trial, MB agents update feature probabilities for the action they did not choose via the same equation 
as above but with learning rate ‍αunchosen‍ . If the agent pressed ‘g’ the counterfactual update would be:

	﻿‍
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)
t
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Each of the four probabilities an MB agent learns is stored in a matrix, where rows are defined by 
actions and columns by feature type (i.e., reward or punishment). These stored feature probabilities 
are multiplied by ‘utilization weights’ (‍βMBpunish‍ and ‍βMBreward‍) that reflect the degree to which an 
agent utilizes an MB strategy to pursue reward or avoid punishment. No additional parameter controls 
utilization of an MB strategy (e.g., there is no additional overall ‍βMB‍).

Each trial, the agent computes the expected value of each outcome by multiplying stored feature 
probabilities given each action with the values of the features that are defined by the trial-specific 
goal. Here, the agent is facing an avoid punishment trial, for which the presence of a punishment 
feature results in taking away one point (i.e., a value of −1; below we abbreviate press as ‘p’, reward 
as ‘rew’, and punishment as ‘pun’):
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	﻿‍


 QMB t+1

(
p = g

)

QMB t+1

(
p = j

)

 =


 βMBrewardP

(
f = rew|p = g

)
t βMBpunishP

(
f = pun|p = g

)
t

βMBrewardP
(
f = rew|p = j

)
t βMBpunishP

(
f = pun|p = j

)
t




 0

−1



‍�

(3a)

Via this computation an MB agent disregards the irrelevant goal (here reward seeking). If the agent 
were facing a reward goal, Equation 3a and 3b would be:

	﻿‍


 QMB t+1

(
p = g

)

QMB t+1

(
p = j

)

 =


 βMBrewardP

(
f = rew|p = g

)
t βMBpunishP

(
f = pun|p = g

)
t

βMBrewardP
(
f = rew|p = j

)
t βMBpunishP

(
f = pun|p = j

)
t




 1

0



‍�

(3b)

Resource reallocation
Within the MB system, utilization weights changed across block according to a change parameter. 
Below is an example of how this reallocation occurred for ‍βMBreward‍ :

	﻿‍

βMBreward,block =




βMBreward + βchangeReward if reward_rich block

βMBreward − βchangeReward if punishment_rich block‍�
(4)

Note that negative ‍βchange‍ values were allowed, and thus the model did not assume a priori that, for 
instance, individuals would have increased MB control for reward in the rewarding block (it could be 
the opposite). Thus, if the data are nevertheless consistent with a positive ‍βchange‍ , this is an indication 
that, although participants were not explicitly told which block they were in, they tended to prioritize 
the more abundant goal in each block (see ‘Alternative models’ for an attempt to model how partici-
pants inferred goal frequency).

MF system
A MF agent learns the value of either action directly based on the reward and punishment received. 
In our task, outcomes took on values of {−1,0,1}. Action values were updated incrementally via a value 
prediction error and learning rate for value, ‍η‍. Below is an example updating the action value for press 
= j (which we omit from the right side of the equation for concision):

	﻿‍ QMF t+1

(
press = j

)
= QMF t + η

(
OutcomeValuet − QMF t

)
‍� (5)

Goal perseveration
A GP agent uses the same matrix of estimated feature probabilities as the MB system, but multiplies 

them by a static vector, 

‍


 1

−1



‍

 , which means the system always engages both goals regardless of 

instructions. This is the only way in which the GP agent differs from the MB agent. Having its own 
utilization weights (‍βGPreward‍ and ‍βGPpunish‍) allows the system to vary across individuals in the degree 
to which the ‘avoid punishment’ and ‘seek reward’ goals are each pursued when they are irrelevant:

	﻿‍


 QGPt+1

(
press=g

)

QGPt+1
(

press=j
)


 =


 βGPrewardP

(
f = reward|a = press g

)
t βGPpunishP

(
f = punish|a = press g

)
t

βGPrewardP
(
f = reward|a = press j

)
t βGPpunishP

(
f = punish|a = press j

)
t



‍�
(6)

Note, we also fit a model where the GP strategy learns its own matrix of estimated feature proba-
bilities separate from that learned by the MB strategy (i.e., with a different learning rate), but this did 
not fit participants’ choices as well (Figure 4—figure supplement 3.).

