Intrinsic mechanical sensitivity of mammalian auditory neurons as a contributor to sound-driven neural activity

1 María C. Perez Flores, 2 Eric Verschooten, 1 Jeong Han Lee, 1 Hyo Jeong Kim, 2 Philip X. Joris,

1 Ebenezer N. Yamoah*

1 Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine,
Reno, NV 89557
2 Laboratory of Auditory Neurophysiology, Medical School, Campus Gasthuisberg, University of Leuven, B-3000 Leuven, Belgium.

Number of Figures: 5
Supplementary Figures: 13
Tables: 4
Number of pages: 62
Abstract: 1

*Corresponding author with complete address, including an email address:

Ebenezer N. Yamoah
Department of Physiology and Cell Biology
1664 North Virginia St.
University of Nevada, Reno School of Medicine
Reno, NV 89557
Tel: 530-312-8728
Email: enyamoah@gmail.com
Abstract

Mechanosensation – by which mechanical stimuli are converted into a neuronal signal – is the basis for the sensory systems of hearing, balance, and touch. Mechanosensation is unmatched in speed and its diverse range of sensitivities, reaching its highest temporal limits with the sense of hearing; however, hair cells (HCs) and the auditory nerve (AN) serve as obligatory bottlenecks for sounds to engage the brain. Like other sensory neurons, auditory neurons use the canonical pathway for neurotransmission and millisecond-duration action potentials (APs). How the auditory system utilizes the relatively slow transmission mechanisms to achieve ultrafast speed, and high audio-frequency hearing remains an enigma. Here, we address this paradox and report that the mouse, and chinchilla, AN are mechanically sensitive, and minute mechanical displacement profoundly affects its response properties. Sound-mimicking sinusoidal mechanical and electrical current stimuli affect phase-locked responses. In a phase-dependent manner, the two stimuli can also evoke suppressive responses. We propose that mechanical sensitivity interacts with synaptic responses to shape responses in the AN, including frequency tuning and temporal phase-locking. Combining neurotransmission and mechanical sensation to control spike patterns gives the mammalian AN a secondary receptor role, an emerging theme in primary neuronal functions.
Introduction

The senses dependent on mechanosensation – hearing, balance, and touch – excel in speed and wide-ranging sensitivity among the sensory systems. The tactile sense has evolved beyond detecting simple mechanical stimuli to encode complex mechanical texture and vibration via unmyelinated and myelinated nerve endings and specialized mechanoreceptors (Delmas et al 2011). For example, Pacinian corpuscles in mammalian skin encode vibrations up to ~1000 Hz—more than an order of magnitude above the visual system's flicker-fusion threshold, which sets the limit for stable viewing of computer screens and fluid motion in moving images. Transduction's temporal acuity is directly translated into a neural code in such tactile receptors because transduction occurs in the same neural element that conducts the signal to the brain. This is different in the auditory and vestibular systems, where mechanosensation and messaging to the brain is subserved by separate cells (hair cells and primary neurons). Their synaptic interface is a potential limit on temporal acuity.

Nevertheless, the vestibular system produces one of the fastest human reflexes, with a delay of only ~5 milliseconds (Huterer & Cullen 2002). It is thought that non-quantal neurotransmission in the huge calyceal synapse between vestibular hair cells (HCs) and first-order neurons is essential to this speed (Eatock 2018). Paradoxically, a specialized mechanism observed in the tactile and vestibular systems has not been identified in hearing. Nevertheless, it is the mechanosensitive system for which temporal acuity reaches its highest limits. For example, auditory brainstem neurons can reliably code tiny interaural time and intensity differences toward spatial hearing (Yin et al 2019) over an enormous range of frequencies and intensities. The acknowledged mechanism for activation of classical action potentials (APs) in the primary auditory nerve (AN), also called spiral ganglion neurons (SGNs), is neurotransmission at the HC-ribbon synapse. Stereociliary bundles of auditory HCs convert
sound-induced displacement and depolarization to neurotransmitter release unto AN afferents (Fettiplace 2017, Fuchs et al 2003, Roberts et al 1988) with notable speed and temporal precision. The ribbon-type synapse is equipped to sustain developmentally regulated spontaneous activity (<100 Hz) (Levic et al 2007), sound-evoked APs (<~300 Hz), and phase-locked responses at auditory frequencies up to ~5 kHz (Johnson 1980). Phase-locking to sound stimuli is a feature of the AN essential for sound detection, localization, and arguably for pitch perception and speech intelligibility (Peterson & Heil 2020, Yin et al 2019). How these response features remain sustained, despite the limits of presynaptic mechanisms of transmitter release to ATP-generation, synaptic fatigue, and vesicle replenishment (MacLeod & Horiuchi 2011, Rutherford et al 2021, Stevens & Wesseling 1999, Yamamoto & Kurokawa 1970), is not fully understood.

Responses of SGNs consist of multiple components, but the underlying mechanisms remain unresolved. Inner HC (IHC) depolarization increases the frequency of excitatory postsynaptic current (EPSC). Moreover, the synaptic current amplitude remains unchanged (Glowatzki & Fuchs 2002, Grant et al 2010, Siegel 1992). In response to low-frequency tones, the HC ribbon synapse triggers APs over a limited phase range of each sound cycle. Low- and high-intensity tones elicit phase-locked AN responses, which generate unimodal cycle histograms, i.e., response as a function of stimulus phase (Johnson 1980, Rose et al 1967).

In contrast, for some intermediate intensities, AN fibers fire APs at two or more stimulus phases referred to as ”peak-splitting” (Johnson 1980, Kiang & Moxon 1972). Moreover, a typical AN frequency tuning curve consists of two components (Liberman & Kiang 1984) – a sharply tuned tip near the characteristic frequency (CF) and a low-frequency tail, which are differentially sensitive to cochlear trauma. These observations suggest that more than one process may drive AN responses. Whereas the contribution of fast synaptic vesicle replenishment at the HC ribbon synapse is clear (Griesinger et al 2005), the sustained nature of the IHC-AN synapse to
sound (Glowatzki & Fuchs 2002, Griesinger et al 2005, Li et al 2014) also raises the possibility that multiple processes sculpt AN responses. Utilization of the mechanical energy dissipated from sound-induced cochlear motion is an attractive model since neurons are by and large mechanically sensitive (Gaub et al 2020).

We found that SGNs respond to minute mechanical displacement. Motivated by this finding, we hypothesized that SGN afferents actively sense the organ of Corti movement and that this sensitivity, together with neurotransmission, shapes AN properties. The geometry of the course of the unmyelinated terminal segment of SGN dendrites towards the Organ of Corti (OC) suggests that this segment undergoes some degree of mechanical deformation in response to sound. These dendrites emanate from the habenula perforata and angle towards their IHC target between the osseous spiral lamina, basilar membrane, and inner pillar cells (Lim 1986). The OC is thought to rotate about a pivot point near the tip of the osseous spiral lamina. An attractive feature of the SGN mechanical-sensitivity hypothesis is that it provides a straightforward substrate for one of two interacting pathways thought to generate peak-splitting and/or multi-component frequency tuning (Liberman & Kiang 1984). Using in vitro simultaneous whole-cell recordings and mechanical stimulation, we show that adult SGNs are mechanically sensitive. Mechanical stimulation of the cell body (soma) elicits an inward current, which reverses at ~0 mV. Mechanically-activated (MA) inward currents (IMA) and membrane voltage responses are sensitive to GsMTx4 peptide, a mechanosensitive channel blocker (Bae et al 2011). Mechanical stimulation of the soma and dendrites elicits adapting, bursting, or non-adapting firing responses. Simultaneous sinusoidal stimulation with current injection and mechanical displacement alters firing rate and temporal coding. In vivo, single-unit recordings from AN fibers demonstrate that 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX) and Ca²⁺ channel blockers, potent inhibitors of synaptic transmission, suppress spontaneous APs, but sound-evoked APs persist at high intensities. These findings suggest that AN fibers'
intrinsic mechanical sensitivity contributes to sound-evoked activity and ill-understood features such as multi-component AN tuning curves and peak-splitting. Our results also indicate that primary neurons may support sensory receptor functions, an emerging notion (Hattar et al 2002, Woo et al 2014).

Results

Mouse auditory neurons respond to stepped mechanical stimulation

Figure 1a shows the responses of adult mouse spiral ganglion neurons (SGNs) subjected to two different bath solution flow rates (0.5 and 3 ml/min). The neural activity at the highest flow rate is much larger and reflects the monotonously increasing relationship that saturates at 8 ml/min (Figure 1 – figure supplement 1). In a small number of neurons (6 out of 110), increasing the flow rate produced a suppressive response ((Figure 1 – figure supplement 1). SGN terminals are unmyelinated (Kim & Rutherford 2016, Liberman 1982). We inferred that the SGN terminals could undergo minute displacement, subject to OC movement (OCM) (Chen et al 2011, Jawadi et al 2016, Karavitaki & Mountain 2007), raising the possibility of a direct mechanical pathway affecting AN responses in addition to synaptic transmission. To stimulate the unmyelinated dendritic terminals in vitro, SGNs were cultured on a polydimethylsiloxane (PDMS) substrate (Cheng et al 2010). We displaced a single dendrite by substrate-indentation on this platform, using a fire-polished glass pipette driven by a piezoelectric actuator (Sa, inset Figure 1b). Dendrite-substrate displacement evoked membrane depolarization and APs at the recording patch-electrode (R, inset Figure 1b). Soma-substrate or direct soma displacement was used for extended recordings and voltage(V)-clamp experiments. In both stimulation configurations, rectangular- or ramp-displacements evoked either a sub-threshold membrane depolarization or APs, depending on the amplitude or ramp-velocity (slew rate) (Figure 1b, c). When SGNs were interrogated with stepped mechanical displacement, 12 out of 32 neurons...
showed an increase in firing rate. In contrast, in some SGNs, including those with spontaneous activity (n = 10), an increase in mechanical displacement amplitude induced a suppressive response. In 10 out of 32 SGNs, interrogation with stepped mechanical displacement did not affect the AP firing rate (Figure 1 – figure supplement 2).

From a holding potential (V_h) of -70 mV, displacement evoked current (I_{MA}) (Fig. 1d). The I_{MA} amplitude ranged from 100 to 700 pA (426 ± 85 pA; n = 95). The I_{MA} shows a bi-exponential decay over time with a fast (τ_1) and slow (τ_2) time constant. For I_{MA} elicited with a 1.12 μm displacement, τ_1 and τ_2 were 3.6 ± 2.6 ms and 24 ± 5.7 ms (n = 17) for apical neurons, and 2.1 ± 1.1 ms and 17.0 ± 4.8 ms (n = 15) for basal neurons (Figure 1 – figure supplement 3), respectively. The displacement-response relationships of these apical and basal neurons (Figure 1e), expressed as a channel open probability (P_o), were fitted with a single Boltzmann function (black curves). The half-maximal activation displacements ($X_{0.5}$) were 0.42 ± 0.01 μm (n = 14) and 0.35 ± 0.01 μm (n = 14) for I_{MA} from apical and basal neurons, respectively (Figure 1e). Varying V_h and using a constant displacement (~0.4 μm) yielded I_{MA} with a linear I-V relationship and a reversal potential (E_{MA}) ~0 mV (-1.4 ± 2.1 mV; n = 17), which is consistent with a non-selective cationic conductance (Figure 1f). The I_{MA} in SGNs was sensitive to an externally applied MA channel blocker, GsMTx4 (Bae et al 2011). Application of 1 μM GsMTx4 decreased the current amplitude by ~52% (52 ± 8%, n = 5; Figures 1h inset). The half-maximal inhibitory concentration (IC_{50}) obtained from the dose-response curve was 0.9 ± 0.2 μM (n = 4; Figure 1h). Additionally, 1 μM GsMTx4 completely abolished the dendrite displacement-evoked APs, which was partially reversible after washout (Figure 1g).

