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Social-affective features drive human 
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Abstract Humans observe actions performed by others in many different visual and social 
settings. What features do we extract and attend when we view such complex scenes, and how 
are they processed in the brain? To answer these questions, we curated two large-scale sets of 
naturalistic videos of everyday actions and estimated their perceived similarity in two behavioral 
experiments. We normed and quantified a large range of visual, action-related, and social-affective 
features across the stimulus sets. Using a cross-validated variance partitioning analysis, we found 
that social-affective features predicted similarity judgments better than, and independently of, visual 
and action features in both behavioral experiments. Next, we conducted an electroencephalography 
experiment, which revealed a sustained correlation between neural responses to videos and their 
behavioral similarity. Visual, action, and social-affective features predicted neural patterns at early, 
intermediate, and late stages, respectively, during this behaviorally relevant time window. Together, 
these findings show that social-affective features are important for perceiving naturalistic actions and 
are extracted at the final stage of a temporal gradient in the brain.

Editor's evaluation
This study investigates and characterizes the representations of visual actions in video stimuli. The 
combination of the analytical techniques and stimulus domain makes the article likely to be of broad 
interest to scientists interested in action representation amidst complex sequences. This article 
enhances our understanding of visual action representation and the extraction of such information in 
natural settings.

Introduction
In daily life, we rely on our ability to recognize a range of actions performed by others in a variety of 
different contexts. Our perception of others’ actions is both efficient and flexible, enabling us to rapidly 
understand new actions no matter where they occur or who is performing them. This understanding 
plays a part in complex social computations about the mental states and intentions of others (Jamali 
et al., 2021; Spunt et al., 2011; Thornton et al., 2019; Thornton and Tamir, 2021; Weaverdyck 
et al., 2021). Visual action recognition also interacts cross-modally with language-based action under-
standing (Bedny and Caramazza, 2011; Humphreys et al., 2013). However, there are two important 
gaps in our understanding of action perception in realistic settings. First, we still do not know which 
features of the visual world underlie our representations of observed actions. Second, we do not 
know how different types of action-relevant features, ranging from visual to social, are processed in 
the brain, and especially how they unfold over time. Answering these questions can shed light on the 
computational mechanisms that support action perception. For example, are different semantic and 
social features extracted in parallel or sequentially?
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Relatively few studies have investigated the temporal dynamics of neural responses to actions. 
During action observation, a distributed network of brain areas extracts action-related features ranging 
from visual to abstract, with viewpoint-invariant responses emerging as early as 200 ms (Isik et al., 
2018). Visual features include the spatial scale of an action (i.e., fine-scale manipulations like knit-
ting vs. full-body movements like running) represented throughout visual cortex (Tarhan and Konkle, 
2020), and information about biological motion, thought to be extracted within 200 ms in superior 
temporal cortex (Giese and Poggio, 2003; Hirai et al., 2003; Hirai and Hiraki, 2006; Johansson, 
1973; Jokisch et al., 2005; Vangeneugden et al., 2014). Responses in occipito-temporal areas have 
been shown to reflect semantic features like invariant action category (Hafri et al., 2017; Lingnau 
and Downing, 2015; Tucciarelli et al., 2019; Tucciarelli et al., 2015; Wurm and Caramazza, 2019; 
Wurm and Lingnau, 2015), as well as social features like the number of agents and sociality of actions 
(Tarhan and Konkle, 2020; Wurm et al., 2017; Wurm and Caramazza, 2019).

Among the visual, semantic, and social features thought to be processed during action observa-
tion, it is unclear which underlie our everyday perception in naturalistic settings. Mounting evidence 
suggests that naturalistic datasets are key to improving ecological validity and reliability in visual and 
social neuroscience (Haxby et al., 2020; Nastase et al., 2020; Redcay and Moraczewski, 2020). 
Most action recognition studies to date have used controlled images and videos showing actions 
in simple contexts (Isik et  al., 2018; Wurm and Caramazza, 2019). However, presenting actions 
in natural contexts is critical as stimulus–context interactions have been shown to modulate neural 
activity (Willems and Peelen, 2021). Recent attempts to understand naturalistic action perception, 
however, have yielded mixed results, particularly with regard to the role of social features. For example, 
one recent study concluded that sociality (i.e., presence of a social interaction) was the primary orga-
nizing dimension of action representations in the human brain (Tarhan and Konkle, 2020). Another, 
however, found that semantic action category explained the most variance in fMRI data, with little 
contribution from social features (Tucciarelli et al., 2019).

Here, we combined a new large-scale dataset of everyday actions with a priori feature labels to 
comprehensively sample the hypothesis space defined by previous work. This is essential in light 
of the conflicting results from previous studies, as it allowed us to disentangle the contributions of 
distinct but correlated feature spaces. We used three-second videos of everyday actions from the 
“Moments in Time” dataset (Monfort et al., 2020) and replicated our results across two different 
stimulus sets. Action videos were sampled from different categories based on the American Time Use 
Survey (ATUS, 2019) and were highly diverse, depicting a variety of contexts and people. We quan-
tified a wide range of visual, action-related, and social-affective features in the videos and, through 
careful curation, ensured that they were minimally confounded across our dataset.

We used this dataset to probe the behavioral and neural representational space of human action 
perception. To understand the features that support natural action viewing, we predicted behavioral 
similarity judgments using the visual, action-related, and social-affective feature sets. Next, to inves-
tigate the neural dynamics of action perception, we recorded electroencephalography (EEG) data 
while participants viewed the stimuli, and we used the three sets of features to predict time-resolved 
neural patterns.

We found that social-affective features predict action similarity judgments better than, and inde-
pendently of, visual and action-related features. Visual and action-related features explained less vari-
ance in behavior, even though they included fundamental features such as the scene setting and the 
semantic category of each action. Neural patterns revealed that behaviorally relevant features are 
automatically extracted by the brain in a progression from visual to action to social-affective features. 
Together, our results reveal the importance of social-affective features in how we represent other 
people’s actions, and show that these representations emerge in the brain along a temporal gradient.

Results
Disentangling visual, action, and social-affective features in natural 
videos
We curated two sets of naturalistic three-second videos of everyday actions from the Moments in Time 
dataset (Monfort et al., 2020). The videos were selected from a larger set, ensuring that features 
of interest were minimally correlated. 18 common activities based on the National Bureau of Labor 
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Statistics’ American Time Use Survey (ATUS, 2019) were represented (Table 1; see section ‘Behavior: 
Stimuli’). The two stimulus sets contained 152 videos (eight videos per activity and eight additional 
videos with no agents, included to add variation in the dataset, see section ‘Behavior: Stimuli’) and 65 
videos (three or four videos per activity), respectively. The second set was used to replicate behavioral 
results in a separate experiment with different stimuli and participants.

