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Abstract Extending knowledge on ecosystem stability to larger spatial scales is urgently needed 
because present local- scale studies are generally ineffective in guiding management and conserva-
tion decisions of an entire region with diverse plant communities. We investigated stability of plant 
productivity across spatial scales and hierarchical levels of organization and analyzed impacts of 
dominant species, species diversity, and climatic factors using a multisite survey of Inner Mongolian 
grassland. We found that regional stability across distant local communities was related to stability 
and asynchrony of local communities. Using only dominant instead of all- species dynamics explained 
regional stability almost equally well. The diversity of all or only dominant species had comparatively 
weak effects on stability and synchrony, whereas a lower mean and higher variation of precipitation 
destabilized regional and local communities by reducing population stability and synchronizing 
species dynamics. We demonstrate that, for semi- arid temperate grassland with highly uneven 
species abundances, the stability of regional communities is increased by stability and asynchrony 
of local communities and these are more affected by climate rather than species diversity. Reduced 
amounts and increased variation of precipitation in the future may compromise the sustainable 
provision of ecosystem services to human well- being in this region.

Editor's evaluation
Wang et al. adapt a new statistical framework on a multisite multiyear database to investigate the 
effects of environmental variables on the temporal stability of plant communities and biomass 
productivity in Chinese grassland. The authors show that the temporal stability of the region is due 
to spatial asynchrony of community dynamics. This article will be a landmark in the field as it sets a 
new methodological framework to study the impacts of global warming in ecosystems and conserva-
tion biologists and politicians to design regional policies for land management.

Introduction
The ability of ecosystems to stably provide biological products and services such as biomass produc-
tion for human well- being (Isbell et  al., 2015; Tilman et  al., 2014, Tilman et  al., 2006) is being 
threatened by species loss (Cardinale et al., 2012; Harrison et al., 2015; Isbell et al., 2017; Isbell 
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et al., 2015; Newbold et al., 2015; Tilman et al., 2014) and climate change (Hautier et al., 2015; 
Hautier et al., 2014; Ma et al., 2017; Xu et al., 2015). Policymakers seek guidance to make manage-
ment and conservation decisions at high levels of ecological organization, for example, for an entire 
region with diverse plant communities (Cardinale et  al., 2012; Isbell et  al., 2017; Parker et  al., 
2019; Wang et al., 2019), here referred to as a regional community. However, previous theoretical, 
experimental, and observational studies on ecosystem stability have mostly been conducted at local 
scales with homogenous environmental conditions (Hautier et al., 2015; Hautier et al., 2014; Hector 
et al., 2010; Isbell et al., 2015; Ma et al., 2017; Tilman et al., 2006; Wang et al., 2020). Patterns of 
ecosystem stability discovered in local communities may not directly scale up to a system of spatially 
separate communities (Lamy et al., 2019; McGranahan et al., 2016; Wang et al., 2019; Wang and 
Loreau, 2016; Wang and Loreau, 2014; Wilcox et al., 2017; Zhang et al., 2019). Thus, there is an 
urgent need to understand stability and the factors maintaining it at spatial scales covering larger 
areas (Gonzalez et al., 2020; Isbell et al., 2017; Wang et al., 2019).

Recent theoretical work facilitates investigations of ecosystem stability at larger spatial scales 
(measured by the ratio of temporal mean to standard deviation of ecosystem productivity over time) 
by relating it to its hierarchical components along two alternative pathways I or II (Wang et al., 2019; 
Box 1). Along pathway I, local asynchronous species dynamics stabilize local communities (step A, 
species insurance effect of local species asynchrony; Yachi and Loreau, 1999) and asynchronous 
community dynamics among distant localities stabilize regional communities (step B, spatial insur-
ance effect of regional community asynchrony; Wang and Loreau, 2016; Wang and Loreau, 2014). 
Along pathway II, asynchronous population dynamics within species among distant localities stabi-
lize regional populations (step A, spatial insurance effect of regional population asynchrony; Wang 
and Loreau, 2016; Wang and Loreau, 2014) and regional asynchronous species dynamics stabilize 
regional communities (step B, species insurance effect of regional species asynchrony; Wang et al., 
2019).

Species diversity has been hypothesized to stabilize ecosystems at different ecological hierarchies 
because species- rich communities are more likely to include species that have different responses to 
environmental variation across time and space, producing stable communities via species asynchrony 
(Thibaut and Connolly, 2013; Tilman et al., 2014; Wang and Loreau, 2016; Wang and Loreau, 2014; 
Wang et al., 2020). In natural ecosystems, the role of species diversity in affecting stability across 
different ecological hierarchies is still unclear. Theoretical and experimental studies propose stabi-
lizing effects of (alpha) diversity within local communities (Hautier et al., 2015; Hautier et al., 2014; 
Hector et al., 2010; Tilman et al., 2014; Tilman et al., 2006). However, these studies usually consider 
systems in which species abundance distributions are relatively even, at least at the beginning of 
newly assembled communities in biodiversity experiments (Hector et al., 2010; Tilman et al., 2006). 
Natural communities are often characterized by highly uneven abundance distributions and domi-
nated by the dynamics of a few abundant species (Thibaut and Connolly, 2013; Wang et al., 2019), 
even with exceptions that sometimes low- abundance species can disproportionately contribute to 
certain ecosystem functions (Dee et al., 2019; Leitão et al., 2016; Schmid et al., 2022). With highly 
uneven abundance distributions, the predicted local- scale diversity–stability relationship may be weak 
and it may be sufficient to focus on the population dynamics of dominant species (see Appendix 1 for 
dominant- species measure) instead of all species (Wang et al., 2020; Xu et al., 2015; Yang et al., 
2012). Furthermore, theoretical studies also propose that the heterogeneity in species compositions 
between distant local communities (beta diversity) can increase asynchronous dynamics among them, 
resulting in stabilized regional communities (Wang et al., 2019; Wang and Loreau, 2016). Currently, 
empirical evidence for such an effect is mixed as it was detected in some (e.g., Hautier et al., 2020; 
Liang et al., 2021; Qiao et al., 2022; Wang et al., 2019) but not in other studies (e.g., Wilcox et al., 
2017; Yang et al., 2022; Zhang et al., 2019). These studies looked at rather small spatial scales with 
potentially low beta diversity or even the same dominant species occurring among local communities, 
making it difficult to detect a stabilizing effect at the regional scale where management decisions are 
taken. Because different species may be dominant in distant local communities, asynchrony among 
these local communities may contribute to regional community stability (Wang et al., 2019; Wang 
and Loreau, 2016; Wang and Loreau, 2014; Isbell et al., 2018).

To investigate the temporal stability of aboveground biomass production (‘productivity’ for short) at 
larger spatial scales, we established a region- scale observation network in Inner Mongolian grassland 

https://doi.org/10.7554/eLife.74881


 Research article Ecology

Wang et al. eLife 2022;11:e74881. DOI: https://doi.org/10.7554/eLife.74881  3 of 29

Box 1. Theory and glossary.