Response properties of chinchilla auditory and mouse vestibular neurons to stepped and sinusoidal mechanical stimulation

If the mechanosensory features of the SGNs are fundamental to auditory information coding, we would expect the phenomena to transcend species differences. Auditory neurons'
mechanical sensitivity was not restricted to the mouse: adult chinchilla SGNs were similarly, but not identically, responsive to mechanical stimulation, validating the potential physiological relevance across species. Shown are exemplary APs from chinchilla SGNs in response to the soma’s current injection and mechanical stimulation (Figure 1 – figure supplement 4). The current elicited with mechanical displacement from -70-mV V_h, and the summary of the corresponding displacement-response relationship was also fitted with a single Boltzmann function with $X_{0.5}$ of 0.49 ± 0.05 (n = 9; Figure 1 – figure supplement 4). The I-V relationship from chinchilla SGN I_{MA} produced $E_{MA} = -8.1 \pm 5.5$ mV; n = 5 (Figure 1 – figure supplement 4). The results suggest that I_{MA} in chinchilla SGNs share features with those observed in the mouse.

A related issue is how specific the mechanical sensitivity of SGNs is relative to other mechanosensitive systems. Responses to mechanical displacement steps were also observed in vestibular neurons (VN) (Figure 1 – figure supplement 5). The displacement-response relationship was approximated using a two-state Boltzmann function (Figure 1 – figure supplement 5). Compared to auditory neurons, mouse vestibular neurons (VN) were less responsive to stepped mechanical stimulation on average ~3-fold in magnitude. Additionally, responses to mechanical stimulation frequency > 10 Hz were attenuated in VNs (Figure 1 – figure supplement 5), compared with SGNs responses in Figure 1 – figure supplement 7. The magnitude of mechanical displacement required to elicit responses of VNs was comparable to those reported for dorsal root ganglion (DRG) neurons (Finno et al 2019, Viatchenko-Karpinski & Gu 2016).

SGNs show a variety of responses to current injection. Current-evoked responses from 5-week-old SGN range from fast to intermediate to slow adapting the activity. Additionally, a fraction (5-10%) of SGNs are spontaneously active (Adamson et al 2002, Wang et al 2013). This diversity of responses is observed in adult apical and basal neurons (Lv et al 2012). The
question arises on how the response diversity to current injection relates to responsivity to mechanical stimulation. Apical and basal SGNs showed different response thresholds, with apical neurons showing higher sensitivity (Figure 1 – figure supplement 6). The response latency and excitability of SGNs depended on stimulus type (step vs. ramped pulse) and location (soma or dendritic substrate). For example, in fast-adapting SGNs, the first-spike latency increased from 4.0 ± 0.1 ms to 6.0 ± 0.2 ms ($n = 14$; $p = 0.01$) when the slew rate was reduced from 1 to 0.5 μm-ms$^{-1}$; subsequent reduction in slew rate caused prolonged latency, subthreshold membrane depolarization, or failed responses (<0.001 μm-ms$^{-1}$; Figure 1 – figure supplement 6)).

We used sinusoidal mechanical displacement as a proxy for in vitro sound stimulation at different frequencies, recording from mouse SGNs, and the responses were also variable (Figure 1 – figure supplement 7). AP firing increased with increasing amplitude of mechanical stimulation (Figure 1 – figure supplement 7) and was phase-locked. In some SGNs (4 out of 11), the responses were attenuated with larger mechanical displacement. A train of varying frequencies of mechanical stimulation, in decade steps, shows the SGNs responded to and are phase-locked to specific frequencies up to 100 Hz, but responses were absent at 1000 Hz. In contrast, the response properties of SGNs reached 1000 Hz sinusoidal current injection. Responses to current injection were broader than mechanical stimulation (Figure 1, Figure 1 – figure supplement 7).

Amplitude and phase of combined current and mechanical sinusoidal stimulation affect response rate and timing

Because sound waves are converted into mechanical vibrations transmitted via the middle ear to the cochlea, which converts them into neural signals, the question arises whether the mechanical responses shown here play a role in hearing. As AN fibers traverse different compartments of the OC (osseous spiral lamina, basilar membrane) to innervate IHC, they lose
their myelin sheath at the habenula perforata (Morrison et al 1975) (Figure 2a). The
unmyelinated terminal is subject to sound-evoked displacement or pressure changes. Direct
examination of potential synergistic or antagonistic effects between neurotransmission and
mechanical signaling at or near the AN synaptic terminal is currently not technically possible;
however, the interaction of their proxies of current injection and substrate vibration can be
examined. We applied sinusoidal currents and mechanical displacements to produce more
physiological stimuli that mimic sound-evoked neurotransmission and movement (see methods).

We find that the two stimulus modalities interact: mechanical and current stimuli, which are
subthreshold and can be suprathreshold when combined (Figure 2b). Since the exact
relationship in amplitude and phase between synaptic events and the mechanical displacement
or deformation hypothesized to affect the afferent dendrite is unknown, we explored different
amplitude (Figure 2) and phase (Figure 3) relationships between current and mechanical
stimulation. First, the interaction was determined using in-phase stimulation: SGNs were primed
with sustained subthreshold current, and the displacement-response relationship was tested.
The mechanical responsiveness increased with increased current injection, shifting the rate
curves to lower displacement values (Figure 2c). Increasing subthreshold mechanical
displacement moved the rate curves to lower current values (Figure 2d). The $X_{0.5}$ derived from
Figure 2c as a current priming function has a linear relationship, with a slope of $-1.4 \, \mu m/nA$
(Figure 2e). As a function of priming mechanical displacement, the converse half-maximum
current ($I_{0.5}$; Fig. 2d) also shows a linear relationship, with a slope of $-0.5 \, nA/\mu m$ (Figure 2f).

These orderly interactions between intrinsic mechanical responsiveness and electrical activity
suggest that the increase in mechanical displacement with increasing sound intensity could
have a monotonic effect on the spike rate.

The effect of combined stimulation on phase-locking was studied with in-phase sinusoidal
current and mechanical displacement overlapped for ~2 s. Figure 2g (upper panel) shows a
slowly adapting SGN response to current stimulation (6-week-old basal SGN) with a firing rate of 36 ± 3 spikes/s, which increased to 50 ± 3 spikes/s \((n = 9; \ p = 0.01)\) upon paired mechanical stimulation applied to the soma. Synchronization between stimulus and response was measured with vector strength (VS) (Goldberg & Brown 1969): VS to the 100 Hz current injection alone was 0.82 ± 0.05 and increased with paired stimulation to 0.98 ± 0.01 \((n = 9; \ p = 0.01)\). For the moderately adapting SGN (Figure 2g lower panel; 5-week-old apical SGN), the VS increased from 0.72 ± 0.06 to 0.82 ± 0.07 \((n = 8; \ p = 0.04)\) after paired stimulation. The converse paradigm, where mechanical stimulation preceded combined current and mechanical stimulation, is illustrated for two fast adapting SGNs. They showed a significantly increased AP firing rate when the two stimuli overlapped (Figure 2h), with high VS values (0.94 and 0.9). For this set of experiments (28 SGNs) in which the pre-paired stimulation yielded non-zero VS (see Methods), 21 SGNs (75%) showed a significant increase in VS \((p < 0.05)\). In the remaining 7 SGNs (25%), the VS was reduced (Figure 2i-j, shown in green symbol and line). The summary data show that combined current and mechanical stimulation tended to alter the VS, suggesting the two stimuli interact to shape the response properties of SGNs (Figure 2i-j; Table 1). When the response to mechanical stimulation was reduced by application of GsMTx4 \((1 \mu M)\), dual current and displacement-responses resulted in a reduced VS (Figure 2 – figure supplement 1, Table 2).

Table 1

Summary of changes in spike rate I and VS using in-phase current and mechanical stimulations

<table>
<thead>
<tr>
<th>SGN</th>
<th>Current (I) R (spike/s)</th>
<th>Rayleigh p</th>
<th>Mech stim (X) R (spike/s)</th>
<th>Rayleigh p</th>
<th>I + X R (spike/s)</th>
<th>Rayleigh p</th>
</tr>
</thead>
<tbody>
<tr>
<td>13830002</td>
<td>0.5</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>40</td>
<td>0.96</td>
</tr>
<tr>
<td>13830003</td>
<td>0</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>40</td>
<td>0.91</td>
</tr>
<tr>
<td>13903009</td>
<td>50</td>
<td>0.97</td>
<td>0.01</td>
<td>0</td>
<td>NA</td>
<td>74</td>
</tr>
<tr>
<td>13903030</td>
<td>7.5</td>
<td>0.98</td>
<td>0.02</td>
<td>2.5</td>
<td>0.14</td>
<td>95</td>
</tr>
<tr>
<td>13903043</td>
<td>21</td>
<td>0.96</td>
<td>0.01</td>
<td>14</td>
<td>0.95</td>
<td>99</td>
</tr>
<tr>
<td>13903044</td>
<td>11.5</td>
<td>0.95</td>
<td>0.01</td>
<td>51</td>
<td>0.98</td>
<td>100</td>
</tr>
<tr>
<td>13903029</td>
<td>23</td>
<td>0.94</td>
<td>0.04</td>
<td>0</td>
<td>NA</td>
<td>89</td>
</tr>
<tr>
<td>13903010</td>
<td>49</td>
<td>0.98</td>
<td>0.01</td>
<td>0.5</td>
<td>NA</td>
<td>69</td>
</tr>
<tr>
<td>13903058</td>
<td>45</td>
<td>0.98</td>
<td>0.01</td>
<td>12</td>
<td>0.97</td>
<td>96</td>
</tr>
<tr>
<td>13903059</td>
<td>24.5</td>
<td>0.94</td>
<td>0.03</td>
<td>50.5</td>
<td>0.98</td>
<td>92</td>
</tr>
</tbody>
</table>
Table 2 Effects of GsMTx4 on spike rate (R) and VS

<table>
<thead>
<tr>
<th>SGN</th>
<th>Current (I)</th>
<th>Mech stim (X)</th>
<th>I + X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R (spike/s)</td>
<td>VS</td>
<td>R (spike/s)</td>
</tr>
<tr>
<td>19830002</td>
<td>3</td>
<td>0.15</td>
<td>1.5</td>
</tr>
<tr>
<td>GsMTx4</td>
<td>3</td>
<td>0.15</td>
<td>0</td>
</tr>
<tr>
<td>19830002</td>
<td>49.5</td>
<td>0.74</td>
<td>1</td>
</tr>
<tr>
<td>GsMTx4</td>
<td>49.5</td>
<td>0.75</td>
<td>0</td>
</tr>
<tr>
<td>19830043</td>
<td>9</td>
<td>0.62</td>
<td>5</td>
</tr>
<tr>
<td>GsMTx4</td>
<td>11</td>
<td>0.62</td>
<td>0</td>
</tr>
<tr>
<td>19830059</td>
<td>7</td>
<td>0.38</td>
<td>14</td>
</tr>
<tr>
<td>GsMTx4</td>
<td>5</td>
<td>0.37</td>
<td>0</td>
</tr>
</tbody>
</table>