Action perseveration

Actions taken on the last trial were represented by a one-hot vector (e.g., 

‍


 1

0



‍

), which we store in a 

variable, ‍QLastTrial‍ which was multiplied by its own utilization parameter, ‍βAP‍ .

https://doi.org/10.7554/eLife.74402
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Stochastic decision process
All action values derived by each system were integrated via their utilization weights. Below we 
show the integrated action value for press = j (which we omit from the right side of the equation for 
concision):

	﻿‍ QIntegrated
(
press = j

)
= QMB + QGP + βMFQMF + βAPQLastTrial‍� (7)

Note there are no utilization weights in the above equation for MB and GP Q values because they 
were already integrated into these Q values in Equations 3a, 3b and 6. The integrated action value 
was then inputted into a softmax function to generate the policy, which can be described by the prob-
ability of pressing ‘j’ (since the probability of pressing ‘g’ is one minus that):

	﻿‍
P
(
press = j

)
= eQIntegrated

(
press=j

)

eQIntegrated
(

press=j
)
+eQIntegrated

(
press=g

)
‍�

(8)

Alternative models tested
We tested several alternative models that did not explain the data as well as the winning model 
described above (full details in Figure 4—figure supplement 3). First, we tested models that included 
only one of the strategies described above (i.e., only MB, only GP, and only MF). We then tested 
models in a stepwise fashion detailed in Figure 2, which demonstrated that adding each strategy 
contributed to explaining unique variance in the data.

We additionally tested a model where differences in reward seeking and punishment avoidance 
were captured by the learning process as opposed to the utilization of the learned knowledge. To 
do so, we endowed the model with different MB and GP learning rates for punishment and reward 
features (‍αMBreward ,αMBpunish ,αGPreward ,αGPpunish‍) in Equation 6, and a single utilization weight 
(‍βMB, βGP‍).

With regard to the MB strategy, we additionally tested a model where learning from counterfac-
tual outcomes was implemented with the same learning rate as learning from the outcomes of one’s 
actions.

With regard to resource reallocation, we additionally tested models where it occurred in just the 
GP utilization weights, or in both GP and MB utilization (in the same fashion described in Equation 4). 
After finding that data were best explained by the model where resource reallocation only occurred 
in the MB system, we tested if resource reallocation changed from trial to trial as function of recently 
experienced goals. That is, we examined whether individuals recruit more resources toward the goal 
one has most recently experienced, which could differ within a given task block.

With regard to the MF strategy, we tested a model where goals were encoded as part of its 
state representation (G-MF). Specifically, action values were learned separately for trials with 
punishment avoidance goals (‍QG−MFpunish, press j and QG−MFpunish, press g‍) and reward seeking goals 
(‍QG−MFreward, press j and QG−MFreward, press g‍). In this version of an MF strategy, experienced outcomes 
only influence decision-making under the goal in which they were experienced. The main way it differs 
from an MB strategy is that learning relevant to a particular goal occurs only when that goal is active. 
Thus, Q values cannot track feature probabilities changing during nonmatched goal trials (e.g., how 
reward feature probabilities might shift during punishment avoidance trials). This may be one reason 
why it was inferior to the best-fitting model. Similar to the best-fitting model, this model included 
separate utilization weights (‍βG−MFreward‍ and ‍βG−MFpunish‍ and a single learning rate. GP and persever-
ation strategies were included as in the best-fitting model, and resource reallocation was applied to 
the G-MF strategy in the same way as described in Equation 4.