Theoretically, the local population coefficient of variation (CV, i.e., the ratio of mean to 
standard deviation or the inverse of stability) can be stepwise upscaled to the regional 
community CV via either the local community CV (pathway I) or the regional population CV 
(pathway II) (Box 1—figure 1). In each step, synchrony (inverse of asynchrony) measures 
the proportion of CV upscaled from the lower to the higher hierarchical level. Specifically, 
synchrony takes value between 0 (perfectly asynchronous) and 1 (perfectly synchronous) and 
the CV at the higher level is the product of synchrony and the CV at the lower level (Loreau 
and de Mazancourt, 2008; Thibaut and Connolly, 2013; Wang et al., 2019). Along pathway 
I, the local population CV first upscales with local species synchrony to the local community 
CV (step A); then, the local community CV upscales with regional community synchrony to 
the regional community CV (step B). Along pathway II, the local population CV first upscales 
with regional population synchrony to the regional population CV (step A); then the regional 
population CV upscales with regional species synchrony to the regional community CV (step 
B).
In this study, we use superscripts P and C to designate hierarchical components at population 
and community levels, respectively, and superscripts L and R to designate local and 
regional scales, respectively. We use superscript P→C and L→R to designate scaling up from 
populations to communities and from local to regional measures, respectively. All measures 
were estimated with all species or only dominant species, the latter designated with subscript 
d.

Temporal CV and synchrony
Local population CV (CV P,L): Defined as the weighted- average local population CV of plant 
aboveground biomass across species and local communities. Hypothesis: positively or 
negatively influenced by alpha diversity (Thibaut and Connolly, 2013; Tilman et al., 2006).
Local species synchrony (φP→C,L): Defined as the weighted- average synchronous biomass 
dynamics among local populations within local communities. Hypothesis: negatively influenced 
by alpha diversity (Loreau and de Mazancourt, 2008; Thibaut and Connolly, 2013).
Local community CV (CV  C,L = CV P,L × φP→C,L): Defined as the weighted- average local 
community CV of biomass among local communities. Hypothesis: negatively influenced by 
alpha diversity (Loreau and de Mazancourt, 2008; Thibaut and Connolly, 2013; Tilman 
et al., 2014).
Regional community synchrony (φC,L→R): Defined as the weighted- average spatial 
synchronous biomass dynamics among local communities. Hypothesis: negatively influenced 
by beta diversity (Wang et al., 2019).

Box 1—figure 1. Upscaling local population coefficient of variation (CV) to regional community CV via local 
community CV (pathway I, red arrows on the left side) and regional population CV (pathway II, blue arrows 
on the right side), as well as theoretically proposed impacts of species diversity measures on them.

continued on next page
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Regional population synchrony (φP,L→R): Defined as the weighted- average spatial synchronous 
biomass dynamics among local populations of the same species. Hypothesis: negatively 
influenced by spatial heterogeneity (Wang et al., 2019).
Regional population CV (CV P,R = CV P,L × φP,L→R): Defined as the weighted- average regional 
population CV of biomass across species. Hypothesis: positively or negatively influenced by 
gamma diversity (Wang et al., 2019).
Regional species synchrony (φP→C,R): Synchronous biomass dynamics among regional 
populations of different species. Hypothesis: negatively influenced by gamma diversity (Wang 
et al., 2019).
Regional community CV (CV C,R): Defined as the CV of regional community biomass. Can be 
upscaled via aggregating local communities (pathway I, CV  C,R = CV  C,L × φC,L→R) or organizing 
regional populations (pathway II, CV  C,R = CV  P,R × φP→C,R). Hypothesis: negatively influenced by 
gamma diversity (Wang et al., 2019).

Species diversity
Alpha species diversity: Local species richness (Sα) or effective species richness (Dα).
Beta species diversity: Cross- locality dissimilarity of species richness (Sβ) or effective species 
richness (D β).
Gamma species diversity: Regional species richness (Sγ) or effective species richness (Dγ).

Climatic variables
Mean annual precipitation (MAP): Cross- site averaged mean annual precipitation (or annual 
temperature, MAT).
Local and regional precipitation CVs (CVP

L and CVP
R): Measuring precipitation (or 

temperature, CVT
L and CVT

R) variability with its local and regional CVs.
Regional precipitation synchrony (φP

L→R): Spatial synchronous dynamics of precipitation (or 
temperature, φT

L→R).

in China across an area of >166,894 km2 and monitored the yearly dynamics of productivity over five 
consecutive years (Figure 1a). The Inner Mongolian grassland represents a typical part of the Eurasian 
grassland biome and is crucial in providing biological products and services to human societies living 
there (Fang et al., 2015; Kang et al., 2007). In this region, plant community productivity and species 
richness and composition are driven by climatic factors, that is, temperature and precipitation (Bai 
et al., 2004; Hu et al., 2018; Ma et al., 2010; Wang et al., 2020; Xu et al., 2015). These have 
changed considerably during the past decades (Huang et al., 2015; Piao et al., 2010) with largely 
unknown ecological consequences, especially at large spatial scales.

To facilitate the large- scale stability investigation, we employed a simulated landscape method 
(Hautier et al., 2018; van der Plas et al., 2016) to construct large- scale, that is, regional communi-
ties consisting of two local communities (two observed sites) separated by 17–987 km (Figure 1a). 
Briefly, each regional community was constructed by randomly choosing two distant local communi-
ties without replacement (to ensure replicate regional communities were not sharing local communi-
ties; Figure 1b). We did not consider scenarios including more than two local communities in each 
regional community because the resulting small number of replicate regional communities would have 
prevented a statistical analysis (but see Appendix 1—figure 3 for a three- local- community scenario). 
Based on the above framework, we investigated how asynchronous population dynamics among 
species, in particular dominant ones, at local and regional scale contributed to the stability of local and 
regional communities in the study region. We also tested how local and regional community dynamics 
were driven by species diversity or affected by climatic factors such as precipitation and its temporal 
variation. First, we analyzed stability variables with general linear models (GLMs) to identify important 
relationships. We then used this information together with theoretical considerations to construct 
path- analytic diagrams from structural equation models (SEMs) relating the regional community coef-
ficient of variation (CVs; i.e., inverse of stability) of plant aboveground biomass to its hierarchical 

https://doi.org/10.7554/eLife.74881
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Figure 1. Geographic distribution of surveyed sites with site numbers (a) and a simplified case (seven- site) for illustrating construction of regional 
communities aggregating two local communities (b). In (a), red circles represent sites included in constructing regional communities. (b) shows a 
simplified case illustrating the construction of two sets of regional communities using random sampling without replacement to ensure the regional 
communities within each set do not share local communities.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Regional synchronies of temperature (a) and precipitation (b), all- species measure of regional community coefficient of variation 
(CV, inverse of stability, c) and all- species (d–f) and dominant- species (g–i) measures of regional community synchrony (inverse of asynchrony), regional 
population CV, and regional population synchrony in relation to distance.

components and all- or dominant- species diversity as well as climatic factors (Thibaut and Connolly, 
2013; Tilman et al., 2014; Wang et al., 2019; Wang and Loreau, 2016; Wang and Loreau, 2014). 
As commonly done in such studies, all analyses were conducted using inverse values of stability and 
asynchrony, that is, CV and synchrony. We present an overview of the upscaling models and a glossary 
of terms in Box 1.

