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Abstract Brain signal decoding promises significant advances in the development of clinical 
brain computer interfaces (BCI). In Parkinson’s disease (PD), first bidirectional BCI implants for 
adaptive deep brain stimulation (DBS) are now available. Brain signal decoding can extend the 
clinical utility of adaptive DBS but the impact of neural source, computational methods and PD 
pathophysiology on decoding performance are unknown. This represents an unmet need for the 
development of future neurotechnology. To address this, we developed an invasive brain-signal 
decoding approach based on intraoperative sensorimotor electrocorticography (ECoG) and 
subthalamic LFP to predict grip-force, a representative movement decoding application, in 11 PD 
patients undergoing DBS. We demonstrate that ECoG is superior to subthalamic LFP for accurate 
grip-force decoding. Gradient boosted decision trees (XGBOOST) outperformed other model 
architectures. ECoG based decoding performance negatively correlated with motor impairment, 
which could be attributed to subthalamic beta bursts in the motor preparation and movement 
period. This highlights the impact of PD pathophysiology on the neural capacity to encode move-
ment vigor. Finally, we developed a connectomic analysis that could predict grip-force decoding 
performance of individual ECoG channels across patients by using their connectomic fingerprints. 
Our study provides a neurophysiological and computational framework for invasive brain signal 
decoding to aid the development of an individualized precision-medicine approach to intelligent 
adaptive DBS.

Editor's evaluation
This paper evaluates movement decoding from intracranial brain recordings in patients with Parkin-
son's disease. Interestingly, the authors demonstrate that cortical recordings (electrocorticography) 
outperform subthalamic nucleus in decoding grip force. This work will be of interest to brain 
computer interface, movement disorder, motor control, and general neurophysiology communities.
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Introduction
Subthalamic deep brain stimulation (DBS) for Parkinson’s disease (PD) is one of the most successful 
neurotechnological advances in translational neuroscience to date. In addition to its clinical utility, DBS 
has provided unique insight into the neurophysiology of movement disorders (Cagnan et al., 2019; 
Krauss et al., 2021). PD has been associated with increased beta synchronization and beta bursts in 
the basal ganglia (Kühn et al., 2006; Neumann et al., 2016; Kehnemouyi et al., 2021) and exagger-
ated phase amplitude coupling and waveform sharpness asymmetry in cortex (de Hemptinne et al., 
2015; Cole et al., 2017). Symptom severity in the OFF medication state was shown to correlate with 
resting beta power in the STN across patients (Kühn et al., 2006; Neumann et al., 2016). Such obser-
vations have inspired the idea of adaptive DBS (aDBS), where electrophysiological signals are used to 
change stimulation parameters in response to evolving clinical states (Little et al., 2013; Beudel and 
Brown, 2016; Tinkhauser et al., 2017; Swann et al., 2018; Piña-Fuentes and van Dijk, 2019; Velisar 
et al., 2019; Hwang et al., 2020; Petrucci et al., 2020). In a series of seminal papers it was shown that 
significant clinical benefit and reduced side-effects could be achieved, when stimulation was triggered 
by beta power (Little et al., 2013; Velisar et al., 2019). Machine-learning for aDBS applications can 
integrate multivariate feature sets for adaptive DBS control beyond beta power. First trials on machine 
learning based movement classification to trigger adaptive DBS either using electrocorticography 
(ECoG) or subcortical local field potentials (LFP) in essential tremor have shown promising results (Opri 
et al., 2020; He et al., 2021). In the future, smart implants may become available that combine invasive 
brain signal decoding with real-time stimulation adaptation, toward a precision medicine approach to 
adaptive DBS in PD and other brain disorders. However, the identification of optimal decoding strat-
egies and the characterization of relevant factors with impact on decoding performance remains and 
unmet need. With the present study, we address this by a thorough investigation grip-force decoding 
that is motivated by the well-described relationship of vigor, movement velocity, bradykinesia, and 
dopamine in Parkinson’s disease (Turner and Desmurget, 2010; Yttri and Dudman, 2016; Lofredi 
et al., 2018). We use state-of-art machine learning algorithms with multimodal invasive neurophys-
iology and whole-brain connectomics in PD patients undergoing DBS electrode implantation. Our 
results highlight the utility of cortical vs. subcortical signals to accurately decode grip-force and estab-
lish a link between decoding performance and motor impairment in PD. Finally, we investigate brain 
networks from ECoG recording locations with normative structural and functional connectomics and 
demonstrate the predictive power of connectomic fingerprints for brain signal decoding.