Naturalistic videos of actions can vary along numerous axes, including visual features (e.g., the 
setting in which the action takes place or objects in the scene), action-specific features (e.g., semantic 
action category), and social-affective features (e.g., the number of agents involved or perceived 
arousal). For example, an action like ‘eating’ may vary in terms of context (in the kitchen vs. at a park), 
object (eating an apple vs. a sandwich), and number of agents (eating alone vs. together). Drawing 
these distinctions is crucial to disambiguate between context, actions, and agents in natural events. 
To evaluate these different axes, we quantified 17 visual, action-related, and social-affective features 
using image properties, labels assigned by experimenters, and behavioral ratings collected in online 
experiments (Figure 1a). Visual features ranged from low-level (e.g., pixel values) to high-level features 
related to scenes and objects (e.g., activations from the final layer of a pretrained neural network). 
Action-related features included transitivity (object-relatedness), activity (the amount of activity in a 
video), effectors (body parts involved), and action category based on the ATUS (ATUS, 2019). Finally, 
social-affective features included sociality, valence, arousal, and number of agents (see section ‘Repre-
sentational similarity analysis’). Representational dissimilarity matrices (RDMs) were created for each 
feature by calculating pairwise Euclidean distances between all videos.

Table 1. Activities from the American Time Use Survey (ATUS) included in each of the two stimulus 
sets, with the amount of daily hours spent performing each activity and the corresponding verb 
labels from the Moments in Time dataset.
Note that control videos were only included in the first dataset. Fighting and hiking were added for 
variation in valence and action setting.

Activity Hours Verb labels (Moments in Time)

Childcare/taking care of 
children 0.37 Crying, cuddling, feeding, giggling, socializing

Driving 1.17 Driving, socializing

Eating 1.06 Chewing, eating

Fighting Fighting

Gardening 0.17 Gardening, mowing, planting, shoveling, weeding

Grooming 0.68 Bathing, brushing, combing, trimming, washing

Hiking Hiking

Housework 0.53 Cleaning, dusting, repairing, scrubbing, vacuuming

Instructing and attending class 0.22 Instructing, teaching

Playing games 0.26 Gambling, playing+fun, playing+videogames, socializing

Preparing food 0.60
Barbecuing, boiling, chopping, cooking, frying, grilling, rinsing, 

stirring

Reading 0.46 Reading

Religious activities 0.14 Praying, preaching

Sleeping 8.84 Resting, sleeping

Socializing and social events 0.64 Celebrating, dancing, marrying, singing, socializing, talking

Sports 0.34 Exercising, playing+sports, swimming, throwing

Telephoning 0.16 Calling, telephoning

Working 3.26 Working

Control videos Blowing, floating, raining, shaking

https://doi.org/10.7554/eLife.75027
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In both video sets, there were only weak correlations between visual features and the higher-level 
action/social-affective features (Figure 1a). The highest correlations were those within each of the 
three sets of features, including visual features (Experiment 1: Conv1 and image saturation/gist, ‍τA‍ 
= 0.29; Experiment 2: Conv1 and image hue, ‍τA‍ = 0.32), action features (Experiment 1: arousal and 
activity, ‍τA‍ = 0.31; Experiment 2: activity and effectors, ‍τA‍ = 0.33), and social features (sociality and 
number of agents; Experiment 1: ‍τA‍ = 0.31, Experiment 2: ‍τA‍ = 0.3).

The distributions of action and social-affective features were not significantly different between the 
two stimulus sets (all Mann–Whitney z < 1.08, p>0.28). The width of these distributions suggests that 
the stimuli spanned a wide range along each feature (Figure 1b). In both experiments, transitivity was 
notable through its bimodal distribution, likely reflecting the presence or absence of objects in scenes, 
while other features had largely unimodal distributions.

Behaviorally rated features differed in reliability in Experiment 1 (F(4,819) = 22.35, p<0.001), with 
sociality being the most reliable and arousal the least reliable (Figure 3—figure supplement 1). In 
Experiment 2, however, there was no difference in reliability (F(4,619) = 0.76, p=0.55). Differences in 
reliability were mitigated by our use of feature averages to generate feature RDMs.

Individual feature contributions to behavioral similarity
To characterize human action representations, we measured behavioral similarity for all pairs of videos 
in each set in two multiple arrangement experiments (see section ‘Multiple arrangement’). Partici-
pants arranged videos according to their similarity inside a circular arena (Figure 2). The task involved 
arranging different subsets of 3–8 videos until sufficiently reliable distance estimates were reached 
for all pairs of videos. Videos would play on hover, and participants had to play and move each video 
to proceed to the next trial. In Experiment 1, participants arranged different subsets of 30 videos 
out of the total 152, while in Experiment 2, participants arranged all 65 videos. To emphasize natural 
behavior, participants were not given specific criteria to use when judging similarity. Behavioral RDMs 
containing the Euclidean distances between all pairs of stimuli were reconstructed from each partici-
pant’s multiple arrangement data using inverse MDS (Kriegeskorte and Mur, 2012).

The multiple arrangement task was unconstrained, which meant that participants could use 
different criteria. Although this may have introduced some variability, the adaptive algorithm used 
in the multiple arrangement task enabled us to capture a multidimensional representation of how 
actions are intuitively organized in the mind, while at the same time ensuring sufficient data quality. 
Data reliability was quantified using leave-one-subject-out correlations of the dissimilarity estimates 
and was above chance in both experiments (Kendall’s ‍τA‍ = 0.13 ± 0.08 and 0.18 ± 0.08 respectively, 

Figure 1. Quantifying visual, social-affective, and action features in the two stimulus sets. (a) Correlations between feature representational dissimilarity 
matrices (RDMs). Note the low correlations between visual features and action/social-affective features (white rectangle). (b) Behavioral rating 
distributions in the two stimulus sets. The z-scored ratings were visualized as raincloud plots showing the individual data points, as well as probability 
density estimates computed using MATLAB’s ksdensity function (Allen et al., 2019).

https://doi.org/10.7554/eLife.75027
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both p<0.001, permutation testing; Figure 3—figure supplement 1a). Reliability was significantly 
higher in Experiment 2 than in Experiment 1 (Mann–Whitney z = 3.21, p=0.0013), potentially reflecting 
differences in both participant pools and sampling methods (subsets of videos in Experiment 1 vs. full 
video dataset in Experiment 2; see section ‘Multiple arrangement’).

We assessed the contribution of 17 different visual, social, and action features to behavior in both 
experiments by correlating each feature RDM to each participant’s behavioral RDM (Supplementary 
file 1b). In Experiment 1 (Figure 3), only two visual features were significantly correlated with the 
behavioral RDMs (environment and activations from the final fully connected layer FC8 of AlexNet). 
However, there were significant correlations between behavioral RDMs and all action-related RDMs 
(action category, effectors, transitivity, and activity), as well as all social-affective RDMs (valence, 
arousal, sociality, and number of agents).

In Experiment 2, the only visual feature that moderately correlated with behavior was the final fully 
connected layer of AlexNet (p=0.006, below our threshold for significance). Among action features, 
only effectors and activity were significantly correlated with the behavioral RDMs. However, we found 
significant correlations with all social-affective features. The results thus converge across both exper-
iments in suggesting that social-affective and, to a lesser extent, action-related features, rather than 
visual properties, explain behavioral similarity.