SGN = spiral ganglion neuron, R (spike rate) = spike/s, VS = vector strength, * substrate dendrite displacement, NA = not applicable.
Because it is plausible that the amplitude and the phase of displacement of the IHC stereociliary bundle vary relative to the mechanical events affecting SGN dendrites, depending on sound parameters, the effects of sinusoidal displacement, and current injection at different phase angles and amplitudes were tested. The top row of Figure 3a-c show SGN responses to combined mechanical (magenta) and current (green) stimulation – the 50 Hz stimuli are in-phase but are changed in relative amplitude by increasing the displacement amplitude in steps of 0.1 μm. In this figure, the response as a function of post-stimulus time is shown as well as a cycle histogram (firing as a function of stimulus phase) to its right (Figure 3a-c) or below (Figure 3d-g, i-k). Combining subthreshold (0.1 μm) mechanical stimulation with a suprathreshold (0.2 nA) current triggered a highly phase-locked response, as illustrated by the cycle histogram (Figure 3a, right panel), which shows that the vast majority of spikes occurred over a very narrow range of phase angles. An increase of the mechanical stimulus amplitude to 0.2 μm causes spikes to appear at a different phase, giving rise to a second peak in the cycle histogram, reminiscent of the in vivo phenomenon of peak-splitting (Kiang & Moxon 1972, Liberman & Kiang 1984). The cycle histogram is again unimodal, increasing amplitude to 0.3 μm (Figure 3c). Peak-splitting with paired mechanical-current stimulation was also observed in chinchilla SGNs (Figure 3-figure supplement 1-2). On rare occasions (2 out of 48 SGNs), three APs were evoked per cycle, as shown for a chinchilla SGN (Figure 3-figure supplement 1). To test the effect of the relative phase of the mechanical stimulus, it was changed in 45° increments with respect to the current while measuring response rate and phase, illustrated for two neurons in Figure 3d-h and i-m. Peak splitting could be observed at some phase angles (Figure 3f, g, k) and not at others (Figure 3d, i, j, Figure 3-figure supplement 1). Phase angles between mechanical and current stimuli that resulted in peak splitting also resulted in lower spike rates. We illustrated and quantified with polar graphs showing VS (red) and spike
rate (blue, normalized to the maximum rate for each fiber) for each increasing phase lead of the current stimulus relative to the mechanical stimulation (Figure 3h, m, Figure 3- figure supplement 2). Because a drop in VS necessarily accompanies peak-splitting, the latter's occurrence is reflected in reduced VS values. For example, for in-phase current and mechanical stimulation (Figure 3d, 0°), high firing rate, and VS are obtained, resulting in values near 1 (Figure 3h: blue and red line touch outer, solid circle of magnitude 1). However, firing rate and VS are lower for angles where peak-splitting is observed, e.g., at 180° (Figure 3f) and particularly 225° (Figure 3g): for these phase angles, the polar plot shows lower values of both rate (blue) and VS (red). To quantify this trend, we computed a normalized resultant vector for each polar plot, which summarizes the trend of rate and VS when the relative phase between current and mechanical stimulation is varied. The magnitude and angle of the resultant vector are indicated with thick and thin solid lines, respectively (Figure 3h,m, see Table 3 for values and statistics). In stark resemblance to observations in vivo, there was a decrease in spike rate at the phase angles where peak-splitting occurred, illustrated by the alignment in resultant vectors for rate and VS (Figure 3h, m, Figure 3- figure supplement 2: red and blue lines). In vivo, this phenomenon has been called "Nelson's notch" (Kiang & Moxon 1972, Liberman & Kiang 1984), which had not been recapitulated in vitro. This decrease could result in spike rates lower than those elicited by the single-stimulus conditions. e.g., in Figure 3l, the spike rate during overlap is lower than due to current injection only. Thus, paired stimuli can not only generate a monotonic increase in spike rate (Figure 2c-f) but can also cause response suppression. Further examples of the correlation between spike rate and VS are shown in Figure 3- figure supplement 3 from series of measurements with relative phase between current and mechanical stimuli as the independent variable.
Table 3

<table>
<thead>
<tr>
<th>Polar plot spike rate</th>
<th>Figure 3h</th>
<th>Figure 3m</th>
<th>Figure 3-figure supplement 3a</th>
<th>Figure 3-figure supplement 3b</th>
<th>Figure 3-figure supplement 3c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max #spikes</td>
<td>147</td>
<td>150</td>
<td>210</td>
<td>278</td>
<td>150</td>
</tr>
<tr>
<td>Angle resultant</td>
<td>49.1</td>
<td>79.6</td>
<td>352.6</td>
<td>69.1</td>
<td>297.4</td>
</tr>
<tr>
<td>Magnitude resultant</td>
<td>0.15</td>
<td>0.21</td>
<td>0.19</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>p-value Rayleigh test</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Polar plot phase-locking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angle resultant</td>
</tr>
<tr>
<td>Magnitude resultant</td>
</tr>
<tr>
<td>p-value Rayleigh test</td>
</tr>
</tbody>
</table>

Figure 3- figure supplement 3

Auditory nerve responses in the absence of synaptic transmission

To examine whether AN fibers are influenced directly by mechanical displacement in vivo, we administered synaptic transmission blockers through the cochlear round window (RW) while recording from single fibers. Reports have shown two response regions in frequency tuning curves: a "tip" of sharp tuning observed at low sound levels, and a "tail" of coarse tuning (usually below the CF) at high sound levels (Kiang et al 1986). These two regions are differentially vulnerable to experimental manipulations (Kiang et al 1986). The inherent
mechanical sensitivity of AN fibers demonstrated in vitro is observed for substrate motion at sub-micrometer displacements (< 100 nm, e.g., Figure 2c). But note that temporal effects can occur at subthreshold displacements, i.e., that do not trigger spikes themselves, e.g., Figure 3). Cochlear displacements of this magnitude have been measured in vivo, particularly towards the cochlear apex and at high sound pressure levels (SPLs), where frequency tuning is poor (Cooper & Rhode 1995, Lee et al 2015, Lee et al 2016a). The in vitro results show interactive effects of current injection and mechanical stimulation (Figures 2,3), so it is difficult to predict the response that would remain when one modality (synaptically evoked spiking) is abolished. Nevertheless, the expectation is that in vivo, in the presence of synaptic blockers, some degree of response will persist at high SPLs, both in normal and traumatized cochleae. In contrast, if direct mechanical effects on AN dendrites have no role in responses to acoustic stimuli, synaptic blockers are expected to weaken all responses of a single fiber, irrespective of stimulus frequency.

We first characterized frequency tuning in single AN fibers during one or more electrode penetrations through the AN, recorded at the internal auditory meatus. After a sample of frequency tuning curves was obtained (Figure 4a), sufficient to record a frequency tuning profile as a function of recording depth, NBQX was applied through the round window. NBQX is a competitive antagonist of the ionotropic glutamate-receptor, which blocks HC-AN synaptic transmission (Grant et al 2010). The AN recording was then resumed with the same micropipette, left in situ during drug injection. NBQX application progressively decreased spontaneous- (Figure 4d) and sound-evoked (Figure 4b) spiking activity. Because these recordings are inherently blind, AN fibers without spontaneous activity can be detected only using brief high-intensity sound "search" stimuli (see Methods). Figures 4a-b show tuning curves recorded before and after NBQX administration. Notably, after NBQX application and at low recording depths, fibers were excitable only at high SPLs. Tuning in these fibers was broad
and shallow, with the lowest thresholds at low frequencies (Figure 4c). We surmised that these responses persisted due to the AN’s mechanical sensitivity. Interpretation of the response is hampered by the difficulty of knowing to what frequency range the fibers were tuned before applying the blocker. Because the high-threshold, coarsely-tuned responses were observed at recording depths where, pre-NBQX, neurons were tuned to high frequencies, it can be reasonably inferred that these responses originated from fibers innervating the cochlear base. Fibers recorded at depths > 250 µm were tuned to a restricted frequency range near 0.5 to 1 kHz, both pre-and post-drug applications (Figure 4c). Limited intra-cochlear diffusion of the drug likely accounts for lesser drug effects at these CFs (Sadreev et al 2019, Verschooten et al 2015)

While the data in Figures 4a, b are consistent with previous reports showing differences in the vulnerability of low- and high-threshold components of AN threshold curves, two fibers shown in Figures 4e,f provide a more direct indication that high-threshold, bowl-shaped tuning originated from basally located AN fibers. In these two fibers, the "tip" but not the "tail" region of the tuning curve disappeared during repeated measurement, such that only a bowl-shaped high-threshold response to low-frequency tones remained. For reference, Figures 4e,f shows the tuning curve of a fiber with CF of 3.4 kHz (blue, spontaneous rate of 8.7 spikes/s) recorded at 519 µm depth before NBQX application; the other curves (Figure 4e,f, red) were obtained post-NBQX. The dashed red curve in Figure 4e is the tuning curve of a fiber recorded at a similar depth (508 µm) after the NBQX application. It reveals a tip at 3.2 kHz (spontaneous rate of 15.3 spikes/s) with an elevated threshold and little separation between the threshold at the tip and tail. Presumably, the tuning curve before drug application was similar in shape to that of the fiber recorded at this depth pre-NBQX (blue curve). A second, subsequent measurement of the same fiber (solid line, Figure 4e) shows a curve that is consistent with the initial tail but with the tip further attenuated. A similar progression was measured for a second fiber, measured at a
greater depth (652 µm, initial spontaneous rate = 23.3 spikes/s), and it showed a similar pattern of a tip near 3 kHz, which subsequently disappeared with a broad bowl-shaped curve remaining in a follow-up measurement (spontaneous rate = 15.9 spike/s). Combined, these data (Figures 4a-f) reveal a difference in vulnerability between the nerve fiber's tip and tail, consistent with different activation modes in the two response regions. Blocking of synaptic transmission would be expected to affect thresholds independent of sound frequency.

It is conceivable that the loss of sensitive tips as in Figure 4b, e, f does not reflect a loss of synaptic drive but rather a decline in cochlear health and sensitivity. Even if such a functional cochlear decline is present, we still expect NBQX to block synaptic transmission and eliminate or reduce sound responses. The observed remaining response is thus consistent with a contribution by intrinsic mechanical sensitivity of nerve fibers, independent of the source of the loss of the tip of frequency tuning. Moreover, as assessed by cochlear emissions and cochlear microphonics monitored throughout the experiment, the response in Figure 4a-f were from healthy cochleae. Acoustic distortion products elicited by tones spanning the CF range of the two fibers illustrated in Figure 4e, f, remained high after injection of NBQX, as did the cochlear microphonic at similar frequencies (Figure 4g). Both signals disappeared when the experiment was terminated by anesthetic overdose. These observations support the interpretation that, even though the OC's underlying vibrations were intact, the synaptic blocker abolished the tuning curve's tip because it only depends on synaptic input. Simultaneously, the tail is more resistant because it reflects a synaptic drive combined with intrinsic mechanical sensitivity.