Results
Part I: Analysis using all species
We first analyzed variation in the regional community CV in relation to its hierarchical components 
including all species and in relation to all- species diversity indices as well as climatic factors. We found 
that the regional community CV was positively associated with the local community CV and regional 
community synchrony (step B of upscaling pathway I; Figure 2a and b, Figure 3a). The local commu-
nity CV in turn was positively related to the local population CV and local species synchrony (step A in 
upscaling pathways I; Figure 2e and f, Figure 3a). Along the upscaling pathway I, the CVs decreased 
from 0.76 for the local population CV to 0.38 for the local community CV and further to 0.29 for 
the regional community CV (Figure 3a), as a result of a lower local species synchrony (mean = 0.49) 
compared with regional community synchrony (mean = 0.78; Figure 3a).

Alternatively, the regional community CV was positively related to the regional population CV and 
regional species synchrony (step B of upscaling pathway II; Figure 2c and d, Figure 3a). The regional 
population CV was in turn positively related to the local population CV but not to regional popula-
tion synchrony (step B of upscaling pathway II; Figure 2g and h). However, the path from regional 
population synchrony to regional population CV was suggested by theory and therefore included in 
the SEM, where it became significant (Figure 3a). Along the upscaling pathway II, the CVs declined 
from 0.76 for the local population CV to 0.71 for the regional population CV and further to 0.29 for 
the regional community CV (Figure 3a), as a result of a higher regional population synchrony (mean = 
0.94) compared with regional species synchrony (mean = 0.41; Figure 3a).

https://doi.org/10.7554/eLife.74881
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Figure 2. The regional community (a–d), local community (e–f), and regional population (g–h) coefficients of 
variation (CVs) in relation to their hierarchical components using all- species measures. Solid black lines represent 
significant (p<0.05) and marginally significant (p<0.10) relationships, and dashed gray lines represent nonsignificant 
(p>0.10) relationships (see ‘Materials and methods’ for details and Box 1 for glossary). Thin grey lines represent 

Figure 2 continued on next page
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relationships for 1000 sets of resampled regional communities (n=10 for each set). See Figure 2—figure 
supplement 1 for results of using dominant- species measures. Dataset and code are available in Figshare at 
https://doi.org/10.6084/m9.figshare.20281902.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. All- species estimate of regional community coefficient of variation (CV, inverse of stability) 
in relation to dominant- species estimates of local community CV (a), regional community synchrony (inverse 
of asynchrony, b), regional population CV (c), and synchrony (d) as well as dominant- species estimates of local 
community CV (e, f) and regional population CV (g, h) in relation to their hierarchical components.

Figure 2 continued

We found that all- species diversity indices had relatively weak impacts on CVs and synchronies 
across ecological organization levels (Figure 4a and c–e; see ‘Materials and methods’ for calculating 
species diversity indices across scales). Although correlation (Appendix 1—figure 2a) and regression 
(Figure 4b) analyses showed that the regional population CV was positively related to gamma diver-
sity, this was not supported by the final path analysis model (Figure 3a). However, the local population 
CV was positively and the local species synchrony negatively related to alpha diversity (Figure 3a, 
Figure 4f and g).

Local species synchrony increased with the local precipitation CV but no relations between the 
regional community CV or its other components and climatic variation were found (Figure  3a, 
Figure 4h and i).

Part II: Analysis using only dominant species
Considering only dominant species in the hierarchical components was sufficient to explain a large 
amount of variation in regional community CV. For the upscaling pathway I, the regional community 
CV was positively related to local community CV and regional community synchrony (step B), with 
the explanatory power reduced to 0.71 from 0.98 for the analysis using all species (comparison of 
Figure 3b with Figure 3a). The local community CV in turn was positively related to the local popula-
tion CV and to local species synchrony (step A; Figure 3b). For the upscaling pathway II, the regional 
community CV was positively related to the regional population CV and regional species synchrony 
(step B), with the explanatory power reduced to 0.69 from 0.98 for the analysis using all species. 
The regional population CV was positively related to the local population CV and regional popula-
tion synchrony. Dominant species as a group explained more than half of the variance of CVs and 
synchronies estimated with all species (explanatory power,  R̄2  ,>0.50, Figure 3—figure supplement 
1), except for the regional population synchrony ( R̄2  = 0.14, Figure 3—figure supplement 1h).

Similar to the analysis with all species, diversity indices of only dominant- species had relatively 
weak impacts on CVs and synchronies across organizational levels (Figure  4—figure supplement 
1a–g). Although correlation analyses showed that the regional population CV was positively related 
to gamma diversity (Appendix 1—figure 2b), this was again not supported by the final path analysis 
model (Figure 3b). However, for dominant species, the local population CV was increased by alpha 
diversity and reduced by larger mean values of precipitation (Figure 3b, Figure 4—figure supple-
ment 1i).

Discussion
Based on a multiyear region- scale survey in Inner Mongolian grassland, we investigated stability 
(inverse of CV) and asynchrony (inverse of synchrony) across spatial scales and analyzed influences of 
species diversity, dominant species, and climatic factors on them. We found that the regional commu-
nity stability was related to the stability and asynchronous dynamics of local communities. In addition, 
stability and asynchrony were — albeit weakly — impacted by species diversity. Compared with the 
dynamics of all species, the dynamics of only dominant species had also good predictive power, 
indicating that these species were important drivers of grassland stability in the region. Furthermore, 
decreasing mean and increasing interannual fluctuation of precipitation could, respectively, desta-
bilize dominant species and synchronize population dynamics within local communities, impairing 
stability at the regional scale.

https://doi.org/10.7554/eLife.74881
https://doi.org/10.6084/m9.figshare.20281902
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Figure 3. Path analysis models relating the regional community coefficient of variation (CV, all- species measure) to its hierarchical components and 
species diversity indices estimated with all species (a, the mean values of CVs and synchronies are in brackets) and only dominant species (b) as well as 
climatic factors. These diagrams combine different upscaling pathways (pathway I, left side with red arrows; pathway II, right side with blue arrows). Solid 
and dashed arrows, respectively, represent positive and negative paths, and numbers near arrows are standardized path coefficients. The significance 
level of each path is indicated by * when p<0.05 or # when p<0.10 (see ‘Materials and methods’ for details and Box 1 for glossary). See Figure 3—
figure supplement 1 for relationships between all- species and dominant- species measures. Dataset and code are available in Figshare at https://doi.
org/10.6084/m9.figshare.20281902.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. All- species estimates (vertical axes) of coefficients of variation (CVs, inverse of stability) and synchronies (inverse of asynchrony) 
across hierarchical levels of ecological organization in relation to their dominant- species counterparts (horizontal axes) (a–b, regional community CV; c, 
regional community synchrony; d, regional species synchrony; e, local community CV; f, regional population CV; g, local species synchrony; h, regional 
population synchrony; i, local population CV).

