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Abstract The immune system plays a major role in maintaining many physiological processes in
the reproductive system. However, a complete characterization of the immune milieu in the ovary,
and particularly how it is affected by female aging, is still lacking. Here, we utilize single-cell RNA
sequencing and flow cytometry to construct the complete description of the murine ovarian immune
system. We show that the composition of the immune cells undergoes an extensive shift with age
towards adaptive immunity. We analyze the effect of aging on gene expression and chemokine and
cytokine networks and show an overall decreased expression of inflammatory mediators together
with an increased expression of senescent cells recognition receptors. Our results suggest that the
fertile female’s ovarian immune aging differs from the suggested female post-menopause inflam-
maging as it copes with the inflammatory stimulations during repeated cycles and the increasing
need for clearance of accumulating atretic follicles.

Editor's evaluation

The study describes a single-cell analysis of the mammalian ovary in young, adult, and old mice,

and is an important contribution to the field identifying clusters of immune cell populations across
the different ages. The combination of single-cell RNA sequencing and flow cytometry used is a
robust and unbiased approach that provides compelling evidence of immune cell alterations in aged
ovaries.

Introduction
One of the effects of aging in mammalians is a decline in fertility and hence a diminished capability
to give birth to offspring (Pal and Santoro, 2003). In women from their early 30's, there is a sharp
decrease in fertility, accompanied by an exponentially increase in the odds of miscarriages and birth
defects, alongside a drastically lower success rate of in-vitro fertilization (IVF) procedure (Madank-
umar et al., 2003; Nelson and Lawlor, 2011; Szamatowicz and Grochowski, 1998). Another well-
documented effect of age is on the ability of the immune system to overcome illnesses and eliminate
different pathogens (Kovacs et al., 2009, Plowden et al., 2004; Solana et al., 2006; Weiskopf et al.,
2009).

The presence of immune cells such as macrophages (Mgs), dendritic cells (DCs), granulocytes, T
and B lymphocytes was identified through the entire female reproductive tract (Givan et al., 1997,
Lee et al., 2015), and in the ovaries in particular (Best et al., 1996; Bukulmez and Arici, 2000;
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Carlock et al., 2013; Yang et al., 2019). These cells participate in many fertility-related processes in
the ovaries — from follicle development up to ovulation and corpus luteum formation and regression
(Cohen-Fredarow et al., 2014; Fair, 2015; Oakley et al., 2010; Wu et al., 2004; Yang et al., 2019).
Ovulation, for example, is considered an inflammatory process that includes edema, vasodilation,
pain, and heat (Duffy et al., 2019, Richards et al., 2008). Changes in the immune milieu, such as
depletion of Mgps and DCs have been shown to result in a decreased number of ovulated oocytes,
depletion of endothelial cells, increased follicular atresia, and lead to a delayed progression of the
estrus cycle (Cohen-Fredarow et al., 2014, Turner et al., 2011; Wu et al., 2004).

Characterizing the complete immune milieu in the ovary, and in particular how it is affected by
female aging, is challenging mainly due to the small fraction of the immune cells compared to other
cell types in the ovary (Lliberos et al., 2021; Wagner et al., 2020). For that reason, previous work using
whole-ovary single-cell measurements did manage to portray the ovary’s main cell types (oocytes,
granulosa, theca, immune, etc.) yet didn’t have the resolution to resolve the entire immune milieu (Fan
et al., 2019, Lliberos et al., 2021; Wagner et al., 2020). Others have a priori focused on a limited set
of cell types (Cohen-Fredarow et al., 2014; Wu et al., 2004), while additional studies have used bulk
RNA sequencing experiments (Ma et al., 2020), hence did not capture the entire immune members
in the ovaries. In this work, we were able to isolate the immune cells and perform consecutive single-
cell analyses. Investigating the age effect on the immune system in the single-cell level have also been
done in several recent studies (Almanzar et al., 2020; Kimmel et al., 2019, Mogilenko et al., 2021).
However, their focus was on other non-fertility related tissues such as bladder, kidney, peritoneum
and more. In addition, the aged group was very old, far past estropause. Attempts to characterize
the effects of female age on the immune system in the ovary were limited to a small subset of cells
(Lliberos et al., 2021; Zhang et al., 2020), addressing mainly changes in the macrophages fraction
that decreases with age, and accumulation of inflammatory mediators such as cytokines and reactive
oxygen species within the tissue (Lliberos et al., 2021; Zhang et al., 2020).

In this work, we provide the first complete detailed characterization of the murine ovarian immune
system composition at the single-cell level. We show the presence of various immune cell popula-
tions, such as Mes, DC's, neutrophils (NTs), NK cells, NKT cells, innate lymphoid cells (ILCs), B cells,
and several T cell types - including an ovary specific CD3* CD4 CD8 double-negative T (DNT) cells.
Moreover, we show an extensive tissue-specific effect of female age on the ovarian immune milieu,
resulting in a shift towards adaptive immunity, mainly by a significant increase in the DNT population.
In addition, we analyzed the changes in gene expression of the cells and discovered a global atten-
uation in their general function and responsiveness. We also found a decrease in the expression of
inflammatory mediators such as cytokines and chemokines. Moreover, we identified some evidence
for an increase in senescent cells recognition activity. Our results serve as an opening for a much more
comprehensive understanding of the interaction between female aging and the immune system in
fertile female mammals.