It is also conceivable, albeit unlikely that synaptic activation is qualitatively different at high- and low-sound levels so that a competitive blocker such as NBQX does not effectively block synaptic transmission at high-sound levels. The effects of nimodipine and isradipine L-type Ca²⁺ channel and synaptic exocytosis blockers (Huang & Moser 2018, Rodriguez-Contreras & Yamoah 2001) were also tested. Figure 4, Figure 4 figure supplement 1 shows
tuning curves measured before and after the injection of nimodipine through the round window. There is a profound suppression of spontaneous activity for recording depths up to ~500 µm, accompanied by very shallow tuning curves, often consisting of only tails (Figure 4, Figure 4-figure supplement 1). Deeper in the nerve, spontaneous rates and shapes of tuning curves are less profoundly affected, likely due to limitations in the diffusion of the drug to more apical cochlear regions. The application of isradipine produced similar effects.

Discussion

AN fibers’ encoding responses are remarkably similar to other sensory neurons, with short-duration APs and inherently delayed neurotransmitter mechanisms (Glowatzki & Fuchs 2002, Griesinger et al 2005, Li et al 2014). It has been a paradox how the AN utilizes conventional neural mechanisms to operate at 100- to 1000-fold faster time scales with acute precision and reliability than other neural systems (Hudspeth 1997, Koppl 1997). Puzzling auditory features such as multi-component frequency tuning and phase-locking may serve as gateways to gain mechanistic insights. Motivated by the finding that AN responds to minute mechanical displacement, an investigation was conducted to show whether type I SGNs are mechanically sensitive at their unmyelinated nerve endings and use established pathways for neurotransmission.

It was discovered that simultaneous current injection (simulating the effect of neurotransmission) and mechanical displacement could interact to affect AN firing rates and phase-locked responses. Combined current injection and mechanical activation of the AN affect the phase angle at which spikes are fired and can generate peak-splitting and spike rate increase and suppression. In vivo recordings from chinchilla and cat demonstrate that blocking the AN activation pathway via neurotransmission does not eliminate sound-evoked AN spiking at high sound levels. Therefore, it is proposed that sound-evoked spiking in the AN, particularly at high-sound levels, is buoyed by the intrinsic mechanical sensitivity of AN fibers. This
sensitivity underlies response properties that have not been well understood (Kiang 1990). Presynaptic neurotransmission and postsynaptic mechanical transmission may be a cochlear feature that sculpts the extraordinary auditory response (Griesinger et al 2005). Mechanoreception in AN may also serve developmental and regenerative features.

In development, mechanical interaction-mediated axon pathfinding to their target is one mechanism by which growth cones engage the extracellular matrix (Kilinc et al 2015). GsMTx4, a selective blocker for mechanosensitive channels, promotes neural outgrowth (Jacques-Fricke et al 2006), implicating the role of mechanics in neuronal development and neural extension following injury. Whether the current findings reflect AN developmental or functional phenomenon may require future studies, but the two may not be mutually exclusive. A previous study using spider (Argiope trifasciata) venom showed the complete absence of AN activity even at high SPL (Cousillas et al 1988), which contradicts our findings. However, unfractionated spider venom, as used in that study, contained many polyamines, polypeptides, and proteins, known to block glutamate receptors and TRP channels (e.g., GsMTx4) (Bowman et al 2007, Escoubas et al 2000, Zhelay et al 2018). Thus, the complete absence of spiking activity may have resulted from components of the venom blocking AN mechanical sensitivity, in addition to its synaptic effects. A total absence of spiking activity has also been reported after severe acoustic trauma (Robertson 1982), but only when accompanied by extensive destruction of the OC. Such destruction is bound to affect the mechanical microenvironment of AN dendrites. Particularly when combined with recent insights into damage of AN dendrites by acoustic trauma (Liberman 2017), it remains unclear whether the absence of spiking as observed by Robertson (1982) supports or refutes our hypothesis of a role of intrinsic mechanical sensitivity in AN fibers in the healthy cochlea.

The in vitro recordings were made using soma and dendritic substrate displacement as a proxy for AN dendritic terminal response to OCM. In particular, AN sensitivity derived from soma
displacement (1.4 μm/nA slope: Fig. 2) may underestimate the response properties at the terminals. Nonetheless, assuming ~200-nm saturating receptor potential (Russell & Kossel 1992), ~145 pA would ensue, substantially altering the total synaptic potential, contributing to the synaptic output. The difference in sensitivity between apical versus basal SGNs may reflect the expected range of motions along the cochlear contour.

The findings from this report provide evidence for AN intrinsic mechanical sensitivity. If the AN's presynaptic nerve endings directly sense sound-mediated OCM, then the distinctive classical role of the AN as a primary neuron requires reevaluation. Moreover, the findings are in keeping with the emerging evidence that primary afferent neurons, such as visual retinal ganglion cells and DRG neurons, utilize melanopsin and mechano-sensitive channels to modulate sensory processing (Coste et al 2010, Hattar et al 2002).

Mechanical sensitivity of auditory neurons in vitro

The present study's data show that SGN cell-body or dendrite displacement activates a membrane conductance with a reversal potential ~0 mV, suggesting a nonspecific cationic current. The displacement-induced current and membrane depolarization sensitivity to GsMTx4-block (Bae et al 2011) further indicates that SGNs express mechanically-sensitive channels. It was not the aim of this study to identify the specific candidate mechanically-sensitive pathway; however, several nonspecific cationic channels such as the transient receptor potential type 3 (TRPC3) (Phan et al 2010), vanilloid I (TRPV1) (Zheng et al 2003), and polycystine (TRPP2) (Takumida & Anniko 2010) membrane proteins have been identified in SGN. Other putative mechanically-gated ion channels in SGNs can be derived from the library of single-neuron RNA-sequence analyses (Shrestha et al 2018, Sun et al 2018). These mechanically-gated channels include Piezo-1 and Piezo-2, identified in HCs and other cochlear cell-types (Beurg & Fettiplace 2017, Corns & Marcotti 2016, Shrestha et al 2018). We detected SGN nerve terminal positive
reactivity towards TRPV4 (Figure 5) and other TRP channels (Table 4). Null mutation of *Piezo-2* in mice decreases the sensitivity of auditory brainstem responses by ~20 dB. It is unlikely that Piezo-2-mediated currents in HCs account for the auditory phenotype seen in the null-mutant mouse. The Piezo-2-mediated current in HC declines during development and may be functionally insignificant after hearing (Beurg & Fettiplace 2017). The identity of the well-studied, pore-forming mechanically-gated channel in HCs remains unknown (Giese et al 2017, Qiu & Muller 2018). If SGNs utilize a distinct mechanically-gated channel, a search for the gene and protein may include emerging single-cell transcriptomic and phenotypic analyses of mouse models, awaiting future studies.

Table 4. Expression of Transient Response Potential Channel in SGN soma and nerve terminals.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Soma</th>
<th>Nerve Terminals</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRPA1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TRPC3</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>TRPC6</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>TRPV1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TRPV4</td>
<td>+</td>
<td>+++</td>
</tr>
</tbody>
</table>

- = no reactivity

+, ++ and +++ , = low, medium and high reactivity, respectively.

Some conditions of combined (current + displacement) stimulation (Figure 3- figure supplement 2) and even of displacement by itself (Figure 1 - figure supplement 1, 2, 6) caused suppression of spike rate of SGNs. While the data presented here cannot directly address the underlying mechanism for how two inwardly-directed currents (EPSC and I_{ma}) yield suppressive effects, reasonable explanations can be considered. Recent reports have shown that besides voltage dependence, outward K^+ channels such as $K_v1.1/1.2$ and K_v7 are modulated by mechanical stimuli (Hao et al 2013, Perez-Flores et al 2020), whereby the channel's voltage sensitivity is enhanced (Long et al 2005). K_v1 and K_v7 channels are members
of the cadre of outward K⁺ channels that dominates the type I afferent AN membrane (Lv et al 2010, Mo et al 2002, Wang et al 2013). If the magnitude of outward K⁺ currents enhanced by mechanical displacement exceeds the mechanically activated inward currents, the resulting outcome would be membrane repolarization, which would suppress AN activity, consistent with the current results.

The suppression of AN fibers’ spiking is a known phenomenon in vivo and has been observed under two conditions. First, a sound can suppress the response to another sound (“two-tone suppression”) (Sachs & Kiang 1968). While this is partly grounded in cochlear mechanical vibration, it remains unclear whether other mechanisms contribute (Robles & Ruggero 2001, Versteegh & van der Heijden 2013). Second, suppression of spiking can occur even in response to single, low-frequency tones of increasing intensity. Such stimuli trigger responses with an increasing number of spikes that are phase-locked at a preferred stimulus phase, but at high sound levels (80-90 dB SPL), a set of associated changes abruptly occurs: firing rate drops over a narrow range of intensities (“Nelson’s notch”) (Kiang & Moxon 1972, Liberman & Kiang 1984), and this is accompanied by a change in phase-locking towards multiple preferred phases (peak-splitting). At higher intensities, the response returns to a high spike rate and monophasic phase-locking, albeit at values that differ from those at lower intensities. One functional consequence is increased coding of envelope fluctuations at high sound levels (Joris & Yin 1992). Peak-splitting suggests an interaction of two pathways with different growth functions, which sum at the level of the AN (Kiang 1990, Kiang et al 1986). We observed phenomenologically similar events in vitro when combining sinusoidal current injection and displacement at varying relative phases. Some combinations generated peak-splitting, accompanied by decreases in firing rate (Figure 3 – figure supplement 2). These findings suggest that the mechanical sensitivity of SGNs should be considered a possible factor in the suppressive and peak-splitting phenomena observed in vivo.
Technical limitations restricted *in vitro* experiments to much lower frequencies (by about a factor of 10) than those at which peak splitting is typically studied *in vivo*. Note that peak-splitting becomes more prevalent and occurs over a broader range of sound levels when the sound frequency is lowered to values similar to those *in vivo* (Oshima & Strellof 1983, Ronken 1986, Ruggero & Rich 1983). We surmise that mechanical displacement or deformation of SGN dendrites affects their response to sound over a broad range of frequencies, but with a bias towards low frequencies. Moreover, mechanical effects are bound to occur at a particular phase relationship relative to the synaptic drive on the same dendrite, and that relationship likely varies with stimulus frequency and possibly also with the cochlear longitudinal location. The relative magnitude and phase of synaptic versus mechanical stimulation would determine the phase and probability of spiking.