Social-affective features explain the most unique variance in behavioral 
representations
We performed a cross-validated variance partitioning analysis (Groen et al., 2018; Lescroart et al., 
2015; Tarhan et  al., 2021) to determine which features contributed the most unique variance to 
behavior (see section ‘Variance partitioning’). We selected the 10 features that contributed signifi-
cantly to behavior in either experiment, that is, two visual features (environment and layer FC8 of 
AlexNet) and all action and social-affective features. To keep the analysis tractable and understand the 
contribution of each type of information, we grouped these features according to their type (visual, 

Figure 2. Experimental and analysis pipeline for evaluating the contribution of different features to action representations. Above: a multiple 
arrangement task was used to generate behavioral representational dissimilarity matrices (RDMs) in the two behavioral experiments. Below: 
electroencephalography (EEG) data was recorded during a one-back task, and time-resolved neural RDMs were generated using pairwise decoding 
accuracies. Cross-validated variance partitioning was used to assess the unique contributions of visual, social-affective, and action features to the 
behavioral and neural RDMs, quantified as the predicted squared Kendall’s ‍τA‍ . The stimuli in this figure are public domain images similar to the types of 
videos used in the experiments.

https://doi.org/10.7554/eLife.75027
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action, and social-affective) and used them as predictors in a cross-validated hierarchical regression 
(Figure 4). Note that there was no collinearity among the 10 predictors, with an average variance 
inflation factor of 1.34 (Experiment 1) and 1.37 (Experiment 2).

Together, the 10 predictors explained most of the systematic variance in behavior. In Experiment 1, 
the predicted squared Kendall’s ‍τA‍ of the full model (‍τ

2
A‍ = 0.06 ± 0.001) was higher on average than 

the true split-half squared correlation (‍τ
2
A‍ = 0.04 ± 0.002). This is likely to be due to the lower reliability 

of the behavioral similarity data in this experiment and suggests that the 10 predictors are able to 
explain the data well despite the overall lower prediction accuracy. In Experiment 2, the full model 
achieved a predicted ‍τ

2
A‍ of 0.18 ± 0.1 on average compared to a true squared correlation of 0.25 ± 

0.1, suggesting that the 10 predictors explain most of the variance (73.21%) in the behavioral data.
In both experiments, social-affective features contributed significantly more unique variance to 

behavior than visual or action features (Figure 4, all Wilcoxon z > 5.5, all p<0.001). While all three 
groups of features contributed unique variance to behavior in Experiment 1 (all p<0.001, random-
ization testing), in Experiment 2, only social-affective features contributed significantly to behavior 
(p<0.001), while visual and action features did not (p=0.06 and 0.47, respectively). Shared variance 
between feature groups was not a significant contributor in either dataset. Although the effect sizes 
were relatively low, social-affective features explained more than twice as much unique variance as 
either the visual or action features in Experiment 1, and six times as much in Experiment 2. Further-
more, given the limits placed on predictivity by the reliability of the behavioral data, affective features 
predicted a large portion of the explainable variance in both experiments.

The semantic RDM included among the action features was a categorical model based on activity 
categories (ATUS, 2019). To assess whether a more detailed semantic model would explain more 
variance in behavior, we generated a feature RDM using WordNet similarities between the verb labels 

Figure 3. Feature contributions to behavioral similarity. Feature-behavior correlations are plotted against the noise ceiling (gray). Each dot is the 
correlation between an individual participant’s behavioral representational dissimilarity matrix (RDM) and each feature RDM. Asterisks denote 
significance (p<0.005, sign permutation testing). The reliability of the data and feature ratings is presented in Figure 3—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Reliability of behavioral data.

https://doi.org/10.7554/eLife.75027
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corresponding to the videos in the Moments in Time dataset. However, replacing the action category 
RDM with the WordNet RDM did not increase the variance explained by action features (Figure 4—
figure supplement 1).

Similarly, our decision to quantify motion and image properties separately by using an optic flow 
model may have reduced the explanatory power of motion features in our data. Indeed, a motion 
energy model (Adelson and Bergen, 1985; Nunez-Elizalde et al., 2021) significantly correlated with 
behavior in Experiment 1, but not in Experiment 2. However, the addition of this model did not 
change the pattern of unique feature contributions (Figure 4—figure supplement 2).

Although the assignment of features to domains was not always straightforward, our results were 
robust to alternative assignment schemes. For example, high-level visual features can be seen as 

Figure 4. Social-affective features explain behavior better than visual and action features. The unique variance 
explained by visual, action, and social-affective features is plotted against the split-half reliability of the data (gray). 
Significant differences are marked with asterisks (all p<0.001, Wilcoxon signed-rank tests). For control analyses on 
how individual features (e.g., action category and the number of agents) and their assignment to groups affect the 
results, see Figure 4—figure supplements 1–5.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Using a more detailed semantic model based on WordNet similarities between video 
labels does not increase the contribution of action features.

Figure supplement 2. Quantifying motion energy as a visual feature does not change the pattern of variance 
partitioning results.

Figure supplement 3. Unique variance explained by visual and action features (environment, FC8, activity, 
transitivity, effectors, action category) and social-affective features (number of agents, sociality, valence, arousal) in 
the behavioral data.

Figure supplement 4. Unique variance explained by the number of agents, action features (action category, 
effectors, transitivity, activity), and other social-affective features (sociality, valence, and arousal) in the behavioral 
data.

Figure supplement 5. Unique variance explained by the number of agents, sociality, and affective features 
(valence and arousal) in the behavioral data.

https://doi.org/10.7554/eLife.75027
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bordering the semantic domain, while features like the number of agents or the amount of activity 
can be seen as visual. However, feature assignment was not the main factor driving our results, which 
stayed the same even when the activity feature was assigned to the visual group. More strikingly, the 
social-affective feature group explained significantly more variance than all other features grouped 
together in both experiments (Figure 4—figure supplement 3). This is a particularly stringent test 
as it pits the unique and shared contributions of all visual, semantic, and action features against the 
four social-affective features. In Experiment 1, the combined contribution of visual and action features 
approached that of social-affective features, while in Experiment 2 the difference was larger. Together 
with the larger contribution of the number of agents in Experiment 2 (Figure 4—figure supplement 
4, Figure 4—figure supplement 5), this suggests that Experiment 2 may have captured more social 
information, potentially thanks to the exhaustive sampling of the stimuli that allowed each participant 
to arrange the videos according to different criteria.

Among the social-affective features we tested, the number of agents could be seen as straddling 
the visual and social domains. To assess whether our results were driven by this feature, we performed 
a control variance partitioning analysis pitting the number of agents against the other, higher-level 
social-affective features (Figure  4—figure supplement 3). In both experiments, the higher-level 
features (sociality, valence, and arousal) contributed more unique variance than the number of agents, 
suggesting that our results are not explained by purely visual factors.

Furthermore, an additional analysis looking at the separate contributions of the number of agents, 
sociality, and affective features (valence and arousal) found that the affective features contributed the 
greatest variance in both experiments (Figure 4—figure supplement 5). For technical reasons, this 
analysis compared the joint contribution of both affective features to each single social feature and 
did not discount the impact of variance shared with visual or action-related features. Despite these 
limitations, the results suggest that the contribution of the social-affective feature group is not driven 
by the number of agents or the variance it shares with sociality, and highlight the role of affective 
features (valence and arousal) in explaining behavior.