Results

The ovarian immune milieu is altered with age

To characterize the ovarian immune milieu, we have isolated immune cells (CD45" cells) from the
ovaries of young (11-15 weeks), adult (20-37 weeks), and old (40-47 weeks) virgin mice, and utilized
flow cytometry and single-cell RNA sequencing (scRNA-seq) to characterize the ovarian immune cells
and how they are affected by female age (Figure 1A). First, we performed scRNA-seq on isolated
immune cells from the ovaries of 13 weeks old mice (n=2; 3307 cells). To cluster the cells and identify
their type, we used a combination of both literature-based annotation and automatic annotation
methods (Seurat R package and SingleR algorithm, “Methods” and Figure 1—figure supplement
1). In addition, we performed a batch correction analysis to validate the clusters that emerged from
the tSNE analysis (Figure 1—figure supplement 2). The combination of these methods allowed us
to identify within the ovaries the following cell types: Mgs, DCs, NTs, B cells, NK cells, NKT cells,
ILC1, ILC2, ILC3, and several clusters of T lymphocytes: CD8" (CD8 T), CD4* (CD4 T), and CD4 CD8"
double-negative T cells (DNT cells) (Figure 1B and C and Figure 1—figure supplement 3). Most of
the cells were innate immune cells, mostly ILC1, Mgs, NTs, and NK cells.
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Figure 1. The ovarian immune milieu is consisted of various cell types. (A) Schematic illustration of the experimental pipeline (created with BioRender.
com). Ovaries of female mice at different ages were extracted. Then, cells were gated for CD45 expression and further analyzed using single-cell

RNA sequencing or flow cytometry. (B) tSNE plot of joint data from both samples (young and old), divided into clusters. (C) Violin plot of normalized
expression for cluster-specific markers. Each row represents the normalized expression of a single marker across all immune clusters. Normalized
expression values are between 0-1.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Young raw data.

Figure supplement 1. Automatic ovarian immune cells annotation.

Figure supplement 2. The effect of batch correction.

Figure supplement 3. Literature-based annotation of ovarian immune cell populations.

Figure supplement 4. Flow cytometry gating strategy.

Figure supplement 5. Flow cytometry measurement of Group 1 innate lymphoid cells (G1-ILCs) fraction in the ovaries.
Figure supplement 6. Dendritic cells clusters are composed from ¢cDC1 and ¢cDC2 populations.

Figure supplement 7. Double-negative T cells are more abundant in the ovaries compared to other tissues.

Figure supplement 8. Ovarian CD3* CD4 CD8  cells are predominantly TCRy&'.
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To validate the presence of the immune populations that emerged from our scRNA-seq experi-
ments, we used flow cytometry (the gating strategy is shown in Figure 1—figure supplement 4). First,
we measured the fractions of group 1 of innate lymphoid cells (G1-ILC), CD45* NK1.1* CD3 cells (i.e.
NK and ILC1) in the mouse ovaries and spleen (Figure 1—figure supplement 5). The average fraction
of G1-ILC in the spleen was 11.81% and in the ovary was 42.71%. These results are consistent with
the high G1-ILC fraction resulting from the ovary scRNA-seq analysis (35.4% ILC1 and 9.8% NK), and
previous results, which demonstrated that G1-ILC proportion in mice spleen is relatively low (Boule-
nouar et al., 2017). In addition, further characterization of the DCs clusters (3 and 4) revealed that
their transcriptomic signature corresponds to conventional dendritic cells type 2 (cDC2) and type 1
(cDC1), respectively (Figure 1—figure supplement 6). Among other cell types that were found, DNT

Computational and Systems Biology | Immunology and Inflammation

cells are unique, somewhat less well-defined cell population.

To confirm the presence of CD4 CD8 T cells in the ovaries, we conducted a flow cytometry exper-
iment comparing the fractions of CD4*, CD8*, and CD4" CD8 T cells in the mouse ovaries, spleen,
and peritoneum (Figure 1—figure supplement 7). Using additional flow cytometry experiments we
validated that ovarian DNT cells are TCRyS (Figure 1—figure supplement 8). These measurements
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Figure 2. The effect of female age on the ovarian immune milieu. (A) 3-D tSNE plot (left) and an overlay (right) of all ovarian CD45" cells found in
scRNA-seq, divided by age group. (B) The effect of female age on the fractions of each cell type, with a confidence interval of 95% at the top of each
bar. The green and yellow rectangles mark the macrophages and CD3* populations, respectively. (C) Violin plot of the changes in fraction distributions
of macrophages and CD3* lymphocytes as a function of age as measured by flow cytometry (Kolmogorov-Smirnov test, ** p-value <107?, *** p-value
<107). (D) Change in the fraction of different CD3* population comparing old (for CD4 and CD8 T cells — 42.6-49.6 weeks, n=4; for DNT and NKT cells
—49.6 weeks, n=2) and young (for CD4 and CD8 T cells — 10.1-14.5 weeks, n=5; for DNT and NKT cells — 10.1 weeks, n=3) mice as measured using flow
cytometry. Error bars denote standard deviation. (E) Comparison between transcriptome and protein level of immune populations within the ovaries at
different female ages. Each spider plot shows the distribution of different immune cell types measured using scRNA-seq (left panel) and flow cytometry

(right).

The online version of this article includes the following source data and figure supplement(s) for figure 2:
Source data 1. Old raw data.