Mutually interacting elements of neurotransmission and mechanical activation at the first auditory synapse

Besides the complexities in phase-locking that AN fibers show *in vivo* in response to simple tones, complexities in frequency tuning are observed as well: both sets of phenomena point to the existence of multiple components driving AN responses (Kiang 1990, Kiang et al 1986, Kiang & Moxon 1972, Liberman & Kiang 1984). In the cat, the species in which this was first and most extensively described, characterization of two components was proposed, with one component dominating at low sound levels and a second component at high sound levels (Kiang 1990, Liberman & Kiang 1984). Similar phenomena, particularly phase-locking, have been reported in other species but were not always restricted to high sound levels. The source of these components is controversial but has been sought at the level of cochlear mechanics or hair cells, not the AN (Cai & Geisler 1996, Cheatham & Dallos 1998, Cody & Mountain 1989, Dallos 1985, Heil & Peterson 2019, Kiang 1990, Liberman & Kiang 1984, Nam & Guinan 2016, Nam & Guinan 2018, Ruggero & Rich 1983, Ruggero et al 1986, Russell & Kossi 1992).
We hypothesized that intrinsic mechanical sensitivity contributes to the high-threshold, "tail" region of tuning curves, which is less vulnerable to a range of cochlear manipulations than the tip (Kiang et al 1986, Liberman & Kiang 1984). These tails may be associated with clinically relevant phenomena, such as recruitment of middle ear reflexes and abnormal growth of loudness after acoustic trauma (Liberman & Kiang 1984). Delivery of synaptic blockers diminished or abolished spontaneous activity and the tip region of the tuning curve. The observation that AN responses persisted at high sound levels is in keeping with the prediction that a second mode, direct mechanical activation of AN fibers, operates and dominates high-threshold segments of the tuning curve (Figure 4, Figure 4- figure supplement 1).

Suppose neurotransmitter release-mediated EPSCs are the sole driver of AN responses as suggested (Fuchs et al 2003) and suppose the mechanisms underlying the peculiarities in frequency tuning precede the synapse between IHC and AN fiber. In that case, synaptic blockers should attenuate AN activity at all intensities and should not differentially affect the presence of multiple components. This was not what we observed: while low-threshold responses were abolished, spikes could still be elicited at high intensities (Figure 4a-f), even in conditions where cochlear mechanical sensitivity and mass receptor potentials were normal (Figure 4g). It is plausible that with strong depolarization, and by extension, high sound levels, the copious release of glutamate at the synapse may render a competitive antagonist, such as NBQX, ineffective (Sheardown et al 1990). Arguing against this explanation is that similar results were obtained with an L-type Ca\(^{2+}\) channel blocker (Figure 4, Figure 4- figure supplement 1). NBQX and Ca\(^{2+}\) channel blockers’ differential effects on the two components of AN tuning curves (Figure 4, Figure 4- figure supplement 1) argue against a single-element (neurotransmitter) mechanism (Fuchs et al 2003, Glowatzki & Fuchs 2002). The results are consistent with two mutually interacting mechanisms: neurotransmission and direct mechanical activation.
It may be argued that bi-modal neurotransmitter release properties perhaps explain the two components of AN tuning curves. Under certain conditions, IHC synaptic release mechanisms may consist of two distinct modes (Grant et al 2010), observed at steady-state and contribute to spontaneous APs in afferent fibers. Suppose the two modes of synaptic transmission represent the two components of the AN tuning curve, again. In that case, NBQX and Ca2+ channel blockers are expected to affect both components (Glowatzki & Fuchs 2002, Grant et al 2010), which is not what we observed: NBQX and Ca2+ channel blockers suppressed the sharp-frequency tip at the CF, with a remaining response showing very coarse tuning (Figure 4, Figure 4- figure supplement 1). Thus, it is unlikely that the biphasic modes of transmitter release mechanisms, or, for that matter, any synaptic or presynaptic mechanisms, account for the differential effect of blockers on the low- and high-threshold components of the AN tuning curve. We propose, therefore, that the element of the tuning curve that remains impervious to the synaptic transmission block is driven mainly by the mechanical activation of the AN. Nonspecific blockers of mechanically-gated ion channels, such as Gd3+ (Ranade et al 2015), cannot be used to suppress SGN mechanical sensitivity selectively. Moreover, diffusional constraints for large molecular-weight channel blockers (e.g., GsMTx4) also preclude in vivo selective blocking of SGN mechanical sensitivity.

Mechanical sensitivity of auditory neurons in vivo

The *in vivo* approach faced experimental constraints. Unavoidably, blind recording from the nerve trunk biases against neurons lacking spontaneous activity and low-threshold responses. The most severe experimental deficiency is the diffusion of blockers through long and narrow membrane-bound spaces to reach the IHCs and dendritic endings of SGNs. The observation that apical neurons tuned to low frequencies were invariably less affected than neurons innervating more basal parts of the cochlea suggests that the drugs delivered through the round window did not always reach the HC-AN synapse at more apical locations. Diffusional limits also
prevented the use of larger molecules, such as GsMTx4 (Sadreev et al 2019, Verschooten et al 2015).

The *in vitro* results suggest that synaptic and mechanical effects do not merely superimpose but interact nonlinearly. For example, if one modality (current injection or mechanical deformation) is subthreshold, it can be made suprathreshold by adding the other modality (*Figure 2*). This complicates the interpretation of the *in vivo* experiments – a complete absence of spiking after blocking synaptic transmission does not rule out a role for intrinsic mechanical sensitivity, and a partial effect of synaptic blockers on spiking does not prove such a role. Therefore, our *in vivo* experiments do not conclusively demonstrate that responses at high sound levels depend on intrinsic mechanical sensitivity, but they are consistent with that proposal.

Although the thresholds of substrate displacement needed to trigger spiking *in vitro* are within the range of displacements of cochlear structures measured *in vivo* at high sound levels (Cooper & Rhode 1995, He et al 2018, Lee et al 2016a), it is at present unclear what the displacement amplitudes are *in vivo* at the unmyelinated dendritic terminals of the AN. Recent measurements with optical coherence tomography reveal a microstructure of displacements, with the largest displacements occurring at low frequencies at locations away from the basilar membrane (Cooper et al 2018, He et al 2018, Lee et al 2015). Undoubtedly, the displacement of the substrate is only a coarse approximation of the *in vivo* OCM. The relevant physical stimulus is possibly in small pressure differences, rather than displacements, that follow the acoustic waveform between the OC and the modiolar compartment and cause deformations of dendrites of AN fibers (Karavitaki & Mountain 2007) and trigger intrinsic mechanical effects. Sensitivity of AN fibers to displacements or pressure differences suggests new treatment strategies for the hearing impaired. Conventional cochlear implants to remediate severe deafness can be highly successful. Still, their outcome is highly variable (Peterson et al 2010), so new strategies
are being pursued to supplement or replace direct electrical stimulation of the AN. Our findings suggest that a mechanical interface can provide an additional activation mode to supplement current strategies.

Methods

All in vivo experiments were performed under a protocol approved by the University of Leuven’s animal ethics committee complying with the European Communities Council Directive (86/609/EEC). At the University of Nevada, Reno (UNR), experiments were performed according to the Institutional Animal Care and Use Committee guidelines of UNR. In vitro experiments were performed using mice and chinchilla. Equal numbers of adult male and female mice and chinchillas were used (when odd numbers were reported, the females outnumbered males). In vivo experiments were performed on adult wild-type chinchilla (Chinchilla lanigera) of both sexes, free from a middle ear infection and weighing between 200-400g.

Cell culture

Spiral ganglion neurons (SGNs) were isolated from five-to-eight-week-old C57BL/6J mice (20-30g) (Jackson Laboratory) and one-to-two-month-old chinchilla (200-300g) as described previously (Lee et al 2016b). The age range for mice was selected since the C57 strain shows an early hearing loss (Spongr et al 1997). The apical and basal cochlea SGNs were dissociated using a combination of enzymatic and mechanical procedures. The neurons were maintained in culture for two to five days. Animals were euthanized, and the temporal bones were removed in a solution containing Minimum Essential Medium with HBSS
(Invitrogen), 0.2 g/L kynurenic acid, 10 mM MgCl₂, 2% fetal bovine serum (FBS; v/v), and 6 g/L glucose. The central spiral ganglion tissue was dissected and split into three equal segments: apical, middle, and basal, across the modiolar axis, as described previously²⁴. The middle turn was discarded, and the apical and basal tissues were digested separately in an enzyme mixture containing 1 mg/ml collagenase type I and 1 mg/ml DNase at 37°C for 20 min. We performed a series of gentle trituration and centrifugation in 0.45 M sucrose. The cell pellets were reconstituted in 900 μl of culture medium (Neurobasal-A, supplemented with 2% B27 (v/v), 0.5 mM L-glutamine, and 100 U/ml penicillin; Invitrogen), and filtered through a 40 μm cell strainer for cell culture and electrophysiological experiments. For adequate voltage-clamp and satisfactory electrophysiological experiments, we cultured SGNs for ~24–48 hours to allow Schwann cells' detachment from neuronal membrane surfaces.

Chinchillas were purchased from Moulton Chinchilla Ranch (Rochester, MN). Chinchilla SGNs were isolated using a protocol similar to that employed for mice. The tendency for neuronal culture from the chinchilla to profusely generate glial cells was high. We inhibited glial-cell proliferation using 20 μM cytosine arabinoside (AraC; Sigma) (Schwieger et al., 2016). Electrophysiological experiments were performed at room temperature (RT; 21-22°C). Reagents were obtained from Sigma Aldrich unless otherwise specified.

Electrophysiology

Experiments were performed in standard whole-cell recording mode using an Axopatch 200B amplifier (Axon Instruments). For voltage-clamp recordings patch pipettes had resistance of 2-3 MΩ when filled with an internal solution consisting of (in mM): 70 CsCl, 55 NMGCl, 10 HEPES, 10 EGTA, 1 CaCl₂, 1 MgCl₂, 5 MgATP, and 0.5 Na₂GTP (pH adjusted to 7.3 with CsOH). The extracellular solution consisted of (in mM): 130 NaCl, 3 KCl, 1 MgCl₂, 10 HEPES, 2.5 CaCl₂, 10 glucose and 2 CsCl (pH was adjusted to 7.3 using NaOH). For current-clamp recordings, pipettes were filled with a solution consisting of (in mM) 134 KCl, 10 HEPES, 10
EGTA, 1 CaCl$_2$, 1 MgCl$_2$, and 5 MgATP and 0.5 Na$_2$GTP (pH 7.3 with KOH). Currents were sampled at 20-50 kHz and filtered at 2-5 kHz. Voltage offsets introduced by liquid junction potentials (2.2 ± 1.2 mV (n = 45)), were not corrected. Leak currents before mechanical stimulations were subtracted offline from the current traces and were <20 pA. Recordings with leak currents greater than 20 pA were discarded. A stock solution of 10 mM GsMTx4 (CSBio; Menlo Park, CA) was prepared in water.

Mechanical stimulation.

Mechanical stimulation was achieved using a fire-polished and sylgard-coated glass pipette (tip diameter ~1 μm), positioned at ~180° to the recording electrode. The probe's movement toward the cell was driven by a piezoelectric crystal micro stage (E660 LVPZT Controller/Amplifier; Physik Instruments). The stimulating probe was typically positioned close to the cell body without visible membrane deformation. The stimulation probe had a velocity < 20 μm ms$^{-1}$ during the ramp segment of the command for forwarding motion, and the stimulus was applied for a duration, as stated in each experiment. We assessed mechanical sensitivity using a series of mechanical steps in ~0.14 μm increments applied every 10 to 20 s, which allowed for the full recovery of mechanosensitive currents between steps. I_{MA} were recorded at a holding potential of -70 mV. For instantaneous I-V relationship recordings, voltage steps were applied 8 s before the mechanical stimulation from holding potentials ranging from -90 to 90 mV.