EEG patterns reflect behavioral similarity
We performed an EEG experiment to investigate how action-relevant features are processed over 
time. Participants viewed 500 ms segments of the 152 videos from Experiment 1 and performed a 

Figure 5. The features that explain behavioral action representations also contribute to neural representations. (a) Time course of video decoding 
accuracy, averaged across all pairs of videos and participants (in gray: SEM across participants). The horizontal line marks above-chance performance 
(sign permutation testing, cluster-corrected p<0.05). (b) Behavioral similarity correlates with the neural representational dissimilarity matrices (RDMs). 
The noise ceiling is shown in light blue (leave-one-subject-out correlation, mean ± SEM). Horizontal lines mark significant time windows (sign 
permutation testing, cluster-corrected p<0.05). (c) The distribution of significant correlation onsets for each feature model across 1000 bootstrapping 
iterations (sign permutation testing, cluster-corrected p<0.05). Color rectangles show 90% confidence intervals. The time courses of all feature 
correlations are shown in Figure 5—figure supplement 1. The average electroencephalography (EEG) evoked response is visualized in Figure 5—
figure supplement 2.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Correlations between features and the time-resolved neural representational dissimilarity matrices (RDMs).

Figure supplement 2. Average electroencephalography (EEG) evoked response.

https://doi.org/10.7554/eLife.75027
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one-back action task in which they detected repetitions of the action category (see section ‘EEG: 
Experimental procedure’). To relate neural patterns to behavioral and feature RDMs, we computed 
time-resolved neural RDMs for each participant using decoding accuracies between all pairs of videos 
(Figures 2 and 5a). The time course of decoding performance was similar to that observed in previous 
E/MEG studies using still visual stimuli (Carlson et al., 2013; Cichy et al., 2014; Dima et al., 2018; 
Greene and Hansen, 2018; Isik et al., 2014). Decoding accuracy rose above chance at 50 ms after 
video onset, reached its maximum at 98 ms (63.88 ± 6.82% accuracy), and remained above chance 
until 852 ms after video onset (cluster-corrected p<0.05, sign permutation testing).

To assess brain–behavior correlations, we related the average behavioral RDM obtained in Exper-
iment 1 to the time-resolved neural RDMs (Kendall’s ‍τA‍). The behavioral RDM correlated significantly 
with neural patterns during a cluster between 62 and 766 ms after video onset (Figure 5b), suggesting 
that the features guiding the intuitive categorization of naturalistic actions also underlie their neural 
organization.

Neural timescale of individual feature representations
We assessed the correlations between EEG patterns and the 10 feature RDMs found to contribute to 
behavior in Experiment 1. We also included an additional feature RDM based on the first convolutional 
layer of AlexNet, which best captures early visual neural responses (Figure 5—figure supplement 1; 
see section ‘Multivariate analysis’). The feature RDMs that contributed to behavioral similarity also 
correlated with the EEG patterns (Figure 5—figure supplement 1), with a single exception (sociality).

A bootstrapping analysis of the cluster onsets of these correlations (Figure 5c) suggests a progres-
sion from visual to action and social-affective features. Visual predictors correlated with the neural 
patterns between 65 ± 15ms (mean ± SD, Conv1) and 84 ± 62 ms (Environment), while action category 
also had an early onset (58 ± 9 ms). Other action-related features, however, emerged later (transi-
tivity: 170 ± 67 ms, effectors: 192 ± 94 ms, activity: 345 ± 133 ms). Among social-affective features, 
the number of agents had the earliest correlation onset (178 ± 81 ms), while valence and arousal 
emerged later (395 ± 81 and 404 ± 91 ms, respectively). Importantly, these features are spontaneously 
extracted in the brain, as none of them, with the exception of action category, were directly probed 
in the one-back task performed by participants. In addition, all features were extracted during behav-
iorally relevant time windows (Figure 5b).

A temporal hierarchy in action perception
A cross-validated variance partitioning analysis revealed different stages in the processing of natu-
ralistic actions (Figure 6). Visual features dominated the early time windows (66–138 ms after video 
onset). Action features also contributed a significant amount of unique variance (162–598 ms), as 
well as variance shared with social-affective features (354–598 ms; Figure  6—figure supplement 
1). Finally, social-affective features independently predicted late neural responses (446–782 ms). 
Importantly, visual features did not share a significant amount of variance with either action or social-
affective features.

An analysis of effect onsets across 100 split-half iterations points to the hierarchical processing of 
these features, with a progression from visual to action to social-affective features. Social-affective 
features (mean onset 418 ± 89 ms) contributed unique variance significantly later than other feature 
sets, while action features (245 ± 104 ms) came online later than visual features (65 ± 8ms; all Wilcoxon 
z > 7.27, p<0.001; Figure 6b). A fixed-effects analysis revealed the same order of feature information 
with larger effect sizes (Figure 6—figure supplement 2).

Motion has been shown to drive the response of visual areas to naturalistic stimuli (Russ and 
Leopold, 2015; Nishimoto et al., 2011). To better assess the effect of motion on EEG responses, we 
performed an additional analysis including the motion energy model. There was a sustained correla-
tion between motion energy and EEG patterns beginning at 62 ms (Figure 6—figure supplement 3). 
In the variance partitioning analysis, the addition of motion energy increased the unique contribution 
of visual features and decreased that of action features, indicating that the action features share 
variance with motion energy. However, the three stages of temporal processing were preserved in 
the fixed-effects analysis even with the addition of motion energy, suggesting that the three feature 
groups made distinct contributions to the neural patterns. Importantly, the unique contribution of 
social-affective features was unchanged in both analyses by the addition of the motion energy model.

https://doi.org/10.7554/eLife.75027
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Discussion
Here, we used a large-scale naturalistic stimulus set to disentangle the roles of different features in 
action perception. Two novel findings emerge from our study. First, our behavioral results suggest that 
social-affective features play the most important role in how we organize naturalistic everyday actions, 
above and beyond fundamental visual and action features like scene setting or action category. Second, 
these behaviorally relevant features are spontaneously extracted in the brain and follow a hierarchical 
sequence from visual to action-related and culminating with social-affective features. These results 
offer an account of how internal representations of everyday actions emerge in the mind and brain.

Figure 6. Hierarchical processing of visual, action, and social-affective features. (a) Unique variance explained 
by each group of features over time. The split-half reliability of the data is shown in gray (shaded area; see also 
Figure 5b). Horizontal lines mark significant time windows (sign permutation testing, cluster-corrected p<0.05). 
The time course of shared variance is displayed in Figure 6—figure supplement 1. See Figure 6—figure 
supplement 2 for the results of a fixed-effects analysis. Figure 6—figure supplement 3 shows how the addition 
of a motion energy model affects these results. (b) The distribution of effect onsets across 100 split-half iterations 
(sign permutation testing, cluster-corrected p<0.05). Color rectangles show 90% confidence intervals.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Shared variance among visual, action, and social predictors in the cross-validated variance 
partitioning analysis.

Figure supplement 2. Fixed-effects variance partitioning results (stacked area plot).

Figure supplement 3. The contribution of motion energy to the neural data.

https://doi.org/10.7554/eLife.75027
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Behavioral representations: What features support action perception?
Across two separate multiple arrangement experiments with large-scale naturalistic stimulus sets, we 
found that social-affective features predicted similarity judgments better than, and independently of, 
visual and action-related features. By sampling a comprehensive feature space ranging from low-level 
to conceptual, we were able to distinguish between components that often covary, such as scene 
setting and action category or sociality and transitivity. Previous studies have operationalized features 
in different ways, and an exhaustive investigation is thus difficult; however, our approach of including 
several important features from each group mitigated this, as suggested by the high amount of vari-
ance in behavior collectively explained by our features.