Figure supplement 1. Significant changes in cell type abundance at old age.

Figure supplement 2. Flow cytometry measurements of additional ovarian immune populations.
Figure supplement 3. Changes in ovarian CD3" cells and macrophages.

Figure supplement 4. Splenic CD3* cells fraction is decreasing at older age.

Figure supplement 5. Changes in ovarian CD3" cells and Macrophages is cycle stage independent.
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validate the scRNA-seq results and show that although present in other tissues at small fractions, CD3*
TCRpB* CD4 CD8 cells are tissue-specific cells to the ovaries.

Next, we examined the changes in the ovarian immune milieu at older ages. Using cells isolated
from old, near estropause mouse (43 weeks; the rodent equivalent of the human menopause;
5468 cells), we characterized the old ovarian immune system (using the same annotation methods)
and compared it to its younger counterpart (Figure 2A and B). The results demonstrated a shift at
older age towards a lymphocytes-rich environment that was accompanied by decreased fractions of
several immune populations such as ILC1 cells, Mgs, NTs, and NK cells (Figure 2B, Figure 2—figure
supplements 1-2). To both validate the scRNA-seq results and to check whether this effect is cycle-
stage dependent, we conducted several flow cytometry experiments.

To measure the effect of female age on the fractions of T-lymphocytes (CD3*) and Mgps (CD11b*
F4/80") from total ovarian CD45* cells, mice were divided into three groups of age: young (11-15 weeks,
n=4), adult (20-37 weeks, n=15) and old (40-47 weeks, n=12). The results show a significant increase
with age of CD3* cells’ fraction (young vs. adult and adult vs. old, Kolmogorov-Smirnov test, p-value
<107, while the fraction of Mgs was significantly decreased (young vs. adult and young vs. old,
Kolmogorov-Smirnov test, p-value <107 and p-value <107, respectively) at older ages. Moreover,
flow cytometry experiments validated that, as with the scRNA-seq results, most of the change in CD3*
lymphocytes’ fraction is due to a substantial increase in DNT cells at old age (Figure 2C, D and E and
Figure 2—figure supplement 3). Furthermore, analysis of splenic CD3" lymphocytes show that in
contrast to the ovaries, the fraction of these cells decreases at old age, while the fraction of DNT cells
doesn’t change (Figure 2—figure supplement 4). These age-dependent results are cycle-stage inde-
pendent (Figure 2—figure supplement 5). Taking the results both from the scRNA-seq and the flow
cytometry (Figure 2E), there is a consistent shift towards adaptive immunity (an increase in the CD3*
lymphocytes fraction), while most innate immune cells’ fraction (M@s, NKs, ILC1, and NTs) decreases.

The female aging effect on the ovarian immune cells’ transcriptome
After identifying the ovarian immune milieu and the changes it undergoes at older age, we character-
ized the changes in gene expression within each immune cluster (Supplementary file 1). Figure 3A
depicts the differentially expressed genes patterns across all clusters. Several clusters, such as DNT
cells, ILC1, NKT cells, and CD4 T cells exhibited an extremely skewed pattern, in which most of their
differentially expressed genes (DEGs) were downregulated, compared to upregulated DEGs. This may
imply that these cell types are more susceptible to female aging. After defining DEGs for each cell
type, we explored changes in biological processes via GO enrichment analysis (Figure 3B, ‘Methods’).
Most cell types showed an enriched set of processes that were downregulated with female age. Using
the REVIGO platform (‘Methods’), we eliminated redundant GO terms and counted the appearances
of each GO term across all cell types (Supplementary file 2). Terms that were found in more than
one cell type were classified as ‘global’, and cell type-unique terms as ‘specific’. For further anal-
ysis, we took all the global terms and used the REVIGO platform to cluster them according to their
semantics distance (Figure 3B). The results show a global decrease in several clusters of processes.
The clusters with the processes that were mostly shared among cell types included decreased biosyn-
thesis and metabolism-related processes. Another distinct cluster includes a general loss of regulation
over various processes. The third well-defined cluster includes a decrease in the cellular response to
different stimuli.

Among the cell-type-specific downregulated processes, Mgs exhibit attenuation in immune and
inflammatory responses, along with decreased tissue remodeling and wound healing processes. DCs
show a decrease in cell activation and regulation of immune response. Several immune cell types
showed a limited set of enriched upregulated processes, in which the most prominent ones were
exhibited by M@s and DNT cells and included T cell activation and differentiation processes (Supple-
mentary file 3).

Aging affects cytokines and chemokines connectome of ovarian
immune cells

To get a better notion of the effect of aging on the different immune cell types, we estimated the
effect of aging on the chemokine and cytokines interactions between the immune cells (Figure 4).
For both chemokines and cytokines, we used the KEGG database to extract the network of ligands
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Figure 3. Changes in gene expression along with female age. (A) Volcano plots of the scRNA-seq analysis for the different immune cell types. The
vertical dashed lines mark twofold upregulation and downregulation, the blue horizontal dashed line marks p-value = 0.05, and the red horizontal
dashed line marks FDR = 0.1. Genes in the top left section of each graph are significantly downregulated at old age, while genes in the top right
section are upregulated at old age. Each grey dot represents the change in the expression of different genes. Red dots denote significantly changed

Figure 3 continued on next page
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Figure 3 continued

chemokines and cytokines. (B) Each circle represents a downregulated biological process in the old mice, which appeared in at least two types of
immune cells. The axes represent semantic similarities distance as calculated by REVIGO ('Methods’). The color of each term represents the number of
immune cell types in which the process is downregulated with age. The size of each term represents the hierarchy of the biological process; the bigger
the circle, the higher the hierarchy of the process is.

and receptors and their interactions ('Methods’). Within each network, we focused on significantly
changed connections, which we defined as edges that both of their nodes (i.e. both the ligand and
receptor) have been significantly decreased or increased in their expression at old age. Significant
nodes can be in the same cell type, or each one in different cell type, and in at least one cell type. We
found that almost all significant nodes and edges in both networks were downregulated (Figure 4C
and D).