Model fitting
Models were fit with a hierarchical variant of expectation–maximization algorithm known as iterative 
importance sampling (Bishop, 2006), which has been shown to provide high parameter and model 
recoverability (Michely et al., 2020b; Michely et al., 2020a). The priors for this model-fitting proce-
dure largely do not affect the results, because the procedure iteratively updates priors via likelihood-
weighted resampling in order to converge on the distributions of parameters that maximize the 
integrated BIC, an approximation of model evidence. Note, all parameters had weakly informed priors 
(see Figure 2—figure supplement 2). Specifically, the fitting procedure works by (1) drawing 100,000 

https://doi.org/10.7554/eLife.74402
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samples from all group-level parameter distributions for each participant, (2) deriving participant-level 
likelihoods for each sampled parameter, (3) resampling parameters after weighting each sample by 
its likelihood, and (4) fitting new hyperparameters to the overall distribution of resampled parameter 
values. This process continues iteratively until the integrated BIC of the new parameter settings does 
not exceed that of the last iteration’s parameter settings.

Model and parameter recoverability
To verify that the experiment was appropriately designed to dissociate between the tested models 
and their parameter values, we simulated experimental data from the best-fitting and reduced models 
and successfully recovered key inverse temperature parameters (all above 0.58 correlation, average 
correlation = 0.79). The model that generated the data was recovered 10/10 times compared to the 
next best-fitting model (see Figure 4—figure supplement 2).

Simulating mechanism-agnostic stay-switch behavior
In order to examine model predictions (Figure 2), we used each given model to simulate experimental 
data from 400 participants, each time generating a new dataset by setting model-relevant beta parame-
ters to 5, learning rate parameters to 0.2, and other parameters to 0. We then computed the proportion 
of trials in which the model chose a different action compared to the previous trial. This ‘switch prob-
ability’ was computed for each combination of the previous and current trials’ goals, and the features 
observed on the previous trial. We ensured there were no significant differences in the direction and 
significance of key effects across task versions by separately fitting our Bayesian logistic regression noted 
above to the subset of subjects that performed each task version. Doing so showed that all effects held 
and to a remarkably similar degree in both task versions (see full results in Supplementary file 1).

Simulating the optimality of each computational strategy
We simulated artificial agents playing the exact task 2000 times and plotted the mean reward earned. 
Each artificial agent was also endowed with a learning rate for feature probabilities, which sampled 
from a grid of values over the 0–1 range at 0.02 increments. For each type of agent, we set the utiliza-
tion weights of the relevant strategy to five and other utilization weights (for nonused strategies) to 0.

Testing differences between reward seeking and punishment avoidance 
parameters
As a consequence of the iterative nature of the model-fitting procedure, parameters for individual 
participants are not independently estimated, precluding the use of Bayesian or frequentist para-
metric tests. We thus used nonparametric tests to compute unbiased p values. Due to a heavy positive 
skew in the distributions of utilization weight parameters at the group level (Figure 4B and C), we 
compared between them in terms of their median levels. We note that the skew in inverse tempera-
ture parameters is to be expected given their Gamma prior distributions are inherently skewed (Gillan 
et al., 2016; Sharp et al., 2021). Thus, we generated null distributions of median differences in utili-
zation weights for both MB and GP strategies. To do so, we ran our hierarchical model-fitting proce-
dure 300 times on 300 simulated datasets that assumed reward and punishment utilization weights 
were sampled from the same distribution (null hypothesis). The utilization weights that best fitted the 
simulated data were used to generate the null distribution of median differences. We then generated 
p values for median differences in the empirical data by seeing how extreme the empirical value was 
with respect to the generated null distribution. Each simulated dataset comprised the same number 
of participants as in the original sample (n = 192) and sampled both parameters with replacement 
from a joint distribution representing the null hypothesis that the two parameters are equal. The null 
distribution was derived through running our model-fitting procedure on the empirical data for one 
iteration to derive true posteriors at the participant level, and combining the participant-level median 
parameter estimates for both parameters of interest (e.g., utilization parameters for MB reward and 
MB punishment) to form a joint distribution. All other parameters were drawn from the group-level 
distributions derived by fitting the winning model to participants’ data.