Our work adds to a growing body of evidence for the importance of social-affective features in 
action perception and extends it by disentangling the contributions of specific social and semantic 
features. Previous work has highlighted sociality as an essential feature in neural action representa-
tions (Tarhan and Konkle, 2020; Wurm et al., 2017; Wurm and Caramazza, 2019), and a recent 
study (Tarhan et al., 2021) found that behavioral action similarity judgments were better explained 
by similarity in actors’ goals than by visual similarity. In line with this work, we found a minimal contri-
bution of visual features to action similarity judgments. In contrast, all of our social-affective features 
– the number of agents, sociality, valence, and arousal – were significantly correlated with behavioral 
similarity. Furthermore, only two individual action-related features replicated across the two experi-
ments: the amount of activity and the effector (body part) feature, the latter of which is highly relevant 
to the actors’ goals. This could be interpreted as further evidence for the importance of socially rele-
vant features in our internal representations of actions, and identifies specific social and goal-related 
features that are important for action understanding.

A hypothesis-driven approach will always pose challenges due to practical limitations in the number 
of feature spaces one can feasibly test. Our approach of grouping predictors together based on theo-
retical distinctions made it possible to rigorously evaluate the unique contributions of different types 
of features, which is an essential first step in understanding naturalistic action representations. This 
analysis revealed that social-affective features contributed the most unique variance in both experi-
ments, suggesting that they robustly predict behavioral similarity judgments, while visual and action 
features explained little unique variance in either experiment (Figure 4). An exploratory follow-up 
analysis showed that this effect was primarily driven by affective features (valence and arousal), with 
the number of agents as a secondary contributor. Recent work found that affective features drive 
the perceived similarity of memories of real-life events (Tomita et al., 2021), suggesting that these 
features bridge the action, event, and memory domains in organizing mental representations.

Among our social-affective features, the number of agents could be construed as a perceptual 
precursor to sociality. Indeed, previous fMRI work has suggested that neural representations of 
actions in the visual system reflect perceptual precursors of social features rather than higher-level 
social features (Wurm and Caramazza, 2019). Here, we found that high-level social-affective features 
(particularly valence and arousal) contributed significantly to behavior independently of the number 
of agents. Further, affective features explained significantly more unique variance in behavior than the 
number of agents in both experiments (Figure 4—figure supplements 4 and 5). Our findings suggest 
that high-level social-affective features, and in particular valence and arousal, uniquely drive human 
action representations.

Neural representations: How does action perception unfold over time?
Using EEG, we tracked the temporal dynamics of naturalistic action perception. Using naturalistic 
stimuli and a rich feature space enabled us to disentangle the contributions of different features and 
investigate their relative timing. Visual, action, and social-affective features made unique contributions 
to the EEG patterns at different processing stages, revealing a representational hierarchy of sponta-
neously extracted features.

Almost all behaviorally relevant features correlated with the EEG patterns, with action-related and 
social-affective features emerging later than visual features (Figure 5c). Most action-related features 
emerged within 200 ms, on the timescale of feedforward processing, which is consistent with prior 
work showing invariant responses to actions as early as 200 ms (Isik et al., 2018; Tucciarelli et al., 
2015), and action transitivity processing as early as 250 ms (Wamain et al., 2014). Among social-
affective features, the number of agents emerged earliest (162 ms), pointing to the role of this feature 
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as a perceptual precursor in social perception (Papeo, 2020; Wurm and Caramazza, 2019). Valence 
and arousal emerged later, around 400 ms after video onset. Interestingly, sociality, which has been 
highlighted as an important dimension in previous fMRI work on action perception (Tarhan and 
Konkle, 2020; Wurm et al., 2017), did not correlate with the EEG patterns. This effect was not likely 
to be driven by a lower reliability in the measurement of this feature, as sociality was more reliable 
than all other behaviorally rated features in Experiment 1 (Figure 3—figure supplement 1). While 
the absence of an effect does not preclude the possibility that this feature is being processed, it is 
possible that prior work has confounded sociality with other correlated social-affective features (such 
as the number of agents or arousal). Alternatively, our operationalization of this feature (which was 
broader than in some previous studies, e.g., Tucciarelli et al., 2019; Wurm et al., 2017) may have led 
to differences in the information captured. Note that this finding is mirrored in our behavioral results, 
where we observed larger unique contributions from valence, arousal, and the number of agents than 
sociality (Figure 4—figure supplement 5).

Importantly, these features emerged spontaneously as the one-back task performed during 
the EEG recordings only related to action category. However, the semantic processing required to 
perform the task may have contributed to these computations. The emergence of features irrelevant 
to the task at hand (action category is not correlated with any other features in the dataset) suggests 
that this temporal hierarchy would also emerge in the absence of a task; however, future work can 
more directly test the impact of implicit and explicit (e.g., social-affective) processing on these neural 
dynamics.

Variance partitioning revealed a clear temporal progression from visual features (~100 ms) to action 
features (~150–600 ms) to social-affective features (~400–00 ms). Importantly, these processing stages 
emerged after partialling out the contributions of other groups of predictors in a cross-validated 
analysis, validating our a priori distinctions between feature classes. These findings suggest that the 
extraction of visual features occurs rapidly, within 200 ms, and is likely supported by feedforward 
computations. The social-affective features that support behavioral representations, however, were 
extracted last. This is consistent with theories suggesting that internal visual experience reverses the 
stages of perceptual processing (Dijkstra et al., 2020; Hochstein and Ahissar, 2002). Specifically, it 
was the final, social-affective stage of neural processing that was reflected in the intuitive behavioral 
representations, and not the initially extracted visual features. Furthermore, action-related features 
were extracted significantly before social-affective features, suggesting the two are not extracted 
in parallel, but instead pointing to a hierarchy in which both visual and action-related features may 
contribute to socially relevant computations. Given the short duration of our videos and the relatively 
long timescale of neural feature processing, it is possible that social-affective features are the result 
of ongoing processing relying on temporal integration of the previously extracted features. However, 
more research is needed to understand how these temporal dynamics change with continuous 
visual input (e.g., a natural movie), and whether social-affective features rely on previously extracted 
information.

Our results add temporal characterization to previous fMRI findings, suggesting that the seemingly 
conflicting features revealed by previous studies, like the number of agents (Wurm and Caramazza, 
2019), sociality (Tarhan and Konkle, 2020), or semantic action category (Tucciarelli et al., 2019), 
emerge at different stages during action observation. Thus, the existence of different organizing 
dimensions can be explained not just through spatial segregation within and across brain areas, but 
also through a temporal gradient starting with visual features and concluding with behaviorally rele-
vant social and affective representations. More work is needed to understand where these dynamic 
representations emerge in the brain, and whether they are supported by overlapping or distinct 
networks. Future research could test this using EEG-fMRI fusion to track the spatiotemporal dynamics 
of action representations.

Actions in context
As real-world actions tend to occur in a rich social context, studies of action perception should 
consider socially relevant features and the interactions between different systems for perceiving 
actions, agents, and their mental states (Quadflieg and Koldewyn, 2017). Recent work suggests that 
social perception enhances visual processing (Bellot et al., 2021; Papeo, 2020) and recruits dedi-
cated neural circuits (Isik et al., 2017; Pitcher and Ungerleider, 2021). Our findings open exciting 
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new avenues for connecting these areas of research. For example, future studies could more explicitly 
disentangle the perceptual and conceptual building blocks of social and affective features, such as 
body posture or facial expression, and their roles in action and interaction perception.