SGNs were cultured on a polydimethylsiloxane (PDMS) substrate treated with poly-D-lysine (0.5 mg/ml) and laminin (10 mg/ml) to test for the mechanosensitivity of nerve endings. A single neurite can be stretched by substrate indentation on this platform without contacting the neurite (**Figure 1b inset**). The whole-cell patch-clamp recording was used to examine the electrical response to neurite stretching conducted with our direct approach of indentation of a PDMS substrate at a location adjacent to the neurite with a pipette. To study the neurons' firing response to time variation with simultaneous sine wave current and mechanical stimulation, the
mechanical stimulus phase was shifted in 45° steps from 0 to 315° relative to the current. Positive voltage to the actuator corresponds to downward displacement. Technical limitations restricted *in vitro* experiments sinusoidal mechanical stimulation to ~100 Hz and current injection to ~1000 Hz.

Cryosection

The temporal bones were removed and fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS) for 1.5 hr at 4°C. The temporal bones were decalcified by incubation in 10% EDTA at 4°C for 3-5 days. The EDTA solution was changed daily. The bones were then embedded in the OCT compound for cryostat sectioning. The sections of 10 μm thickness were washed in PBS, and nonspecific binding was blocked with 1% bovine serum albumin (BSA) and 10% goat serum in PBS plus 0.1% Triton X-100 (PBST) for 1 hr. The primary antibodies, chicken anti-Tuj1 (Abcam), mouse anti-myelin basic protein (Abcam), rabbit anti-Myo7a (Proteus Biosciences, Inc.), mouse anti-Tuj1 (Abcam), rabbit anti-TRPA1 (Abcam), TRPC3 (Novus Biologicals), TRPC6 (Abcam), TRPV1 (Novus Biologicals), TRPV4 (Abcam), were incubated overnight at 4°C. After incubating the primary antibodies, the slides were washed three times with PBST and incubated with secondary antibodies for 1.5 hours at room temperature in the dark. We used Alexa Fluor 647-conjugated goat anti-mouse and Cy3-conjugated goat anti-chicken, Alexa Fluor 488-conjugated goat anti-rabbit, Alexa Fluor 568-conjugated goat anti-mouse (Jackson ImmunoResearch Labs) in a dilution of 1:500. Other markers used were phalloidin-Fluor 647 (Abcam) for F-actin and DAPI (Sigma) for nuclear stain. The slides were then examined under a confocal microscope (LSM 510, Zeiss).

Data analysis

Data analyses were performed offline using pClamp8 (Axon Instruments) and Origin software (Microcal Software, Northampton, MA). Statistical analysis was performed using a paired or unpaired *t*-test, with significance at *p* < 0.05. The peak *I*_{MA} for each step displacement
was expressed in channel-open probability (P_o) and plotted against displacement (X). The relationship was fitted with a one-state Boltzmann equation $P_o = 1/[1 + e^{z(X - X_{0.5})/(kT)}]$ to obtain channel gating force, z, and the displacement at 50% open probability ($X_{0.5}$), and T is temperature. For a two-state Boltzmann function $P_o = 1/[1 + e^{z_1(X - X_{0.5})/(kT)} + 1/[1 + e^{z_2(X - X_{0.5})}(kT)]]$. The dose-response relationships were described with a logistic function: $(I_i - I_f)/(1 + ([C]/[C_{0.5}])^p + I_i$, I_i and I_f are the initial and final magnitudes, [C] is the drug's concentration with $[IC_{0.5}]$ its half-blocking concentration, and p is the Hill coefficient. The decay phases of the I_{MA} were fitted by a bi-exponential decay function of the form: $y(t) = A_1 * \exp(-t/\tau_1) + A_2 * \exp(-t/\tau_2) + A_{ss}$, where t is time, τ is the time constant of decay of I_{MA}, A_1 and A_2 are the amplitudes of the decaying current components, and A_{ss} is the amplitude of the steady-state, non-inactivating component of the total I_{MA}. The strength of phase locking was quantified as vector strength (VS), which is the ratio of the period histogram's fundamental frequency component to the average firing rate (Goldberg & Brown 1969). Also known as the synchronization index, the VS varies from VS = 0 for a flat histogram with no phase locking to VS = 1 for a histogram indicating perfect phase locking. Statistical significance of the VS was assessed by Rayleigh statistics (Mardia 1972), using a criterion of $p < 0.05$; values of VS failing this criterion were discarded.

Data are presented as mean ± SD (standard deviation).

Surgical preparation for in vivo experiments

In chinchillas, anesthesia was initiated by intramuscular (im) injection of a ketamine-xylazine mixture and was maintained with ketamine and diazepam, titrated according to vital signs and reflexes. In cats, induction was with a 1:3 mixture of ketamine and acepromazine and maintenance with intravenous infusion of pentobarbital. The animal was placed on a feedback-controlled heating pad in a double-walled sound-proof room. A tracheotomy was performed, and the respiration rate and end-tidal CO₂ were continuously monitored. The acoustic system was placed in the external auditory meatus and calibrated with a probe microphone. The AN was
accessed via a traditional posterior fossa approach in which a small portion of the lateral
cerebellum was aspirated. The tympanic bulla on the recording side was opened to visualize the
cochlear round window for cochlear potential measurements and blockers' administration.
Details of our procedures are available elsewhere (Bremen & Joris 2013, Louage et al 2006).

Acoustic stimulation and recording

Acoustic stimulation and acquisition of signals utilized custom software to control digital
hardware (RX6, Tucker-Davis Technologies, Alachua, FL). Stimuli were compensated for the
transfer function of the acoustic system. Acoustic stimuli were delivered through dynamic
phones. For CM and DPOAE recordings, analog signals were recorded (RX6) and analyzed
offline (MATLAB, MathWorks, Natick, MA). CM recordings were obtained with a silver ball
electrode near the RW. The reference and ground wire electrodes from the differential amplifier
were placed in the skin next to the ear canal and in the neck's nape, respectively. The signal
was amplified with a differential amplifier (RS560, Stanford Research Systems), recorded (RX8,
Tucker-Davis Technologies, Alachua, FL), stored on a computer, and processed with custom
software in MATLAB. The CM was obtained for different stimulus frequencies (2,3,4,6,8,10,12
kHz) and was spectrally calculated from the difference of the evoked responses (divided by 2) to
alternating pure tones. DPOAE responses were recorded and stored using the same
microphone and acquisition system for the acoustic calibration. The primaries (F1 and F2,
duration 700 ms, repetition interval 800 ms) were generated with separate acoustic actuators to
minimize actuator distortion products. The frequency ratio (F2/F1) and amplitude levels (L1, L2)
of the primaries were fixed to a ratio of 1.21 and 65 (L1) and 55 (L2) dB SPL, respectively.
DPOAEs were quantified as the sound pressure of the returning 2F1-F2 cubic difference
distortion product.

Single fiber recordings were obtained with micropipettes filled with 2M KCl (impedance
~40-80 MΩ), mounted in a hydraulic micro-drive, and placed above the nerve trunk under visual
control. Zero depth was marked at initial contact. If necessary, warm agar (2%) was poured on
the AN to reduce pulsations. The neural signal was recorded and displayed using routine
methods. An intracellular amplifier (Dagan BVC-700A) allowed monitoring of DC-shifts signaling
axonal penetration and enabled the use of current pulses to improve the recording.

Further amplification and filtering (~ 100 Hz-3 kHz) preceded the conversion of spikes to
standard pulses with a custom peak-detector (1 µs resolution) and internal RX6 timer. A search
stimulus consisting of 60 dB SPL, 200ms tone pips stepped in frequency was used while the
microelectrode was advanced in 1-µm steps until large monopolar action potentials were
obtained. After the blocker administration, the search stimulus’s sound level was gradually
increased, and the duration of the tone pips reduced to minimize cochlear trauma. For each
isolated AN-fiber, the spontaneous rate (SR: estimated over a 15-second interval) was
measured, and a threshold tuning curve was obtained with a tracking program using short
(30 ms) tone bursts (repetition intervals 100 ms; rise-fall time 2.5 ms). We extracted the
characteristic frequency (CF) as the frequency of the lowest threshold from the threshold tuning
curve.
References

Adamson CL, Reid MA, Mo ZL, Bowne-English J, Davis RL. 2002. Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location. J Comp Neurol 447: 331-50

Bae C, Sachs F, Gottlieb PA. 2011. The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry 50: 6295-300

Beurg M, Fettiplace R. 2017. PIEZO2 as the anomalous mechanotransducer channel in auditory hair cells. J Physiol 595: 7039-48

Bowman CL, Gottlieb PA, Suchyna TM, Murphy YK, Sachs F. 2007. Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, mechanisms and pharmacology. Toxicon 49: 249-70

Bremen P, Joris PX. 2013. Axonal recordings from medial superior olive neurons obtained from the lateral lemniscus of the chinchilla (Chinchilla laniger). J Neurosci 33: 17506-18

Corns LF, Marcotti W. 2016. Piezo1 haploinsufficiency does not alter mechanotransduction in mouse cochlear outer hair cells. Physiol Rep 4

Huang CH, Moser T. 2018. Ca(2+) Regulates the Kinetics of Synaptic Vesicle Fusion at the Afferent Inner Hair Cell Synapse. *Front Cell Neurosci* 12: 364

Jacques-Fricke BT, Seow Y, Gottlieb PA, Sachs F, Gomez TM. 2006. Ca2+ influx through mechanosensitive channels inhibits neurite outgrowth in opposition to other influx pathways and release from intracellular stores. *J Neurosci* 26: 5656-64

Karavitaki KD, Mountain DC. 2007. Imaging electrically evoked micromechanical motion within the organ of corti of the excised gerbil cochlea. *Biophys J* 92: 3294-316

Qiu X, Muller U. 2018. Mechanically Gated Ion Channels in Mammalian Hair Cells. Front Cell Neurosci 12: 100

Robertson D. 1982. Effects of acoustic trauma on stereocilia structure and spiral ganglion cell tuning properties in the guinea pig cochlea. Hear Res 7: 55-74

Takumida M, Anniko M. 2010. Expression of transient receptor potential channel mucolipin (TRPML) and polycystine (TRPP) in the mouse inner ear. Acta Otolaryngol 130: 196-203
Yamamoto C, Kurokawa M. 1970. Synaptic potentials recorded in brain slices and their modification by changes in the level of tissue ATP. Exp Brain Res 10: 159-70
Figure legends

Figure 1.