https://doi.org/10.7554/eLife.74881
https://doi.org/10.6084/m9.figshare.20281902
https://doi.org/10.6084/m9.figshare.20281902
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Figure 4. Regional community coefficient of variation (CV) (a), regional population CV (b), regional species synchrony (c), regional community synchrony 
(d), local community CV (e), local population CV (f), and local species synchrony (g) in relation to species diversity (effective species richness) as well 
as local species synchrony and local population CV, respectively, in relation to local precipitation variability (h) and precipitation (i) using all- species 
measures. Solid black lines represent significant (p<0.05) and marginally significant (p<0.10) relationships, and dashed gray lines represent nonsignificant 
(p>0.10) relationships (see ‘Materials and methods’ for details and Box 1 for glossary). Thin grey lines represent relationships for 1000 sets of resampled 
regional communities (n=10 for each set). See Figure 4—figure supplement 1 for results of using dominant- species measures. Dataset and code are 
available in Figshare at https://doi.org/10.6084/m9.figshare.20281902.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Regional community coefficient of variation (CV, inverse of stability) estimated with all species (a) and dominant- species 
estimates of regional population CV (b), regional species synchrony (c), regional community synchrony (d), local community CV (e), local population 
CV (f), and local species synchrony (g) in relation to species diversity (effective species richness) as well as dominant- species estimates of local species 
synchrony and local population CV in relation to local precipitation variability (h) and precipitation (i), respectively.

https://doi.org/10.7554/eLife.74881
https://doi.org/10.6084/m9.figshare.20281902
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Stability across ecological hierarchies
We investigated ecosystem stability across ecological hierarchies with two alternative upscaling path-
ways (Wang et al., 2019), and both of them showed gradually increasing stability from low to high 
organization levels due to species insurance effects and spatial insurance effects of populations and 
communities, caused by asynchronous dynamics among species and localities (Figure  3a). These 
patterns are consistent with recent studies carried out at single sites constructing multiple adjacent 
plots within meta- communities in grassland ecosystems (Hautier et al., 2020; McGranahan et al., 
2016; Wang et al., 2019; Wilcox et al., 2017; Zhang et al., 2019) and at the regional scale in marine 
ecosystems (Lamy et al., 2019; Thorson et al., 2018), as well as recent theoretically proposed posi-
tive invariability–area relationships (Isbell et al., 2018; Wang et al., 2017). These results suggest that, 
at large spatial scales, spatial heterogeneity is important in maintaining stability; losing this heteroge-
neity (Fahrig et al., 2011; Gámez- Virués et al., 2015) can impair stability.

We found that species insurance effects (local species asynchrony; Tilman et al., 2014; Yachi and 
Loreau, 1999) were stronger in maintaining stability at the regional scale than the spatial insurance 
effects of distant populations and communities despite the large extent and thus expected spatial 
heterogeneity of our study region. This result is consistent with a recent investigation in marine plant 
communities (Lamy et al., 2019) but different from that in fish communities (Thorson et al., 2018). 
In our study, the region- wide synchronous variation in precipitation (mean = 0.86, ranged from 0.62 
to 1.00) (Figure  1—figure supplement 1b) potentially decreased the spatial heterogeneity and 
increased the relative importance of the species insurance effect. The regulation of spatial insurance 
effects on the stability of fish communities at regional scale may result from their high mobility. Fish 
can move toward their preferred environmental conditions, causing more variable spatial population 
patterns than those found in plants, potentially strengthening the spatial insurance effects. In plant 
communities, the strong species insurance effect suggests that regional community stability to a large 
part reflects the stability of local communities, which have predominantly been considered in previous 
studies (Ma et al., 2017; Tilman et al., 2006; Xu et al., 2015; Yang et al., 2012).

Influence of species diversity, dominant species, and precipitation on 
ecosystem stability
We only detected stabilizing impacts of species diversity at local but not at regional scale (Figure 3, 
Figure 4f and g). The observed negative species richness–local population stability relationship is in 
line with theoretical and experimental studies (Lehman and Tilman, 2000; Tilman, 1999; Tilman et al., 
2014, Tilman et al., 2006), proposing that competition between coexisting species for resources in 
species- rich communities leads to low population stability. The observed positive species richness–
local species asynchrony relationship is also expected by theory based on the higher probability of 
species- rich communities to contain species that are different in responding to environmental fluctua-
tions (Tilman et al., 2014; Yachi and Loreau, 1999).

Previous studies reported mixed impacts of species diversity on stability and asynchrony at scales 
beyond local. Some studies found significant influences (e.g., Hautier et al., 2020; Liang et al., 2021; 
Qiao et al., 2022; Wang et al., 2019) and others found none (e.g., Wilcox et al., 2017; Yang et al., 
2022; Zhang et al., 2019). It has been argued (Hautier et al., 2020) that investigations within a single 
site (Zhang et al., 2019) or multiple sites with nonstandardized experimental protocols (Wilcox et al., 
2017) may mask stabilizing effects of species diversity at regional scale. However, even though this 
study used a multisite dataset across a large region with a standardized survey protocol, it still could 
not detect significant effects of species diversity at the regional scale (Figure 3). The highly uneven 
distribution of species abundances could in part have been responsible for this (Wang et al., 2020). 
Nevertheless, even when only dominant species were considered, we could still not find the expected 
relationship between species diversity and regional asynchrony and stability.

It is conceivable that in natural grassland ecosystems, which are often characterized by high 
unevenness (Dee et al., 2019; Jiang et al., 2009; Smith and Knapp, 2003), species have co- evolved 
over time in such a way as to maintain high stability at a level of species diversity established over a 
longer time span. This observation has been made in a long- term grassland biodiversity experiment, 
where a history of co- occurrence led to greater community stability in response to a flooding event 
(van Moorsel et al., 2021) and repeated exposure to drought led to increased species complemen-
tarity in response to drought (Chen et al., 2022). The absence of strong species diversity–stability 
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relationship at regional scales in observational studies is not the same as rapid biodiversity loss from 
an established level typically simulated in experiments. By extension, regional species loss in the study 
area due to, for example, land- use and climate change in the future may still pose a threat to regional 
grassland stability.

The strong influence of precipitation on the productivity of different species (Zhang et al., 2017) 
may have weakened insurance effects of species diversity in this study. Strong fluctuations in precip-
itation in dry grassland may force similar responses among different species, decreasing the dissim-
ilarity and thus compensatory dynamics among species. This speculation is supported by the low 
local species asynchrony under high precipitation fluctuation (Figure 3a, Figure 4h). Furthermore, 
for the dominant- species measures, we also found decreased local population stability under low 
precipitation means (Figure 3b, Figure 4—figure supplement 1i), potentially due to the decreasing 
mean- to- standard deviation ratio caused by the dominant- species biomass production being more 
steeply related to precipitation amount than to its standard deviation (Wang et al., 2020). The study 
region has been experiencing a pronounced decrease in precipitation and an increase in its variability 
during the past decades (Huang et al., 2015; Piao et al., 2010; Tao et al., 2015). Our results indicate 
that these changes in precipitation regimes may present a key threat to the sustainable provision of 
biological products and services to human well- being in the region.

Materials and methods
Study region and plant community survey
The Inner Mongolian temperate grassland has a continental monsoon climate with a short and 
cool growing season (from May to October, averaged temperature 12.9–18.4°C across sites during 
the studied period from 2012 to 2016), concentrating ~90% of the annual precipitation (averaged 
precipitation 186.2–398.0 mm across sites from 2012 to 2016) (Wang et al., 2020). We established a 
5- year (2012–2016) region- scale survey over this area (latitudes 39.34–49.96°N, longitudes 107.56–
120.12°E), covering different grassland types (Figure 1a; Wang et al., 2020). There were 21 sites 
with 4–5 consecutive years of data. The sample plots of each site were randomly selected, excluding 
anthropogenic disturbances (e.g., overgrazing and heavy mowing). At each site, we marked three 1 
× 1 m quadrats along the diagonal of a 10 × 10 m plot, harvested all living plant tissues, sorted them 
to species, and then oven- dried and weighed the harvested material to obtain aboveground biomass 
and species richness (for details, see Wang et al., 2020).