The most prominent affected edges in the chemokines network involved Ccr5 expressed by DCs and
ILC1 cells, Ccr2 expressed by ILC2 cells, and their ligands Ccl2, Ccl3, Ccl4, Ccl5, Ccl7, Ccl8, and Ccl12
(Figure 4C). Both of these receptors have been shown to take part in chemoattraction of immune cells
in the context of various inflammatory processes (D’Ambrosio et al., 2003; Mencarelli et al., 2016;
Proudfoot, 2002). For further validation, we applied the cell2cell algorithm (Armingol et al., 2022),
which also pointed out Ccr5 as the main chemokine receptor modulated by age (Figure 4—figure
supplement 1A). Thus, we measured experimentally the fraction of cells that express CCR5 using flow
cytometry experiments, and show it is indeed decreases significantly (Figure 4—figure supplement
1B). Moreover, Cxcl2, an inflammatory chemokine that mediates neutrophils trafficking (Lentini et al.,
2020, Li et al., 2016), was significantly decreased in almost all immune cell types (Figure 4A). CCRL2
is an atypical chemokine receptor that was found to be upregulated in activated immune cells after
induction of inflammatory signals (Del Prete et al., 2013). Ccrl2 was downregulated in several cell
types such as ILC1 and NKT, although it is mainly expressed by myeloid cells such as NTs, DCs, and
Mes (Del Prete et al., 2013).

The changes in the cytokines network were found mainly in the IL-1 superfamily (Il1r1 and Il1r2,
along with Il1a, II1b and Il1rn). Moreover, TNF-receptor Tnfsfr1b and its ligand Tnf (TNFa) also showed
a significant decrease at old age (Figure 4A). As IL-1 and TNF superfamily members are considered
inflammatory, along with the evident decrease in various inflammatory chemokines and their recep-
tors, our results suggest that beyond overall inhibition in the ovarian immune function, aging also
shifts its phenotype towards a less inflammatory state.

To account for possible global downregulation, as emerges from Figure 3A, that may lead to an
artifact in which DEGs that were found, are not significant under the global downregulation, we've
performed another analysis. In this analysis, we considered only the top down/up-regulated genes
with a p-value<0.025, defined by cumulative probability distribution (CDF) analysis. GO enrichment
analysis using the new DEGs show that ‘Inflammatory response’ (GO:0006954) was downregulated in
four different clusters (NTs, M@s, DCs and ILC3 cells). In addition, the process ‘Negative regulation of
neuroinflammatory response’ (GO:0150079) was upregulated in NK cells (see Supplementary file 4).

Another evident downregulated edges in the cytokine network were in the TGFB superfamily
(Gdf11 and Inhba along with their receptors Acvr2a and Tgfbr1). Activin A, a dimer composed of two
Inhibin-BA subunits (the translation product of Inhba), is produced among others by the gonads and
promotes LH secretion from the pituitary. It plays an important role in expanding the primordial follicle
pool and contributes to the early stages of follicular growth by increasing FSH receptor expression
on granulosa cells (Namwanje and Brown, 2016). In addition, Activin A was found to activate resting
macrophages — yet there are contradictory findings as to rather its effect is pro or anti-inflammatory
(Morianos et al., 2019). Decreased expression of both Inhba and Acvr2a by ovarian macrophages at
older age might suggest a specific role of macrophages in supporting follicular growth (via Activin
secretion) during the estrous cycle, which decays as age progresses. Moreover, these results may
present a mechanism in which macrophages are participating in inducing an inflammatory environ-
ment as part of the ovulation process as a response to Activin.