Mouse primary auditory neurons are mechanically sensitive.

a, Responses of 8-week-old basal SGN to bath solution flow rate shown with colored bars (3 ml/min, magenta; 0.5 ml/min, green). $V_{\text{rest}} = -62$ mV.

b, Mechanical displacement (20 ms rectangular-pulse injection) of apical SGN soma, sub-threshold (0.15 μm, red), and threshold (0.4 μm, blue) responses. Arrow indicates pulse initiation. Inset depicts the patch-clamp recording electrode (R) and stimulating probe (piezoelectric actuator represented as spring), placed $\sim 180^\circ$ from the patch-electrode at the soma (S_a) or on the substrate to stimulate dendrites (S_d).

c, Responses of basal SGN to dendrite-substrate ramp-displacement at slew-rates (μm.ms$^{-1}$) 0.1 (red), 0.5 (purple), and 1.0 (blue). Arrow indicates the time of pulse initiation. AP latency increased as the slew rate decreased (rate, 1-μm.ms$^{-1}$, latency = 4 ± 0.1 ms; 0.5 μm.ms$^{-1}$ = 6 ± 0.2 ms ($n = 14$). The corresponding phase plots (dV/dt versus V) of the responses are shown next to the traces.

d, Current traces from displacement-clamp ($X = 0$ to 1.2 μm, step size $\Delta X = -0.24$ μm) recordings at a holding voltage of -70 mV. Data are obtained from apical SGNs; for basal SGNs data, see S2.

e, Summary data of displacement-response relationship of I_{MA} represented as channel open probability (P_o) as a function of displacement, fitted by a single Boltzmann function. Data are from apical (▲) and basal (□) SGNs. The one-half-maximum displacements ($X_{0.5}$) are indicated by the vertical dashed lines ($X_{0.5} = 0.42 \pm 0.01$ μm (apical SGNs) and 0.35 ± 0.01 μm (basal SGNs), $n = 14$ for both).

f, Average I-V relationship of MA currents. Inset shows traces of I_{MA} evoked at different holding voltages (-90 to 90 mV, $\Delta V = 30$ mV, $X = 0.4$ μm). The regression line indicates a reversal potential of the MA current (E_{MA}) of -1.4 ± 2.1 mV (cumulative data from apical SGNs, $n = 17$). The whole-cell conductance derived from the regression line is 3.2 ± 0.2 nS ($n = 17$).

g, APs from basal SGN evoked in response to 0.8 μm displacement of neurite-substrate (first black trace; $V_{\text{rest}} = -59$ mV; dashed line = 0 mV). Effect of 1 μM GsMTx4 (middle
gray trace) and partial recovery after washout (last black trace; \(n = 5 \)). h, Dose-response relationship of \(I_{\text{MA}} \) as function of blocker GsMTx4, \(IC_{50} = 0.9 \pm 0.2 \ \mu \text{M} \ (n = 4) \). Numbers of SGNs at different concentrations of GsMTx4 are shown in brackets. Inset shows \(I_{\text{MA}} \) in response to a 0.3 \(\mu \text{m} \) displacement at -70 mV holding voltage (gray trace is 1 \(\mu \text{M} \) GsMTx4; black trace is control).

Figure 2.

Mechanical stimulation of SGN cell-body increased sensitivity to current injection and affected phase locking. a, (upper panel). Shown is a schematic diagram of the spiral ganglion neuron (SGN) and projections to inner hair cells (IHC) and outer hair cells (OHC). The myelinated and unmyelinated segments and nerve fibers are indicated. The heminode, the action potential (AP) initiation site, is labeled. (lower panel) Horizontal section of whole-mount intact SGNs and HCs of a 5-week-old mouse cochlea, showing neuron (in red, anti-TUJ1) and myelin (in cyan, anti-myelin basic protein). The white dashed line shows the expected location of the basilar membrane. HCs are in green (anti-Myo7a). Note that the nerve terminals are devoid of myelin. Scale bar = 20 \(\mu \text{m} \). b, (**Upper panel**) Voltage response to combined sub-threshold sinusoidal mechanical displacement (in magenta; 50 Hz, 0.1 \(\mu \text{m} \), ~2 s) and sub-threshold sinusoidal current injection (in green, 50 Hz, 0.05-nA, ~2-s), delivered in-phase. Current injection and mechanical displacement overlapped for ~1 s. Combined sub-threshold mechanical and current stimulation evoked APs. (**Lower panel**) We show conditions similar to the upper panel, but sub-threshold current injection preceded sub-threshold mechanical displacement here. Subthreshold stimuli, when paired, became suprathreshold. c-d, Spike-rate, normalized to maximum, as a function of displacement (c), and current injection (d). The leading stimulus was primed with a subthreshold sinusoidal current or displacement, respectively. e-f, The extent of sensitivity to current and displacement is represented as a plot of the half-
maximum displacement ($X_{0.5}$) and half-maximum current ($I_{0.5}$) as a function of current and displacement. The slopes of the corresponding linear plots were, \(-1.4\ \mu\text{m/nA} \ (n = 5)\) (e) and \(-0.5 \ \text{nA/\mu m} \ (n = 5)\) (f). g, (Upper panel) Slowly adapting SGN response to 0.2 nA injection at 100 Hz, overlapping with a pre-determined threshold (0.3 \ \mu m\text{ displacement at 100 Hz}) mechanical stimulus. For this example, the vector strength (VS) transitioned from 0.82 to 0.98 upon combined (current plus mechanical displacement) stimulation (see Table 1 for summary data). (Lower panel) Moderately adapting SGN, stimulated with the same stimuli as the upper panel, transitioned from VS of 0.72 to 0.82 (Table 1). h, (Upper and lower panels) stimulation of fast adapting SGN in response to 100 Hz, a 0.3 \ \mu m\text{ displacement superimposed with 100 Hz 0.2 nA current injection. For the examples shown, the VS transitioned from unmeasurable to 0.94 for the upper panel and 0.9 for the lower panel. i-j, a summary of VS changes when either current or displacement is used as a primer for concurrent stimulation (Table 1 Figure 1, Figure 1- figure supplement 7).

Figure 3

Simultaneous mechanical and electrical stimulation of SGNs can generate peak-splitting and rate suppression. a, SGN response properties and corresponding cycle histograms generated by simultaneous sinusoidal mechanical sub-threshold displacement (0.1-\mu m, 50 Hz; magenta) and sinusoidal current injection (0.2 nA, 50 Hz; green). The relative phase angle of the two stimuli was at 0°. The amplitude criterion of a valid AP was 0 mV (dashed line). b, c. The cycle histograms transitioned to two peaks and back to one peak as the amplitude of mechanical displacement increased to 0.2 \ \mu m (b) and 0.3 \ \mu m (c). d-g, Response properties and corresponding cycle histograms for the same SGN as in a-c, but using different relative phase angles (0°, 90°, 180°, 225°) between mechanical displacement (0.15 \mu m) and current injection.
(0.3 nA). At 180° and 225° phase angles, two peaks are evident in the cycle histograms shown in the panels below. **h**, Polar plot summarizing data averaged over 3 stimulus repetitions derived from the SGN illustrated in **d-g**. The angular scale specifies the phase lead of the current relative to the mechanical stimulus and the 2 datapoints at each of the 8 angles plotted are derived from data as shown in individual panels **d-g**: average rate is shown in blue and is normalized to its maximum (listed in **Table 3**); VS is shown in red. The data are summarized with a vector (resultant of vectorial addition of data at 8 angles) whose magnitude and angle are shown with thick and thin solid lines, respectively, using the same color code. The close angular alignment of the red and blue lines shows that a high firing rate is accompanied by strong phase-locking, and *vice versa* that peak-splitting is associated with low firing rates. **i-l**, Phase angle-dependent response reduction (180°), and suppression (270°) during combined stimulation for a different neuron. **m**, A polar plot as in **h** but for the neuron illustrated in **i-l**. Data for the polar plots (spike rates, magnitude and phase of resultant vectors, and statistics are provided in **Table 3**.

Figure 4

Effects of blocking synaptic transmission on AN activity in vivo. a-b, Frequency threshold tuning curves of AN fibers from a single chinchilla, obtained at different recording depths in the nerve, before (blue) and after (red) round window application of NBQX. Each curve shows the threshold (in dB SPL) of a single AN fiber over a range of frequencies: the curves are anchored to the y-axis (recording depth) by the small black horizontal bar at 80 dB SPL. The dB scale in **a** applies to all traces in **a,b**. Dashed lines are sometimes used to disambiguate traces. After applying NBQX, frequency tuning vanishes at the shallow recording depths (toward the bottom of **a** and **b**), where high-frequency fibers were found before applying NBQX. Fibers tuned to lower frequencies, found at greater depth (toward the top of **a** and **b**), are less affected, likely
due to limited diffusion of NBQX to the apical turns. c, Characteristic frequencies as a function of recording depth (CFs, frequency of lowest threshold) before and after application of NBQX in the same cochlea. In the initial recording sessions, before the application of NBQX (blue symbols), high CFs dominate at shallow recording depths, while at depths > 250 µm CFs are between 0.5 and 1 kHz. After the application of NBQX (red symbols), the lowest thresholds of superficial fibers are predominantly at low frequencies (< 1 kHz). d, spontaneous rates as a function of recording depth. Formatting as in c. e, the effect of NBQX on repeated measurement of a threshold tuning curve of AN fiber 2 (ANF2) recorded initially (red dashed: CF = 3.2 kHz) and after several minutes (red solid: CF = 630 Hz), compared to a tuning curve of a fiber (ANF1) with comparable CF recorded before NBQX application (blue). f, same as in e, but for a different AN fiber (ANF3): CF changed from 3 to 0.9 kHz. g, monitoring of the mechanical cochlear state during the experiment in e and f at two relevant frequencies, using Distortion Product OtoAcoustic Emissions (DPOAEs) and compound receptor potentials (cochlear microphonic, CM). Amplitudes of DPOAEs are shown in dB SPL; CM amplitudes are normalized to the level measured before application of NBQX (measurements 1-2). CM and DPOAEs are relatively stable after the NBQX injection but vanish postmortem. The measurement noise floor (dashed lines) is stable over the entire experiment.

Figure 5

Expression of TRPV4 in spiral ganglion neurons (SGN). Positive reactivity of SGN nerve terminals to TRPV4 antibody (green). Reaction at the cell body (soma) was low. Table 2 provides a summary of TRP channels tested and a qualitative evaluation. Scale bar low magnification (left panel = 30 µm), high magnification (right panel = 5 µm).
Figure 1- figure supplement 1

Effect of bath solution flow rate on the SGN firing rate.

a, Summary data from four eight-week-old SGNs showing changes in normalized spike rate at different bath solution flow rates. The normalized spike rate saturated at ~8 ml/min.

b, Cumulative binomial distribution of the mechanical threshold (mean cell-body displacement in μm) to elicit APs in mechanically-sensitive SGNs. Three distinct peaks were observed: 0.24 ± 0.01, n = 85 (blue); 0.51 ± 0.01, n = 164 (black); and 0.95 ± 0.02, n = 56 (red).

c, A membrane response of an eight-week-old apical SGN at a current injection of 0.2 nA and perfusion flow rates of 3 and 6 ml/min. The shift from slow (3 ml/min) to fast (6 ml/min) rate caused membrane hyperpolarization and reduced spike activity.
Figure 1- figure supplement 2

Varied responses to combined mechanical and electrical stimulation of SGNs.