Construction of regional communities
We constructed regional communities consisting of two local communities with a simulated landscape 
method (Hautier et al., 2018; van der Plas et al., 2016). Specifically, the 21 local communities (sites) 
were randomly separated into 10 regional communities without replacement (two local communities 
for each regional community with one remainder) to ensure that they were independent between 
each other (see Figure  1b for a simplified seven- site case). We repeated this random resampling 
process 1000 times, resulting in 1000 resampled sets, each containing 10 regional communities that 
were independent of each other.

Temporal CV, synchrony, and species diversity across ecological 
hierarchies
A regional community includes M local communities (M = 2 for the current case) and S species (see 
Box 1 and Appendix 1—table 1). Its temporal dynamics can be described with a matrix with elements 
uP,L(i, k) for the mean abundance of species k in locality i, and a matrix with elements vP,L(ij, kl) = cov(N-
P,L(i, k, t), NP,L(j, l, t)) for the covariance between abundances of species k in locality i and species l in 
locality j over time t. Here, N denotes population abundance, and the superscripts indicate ‘popu-
lation’ (P) and ‘local’ (L). To estimate CV and synchrony with only dominant species (designated with 
subscript d, see Appendix 1 for detailed mathematical derivation), we introduce a matrix dP with 
elements dP(I, k) set to 1 if the species k is a dominant species, otherwise, 0. We defined dominant 
species as those whose biomass contributed to >5% of the total biomass of the regional community 
(Wang et al., 2020) over the years of the survey (see Appendix 1—figure 1).

https://doi.org/10.7554/eLife.74881
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The local population CV can be upscaled to the regional community CV via two alterative pathways 
I or II (Box 1; Wang et al., 2019). First, we estimated the local population CV of all species (CVP,L, 
Equation 1a) and only dominant species (CVd

P,L, Equation 1b) as follows:
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Here, uC,R is the average total biomass of the regional community over time and the superscripts 
indicate ‘community’ (C) and ‘regional’ (R). Second, we estimated the local species synchrony of all 
species (φP→C,L, Equation 2a) and only dominant species (φd

P→C,L, Equation 2b):
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Here, the superscript (P→C, L) indicates upscaling along pathway I, step A, from local population 
CV and local species synchrony to local community CV. Third, the local community CV of all species 
(CVC,L, Equation 3a) and only dominant species (CVd

C,L, Equation 3b) was estimated:

 CVC,L = φP→C,L × CVP,L
  (3a)

 CVC,L
d = φP→C,L

d × CVP,L
d   (3b)

The regional community synchrony of all species (φC,L→R, Equation 4a) and only dominant species 
(φd

C,L→R, Equation 4b) can be estimated as follows:
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The superscript (C, L→R) indicates upscaling from local community CV and regional community 
synchrony to regional community CV (pathway I, step B). Here, vC,L(ii)  =

∑
kl vP,L (ii, kl

)
  is the variance 

of community biomass at locality i over time. Finally, the regional community CV of all species (CVC,R, 
Equation 5a) and only dominant species (CVd_C

C,R, Equation 5b) along the upscaling pathway was 
estimated:

 CVC,R = φC,L→R × CVC,L = φC,L→R × φP→C,L × CVP,L
  (5a)

 CVC,R
d_C = φC,L→R

d × CVC,L
d = φC,L→R

d × φP→C,L
d × CVP,L

d   (5b)

Note that the regional community CV of only dominant species is presented here only for complete-
ness, but in our empirical analysis we were more interested in the relationship between the regional 
community CV of all species and dominant species dynamics. That is, we wanted to test the explan-
atory power of dominant- relative to all- species components in predicting the all- species regional 
community CV (i.e., CVC,R; Box 1).

Along pathway II, local population CV and regional population synchrony scale up to regional 
population CV at first (pathway II, step A). The regional population synchrony of all species (φP,L→R, 
Equation 6a) and only dominant species (φd

P,L→R, Equation 6b) is estimated as follows:
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The regional population CV of all species (CVP,R, Equation 7a) and only dominant species (CVd
P,R, 

Equation 7b) is

 CVP,R = φP,L→R × CVP,L
  (7a)
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d   (7b)

The regional population CV and regional species synchrony scale up to the regional community 
CV (pathway II, step B). The regional species synchrony of all species (φP→C,R, Equation 8a) and only 
dominant species (φd

P→C,R, Equation 8b) is estimated as follows:

 

(
φP→C,R

)2
=

∑
ij,kl vP,L(ij,kl

)
(∑

k

√
vP,R

(
kk
))2

  
(8a)

 

(
φP→C,R

d

)2
=

∑
ij,kl dP(i,k

)
dP(j,l

)
vP,L(ij,kl

)
(∑

k

√
vP,R

(
kk
))2

  
(8b)

Here, vP,R(kk) is the variance of population biomass of species k at the regional scale over time. The 
regional community CV of all species (CVC,R, Equation 9a) and only dominant species (CVd_P

C,R, Equa-
tion 9b) according to the upscaling pathway II can be estimated as follows:

 CVC,R = φP→C,R × CVP,R = φP→C,R × φP,L→R × CVP,L
  (9a)

 CVC,R
d_P = φP→C,R

d × CVP,R
d = φP→C,R

d × φP,L→R
d × CVP,L

d   (9b)

Here again the regional community CV of only dominant species is listed for completeness, but the 
regional community CV of all species was related to dominant species dynamics to test the explan-
atory power of dominant- relative to all- species components in predicting the all- species regional 
community CV along upscaling pathway II (see Box 1).

The regional community CV estimated with the two alterative upscaling pathways is the same when 
using all- species measures, but can be slightly different when using dominant- species measures (see 
Appendix 1–1.6 for details), which is why we used two abbreviations, that is, CVd_C

C,R and CVd_P
C,R.

We estimated two alternative species diversity indices across ecological hierarchies, species rich-
ness (S) and effective species richness (D). The alpha (Sα) and gamma species richness (Sγ) were defined 
as the total number of species at local and regional scales, respectively, and the beta species richness 
(Sβ=Sγ / Sα) was used to measure dissimilarity among localities. Specifically, the alpha (Sα) and gamma (Sγ) 
species richness were estimated as multiple- year mean (Sα) and multiple- year pooled species number 
(Sγ) of the two local communities. To account for uneven species abundances in the study region, we 
also used effective species richness, the antilog of Shannon–Wiener diversity (D = eH’), reflecting how 
many species with an even abundance distribution would produce the same Shannon–Wiener diver-
sity as observed for the actual uneven community (Wang et al., 2020). The alpha (Dα) and gamma (Dγ) 
effective species richness thus represented the Shannon–Wiener diversity at local and regional scales, 
respectively, with beta effective species richness (Dβ = Dγ/Dα) measuring its cross- locality dissimilarity. 
These species diversity indices were estimated with either all species or only dominant species.