Aging affects recognition of senescent cells by ovarian immune cells
Inducing cell senescence, which is an irreversible state of growth arrest, is a mechanism the body uses
to handle cell stress which can accumulate during aging (Campisi and d’Adda di Fagagna, 2007)
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Figure 4. The effect of female age on the chemokines and cytokines networks of the ovarian immune cells. (A) A heat map of a significant (p-value
<0.05; FDR <0.1) twofold decrease (red) or increase (green) in the expression levels of chemokines, cytokines, and their receptors in different immune
cell types. (B) Cumulative probability distribution (CDF) of the fold change (FC) of chemokines (upper panel) and cytokines (lower panel) (red line).
The gray lines are the CDFs of FC for random groups of genes at the same size as the chemokines/cytokines genes. The blue line is the CDF of the
FC of all the genes. There is a significant decrease in the expression of chemokines and cytokines with age (Kolmogorov-Smirnov test p-value <0.01).
(C) Downregulation of the chemokines network due to age. Upper panel - Edges within the chemokine network in which both the ligand and the
receptor were significantly downregulated in at least one cell type are colored in red. Edges that only the ligand/receptor, or none of them, were
significantly downregulated are colored in grey. The sub-graph that contains the affected interactions is magnified at the right-hand side of the figure.
Bottom panel - Chord diagram that illustrate the decrease in chemokine ligand-receptor interactions between the different cell types. The color of each
chord denotes the color of the cell type that underwent a reduction in ligand expression. In the upper semi-circles, the colors indicate the cell type
that showed a decrease in receptor expression. In the lower semi-circle, the outer and inner colors denote the cell types in which ligands and target
receptors were downregulated, respectively. (D) Downregulation in the cytokines network due to age. Same color-coding as in (C) for the cytokines
interaction network.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Age differences in chemokines network are mainly due alternations in CCR5 expression.
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Figure 5. The fraction of Macrophages and Neutrophils expressing SASP receptors is elevated in old age. (A) Cumulative probability distribution (CDF)
of the difference of a fraction of old and young macrophages that express 24 SASP genes (red line). The gray lines are the fraction difference CDFs

of groups of 24 random genes (10,000 samples). The blue line is the CDF of the fraction difference of all the macrophage genes. There is a significant
increase with age in the fraction of cells that express members of the SASP genes (Kolmogorov-Smirnov test p-value <0.01). (B) The false discovery rate
(FDR) for significant change (p-value <0.01) in the fraction of different cell types that express SASP genes. Macrophages and neutrophils exhibit FDR

which is much smaller than 0.001.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Cumulative probability distribution (CDF) of the fold change between old and young macrophages’ expression in SASP genes.

and may result in chronic diseases and tissue dysfunction (Mufioz-Espin and Serrano, 2014; Ovadya
and Krizhanovsky, 2014). One of the main molecular features of senescent cells is the senescence-
associated secretory phenotype (SASP), in which the senescent cells create an inflammatory envi-
ronment by secreting inflammatory cytokines, chemokines, growth factors, extracellular remodeling
factors, and more (Prata et al., 2018; Song et al., 2020). Immune cells respond to these factors,
detect specific markers expression or their absence on the senescent cells’ membrane and clear them
either by phagocytosis (by Mos, for example) or by killing (by NTs or NK cells for example) (Song et al.,
2020). Ovarian senescence was already studied in the past (Velarde and Menon, 2016); however, the
specific mechanism of senescent cells clearance within the ovaries is still unclear.

We compiled a list of SASP receptors based on the literature containing 24 receptors (Supple-
mentary file 5) and examined how their expression in different cell types depends on the female
age. We found that the fraction of cells that express Ccr2, Csf2ra, and Csf1r, which are all receptors
for known SASP proteins (Rhinn et al., 2019; Song et al., 2020), was significantly higher in old Megs.
In addition, the fraction of old Mos that express cell surface markers that were previously reported
to take part in the recognition of senescent cells, such as membrane IgM’s (Ighm) and C-type lectin
receptors (Clec4a2-3) (Burton and Stolzing, 2018) was also elevated. Moreover, old NTs and Mos
showed upregulated expression of Ifngr1 (Figure 4A), a part of the IFNy receptor, while the cytokine
itself is overexpressed by senescent cells (Lujambio et al., 2013; Pan et al., 2021). In addition, both
NTs and Mes, as well as NK cells showed a higher expression fraction of this receptor. In total, we
found six SASP receptors that were significantly overexpressed by old Ms. The probability that six
genes would be significantly modulated (p<0.01) out of a list of 24 random genes is low (FDR = 107",
Figure 5). Moreover, across all cell types, only old M@s and NTs presented a significant elevated frac-
tions of cells expressing SASP receptors (Figure 5B). As a complementary analysis, we checked the
expression levels of all SASP receptors. Results show that SASP receptors expression in ovarian M@s is
not altered at old age (Figure 5—figure supplement 1). NTs also exhibited elevated fractions of Cer1,
a receptor for several SASP chemokines (Coppé et al., 2010), while old NKT cells had higher levels
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Figure 6. The effect of fertile female aging on the ovarian immune system. As the female ages, most innate immunity cells, such as NTs, Mes, ILCs,

and NK cells exhibit a decrease in
The ovarian immune aging during

their fractions within the total immune population. Moreover, there is a substantial increase in the fraction of DNTs.
the female fertile period is characterized by decreased inflammatory hallmarks, as opposed to the post-menopause

inflammaging. (Created with BioRender.com).

of Cd74, a receptor for MIF, another SASP member (Coppé et al., 2010; Kim et al., 2018). CXCRé is
another novel mediator of senescence control which was recently discovered as part of senescence
surveillance in the liver by CD4 T and NKT cells (Mossanen et al., 2019). Cxcré expression was also
increased in old Mes.