Results
Real-time processing and feature definition
We analyzed sensorimotor ECoG and subthalamic LFP data recorded intraoperatively from 11 PD 
patients undergoing DBS implantation during performance of a Go/No-Go based cued grip-force 
task (Figure 1A). Individual electrode localizations in Montreal Neurological institute (MNI) space are 
shown in Figure 1B with typical responses (Kühn et al., 2004; Androulidakis et al., 2007; Kondylis 
et al., 2016; Lofredi et al., 2018) in Figure 1C aligned to onset of grip force (total n=2685, on average 
n=244 ± 149 STD movements per patient, see Figure 1—figure supplement 1 for more detail on 
grip-force variability). For the use in machine-learning models, band power feature time-series were 
extracted in a real-time BCI compatible implementation (Figure 1D) streamed in virtual packets of 
100ms length at a sampling rate of 1000 Hz to mimic the online application. Variance as a measure 
of amplitude of rereferenced, band-pass filtered raw data segments was extracted at 10 Hz with an 
adaptive window length from 1000 to 100ms of past data for eight oscillatory features [θ (4–8 Hz), α 
(8–12 Hz), β (13–35 Hz), low β (13–20 Hz), high β (20–35 Hz), low γ (60–80 Hz), high-frequency activity 
(HFA) (90–200 Hz) and all γ (60–200 Hz)]. All features were normalized to the median of the past 10 s 
to compensate for potential signal changes over time. The target variable was continuously measured 
grip-force (z-scored for each recording session), which was cleaned from noise and baseline drift (Xie 
et al., 2018).

Including preceding signals up to 500 ms before the decoded sample 
improves grip-force decoding performance
A linear model analysis of all eight oscillatory features per channel was used to investigate the 
contributing band power correlations for time-points simultaneous to and preceding target samples 

https://doi.org/10.7554/eLife.75126
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of continuous grip-force measurements. Figure 2A shows the weight distributions of multivariable 
linear models of the best performing channels per subject. Since each cortical or STN electrode has 
multiple channels, only the best channel per electrode is selected for this visualization. As the inter-
pretability of coefficients in multivariable models is limited (Haufe et  al., 2014), we have further 
visualized the normalized coefficients of univariate models for each relative time-point and frequency 
band in Figure 2B. Next, to investigate the cumulative performance contribution of preceding time 
points for optimal feature construction, all frequency bands were concatenated while continuously 
increasing the cumulative number of premovement time-points (from –100 to –1000ms) and each set 
was subjected to training a Wiener Filter. The respective best channel ‍R2‍ performances are shown in 
Figure 2C. A performance saturation becomes visible when concatenating 5 time-points from 500ms 
(prior to target sample) to 0ms (target sample), resulting in an optimal input vector of 8 frequency 
bands with 5 time-points (=40 features) for further analyses.

XGBOOST outperforms other machine learning models for grip-force 
decoding
In order to build a grip-force decoder, different machine learning (ML) algorithms were tested in 
a large-scale Bayesian Optimization hyperparameter search (see Supplementary file 1B for a list 
of hyperparameters for each model). Elastic - Net regularized Linear Models, Neural Networks and 
Gradient Boosted trees (XGBOOST) (Chen and Guestrin, 2016) were tested for each channel for 
contra- and ipsilateral movements. XGBOOST was included as it can learn non-linearities and has 

Figure 1. Movement induced spectral changes are more dominant for ECoG than STN-LFP signals for a grip force task before and after a machine 
learning feature signal processing pipeline. (A) ECoG, STN, and gripping force were recorded simultaneously during performance of a Go / No-Go task. 
(B) Individual ECoG and STN electrodes were localized and transformed into in Montreal Neurological Institute (MNI) space (Figure 1—source data 
1). Note that ECoG strip designs varied slightly between patients (see Supplementary file 1a), leading to varying dimensions of overall input feature 
matrices. The number of ECoG channels (average n=9.45 ± 11.15 STD per hemisphere) is higher compared to the number of STN LFP channels (n=3). 
(C) Mean spectral power of all ECoG and STN channels for contra- and ipsilateral movements showed typical movement induced spectral changes 
(Figure 1—source data 2). (D) Virtual streaming of data packets secured real-time compatible processing and normalization to extract time-frequency 
modulations into discrete feature time-series. Mean features of all ECoG and STN channels are visualized (Figure 1—source data 3). (E) Schematic flow 
chart of the implemented real-time enabled feature extraction, machine learning evaluation and functional and structural connectivity analysis pipeline.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. ECoG and STN electrode localizations.