Climatic data
Based on monthly climatic data collected from 119 climate stations and 2 km resolution digital eleva-
tion over this region, we calculated site- specific mean temperature and precipitation using the simple 
kriging method and spherical model of geostatistical analysis in ArcGIS software (Environmental 
Systems Research Institute Inc, Redlands, CA). We calculated mean annual temperature (MAT) and 
annual precipitation (MAP) (only monthly data from May to October were used as plants are active 
only in this period), as well as their CVs across spatial scales from 2012 to 2016. CVs of temperature 
and precipitation at the local (CVT

L and CVP
L) and regional scales (CVT

R and CVP
R), as well as their 
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 Research article Ecology

Wang et al. eLife 2022;11:e74881. DOI: https://doi.org/10.7554/eLife.74881  14 of 29

among- site synchronies (φT
L→R and φP

L→R), were estimated with the methods used for local and regional 
community CVs and regional community synchrony.

Statistical analysis
We analyzed the influence of distance between spatially separated local communities (i.e., sites) within 
regional communities on regional synchronies of temperature and precipitation, regional community 
CV, as well as all- species and dominant- species measures of regional population CV and synchrony 
and regional community synchrony with linear regressions. However, spatial distance only influenced 
regional synchronies of temperature and precipitation (Figure 1—figure supplement 1), and thus 
distance was not considered further in subsequent analyses.

We used correlation analyses, linear regression analyses, and path analyses to investigate the 
regional community CV in relation to its hierarchical components, species diversity indices, and climatic 
factors. For the path analyses, we established models considering different upscaling pathways and 
different species diversity indices to explain variation in the all- species regional community CV either 
using all species or only dominant species. We started with initial models as close as possible to paths 
proposed in theoretical studies (Wang et al., 2019; Wang and Loreau, 2016; Wang and Loreau, 
2014). GLMs were used to analyze the proposed paths. Then, we modified the initial path- analysis 
models (Appendix 1—figure 4 and Appendix 1—figure 5) to eliminate nonsignificant paths until 
only significant or marginally significant paths remained or a minimal value of Akaike’s information 
criterion for small sample size (AICc) was reached (Brewer et al., 2016). Path coefficients of the final 
models were quantified using the piecewiseSEM package (Lefcheck, 2016) of R 3.6.3 (R Develop-
ment Core Team, 2013).

We used a randomized examination method to investigate the statistical significance of the above 
analyses (Edgington and Onghena, 2007; Efron and Tibshirani, 1994). Specifically, considering the 
10 independent regional communities per sampled set, all above statistical analyses were conducted 
within each set, resulting in 1000 statistics. Taking the correlation analysis as an example, we calcu-
lated the mean correlation coefficient ( 

−
ρ ) of the 1000 sets and considered it to be statistically signifi-

cant or marginally significant if the proportion of ρ < 0 (P–ρ) (or ρ > 0, P+ρ) was lower than 0.05 or 0.10 
when   

−
ρ  > 0 (or  

−
ρ  < 0), respectively.

Acknowledgements
This study was supported by the National Nature Science Foundation of China (31960259, 31971434, 
32160274, 31370454, and 31600385), the Strategic Priority Research Program of Chinese Academy 
of Sciences (XDA26010101), the National Key Research and Development Program of China 
(2016YFC0500602), the Ministry of Science and Technology of China (2015BAC02B04), and the 
Natural Science Foundation of Inner Mongolia (2019MS03089, 2019MS03088, and 2015ZD05). SW 
was supported by the National Nature Science Foundation of China (31988102). BS was supported by 
the University Research Priority Program Global Change and Biodiversity of the University of Zurich. 
All authors declare no conflict of interest.

Additional information

Funding

Funder Grant reference number Author

National Natural Science 
Foundation of China

31960259 Wenhong Ma

National Natural Science 
Foundation of China

31971434 Yonghui Wang

National Natural Science 
Foundation of China

32160274 Yonghui Wang

National Natural Science 
Foundation of China

31370454 Wenhong Ma

https://doi.org/10.7554/eLife.74881


 Research article Ecology

Wang et al. eLife 2022;11:e74881. DOI: https://doi.org/10.7554/eLife.74881  15 of 29

Funder Grant reference number Author

National Natural Science 
Foundation of China

31600385 Yonghui Wang

Chinese Academy of 
Sciences

Strategic Priority Research 
Program XDA26010101

Yonghui Wang

National Key Research and 
Development Program of 
China

2016YFC0500602 Yonghui Wang

Ministry of Science and 
Technology of the People's 
Republic of China

2015BAC02B04 Yonghui Wang

Natural Science 
Foundation of Inner 
Mongolia

2019MS03089 Wenhong Ma

Natural Science 
Foundation of Inner 
Mongolia

2019MS03088 Yonghui Wang

Natural Science 
Foundation of Inner 
Mongolia

2015ZD05 Yonghui Wang

National Natural Science 
Foundation of China

31988102 Shaopeng Wang

University of Zurich University Research Priority 
Program Global Change 
and Biodiversity

Bernhard Schmid

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Yonghui Wang, Conceptualization, Data curation, Funding acquisition, Methodology, Writing – original 
draft, Writing – review and editing; Shaopeng Wang, Bernhard Schmid, Conceptualization, Funding 
acquisition, Methodology, Writing – original draft, Writing – review and editing; Liqing Zhao, Cunzhu 
Liang, Bailing Miao, Qing Zhang, Xiaxia Niu, Data curation; Wenhong Ma, Conceptualization, Data 
curation, Funding acquisition, Writing – original draft, Writing – review and editing

Author ORCIDs
Yonghui Wang    http://orcid.org/0000-0002-3351-4134
Bernhard Schmid    http://orcid.org/0000-0002-8430-3214

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.74881.sa1
Author response https://doi.org/10.7554/eLife.74881.sa2

Additional files
Supplementary files
•  Transparent reporting form 

Data availability
The data that support the findings of this study are openly available in Figshare at https://doi.org/10. 
6084/m9.figshare.20281902.

https://doi.org/10.7554/eLife.74881
http://orcid.org/0000-0002-3351-4134
http://orcid.org/0000-0002-8430-3214
https://doi.org/10.7554/eLife.74881.sa1
https://doi.org/10.7554/eLife.74881.sa2
https://doi.org/10.6084/m9.figshare.20281902
https://doi.org/10.6084/m9.figshare.20281902


 Research article Ecology

Wang et al. eLife 2022;11:e74881. DOI: https://doi.org/10.7554/eLife.74881  16 of 29

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Wang Y 2022 Stability and asynchrony 
of local communities but 
less so diversity increase 
regional stability of Inner 
Mongolian grassland

https:// doi. org/ 10. 
6084/ m9. figshare. 
20281902

figshare, 10.6084/
m9.figshare.20281902

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Wang Y, Niu X, Zhao 
L, Liang C, Miao B, 
Zhang Q, Zhang J, 
Schmid B, Ma W

2020 Data from: Biotic stability 
mechanisms in Inner 
Mongolian grassland

https:// doi. org/ 10. 
5061/ dryad. ht76hdrc5

Dryad Digital Repository, 
10.5061/dryad.ht76hdrc5
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Appendix 1
Mathematical derivation for partitioning coefficients of variation 
and synchronies across ecological hierarchies into dominant and 
subdominant species groups
In the following, we introduce methods partitioning (temporal) coefficients of variation (CVs, inverse 
of (temporal) stability) and synchronies (inverse of asynchrony) across ecological hierarchies into 
dominant (relative species abundance >5%, see Appendix 1—figure 1 for details) and subdominant 
species groups. We do not repeat theoretical derivations relating CVs and synchronies across 
different hierarchies here because these can be found elsewhere (Loreau and de Mazancourt, 
2008; Thibaut and Connolly, 2013; Wang et  al., 2019; Wang and Loreau, 2016; Wang and 
Loreau, 2014). Symbols and descriptions used in the following partitions can be found in Box 1 and 
Appendix 1—table 1.