Discussion

In this work, we characterized the first complete mouse ovarian immune milieu and its changes with
female age up to near-estropause state, and discovered major changes in the fractions of different
immune cell types (Figure 6). Our results present an elevation in CD3* TCRB* lymphocytes along
with age, indicating a dramatic change in the fraction of DNT cells (from ~5% to ~35% at old age).
Other identified DNT cells, in the blood or lymph nodes, for example, consist of 1-5% out of all the
lymphocytes (Hillhouse and Lesage, 2013; Juvet and Zhang, 2012). These results are consistent with
a previous study that showed an increase in the TCRB* lymphocytes that is not due to CD4 or CD8 T
cells change in mice before estropause (Lliberos et al., 2021). Double-negative T cells were found to
be the most common lymphocyte across the female mice uterus and cervix (Johansson and Lycke,
2003). These cells were shown to have a regulatory function, showed no proliferation, inhibited the
proliferation of splenic T cells when co-cultured together in vitro, and their origin was suggested to be
extrathymic. The DNT population we observed in the ovary, showed almost no expression of classical
thymocytes development markers at the double-negative stages such as Notch1, Socs3, Dtx1, Hes1,
and more (Puthier et al., 2004). Other studies showed that DNT cells in peripheral blood or lymphoid
organs have a suppressive role and assist in preventing allograft rejection and autoimmune responses
(Hillhouse et al., 2013; Juvet and Zhang, 2012). Some studies suggest that DNT cells are the result
of down-regulation of CD4 and CD8 due to chronic stimulation (Rodriguez-Rodriguez et al., 2015,
Grishkan et al., 2013). The ovaries present ongoing cycles of inflammation processes in each ovula-
tion, which may result in chronic stimulation of ovarian T cells and may be consistent with an increase
of CD4 T cells after estropause (Lliberos et al., 2021). Furthermore, enrichment in CD3* lymphocytes
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in the ovary was found to be associated with poor follicular reserve (Jasti et al., 2012) and thus may
have an impact on ovarian autoimmune diseases. Moreover, one of the characteristics of polycystic
ovary syndrome (PCOS) is an abnormal T lymphocyte milieu that is suspected to be involved in disease
pathogenesis and ovarian dysfunction that leads to infertility (Li et al., 2019). Similarly, our results
indicate an age-dependent change in the T lymphocytes population that may be involved in improper
immune regulation in the ovary and hence lead to infertility. In addition, ILC1 cells are the largest
population in the young mouse ovaries, and the second largest in the old ovaries, after the DNT
population. These cells, along with NK cells, constitute the group 1 innate lymphoid cells. As opposed
to NK cells, ILC1 have weak-to-no cytotoxic capabilities, and are more similar to Th1 cells in their
function, that is, inducing type 1 immune response against intracellular pathogens and inflammatory
responses (Vivier et al., 2018). In addition, ILC1 cells take part in the process of tissue remodelling
(Jowett et al., 2020). Interestingly, ILC1 distribution was also found to be elevated in the epididymal
adipose of male mouse testis (Boulenouar et al., 2017). As a dynamic, constantly changing environ-
ment, the ovaries, which involve cycles of developing and regressing structures, may use ILC1 cells as
orchestrators of other cell types participating in these processes. Our results also show a decline in
the macrophages population with age, which may result in fertility deterioration because of impaired
ovarian vasculature (Turner et al., 2011).

Taking together the observed changes in global processes and expression of immune mediators
such as chemokines and cytokines, a state of general attenuation and unresponsiveness is emerging.
GO enrichment analysis of joint processes for several cell types present a decrease in general
activity, in which immune cells exhibit lower levels of metabolism-related processes accompanied by
decreased responsiveness to different stimuli and loss of regulation over various processes. Analysis
of the chemokines and cytokines networks also revealed general attenuation and decreased expres-
sion of various inflammatory mediators. Chemoattractants, such as Cxcl2, Ccl2, Ccl3, Ccl4, and Ccl5,
as well as pronounced inflammatory cytokine transcripts such as TNFaq, IFNy, IL1-a, and IL-1B were
all decreased in different immune cell types. Moreover, decreased expression of several members of
the TGFp superfamily by macrophages at old age, such as Inhba and Acvr2a, might be connected to
impaired or decreased follicles growth. While previous studies suggested an inflammatory state in
the post-estropausal ovaries (Lliberos et al., 2021), our results indicate a decrease in the inflamma-
tory characteristics of ovarian immune cells during pre-estropause aging. We have found an increase
in genes involved in senescent cell recognition by several immune cell types, mostly Mps but also
NTs, NK, and NKT cells. Generally, as age progresses, senescent cells are accumulating within tissues
(Childs et al., 2015; van Deursen, 2014; Velarde and Menon, 2016). In the ovaries, aging and senes-
cence are accompanied by an increasing number of atretic follicles and cycle irregularities that end in
estropause. Our results suggest that clearance of senescent ovarian cells by immune cells increases at
old age to match the ovary needs.