One fundamental question that lies at the root of this work is how actions should be defined and 
studied. Here, we adopted a broad definition of the term, focusing on activities as described in the 
ATUS (ATUS, 2019). Although our stimuli were selected to clearly depict short, continuous actions 
performed by visible agents, their naturalistic and context-rich nature means that they could be under-
stood as ‘events,’ encompassing elements that are not singularly specific to actions. A wealth of 
evidence has shown that context changes visual processing in a nonadditive way (Bar, 2004; Willems 
and Peelen, 2021), and emerging evidence suggests that the same is true for actions (Wurm et al., 
2012). Studying actions in context holds promise for understanding how semantically rich represen-
tations emerge in naturalistic vision. This, in turn, will pave the way towards a computational under-
standing of the neural processes that link perception and cognition.

Materials and methods
Behavior: Stimuli
We curated two stimulus sets containing three-second videos of everyday actions from the Moments 
in Time dataset (Monfort et al., 2020). To broadly sample the space of everyday actions, we first iden-
tified the most common activities from the National Bureau of Labor Statistics’ American Time Use 
Survey (ATUS, 2019). Our final dataset included 18 social and nonsocial activities that lend themselves 
to visual representation (Table 1), to ensure a diverse and balanced stimulus set representative of the 
human everyday action space. We note that the ATUS distinctions are based on performed rather than 
observed actions. While imperfect, they provide ecologically relevant and objective criteria with which 
to define our action space.

Action categories were selected from the second-level activities identified in the ATUS. We used a 
minimum cutoff of 0.14 hr/day to select common actions (Table 1). To diversify our dataset, we added 
a ‘hiking’ category (to increase variability in scene setting) and a ‘fighting’ category (for variability 
along affective dimensions). In addition, ‘driving’ was selected as a more specific instance of the 
‘travel’ categories in ATUS as it is the most common form of transportation in the United States. Some 
adjustments were also made to the ‘relaxing and leisure’ category by selecting two specific activities 
that were easy to represent and distinguish visually, as well as above threshold (‘reading’ and ‘playing 
games’). In addition, our ‘reading’ category included both ‘reading for personal interest’ and ‘home-
work and research’ as this distinction is difficult to convey visually. We omitted three leisure categories 
that were difficult to represent in brief videos (‘watching TV,’ ‘relaxing and thinking,’ and ‘computer 
use for leisure, excluding games’), as well as the ‘consumer goods purchases’ category.

We curated an initial set of 544 videos from the Moments in Time dataset by identifying the verb 
labels relevant to our chosen activities. Videos were chosen that were horizontally oriented (land-
scape), of reasonable image quality, clearly represented the activity in question, clearly depicted 
an agent performing the activity, and varied in terms of number of agents, gender and ethnicity of 
agents, and scene setting. Although some categories were represented by fewer verb labels than 
others in the final set, our curation procedure aimed to balance important features within and across 
action categories. We also curated a set of control videos depicting natural and indoors scenes.

We then selected two subsets of videos (1) that sampled all activities in a balanced manner and 
(2) where sociality (as assessed through behavioral ratings, see section ‘Behavioral ratings’) was mini-
mally correlated to the number of agents (experimenter-labeled). This was done by randomly drawing 
10,000 subsets of videos that sampled all activities equally and selecting the video set with the lowest 
correlation between sociality and the number of agents. These two features are difficult to disentangle 
in naturalistic stimulus sets, and we were able to minimize, though not fully eliminate, this correlation 
(Figure 1a).

The first stimulus set contained 152 videos (eight videos per activity and eight additional videos 
with no agents) and was used in Experiment 1. The videos with no agents were included to provide 
variation in the dataset along visual properties that did not pertain to actions or agents, as well as 
variation in the overall dataset in terms of number of agents per video. From the remaining videos, a 
second set of 76 videos was sampled and manually adjusted to remove videos without agents (in the 
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interest of experimental time) and any videos that were too similar visually to other videos in the same 
category (e.g., involving a similar number of agents in similar postures). The second stimulus set thus 
contained 65 videos (three or four videos per activity) and was used in Experiment 2. The videos were 
preprocessed to a frame rate of 24 frames per second using the videoWriter object in MATLAB and 
resized to 600 × 400 pixels. This was done by first resizing the videos in order to meet the dimension 
criteria (using MATLAB’s imresize function with bicubic interpolation). The videos were then cropped 
to the correct aspect ratio either centrally or using manually determined coordinates to make sure the 
action remained clear after cropping.

Behavior: Participants
Behavioral ratings
A total of 256 workers (202 after exclusions, located in the United States, worker age and gender not 
recorded) from the online platform Amazon Mechanical Turk provided sociality, valence, arousal, and 
activity ratings of the video stimuli, and 43 workers (35 after exclusions) provided transitivity ratings.

Multiple arrangement
Two separate online multiple arrangement experiments were performed on each of the two stimulus 
sets. A total of 374 workers from Amazon Mechanical Turk took part in Experiment 1 (300 after exclu-
sions, located in the United States, worker age and gender not recorded). Experiment 2 involved 58 
participants (53 after exclusions, 31 female, 20 male, 1 non-binary, 1 not reported, mean age 19.38 ± 
1.09) recruited through the Department of Psychological and Brain Sciences Research Portal at Johns 
Hopkins University.

All procedures for online data collection were approved by the Johns Hopkins University Institu-
tional Review Board (protocol number HIRB00009730), and informed consent was obtained from all 
participants.

Behavior: Experimental procedure
Behavioral ratings
Participants viewed subsets of 30–60 videos from the initially curated large-scale set and rated the 
events depicted on a five-point scale. In a first set of experiments, the dimensions rated were sociality 
(how social the events were, from 1 – not at all to 5 – very social); valence (how pleasant the events 
were, from 1 – very unpleasant to 5 – very pleasant); arousal (how intense the events were, from 1 – 
very calm to 5 – very intense); and activity (how active they were, from 1 – no action to 5 – very active). 
In separate experiments, participants provided transitivity ratings for the two final stimulus sets (i.e., to 
what extent the actions involved a person or people interacting with an object, from 1 – not at all to 
5 – very much). Participants were excluded if they responded incorrectly to catch trials (approximately 
10% of trials) requiring them to label the action shown in the prior video, or if they provided overly 
repetitive ratings (e.g., using only two unique values or fewer out of five possible ratings throughout 
the entire experiment). This amounted to an average of 17.46 ± 2.14 ratings per video (Experiment 1) 
and 18.22 ± 2.09 ratings per video (Experiment 2). The experiments were implemented in JavaScript 
using the jsPsych library (de Leeuw, 2015).

Multiple arrangement
To characterize human action representations, we measured behavioral similarity using two multiple 
arrangement experiments. The experiments were conducted on the Meadows platform (https://​
meadows-research.com/) and required participants to arrange the videos according to their similarity 
inside a circular arena. Participants were free to use their own criteria to determine similarity, so as to 
encourage natural behavior.