Testing significance of resource reallocation parameters
We tested the difference of resource reallocation parameters (‍βchangeReward‍ and ‍βchangePunishment‍ in 
Equation 4) from zero using a permutation test, wherein we generated a null distribution by shuffling 
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the labels denoting task block within each participant and recording the mean for each change param-
eter. We then generated p-values for the empirical means of change parameters by computing the 
proportion of the null distribution exceeding the empirical value.

Behavioral signatures Bayesian logistic regression
The regression sought to explain whether participants stayed (coded as 1) or switched (coded as 
0) on trial ‘t’, which we refer to as ‘‍choicet‍’ in Equation 9, for the subset of trials where the current 
goal differed from the goal encountered on the previous trial. Since current and previous goals are 
perfectly anticorrelated in such trials, the main effect of goal was simply encoded as:

	﻿‍

goalt−1 =




1 if last goal = reward seeking

−1 if last goal = punishment avoidance‍�

GP effects were modeled by variables that encoded whether features were observed for both 
chosen and unchosen actions last trial with the following encoding scheme (here for reward):

	﻿‍

rwdt−1 =





1 if reward feature observed only for chosen action

0 if outcomes were the same for chosen and unchosen actions

−1 if reward feature observed only for unchosen action ‍�

MB effects were modeled by the interaction of the GP terms and the current goal as follows (here 
again for the MB reward effect):

	﻿‍

rwdt−1 X goalt =





1 if rwdt = 1 and goalt−1 = −1

0 if goalt−1 = 1

−1 if rwdt = −1 and goalt−1 = −1‍�

Last, we modeled MF effects as the interaction between reward and punishment features observed 
for chosen actions and the last goal faced (here, for MF reward effects):

	﻿‍

rwdchosen,t−1 X goal t−1 =





1 if rwdt,chosen = 1 and goalt−1 = 1

0 if goalt−1 = −1

−1 if rwdt,chosen = −1 and goalt−1 = 1‍�

The dissociation between this MF signature and the MB signature described above relies on the 
insensitivity of the MF strategy to counterfactual outcomes, which possess no present value.

We included all independent variables in a Bayesian mixed-effects logistic regression as follows:

	﻿‍

p(choicet = 1) = logistic(β1intercept + β2goalt−1 +
goal perseveration︷ ︸︸ ︷

β3rwdt−1 + β4punt−1 +
model−based︷ ︸︸ ︷

β5rwdt−1X goalt + β6punt−1X goalt +
Model−free︷ ︸︸ ︷

β7rwdchosen,t−1X goalt−1 + β8punchosen,t−1 X goalt) ‍�

(9)

Posterior probability distributions of each effect were estimated using a sampling procedure in 
BAyesian Model-Building Interface (Bambi) in Python (Capretto et al., 2020), which is a high-level 
interface using the PyMC3 Bayesian modeling software. The default sampler in Bambi an adaptive 
dynamic Hamiltonian Monte Carlo algorithm, which is an instance of a Markov chain Monte Carlo 
sampler. In all models, all estimated effects had good indicators of reliable sampling from the poste-
rior, including r-hat below 1.1 and effective sample size above 1000 for all parameters. Note, Equation 
9 is written at the participant level. Each effect was drawn from a normal group distribution the mean 
and variance of which were drawn from prior distributions, estimated by Bambi’s default algorithm, 
which is informed by implied partial correlations between the dependent and independent variables, 
and has been demonstrated to produce weakly informative but reasonable priors (Capretto et al., 
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2020). For hypothesis testing, we compared the 95% most credible parameter values (i.e., the 95% 
highest density intervals) to a null value of 0.
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