Representative current-clamp responses evoked by current injection and combined mechanical displacement (blue) were applied in soma-displacement (1 μm). a, Shown is an example of a basal SGN response injected with a 0.2 nA current alone (left panel) to invoke firing responses, which were subsided despite maintained current injection. When both stimuli are applied simultaneously (right panel), the firing rate increases. Note that the spike activity halted before ending the mechanical displacement. Vrest shifted by ~8 mV in depolarizing direction, in the right trace, which may account for the spike amplitude reduction. The firing rate increased in many (~38%; 12 out of 32 SGNs) adapting neurons when the current injection was combined with mechanical displacement. b, In spontaneously active SGNs, gradual increase (0 to 0.7 μm; see lower panels) in dendritic substrate displacement resulted in reduced spike rate (31%; 10 out of 32 SGNs). c, For this non-adapting basal neuron, the firing rate remained unchanged (~31%; 10 out of 32 SGNs). d, Summary data, showing the response properties of SGNs to current alone and combined current and mechanical displacement (indicated). Data are grouped into SGN subgroups in which paired current and mechanical displacement resulted in increased (black symbols), reduced (blue), and unaltered (red) spike frequencies.
Displacement-clamp current recordings from eight-week-old adult SGNs. **a**, Current traces (dark gray) in response to ~215 ms mechanical stimulus steps of ~0.28 μm increments in SGNs from the basal cochlear turn in the mouse. The holding potential was -70 mV. The solid black lines represent the double exponential fits for the current decay kinetics. **b**, Summary data of the decay time constant (τ) as a function of displacement for (X) for currents recorded from SGNs from apical (n = 17) and basal (n = 15) cochleae. **c**, Shown is the average I-V relationship of MA currents evoked at different membrane potentials (-90 to 90 mV), using ~0.4 μm displacement. The regression line indicates an MA current reversal potential (E_{MA}) of -2.7 ± 2.1 mV (n = 13). The inset shows an example of representative MA current (I_{MA}) traces with membrane voltages stepped in 30 mV increments, from -90 to 90 mV.
Chinchilla primary auditory neurons are equally mechanically sensitive. a, Response properties (from left to right: fast, medium, and slow adapting) of three different chinchilla SGNs to 0.2 nA square-pulse injection (upper panel, green) and 0.3 μm soma displacement (lower panel, magenta). Note that the responses to mechanical displacement and current injection differed greatly. b, Current traces of an SGN soma (apical cochlear turn) in response to displacement-clamp stimuli from 0 to 1.2 μm in ~0.24 μm, at a holding potential of -70 mV. c, Displacement-response relationship of apical SGNs (n = 9), same as Fig. 1e, but for chinchilla; X_{0.5} is 0.49 ± 0.05 μm (vertical dashed line). d, Average I-V relationship of MA currents. Holding voltages range from -90 to 90 mV in increments of 30 mV; the inset shows I_{MA} traces at different holding voltages for a soma displacement of 0.4 μm. The regression line through the data points indicates an E_{MA} of 8.1 ± 5.5 mV (n = 5) and a whole-cell conductance of 1.4 ± 0.6 nS (n = 5).
Figure 1- figure supplement 5

Mechanical sensitivity of mouse vestibular ganglion neurons. a, Response properties of a six-week-old mouse vestibular neuron to square pulse mechanical displacements. The magnitudes of the displacement at the soma are indicated. The dotted line denotes 0 mV, and the resting membrane potential (V_{rest}) is indicated. The inset shows the inward current generated from the same neuron in voltage-clamp mode at -70 mV holding voltage. b, Summary data of displacement-response relationship of I_{MA} represented as channel open probability (P_o) as a displacement function, fitted by a two-state Boltzmann function. The one-half-maximum displacements ($X_{0.5}$) were 1.37 ± 0.10 μm and 2.60 ± 0.97 (n = 7). Inset shows example traces elicited in a mouse vestibular neuron. c, Eight-week-old vestibular neurons were injected with sinusoidal current with 0.2 nA peak-to-peak amplitude and varying frequencies (in Hz, 1, 10, 100, and 1000). d, Mechanical displacements were applied to the same cell using similar oscillatory frequencies with a peak-to-peak amplitude of ~0.9 μm to elicit APs. Only rates at 1 and 10 Hz sufficed to elicit spikes.
Response properties of adult mouse SGNs to mechanical stimulation. a, Membrane voltage responses to the cell-body displacement, from apical (left panel) and basal (right panel) cochlear neurons. As indicated, the amplitude and duration of soma displacement were in the form of rectangular steps. The amplitude and duration for the left panel (apical SGN) were as follows (in \(\mu \text{m} \) and ms), 2 and 0.5 (black); 0.5 and 3 (red); 0.4 and 3.5 (blue); 0.25 and 4 (green). The amplitude and duration for the right panel (basal SGN) were as follows (in \(\mu \text{m} \) and ms), 1 and 0.5 (black); 0.5 and 3 (red); 0.4 and 3.5 (blue); 0.25 and 4 (green) b, A plot of mean rheobase using soma displacement of apical and basal neurons and their respective chronaxie indicated in red and blue dashed lines. The inset shows the mean rheobase displacement of dendritic substrate for SGNs from the cochlea’s apex and the base. c, Family of APs evoked using step displacement (0.5 \(\mu \text{m} \)) and varying slew rates, indicated by color codes. The differences in latency of AP initiation are visible. d, The plot shows the relation between AP latency and the slew rate of mechanical displacement \((n = 5)\). AP latency using the indirect movement of dendrites through substrate displacement at varying slew rates for 4 SGNs is plotted as inset.
Figure 1- figure supplement 7

Mouse SGN response properties to sinusoidal mechanical and current stimulation. a, Characteristic apical SGN stimulated with 0.5-µm mechanical displacement at 50 Hz. Subsequent traces below show the responses with 0.7- and 0.9-µm sine wave displacements at 50 Hz. b, Another apical SGN presented with 0.5-mm mechanical displacement at 100-Hz and increased stimulus amplitudes. The data represent SGNs that elicit increasing APs frequency with increasing mechanical displacement amplitude (b) and ones that show peak firing at specific displacement amplitude (a). c-d, Summary data of the two sets of SGNs, showing the relationship between displacement amplitude, spike frequency (SF; in solid symbols), and vector strength (VS; in open symbols). Each symbol represents a different SGN (c, n = 4; d, n = 6). e, Exemplary three different basal SGN stimulated with constant displacement (0.6 µm) at 1, 10, and 100 Hz. When presented with a constant displacement, neurons appeared to respond at a narrow frequency range (1-100 Hz), contrasting to current injection (1-1000 Hz) (f). g, Summary data show the relationship between displacement or current frequency, spike frequency (SF; in solid circles), and vector strength (VS; in open circles). Each symbol represents a different SGN (n = 6). Data from the current injection are represented with star symbols (n = 5).
GsMTx4 reduced facilitation and spike timing after dual current injection and mechanical stimulation. Bath perfusion of GsMTx4 (1 μM), decreased facilitation, and spike timing resulting in reduced vector strength (VS) of the response to the simultaneous application of 100 Hz mechanical displacement (0.3 μm, blue) and current injection (0.2 nA, red) in an eight-week-old SGN.
Combined displacement and current injection yield more than two action potentials per cycle in chinchilla SGNs. Shown are voltage responses of chinchilla SGNs evoked with sinusoidal (15 Hz) mechanical displacement (0.7 μm, in blue) combined with sinusoidal (15 Hz) current injection (0.25 nA, in red) at four different relative phase angles (a-d, 0°, 45°, 180°, 225°, respectively). Two action potentials were elicited per cycle for most cycles, which was the case for all four relative phase angles tested. As seen in a and b, the second cycle yielded three action potentials (purple arrows) for the 0°, and 45° relative phased angles (insets).
Mechanical sensitivity of chinchilla SGNs.

a, Response properties of chinchilla SGNs to sinusoidal current injection (50 Hz, amplitude, 0.2 nA) and cell-body sinusoidal mechanical displacement (50 Hz; amplitude, 0.3 μm), and overlap of the two stimuli at ~90° phase angle.

b, Cycle histograms of the same neuron for four relative phase angles, showing single-mode distributions with small changes in the response phase.

c, Example of chinchilla SGN exhibiting peak-splitting in the cycle histogram during combined cell-body mechanical displacement and current injection using 50 Hz sinusoidal stimuli.

d, Cycle histograms with two modes were obtained at 90° and 180° phase angles.
Additional examples of the relationship between firing rate and VS for different relative phase angles between mechanical and current stimulation. a-c: polar plots for 3 neurons in which a full circle of relative phase angles was tested. Conventions as in Fig. 3h,m. Magnitude and phase of resultant vectors and a maximal number of spikes and statistical significance are listed in Table 1c. All polar plots differed significantly from uniform distributions. d: the relationship between spike rate and VS for all tests, including incomplete datasets. Symbols with circles indicate complete measurement series (n=5) (0°-315° in steps of 45°) with different colors indicating different experiments. Square symbols are from incomplete phase sets (n=6, containing 3 or 4 phase measurements). The spike rates are normalized to the maximum within each series. The dashed line indicates unity, and the black line is the least-square fit, with R the Pearson correlation.
Influence of applied toxins on AN-Fiber responses. Layout as for Figure 4, but using the Ca$^{2+}$ channel blocker nimodipine. Data from chinchilla.
Table 1

Summary of changes in firing rate (R) and VS using in-phase current and mechanical stimulation. The significance level of VS is given in the column with p values obtained with the Rayleigh test for uniformity. (Mardia 1972).

Table 2.

Effects of GsMTx4 on firing rate and VS. The significance level of VS is given in the column with p values obtained with the Rayleigh test for uniformity on the effects of GsMTx4.

Table 3.

Summary data for polar plots of Figure 3 and Figure 3 – figure supplement 3. The header of the vertical columns provides a reference to the relevant figure panel. The top 4 datalines are for the polar plots based on spike rate. First-line gives the maximum number of spikes, to which the rate plot was normalized. The second and third lines give the angle and magnitude of the resultant vector. Last line indicates level of significance (Rayleigh test of uniformity). The bottom 3 datalines give corresponding values based on measurement of phase-locking.

Table 4.

Expression of transient receptor potential (TRP) channels in auditory neurons. The table shows a summary of immunofluorescent detection of TRP channels at spiral ganglion neuron (SGN) cell body (soma) and nerve terminals.
Supplementary Information is available in the online version of the paper.

Acknowledgments

We thank members of our laboratories for their comments on this manuscript. We thank Dr. Frederick Sachs for his constructive comments and suggestions on the first draft of the script. Grants to ENY supported this work from the National Institutes of Health (DC016099, DC015252, DC015135, AG060504, AG051443). PXJ was supported by grants from KU Leuven (BOF, OT-14-118) and Fonds Wetenschappelijk Onderzoek (Research Foundation Flanders) G0B2917N.

Author Contributions

ENY and PXJ designed the research; MCPF, EV, PXJ, and ENY analyzed data and wrote the manuscript; MCPF, JHL, PXJ, EV, HJK, and ENY performed the research. All authors read and approved the final manuscript.

Author Information

Correspondence should be addressed to ENY, Program in Communication Science, Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV. Email: enyamoah@gmail.com.
Figure 1
Figure 2
Figure 3
Figure 4

(a) Before NBQX
(b) After NBQX
(c) CF (Hz)
(d) Depth (μm)
(e) Threshold (dB SPL)
(f) 2H1-f2 (dB SPL)
(g) Background Noise

ANF1: 519 μm (CF = 3.4 kHz)
ANF2: 508 μm (CF = 3.2 kHz)
ANF3: 662 μm (CF = 3 kHz)
Figure 5
Chinchilla SGN 15 Hz (0.7 µm + 0.25 nA)

(a) 0°

(b) 45°

(c) 180°

(d) 225°

V_m -70 mV

20 mV

40 ms

20 mV

250 ms

0 mV