Each trial started with the videos arranged around the circular arena. The videos would start playing 
on hover, and the trial would not end until all videos were played and dragged-and-dropped inside 
the arena (Figure 2). Different sets of videos were presented in different trials. An adaptive ‘lift-the-
weakest’ algorithm was used to resample the video pairs placed closest together, so as to gather suffi-
cient evidence (or improve the signal-to-noise ratio) for each pair. This procedure was repeated until 
an evidence criterion of 0.5 was reached for each pair or until the experiment timed out (Experiment 
1: 90 min; Experiment 2: 120 min). By asking participants to zoom into the subsets previously judged 
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as similar, the task required the use of different contexts and criteria to judge relative similarities. 
Compared to other methods of measuring similarity, multiple arrangement thus combines efficient 
sampling of a large stimulus set with adaptive behavior that can recover a multi-dimensional similarity 
structure (Kriegeskorte and Mur, 2012).

In Experiment 1, participants arranged different subsets of 30 videos from the 152-video set, with 
a maximum of 7 videos shown in any one trial. The stimuli were sampled in a balanced manner across 
participants. The task took on average 32 ± 14.4 min and 86.8 ± 22.6 trials.

In Experiment 2, all participants arranged the same 65 videos (entire 65-video set), with a maximum 
of 8 videos shown in any one trial. The task took on average 87.5 ± 24.6 min, including breaks, and 
289.7 ± 57.3 trials.

The experiments included a training trial in which participants arranged the same seven videos (in 
Experiment 1) or eight videos (in Experiment 2) before beginning the main task. In both experiments, 
these videos were hand-selected to represent clear examples from four categories. Participants were 
excluded from further analysis if there was a low correlation between their training data and the 
average of all other participants’ data (over 2 SDs below the mean). They were also excluded if they 
responded incorrectly to a catch trial requiring them to label the action in previously seen videos.

Inverse MDS was used to construct behavioral dissimilarity matrices containing normalized 
Euclidean distances between all pairs of videos (Kriegeskorte and Mur, 2012). In Experiment 1, the 
behavioral RDM contained 11,476 pairs with an average of 11.37 ± 3.08 estimates per pair; in Exper-
iment 2, there were 2080 pairs arranged by all 53 participants.

Behavior: Data analysis
Representational similarity analysis
Everyday actions can be differentiated along numerous axes. Perceptually, they can differ in terms of 
visual properties, like the setting in which they take place. They can also be characterized through 
action-related features, like semantic action category, or through social features, like the number of 
agents involved. Understanding how these features contribute to natural behavior can shed light on 
how naturalistic action representations are organized. Here, we used representational similarity anal-
ysis (RSA) to assess the contribution of visual, action, and social-affective features to the behavioral 
similarity data.

We quantified features of interest using image properties, labels assigned by experimenters 
(Supplementary file 1a), and behavioral ratings (provided by participants, see section ‘Behavioral 
ratings’). We calculated the Euclidean distances between all pairs of stimuli in each feature space, thus 
generating 17 feature RDMs.

To quantify visual features, image properties were extracted separately for each frame of each 
video and averaged across frames. These included pixel value (luminance), hue, saturation, optic flow 
(the magnitude of the optic flow estimated using the Horn–Schunck method), and the spatial enve-
lope of each image quantified using GIST (Oliva and Torralba, 2001). We also extracted activations 
from the first convolutional layer and last fully-connected layer of a pretrained feedforward convo-
lutional neural network (AlexNet; Krizhevsky et al., 2012). These features were vectorized prior to 
computing Euclidean distances between them (see Supplementary file 1b for the dimensionality of 
each feature). Two additional experimenter-labeled features were included: scene setting (indoors/
outdoors) and the presence of a watermark. To assess whether a motion energy model (Adelson 
and Bergen, 1985; Nishimoto et  al., 2011; Watson and Ahumada, 1985) would better capture 
the impact of motion, we performed control analyses by computing motion energy features for each 
video using a pyramid of spatio-temporal Gabor filters with the pymoten package (Nunez-Elizalde 
et al., 2021).

Action feature RDMs were based on transitivity and activity ratings (provided by participants, 
see above), as well as action category (a binary RDM clustering the stimuli into activity catego-
ries based on the initial dataset designations) and effectors (experimenter-labeled). The latter 
consisted of binary vectors indicating the involvement of body parts in each action (face/head, 
hands, arms, legs, and torso). To assess whether a more detailed semantic model would capture 
more information, we also performed a control analysis using a feature RDM based on WordNet 
similarities between the verb labels in the ‘Moments in Time’ dataset (Figure 4—figure supple-
ment 1).
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Social-affective feature RDMs were based on sociality, valence, and arousal ratings (all provided by 
participants, see section ‘Behavioral ratings’ above) and the number of agents in each video, which 
was labeled by experimenters on a four-point scale (from 0, no agent present, to 3, three or more 
agents present).

Each participant’s behavioral RDM was correlated to the feature RDMs, and the resulting Kend-
all’s ‍τA‍ values were tested against chance using one-tailed sign permutation testing (5000 iterations). 
P-values were omnibus-corrected for multiple comparisons using a maximum correlation threshold 
across all models (Nichols and Holmes, 2002).

A noise ceiling was calculated by correlating each subject’s RDM to the average RDM (upper 
bound), as well as to the average RDM excluding the left-out subject (lower bound; Nili et al., 2014).

Variance partitioning
Despite low correlations between features of interest in both stimulus sets (Figure 1a), shared vari-
ance could still contribute to the RSA results. To estimate the unique contributions of the three primary 
groups of features, we performed a cross-validated variance partitioning analysis, excluding individual 
features that did not correlate with the behavioral data in the above RSA analysis. The three groups 
included visual features (scene setting and the last fully connected layer of AlexNet), action features 
(action category, effectors, transitivity, action), and social-affective features (number of agents, soci-
ality, valence, arousal).

The behavioral data were randomly split into training and test sets (100 iterations) by leaving out 
half of the individual similarity estimates for each pair of videos in Experiment 1 (since different partici-
pants saw different subsets of videos) or half of the participants in Experiment 2. We fit seven different 
regression models using the average training RDM (with every possible combination of the three 
groups of features), and we calculated the squared Kendall’s ‍τA‍ between the predicted responses 
and the average test RDM. These values were then used to calculate the unique and shared portions 
of variance contributed by the predictors (Groen et al., 2018; Lescroart et al., 2015; Tarhan et al., 
2021).

The resulting values were tested against chance using one-tailed sign permutation testing (5000 
iterations, omnibus-corrected for multiple comparisons). Differences between groups of features were 
assessed with two-sided Wilcoxon signed-rank tests.

EEG: Stimuli
The stimulus set from behavioral Experiment 1 was used in the EEG experiment, containing 152 
videos from 18 categories, as well as control videos. The three-second stimuli were trimmed to a dura-
tion of 0.5 s centered around the action as determined by visual inspection, to ensure that the shorter 
videos were easily understandable. This helped improve time-locking to the EEG signals and allowed 
for a condition-rich experimental design. An additional 50 videos were included as catch stimuli (25 
easily identifiable pairs depicting the same action, manually chosen from the larger stimulus set).

EEG: Participants
Fifteen participants (six female, nine male, mean age 25.13 ± 6.81) took part in the EEG experiment. 
All participants were right-handed and had normal or corrected-to-normal vision. Informed consent 
was obtained in accordance with the Declaration of Helsinki, and all procedures were approved by the 
Johns Hopkins University Institutional Review Board (protocol number HIRB00009835).