There is a plethora of studies that suggest inflammaging - an age-related increase in the inflam-
matory environment that develops over time (Ferrucci and Fabbri, 2018; Franceschi et al., 2018;
Giunta, 2006). Previous recently published papers who characterized the age effect in the single-cell
level on the immune system in various fertility non-related tissues have demonstrated inflammaging
(Almanzar et al., 2020; Kimmel et al., 2019; Mogilenko et al., 2021). There are several major differ-
ences between these papers to our research. First, these papers compared not just females, but also
males. Moreover, they used very old, post-estropausal mice and analyzed mostly tissues that are not
part of the reproductive system. Our results show that the most evident change in the ovaries of aging
female mice before estropause is a shift from innate to adaptive immunity, which is associated with a
dramatic increase of CD3"* lymphocytes, and a decrease in M@s, NTs, and ILC1 fractions. Besides the
changes in the composition of the immune milieu, most cell types exhibit a decrease in inflammatory
hallmarks. Our results portray a novel intermediate state, in which prior to the elevation in inflamma-
tory hallmarks and the development of inflammaging, there is an apparent decrease in inflammatory
characteristics in the ovary (Figure 6). Our results suggest that ovarian immune aging is not linear, but
a complicated process that exhibits alternations between anti- and pro-inflammatory environment.
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All experiments involving mice conform to the relevant regulatory standards (Technion IACUC and
national animal welfare laws, guidelines, and policies). Hsd:ICR female mice were purchased from
Envigo RMS (Israel) and were housed in a 12 hr light / 12 hr dark cycle. Assessment of estrous cycle
stage for the mice begun 3 days prior each experiment via vaginal smears (McLean et al., 2012).
Briefly, mice’s vaginal canals were washed using 20 pL saline (PBS, 0.09% NaCl). The saline was then
collected and mounted on a slide and observed under an inverted microscope (Olympus) equipped
with X20 objective. The estrous cycle-stage was assessed according to epithelial cells morphology and
the presence or absence of leukocytes. Mice that exhibited regular progress of their cycle for three
consecutive days were eligible for further experiments.

Ovaries extraction and handling

Mice were anesthetized for 2 min using isoflurane and then euthanized by cervical dislocation. Each
mouse'’s ovaries were extracted and washed in RPMI-1640 media (Sigma-Aldrich) containing 10% FBS
and transferred to 1.5 mL microcentrifuge tubes containing the same media. Next, the ovaries were
cut using scissors and incubated for 30 min with ~7800 IU/mL (Lot dependent) of collagenase type
IV (Sigma-Aldrich) at 37°C. After which, 2.5y g/mL of DNase | (Sigma-Aldrich) was added, and tubes
were incubated for additional 30 min. For proper tube content mixing, gentle tapping was performed
every 5 min during incubation. Tissue homogenate was filtered through a 40 pm strainer (Greiner Bio-
One) and washed with 0.5 mL RPMI media five times. Total cell count was then calculated using LUNA
automated cell counter (Logos Biosystems). Cells were further processed for sorting (for single-cell
RNA sequencing) or staining (for flow cytometry experiments).

Cell sorting

Cell samples went through a series of centrifugations (400g, 5 min, at 4°C) and were stained with PE
anti-CD45 (30-F11, BioLegend) in staining buffer (see flow cytometry section) for 30 min at 4°C. CD45-
positive cells were sorted and collected using FACSAria lll Cell Sorter (BD Biosciences). Collected
samples were centrifuged and brought to a final volume of ~50 pL, counted using LUNA automated
cell counter (Logos Biosystems), and further processed for single-cell sample preparation.

Single-cell RNA sequencing

Samples were prepared as outlined by the 10x Genomics Single Cell 3' v2 Reagent Kit user guide.
Briefly, the samples were washed twice in PBS (Sigma-Aldrich) +0.04% BSA (Sigma-Aldrich) and
re-suspended in PBS + 0.04% BSA. Sample viability was assessed with Trypan Blue (Biological Indus-
tries) using LUNA automated cell counter (Logos Biosystems) and validated using a hemocytometer.
Following counting, the appropriate volume for each sample was calculated for a target capture of
10,000 and 7700 cells (old and young samples, respectively) and loaded onto the 10x Genomics
single-cell-A chip. After droplet generation, samples were transferred onto a 96-well plate, and
reverse transcription was performed using a Veriti 96-well thermal cycler (Thermo Fisher). After the
reverse transcription, cDNA was recovered using Recovery Agent provided by 10x Genomics followed
by a Silane DynaBead clean-up (Thermo Fisher) as outlined in the user guide. Purified cDNA was
amplified before being cleaned up using SPRIselect beads (Beckman Coulter). Samples were quan-
tified with Qubit Fluorometer (Invitrogen) and run on Agilent TapeStation for quality control. cDNA
libraries were prepared as outlined by the Single Cell 3" Reagent Kits v2 user guide with appropriate
modifications to the PCR cycles based on the calculated cDNA concentration (as recommended by
10x Genomics). Post library construction quantification and QC were performed as mentioned above
for the post cDNA amplification step. Sequencing was performed with NextSeq500 system (lllumina),
with ~50,000 reads per cell and 75 cycles for each read.

Seurat R package (Butler et al., 2018) was used to read the 10x output data from Cell Ranger
v3.0.1 according to the suggested protocol. Yield was 3693 and 5644 cells for young and old samples,
respectively. Quality control tests were conducted to eliminate duplicates, and dead or low-quality
cells — cells with less than 200 features, more than 2500 features, or more than 10% features of mito-
chondrial genes were excluded from further analysis. In total, we ended up with 3307 and 5468 cells
for young and old samples (data available at Figure 1—source data 1 and Figure 2—source data 1).
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Cell type annotations
The Seurat R package (version 4.1.0), along with the SingleR package (version 1.8.1) (Aran et al.,
2019) were used to analyze single-cell RNA sequencing data. After using Seurat’s normalization
tool (‘LogNormalize’, 10,000 scale) and clusters identification using Seurat’s graph-based clustering
method, t-distributed stochastic neighbor embedding (tSNE) was used as a dimension reduction and
visualization tool, with PCA as the latent space (15 PC dimensions). The log-normalized data was
scaled prior to dimensionality reduction (using ‘scale.data’). Next, the SingleR algorithm was used to
achieve the automatic annotation for each cell. Briefly, the algorithm compares each cell’s transcrip-
tome to known transcriptomic ‘signatures’ from reference genomes taken from The Immunological
Genome Project (ImmGen) (Heng et al., 2008). The algorithm calculates the correlation between the
cell to different cell types, and based on the highest correlation suggests an annotation for the cell.
In addition, a set of literature-based gene markers was chosen to identify the different immune
cell types. For each gene marker, a normalized score was calculated in every cell using the raw count
matrix. E,; denotes the expression level of the gene g within the i* cell; M, and m, denote the maximal
and minimal expression of the gene g across all cells in the sample, respectively. N, denotes the
number of cells within cluster ¢, and N, denotes the number of cells within cluster c that express the
gene g. The normalized expression score, S, for the gene g in the i cell within the cluster cis the
multiplication of the gene relative expression and the relative fraction of cells within the cluster that