Source data 2. Mean ECoG and STN spectral power.

Source data 3. Mean ECoG and STN features.

Figure supplement 1. Analyzed movements show variability in maximum amplitude and velocity.

https://doi.org/10.7554/eLife.75126
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advantages over other models with respect to feature selection. To further utilize potential informa-
tion derived from spatial patterns, the Source Power Comodulation (SPoC) framework (Dähne et al., 
2014) was used in combination with Elastic - Net or XGBOOST predictors. Each model was informed 
by 40 features (8 specific frequency bands concatenated at 5 time-points ranging from t = –500ms 
to t=0ms to the target sample) per channel and evaluated via rigorously cross-validated test-set 
predictions ranked by ‍R2‍ coefficients of determination. Figure 3 shows performance outcomes for 
the different machine learning methods, with overall best results achieved by XGBOOST from ECoG 
signals (see Supplementary file 1c for further details). Contralateral ECoG strips had significantly 
higher decoding performances than ipsilateral ones (contralateral ‍R2‍ = 0.31 ± 24, ipsilateral ‍R2‍ = 0.13 
± 0.16, p=0.02). Given the relatively low decoding performances for STN-LFP, we applied permuta-
tion tests to confirm that performance was above chance (contralateral p=0.025, ipsilateral p=0.028). 
Corroborating the model choice in previous literature, highest STN performances were achieved with 
the Wiener Filter method for contra- and ipsilateral movements (Shah et  al., 2018). Importantly, 
varying combinations of multiple ECoG and/or STN channels did not lead to significant performance 
advantages (Figure 3 C+D), which is important for the utility and design of machine learning enabled 
implantables.

Grip-force decoding performance is correlated with PD motor 
impairment and subthalamic beta burst dynamics
To investigate potential sources of bias from patient specific information on grip-force decoding 
performance, we performed Spearman’s correlations with the grand average from all contra -and 
ipsilateral decoding performances. Averaging was necessary to obtain one value per patient. Age 
(ρ=–0.16, p=0.32), disease duration in years (ρ=0.31, p=0.17) and number of movements (ρ=–0.41, 
p=0.11) and movement variability (Rho = –0.49, p=0.06) did not reveal significant correlations. 

Figure 2. Linear Models and Wiener Filters reveal temporally and spectrally specific coefficient distributions 
with grip-force decoding performance gain by including signals preceding the target sample by up to 500ms. 
(A) Multivariable linear model coefficients trained only from the instantaneous sample (0 time lag with respect 
to decoded target sample) including all frequency bands from best channels per patient resemble movement 
induced spectral changes with beta desynchronization and gamma synchronization (Figure 2—source data 1). 
ECoG derived coefficients yield higher absolute values than STN-LFP derived coefficients. (B) Univariate frequency 
and time lag specific Linear Models were trained and visualized to improve interpretability of average coefficients 
in the absence of interactions (Figure 2—source data 2). Low γ (60–80 Hz), HFA (90–200 Hz), and all γ (60–200 Hz) 
bands show stronger positive associations for contralateral over ipsilateral movements. Moreover, stronger 
associations are visible for ECoG over STN-LFP signals for ‍β‍, HFA, and ‍γ ‍ bands. (C) Wiener Filters can integrate 
multiple time-steps in Linear Models leading to an incremental performance gain when signals are included 
preceding the current target sample by up to 500ms (Figure 2—source data 3).

The online version of this article includes the following source data for figure 2:

Source data 1. Best channel Linear Model coefficients trained from instantaneous sample.

Source data 2. Univariate Linear Model coefficients of single frequency band and time lag.