EEG: Experimental procedure
Continuous EEG recordings with a sampling rate of 1000 Hz were made with a 64-channel Brain Prod-
ucts ActiCHamp system using actiCAP electrode caps in a Faraday chamber. Electrode impedances 
were kept below 25 kΩ when possible, and the Cz electrode was used as an online reference.

Participants were seated upright while viewing the videos on a back-projector screen situated 
approximately 45 cm away. The 152 videos were shown in pseudorandom order in each of 10 blocks 
with no consecutive repetition allowed. In addition, four repetitions of the 25 catch video pairs were 
presented at random times during the experiment. The video pairs were presented in different orders 
to minimize learning effects, so that for each video pair (V1, V2), half of the presentations were in 
the order V1-V2 and half of them were in the order V2-V1. Participants performed a one-back task 
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and were asked to press a button on a Logitech game controller when they detected two consecu-
tive videos showing the same action. Participants were not instructed on what constituted an action, 
beyond being given ‘eating’ as a simple example. There was a break every 150 trials, and participants 
could continue the experiment by pressing a button. In total, the experiment consisted of 1720 trials 
(1520 experimental trials and 200 catch trials) and took approximately 45 min.

The stimuli were presented using an Epson PowerLite Home Cinema 3000 projector with a 60 Hz 
refresh rate. Each trial started with a black fixation cross presented on a gray screen for a duration 
chosen from a uniform distribution between 1 and 1.5 s, followed by a 0.5 s video. The stimuli were 
presented on the same gray background and subtended approximately 15 × 13 degrees of visual 
angle. The fixation cross remained on screen, and participants were asked to fixate throughout the 
experiment. A photodiode was used to accurately track on-screen stimulus presentation times and 
account for projector lag. The paradigm was implemented in MATLAB R2019a using the Psycho-
physics Toolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997).

EEG: Data analysis
Preprocessing
EEG data preprocessing was performed using MATLAB R2020b and the FieldTrip toolbox (Oost-
enveld et al., 2011). First, the EEG data were aligned to stimulus onset using the photodiode data 
to correct for any lag between stimulus triggers and on-screen presentation. The aligned data were 
segmented into 1.2 s epochs (0.2 s pre-stimulus to 1 s post-stimulus onset), baseline-corrected using 
the 0.2 s prior to stimulus onset, and high-pass filtered at 0.1 Hz.

Artifact rejection was performed using a semi-automated pipeline. First, the data were filtered 
between 110 and 140 Hz and Hilbert-transformed to detect muscle artifacts; segments with a z-value 
cutoff above 15 were removed. Next, channels and trials with high variance were manually rejected 
based on visual inspection of a summary plot generated using the ft_rejectvisual function in FieldTrip. 
Finally, independent component analysis (ICA) was performed to identify and remove eye movement 
components from the data.

Catch trials were removed from the data together with any trials that elicited a button response 
(13.74 ± 1.82% of all trials). Of the remaining trials, 8.36 ± 5.01% (ranging between 25 and 275 
trials) were removed during the artifact rejection procedure. A maximum of two noisy electrodes were 
removed from eight participants’ datasets.

Prior to further analysis, the data were re-referenced to the median across all electrodes, low-pass 
filtered at 30 Hz to investigate evoked responses, and downsampled to 500 Hz.

Multivariate analysis
We performed multivariate analyses to investigate (1) whether EEG patterns reflected behavioral simi-
larity and (2) whether different visual, action, and social-affective features explained variance in the 
neural data.

First, time-resolved decoding of every pair of videos was performed using a linear support vector 
machine classifier as implemented in the LibSVM library (Chang and Lin, 2011). Split-half cross-
validation was used to classify each pair of videos in each participant’s data. To do this, the single-trial 
data was divided into two halves for training and testing, whilst ensuring that each condition was 
represented equally. To improve SNR, we combined multiple trials corresponding to the same video 
into pseudotrials via averaging. The creation of pseudotrials was performed separately within the 
training and test sets. As each video was shown 10 times, this resulted in a maximum of five trials 
being averaged to create a pseudotrial. Multivariate noise normalization was performed using the 
covariance matrix of the training data (Guggenmos et al., 2018). Classification between all pairs of 
videos was performed separately for each time point. Data were sampled at 500 Hz, and so each 
time point corresponded to nonoverlapping 2 ms of data. Voltage values from all EEG channels were 
entered as features to the classification model.

The entire procedure, from dataset splitting to classification, was repeated 10 times with different 
data splits. The average decoding accuracies between all pairs of videos were then used to generate 
a neural RDM at each time point for each participant. To generate the RDM, the dissimilarity between 
each pair of videos was determined by their decoding accuracy (increased accuracy representing 
increased dissimilarity at that time point).

https://doi.org/10.7554/eLife.75027
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Next, we evaluated the correlations between each participant’s time-resolved neural RDM and 
the feature RDMs found to correlate with behavioral similarity (Experiment 1). To investigate the link 
between behavioral and neural representations, we also correlated neural RDMs with the average 
behavioral RDM obtained from the multiple arrangement task in Experiment 1. This analysis was 
performed using 10 ms sliding windows with an overlap of 6 ms. The resulting Kendall’s ‍τA‍ values were 
tested against chance using one-tailed sign permutation testing (5000 iterations, cluster-corrected for 
multiple comparisons across time using the maximum cluster sum, ‍α‍ = 0.05, cluster setting ‍α‍ = 0.05). 
A noise ceiling was calculated using the same procedure as in the behavioral RSA (see ‘Representa-
tional similarity analysis’). Effect latencies were assessed by bootstrapping the individual correlations 
1000 times with replacement to calculate 90% confidence intervals around effect onsets.

To quantify the contributions of visual, social-affective, and action features to the neural RDMs, 
a time-resolved cross-validated variance partitioning procedure was performed. Using 100 split-half 
cross-validation iterations, the neural RDM was entered as a response variable in a hierarchical regres-
sion with three groups of feature RDMs (visual, social-affective, and action) as predictors. This anal-
ysis employed the same 10 feature RDMs used in the behavioral variance partitioning (see section 
‘Variance partitioning’), with the addition of activations from the first convolutional layer of AlexNet 
(Conv1). As Conv1 best captures early visual responses (Figure 5—figure supplement 1), its inclusion 
ensured that we did not underestimate the role of visual features in explaining neural variance. We did 
not use frame-wise RDMs to model these visual features; however, our approach of averaging features 
across video frames was justified by the short duration of our videos and the high correlation of CNN 
features across frames (Conv1: Pearson’s ‍ρ = 0.89 ± 0.09‍; FC8: ‍ρ = 0.98 ± 0.03‍).

The analysis was carried out using 10 ms sliding windows with an overlap of 6 ms. The resulting 
predicted Kendall’s ‍τA‍ values were tested against chance using one-tailed sign permutation testing 
(5000 iterations, cluster-corrected for multiple comparisons using the maximum cluster sum across 
time windows and regressions performed, ‍α‍ = 0.05, cluster-setting ‍α‍ = 0.05). The distributions of 
effect onsets across the 100 split-half iterations were compared using two-sided Wilcoxon signed-rank 
tests.

Data availability
Behavioral and EEG data and results have been archived as an Open Science Framework reposi-
tory (https://osf.io/hrmxn/). Analysis code is available on GitHub (https://github.com/dianadima/mot_​
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