express this gene, Sg; . = (%) . (%) Figure 1c illustrates the distribution of the normalization
score for a particular gene g over all the cells in cluster c. Normalized scores are between 0 and 1.
The identity of each cluster was determined by taking into account the majority type as given by
the SingleR and the type according to the literature markers. For example, according to the litera-
ture markers, cluster 10 is CD8" enriched, and cluster 11 is CD4" enriched. While SingleR cell type
ID is consistent with this classification, several cells in cluster 10 were classified as CD4* cells, while
other cells in cluster 11 were classified as CD8* cells. Therefore, the final assignment of these cells is

different than the SingleR ID.

Flow cytometry analysis

Ovarian cell suspensions were stained for flow cytometry analysis as the commercial protocol suggested
(BD Biosciences). Briefly, cells were plated in 96-well U-shaped plates and went through a series of
centrifugations (400g for 5 min, at 4°C) for media and debris cleaning. Next, samples were stained
as the commercial protocol suggested using the following antibodies (purchased from BioLegend)
diluted in staining buffer (PBS containing 0.09% sodium azide (Sigma-Aldrich)): PE anti-CD45 (30-F11),
BV421 anti-CD11b (M1/70), APC/Cy7 anti-F4/80 (BM8), APC anti-F4/80 (BM8), BV711 anti-CD11c
(N418), Alexa Fluor 700 anti-Ly6G (1A8), APC anti-CD3 (17A2), Pacific Blue anti-CD3 (145-2 C11),
APC/Cy7 anti-NK1.1 (PK136), PE/Cy7 anti-TCRp (H57-597), Alexa Fluor 700 anti-CD8a (53-6.7), FITC
anti-CD4 (GK1.5), PE/Cy7 anti-TCRy& (GL3) and APC anti-CCR5 (HM-CCRS). Staining was performed
at 4°C for 30 min. Flow cytometry analyses were made using the S100EXi (Stratedigm) flow cytometer.
Viability test of CD45* cells was conducted using Zombie-NIR (BioLegend).

Statistical analyses
All statistical analyses were calculated using MATLAB R2019b (MathWorks).

For the flow cytometry experiments, we used two-sample Kolmogorov-Smirnov test for identifying
significant changes in cell types fractions at different ages.

To determine DEGs between old and young samples, genes were considered significant if they
had twofold change in their mean expression and if their FDR <0.1, using Storey g-values approach
(Storey, 2002) for a p-value <0.05 (two-tailed student’s t-test).

For analyzing significant changes in the fraction of each cell type, we used the MILO algorithm
(Dann et al., 2022). Briefly, the algorithm constructs an undirected KNN graph of single cells based
on the scRNA-seq, divides the data into neighborhoods of cells and compares how their size changes
with different conditions. Therefore, we have used the batch-corrected data as input for it. To estimate
the differential abundance in terms of cell types, the MILO algorithm assigns a cell type label to each
neighborhood by finding the most abundant cell type within cells in each neighborhood (Figure 2—
figure supplement 1). MILO uses a weighted version of the Benjamini-Hochberg method to regulate
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the spatial FDR in the KNN graph. In this method, p-values were weighted by the reciprocal of the
neighborhood connectivity to regulate the graph.

The FDR of having six genes that have significantly modulated fraction change (p-value <0.01)
out of a list of 24 random genes, for each cell type, was calculated analytically. The FDR in this case,
where all hypotheses are considered null, is equal to the family-wise error rate (FWER), which can be
calculated analytically using multinomial distribution (Korthauer et al., 2019).

GO enrichment analysis

Significant downregulated or upregulated genes for each cell type were taken for GO enrichment anal-
ysis of biological processes using the g:Profiler platform (Raudvere et al., 2019) (database versions:
Ensembl 108, Ensembl Genomes 55, and Wormbase ParaSite 17, published on 2/23/2023). Next, all
significant processes were further analyzed using the REVIGO platform for eliminating redundant GO
terms (Supek et al., 2011). Then, cell-type specific and global (for at least two cell types) processes
were found and analyzed once more using the REVIGO platform in order to cluster them according
to their semantics distance.

Cytokines and chemokines networks

The Kyoto Encyclopedia of Genes and Genomes (KEGG) was used to construct the chemokines and
cytokines ligand-receptor networks. These were built based on the Cytokine-cytokine receptor inter-
action - Mus musculus (mouse) map (pathway map mmu04060) (Kanehisa, 2000).
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