Source data 3. Wiener Filter multiple time-step comparison.

https://doi.org/10.7554/eLife.75126
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Figure 3. XGBOOST outperforms other machine learning methods for ECoG based grip-force decoding. Based on the presented real-time compatible 
signal processing pipeline Neural Networks, Elastic - Net regularized Linear Models, Wiener Filters and extreme Gradient Boosting (XGBOOST) 
regression models were tested. Mean ‍R2‍ test-set grip-force decoding performances are shown for the best channel per patient after 10 rounds of 
Bayesian Optimization of hyperparameters with nested cross-validation for ECoG (A) and STN-LFP (B) (Figure 3—source data 1). The same pipeline 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.75126
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We further investigated whether motor impairment related to the hypodopaminergic state in PD 
can explain differences in grip-force decoding across patients. Therefore, we correlated preoper-
ative OFF medication total UPDRS-III scores, which revealed negative correlations for best ECoG 
(ρ=–0.55, p=0.039) and STN-LFP (ρ=–0.55, p=0.042) channels (Figure 4 A+B). Combined ECoG 
and STN channel performance also showed significant correlations (‍ρ‍=–0.54, p=0.045), as well as 
combined ECoG (‍ρ‍=–0.55, p=0.045) and combined STN-LFP performances (‍ρ‍=–0.61, p=0.024). To 
test whether the correlation measure was corrupted by outliers, we repeated the analysis using the 
robust percentage-bend correlation (Pernet et al., 2012) which replicated the significant association 
between UPDRS total score and mean contra -and ipsilateral channel performance for ECoG (r=–0.62, 
p=0.04) and STN (r=–0.7, p=0.016). This correlation was temporally specific to decoding of ongoing 
grip-force, indicative of the models’ underestimation of motor output (Figure 4C). Thus, the lower 
decoding performance in patients with more severe symptom severity could not be attributed to 
changes in decoder output in the absence of movement or temporal imprecision. This has practical 
implications and highlights the importance of investigating interactions between disease and machine 
learning approach for neural implants.

To better understand the relationship of PD pathophysiology and grip-force decoding performance, 
we have further investigated associations between cortical and subthalamic beta burst dynamics. We 
follow the methodology of previous reports that demonstrated that the time spent in beta burst 
correlates with impairment of movement kinematics (Torrecillos et  al., 2018). Beta bursts were 
defined as threshold crossings of the beta feature vector above the 75th percentile of the baseline 
period. Following the previous finding that specifically the time-spent in low-beta but not high-beta 
bursts was correlated with PD motor impairment (Lofredi et al., 2019), we investigated these bands 
separately for the motor preparation period (−1–0  s with respect to movement onset) and move-
ment execution period (0–1 s following movement onset). To uncover a potential relationship of the 
beta-burst metric with PD pathophysiology, we performed correlations with UPDRS-III total scores. 
Significant correlations were found between UPDRS-III and low-beta bursts in STN-LFP signals during 
motor preparation (‍ρ‍=0.63, p=0.02; Figure 5A) and movement execution (‍ρ‍=0.56, p=0.04; data not 
shown), but not for the high-beta band (p>0.05). Conversely, for ECoG high-beta but not low-beta 
burst dynamics during motor preparation but not movement periods were significantly correlated 
with UPDRS-III total scores (‍ρ‍=0.55, p=0.04). In summary, we provide evidence that both subthalamic 
and cortical beta burst dynamics relate to PD motor sign severity with subthalamic low-beta bursts 
showing the most robust correlations, both during motor preparation and movement periods.

To relate these findings to movement decoding performance from cortex, we correlated the grand 
average XGBOOST grip-force decoding performances from ECoG channels (as above for UPDRS-III) 
with high- and low-beta burst dynamics in both ECoG and STN-LFP signals. ECoG based grip-force 
decoding performance was significantly correlated with subthalamic low-beta burst dynamics during 
motor preparation (‍ρ‍=–0.76, p=0.004) and movement execution (‍ρ‍=–0.71, p=0.005; Figure  5B). 
Subthalamic burst dynamics in the high-beta band also correlated with ECoG decoding performances 
during movement (‍ρ‍=0.71, p=0.007) but not motor preparation. Cortical burst dynamics from ECoG 

was subjected to spatial feature extraction approach using all available channels of an electrode for each patient with Source Power Comodulation 
(SPoC). Best ECoG (A) performances were obtained by XGBOOST regressors. STN-LFP signals (B) did not exhibit performance gain when applying 
advanced machine learning methods. The mean ECoG vs. STN XGBOOST performance differences of contralateral ‍∆R2‍ = 0.21 ± 0.18 and ipsilateral 
‍∆R2‍ = 0.069 ± 0.08 movements, indicate the higher grip-force decoding performance of ECoG over STN signals. The mean test-set prediction 
performances were higher for ECoG than for STN-LFP signals across all patients, for both contra- and ipsilateral movements. Best ECoG channels 
outperformed best STN-LFP channels and the combination of best channels from both ECoG and STN-LFP (C) (Figure 3—source data 2). When 
combining multiple channels, performances improve through the combination of ECoG and STN-LFPs (D), but the performances remain below 
individual best ECoG channels as depicted in (C). For combined ECoG +STN – LFP training, the model learned specific combinations between both 
feature locations and failed to select only the best ECoG features due to overfitting.