Appendix 1—table 1. Notation summary for climatic factors, species diversity indices, coefficients 
of variation (CVs, inverse of stability), and synchronies (inverse of asynchrony) across spatial scales 
and hierarchical levels of ecological organization.

Symbol Description

Climatic factors

MAT Cross- site averaged mean annual temperature

MAP Cross- site averaged mean annual precipitation

CVT
L Local CV of temperature

CVP
L Local CV of precipitation

φT
L→R Regional temperature synchrony

φP
L→R Regional precipitation synchrony

CVT
R Regional CV of temperature

CVP
R Regional CV of precipitation

Biodiversity indices

Sα or Sd
α

Alpha species richness estimated with all species or only 
dominant species

Sβ or Sd
β

Beta species richness estimated with all species or only 
dominant species

Sγ or Sd
γ

Gamma species richness estimated with all species or only 
dominant species

Dα or Dd
α

Alpha effective species richness estimated with all species or 
only dominant species

Dβ or Dd
β

Beta effective species richness estimated with all species or 
only dominant species

Dγ or Dd
γ

Gamma effective species richness estimated with all species 
or only dominant species

Stability and synchrony

CVP,L or CVd
P,L

Local population CV estimated with all species or only 
dominant species

φP→C,L or φd
P→C,L

Local species synchrony estimated with all species or only 
dominant species

CVC,L or CVd
C,L

Local community CV estimated with all species or only 
dominant species

φC,L→R or φd
C,L→R

Regional community synchrony estimated with all species or 
only dominant species

Appendix 1—table 1 Continued on next page
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Symbol Description

φP,L→R or φd
P,L→R

Regional population synchrony estimated with all species or 
only dominant species

CVP,R or CVd
P,R

Regional population CV estimated with all species or only 
dominant species

φP→C,R or φd
P→C,R

Regional species synchrony estimated with all species or only 
dominant species

CVC,R or CVd_C
C,R and CVd_P

C,R

Regional community CV estimated with all species or only 
dominant species along pathways of aggregating local 
communities (pathway I: CVd_C

C,R = φd
C,L→R × CVd

C,L) or 
organizing regional populations (pathway II: CVd_P

C,R = φd
P→C,R 

× CVd
P,R)

We consider a regional community reached a stationary state, which includes M localities (e.g., 
sites or local communities) and S species. This regional community can be described with a matrix of 
(temporal) mean species abundance with elements uP,L(i, k), that is, the mean abundance of species k 
in locality i, and a (temporal) variance–covariance matrix of species abundances with elements vP,L(ij, 
kl) = cov(NP,L(i, k, t), NP,L(j, l, t)), that is, the covariance between abundances of species k in locality i 
and species l in locality j over time t. In addition, we introduce two matrixes, dP and sP, to represent 
the dominant and subdominant species of the regional community, respectively. For the dP, it has M 
rows and S columns, representing numbers of locality and species of the regional community, and 
has elements dP(i, k), that is, the kth species of the ith locality, which is set to 1 if the kth species is a 
dominant species at the regional scale, otherwise, 0. Similar procedure is used to conduct the sP, in 
which subdominant species are set to 1, otherwise, 0.

1.1 Partitioning local population CV into dominant and subdominant species 
groups
The local population CV (CVP,L) is defined as the weighted- average local population CV (Thibaut and 
Connolly, 2013; Wang et al., 2019; Wang and Loreau, 2016; Wang and Loreau, 2014):

 
CVP,L =

∑
i,k

√
vP,L

(
ii,kk

)

uC,R =
∑

i,k
uP,L(i,k

)
uC,R

√
vP,L

(
ii,kk

)

uP,L
(

i,k
)

  
(S1)

We rewrite this equation with introduced two matrixes (dP(i, k) and sP(i, k)) to separate the local 
population CV (CVP,L) into its dominant (CVd

P,L) and subdominant (CVs
P,L) species group components:
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1.2 Partitioning local species synchrony into dominant and subdominant 
species groups
The local species synchrony (φP→C,L) is defined as the weighted- average synchronous dynamics among 
populations of different species within local communities (Wang et al., 2019; Wang and Loreau, 
2016; Wang and Loreau, 2014):
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(S3)

where ωP→C,L(i) and φP→C,L(i) are the contribution of local population variance of the ith community to 
the sum of variance of all species local populations within the regional community and synchronous 
dynamics among local populations of different species within the ith local community (i.e., species 
synchrony of the ith local community, Loreau and de Mazancourt, 2008), respectively. We can 
rewrite φP→C,L(i) with dP(i, k) and sP(i, k):

Appendix 1—table 1 Continued
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We define the first term of the right- hand side of the Equation S4 as the dominant- species local 
species synchrony of the ith local community (Wang et al., 2020):
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Then, using above description, we define the dominant- species local species synchrony of the 
regional community (φd

P→C,L), that is, an aggregation of multiple local communities:

 φP→C,L
d =

∑
i ω

P→C,L (i
)
φP→C,L

d
(
i
)
  (S6)

Referring to the definition of local community CV, CVC,L = φP→C,L × CVP,L (Wang et al., 2019; Wang 
and Loreau, 2016; Wang and Loreau, 2014), we define the dominant- species local community CV 
(CVd

C,L):

 CVC,L
d = φP→C,L

d × CVP,L
d   (S7)

1.3 Partitioning regional community synchrony into dominant and subdomi-
nant species groups
The regional community synchrony (φC,L→R) is defined as the weighted- average synchronous dynamics 
among spatially separated local communities (Wang et al., 2019; Wang and Loreau, 2016; Wang 
and Loreau, 2014):
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Using dP(i, k) and sP(i, k) mentioned above, we partition regional community synchrony into 
dominant (φd

C,L→A), subdominant species groups (φs
C,L→A), and synchronous dynamic between them 

(φds
C,L→A):
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Referring to the definition of regional community CV with the upscaling pathway of aggregating 
local communities (pathway I), CVC,R = φC,L→R × CVC,L (Wang et al., 2019; Wang and Loreau, 2016; 
Wang and Loreau, 2014), we define the dominant- species regional community CV with this 
upscaling pathway (CVd_C

C,R):

 CVC,R
d_C = φC,L→R

d × CVC,L
d = φC,L→R

d × φP→C,L
d × CVP,L

d   (S10)

1.4 Partitioning regional population synchrony into dominant and subdomi-
nant species groups
The regional population synchrony (φP,L→R) is defined as the weighted- average synchronous dynamics 
among spatially separated local populations of same species (Wang et al., 2019):
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where ωP,L→R(k) and φP,L→R(k) are the contributions of population variance of the kth species to 
that of all species within the regional community and synchrony within the kth species among sites, 
respectively. We can rewrite φP,L→R(k) with dP(i, k) and sP(i, k):
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We define the first term of the right- hand side of above equation as the regional population 
synchrony of the kth (dominant) species:
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Then, using the above description, we defined the dominant- species estimate of regional 
population synchrony (φd

P,L→R):
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Referring to the definition of regional population CV, CVP,R = φP,L→R × CVP,L (Wang et al., 2019), we 
define the dominant- species regional population CV (CVd

P,R):

 CVP,R
d = φP,L→R

d × CVP,L
d   (S15)

1.5 Partitioning regional species synchrony into dominant and subdominant 
species groups
The regional species synchrony (φP→C,R) is defined as the weighted- average synchronous dynamics 
among regional populations of different species (Wang et al., 2019):
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Here, vP,R(kl) is the covariance between k and l regional populations. We partition the regional 
species synchrony into dominant (φd

S→C,R), subdominant species groups (φs
S→C,R), and synchronous 

dynamic between them (φds
S→C,R) using introduced dP(i, k) and sP(i, k):
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Referring to the definition of regional community CV with the upscaling pathway of organizing 
regional populations (pathway II), CVC,R = φP→C,R × CVP,R (Wang et al., 2019), we define the dominant- 
species regional community CV with this upscaling pathway (CVd_P

C,R):

 CVC,R
d_P = φP→C,R

d × CVP,R
d = φP→C,R

d × φP,L→R
d × CVP,L

d   (S18)

1.6 Comparing dominant-species regional community CVs estimated with 
two alternative upscaling pathways
Based on a recent theoretical study (Wang et al., 2019), the regional community CV can be upscaled 
by aggregating local communities (CVC

C,R) or organizing regional populations (CVP
C,R):

https://doi.org/10.7554/eLife.74881
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These descriptions (Equations S19 and S20) show that the regional community CVs estimated 
with two different upscaling pathways are equal to each other.

In the following part, we explain why the dominant- species regional community CV estimated with 
two different upscaling pathways are not equal to each other (CVd_C

C,R for estimated via aggregating 
local communities, pathway I, and CVd_P

C,R for estimated via organizing regional populations, pathway 
II). The dominant- species regional community CV estimated by aggregating local communities (CVd_

C
C,R) is
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The dominant- species regional community CV estimated by organizing regional populations 
(CVd_P

C,R) has the following description:
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Because these two equations have either same terms or different terms (
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in Equation S21and 
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 in Equation S22), the dominant- species regional 

community CV estimated with two different upscaling pathways should be well correlated but not 
exactly the same. The denominators of these two different terms are the sum of local community 
variances or the sum of regional population variances, respectively. The numerators are the sum of 
variances (and covariances) of different dominant species within the same local communities and the 
sum of variances (and covariances) of the same dominant species across different local communities, 
respectively. These differences reflect that dominant- species regional community CVs estimated via 
aggregating local communities (CVd_C

C,R) and via organizing regional populations (CVd_P
C,R) focus on 

different dominant species within the same local communities and the same dominant species across 
different local communities, respectively. Owing to the potential difference, we separately reported 
them (Figure 3—figure supplement 1a and b). We also note that the different terms in Equation 
S21 and Equation S22 can be same when considering all species. This is because, in this case, they 

become to 
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 , and both of them are equal to 1, resulting in the 

same regional community CV estimated with all species using different upscaling pathways.
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Appendix 1—figure 1. Time series of plant species biomass in each surveyed site. Blue squares and lines 

represent species that only characterized as dominant species in local communities. Red diamonds and lines 

represent species characterized as dominant species in local communities and can also be characterized as 

dominant species when aggregating into regional communities. Green circles and lines represent subdominant 

species. It showed that most dominant species of local communities can be defined as dominant species of 

regional communities, with only a few exceptions. In addition, these species have higher productivity than others 

roughly all the time and are constantly exist in surveyed sites. Dataset and code are available in Figshare at https:// 

doi.org/10.6084/m9.figshare.20281902.

https://doi.org/10.7554/eLife.74881
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Appendix 1—figure 2. Correlation matrices for climatic factors, species diversity indices, coefficients of variation 
(CVs, inverse of stabilities), and synchronies (inverse of asynchronies) estimated with all species (a) and only 
Appendix 1—figure 2 continued on next page
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dominant species (b) by considering a two- local- community scenario (see Figure 1b for a simplified case and 
Appendix 1—figure 3 for a three- local- community scenario). Significant and marginally significant correlations are 
marked with *p<0.05 and #p<0.10, respectively (see ‘Materials and methods’ for details). Symbols and descriptions 
can be found in Box 1 and Appendix 1—table 1. Dataset, code, and relevant results are available in Figshare at 
https://doi.org/10.6084/m9.figshare.20281902.

Appendix 1—figure 2 continued
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Appendix 1—figure 3. Correlation matrices for climatic factors, species diversity indices, coefficients of variation 
(CVs, inverse of stabilities), and synchronies (inverse of asynchronies) estimated with all species (a) and only 
Appendix 1—figure 3 continued on next page
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dominant species (b) by considering a three- local- community scenario (similar sampling as in Figure 1b, but 
with three sites in each sample). Significant and marginally significant correlations are marked with *p<0.05 
and #p<0.10, respectively (see ‘Materials and methods’ for details). Symbols and descriptions can be found in 
Box 1 and Appendix 1—table 1. Potentially owing to the small sample size (n = 7) of the three- local- community 
scenario, many significant (or marginally significant) correlations found in the two- local- community scenario (n = 
10, Appendix 1—figure 2) were nonsignificant for this three- local- community scenario. Thus, we did not further 
analyze the three- local- community scenario. Dataset, code, and relevant results are available in Figshare at https:// 
doi.org/10.6084/m9.figshare.20281902.

Appendix 1—figure 4. Initial path analysis models relating the regional community coefficient of variation (CV, 
inverse of stability) to its hierarchical components and species diversity indices estimated with all species as well 
as climatic factors according to the upscaling pathways of aggregating local communities (pathway I, a, b) or 
aggregating regional populations (pathway II, c, d). Solid and dashed arrows represent significant (or marginally 
significant) positive and negative correlation relationships, respectively (Appendix 1—figure 2a). Gray solid 
arrow (regional population CV in relation to regional population synchrony), (d) represents nonsignificant positive 
correlation relationship, which is added in the initial model because it is theoretically proposed (Wang et al., 
2019). Because (b) includes all paths of (a) and (d) includes all paths of (c), only the models shown in (b) and (d) are 
further analyzed (details are available in Figshare at https://doi.org/10.6084/m9.figshare.20281902). Symbols and 
descriptions can be found in Box 1 and Appendix 1—table 1.

Appendix 1—figure 3 continued
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Appendix 1—figure 5. Initial path analysis models relating the regional community coefficient of variation (CV, 
inverse of stability) to its hierarchical components and species diversity indices estimated with only dominant 
species as well as climatic factors according to the upscaling pathways of aggregating local communities (pathway 
I, a, b) or aggregating regional populations (pathway II, c, d). Solid and dashed color arrows represent significant 
(or marginally significant) positive and negative correlation relationships, respectively (Appendix 1—figure 
2b). Because (a) includes all paths of (b) and (c) includes all paths of (d), only the models shown in (b) and (c) are 
further analyzed (details are available in Figshare at https://doi.org/10.6084/m9.figshare.20281902). Symbols and 
descriptions can be found in Box 1 and Appendix 1—table 1.
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