The online version of this article includes the following source data for figure 3:

Source data 1. Cross-validated ECoG and STN machine learning model performances for single channels.

Source data 2. Cross-validated combined and best-channel XGBOOST performances for best ECoG and STN channels.

Source data 3. Cross-validated XGBOOST performances for multichannel models based on ECoG, LFP and combined ECoG-LFP channels. 

Figure 3 continued

https://doi.org/10.7554/eLife.75126
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signals did not reveal significant correlations with ECoG-based grip-force decoding performances. 
Relevant correlations alongside exemplar burst visualizations and corresponding grip-force decoding 
traces are shown in Figure 5.

Brain mapping of grip-force decoding performance from invasive 
cortical and subthalamic recordings
The spatial distributions of decoding performance on cortex and STN for contra- and ipsilateral move-
ments are shown in Figure 6. To evaluate the relevance of recording location with respect to decoding 
performance, we calculated correlations of performance measures with a priori defined implantation 

Figure 4. Grand average grip-force decoding performances correlate inversely with preoperative PD motor sign severity. UPDRS-III scores show 
significant negative correlations with patient-wise XGBOOST grip-force decoding performance averages for (A) ECoG (ρ=–0.55, p=0.039) and (B) STN-
LFP signals (ρ=–0.55, p=0.042) (Figure 4—source data 1). The temporal specificity of this correlation is revealed through movement aligned sample-
wise correlations of average force prediction model output with UPDRS-III scores across patients (cluster based corrected significant segments are 
displayed shaded) (C+D) (Figure 4—source data 2).

The online version of this article includes the following source data for figure 4:

Source data 1. ECoG and STN single channel performances and UPDRS ratings.

Source data 2. ECoG and STN Force prediction UPDRS correlation.

https://doi.org/10.7554/eLife.75126
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Figure 5. Subthalamic low-beta bursts relate to PD motor impairment and are associated with lower ECoG decoding performance. UPDRS-III scores are 
significantly correlated with time spent in subthalamic low-beta bursts in the motor preparation period (A) and during movement (not shown). Average 
XGBOOST decoding performance correlated inversely with time spent in subthalamic low-beta bursts during motor preparation and movement 
performance (B) (Figure 5—source data 1). Patient examples with excellent (R²=0.71; blue) and suboptimal (R²=0.11; red) performances are highlighted 
in (B) and shown in further detail in (C) (Figure 5—source data 2). Note the difference in decoder output with respect to the original grip-force trace 
(left panel) and the differences in burst frequencies and durations across movement repetitions (right panel) in the motor preparation and movement 
execution (grey shaded area) period.

The online version of this article includes the following source data for figure 5:

Source data 1. Time spend in low-beta burst performance and UPDRS correlation.

Source data 2. Movement onset aligned low-beta bursts for two subjects.

https://doi.org/10.7554/eLife.75126
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Figure 6. Grip-force decoding performances spatially peak in sensorimotor cortex and the dorsolateral 
STN. (A) Channels are color coded for individual XGBOOST grip-force regression performances per channel. 
Performance differences shown are in favor of ECoG over STN and contralateral over ipsilateral recording locations 
for movement decoding. (Figure 6—source data 1) (B) Spatial interpolation across all contacts projected to the 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.75126
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targets, namely the dorsolateral STN (Caire et al., 2013; Horn et al., 2017a) and the hand-knob of 
the precentral gyrus (Mayka et al., 2006). Linear mixed effects models showed a significant within-
subject relation for contralateral ECoG decoding performances (β=−0.002, Lower CI = −0.003, upper 
CI = −0.001, ‍R2‍ = 0.57, p<0.001), but not STN locations (p>0.05). The dependent variable was the 
decoding performance, the fixed effect was the distance to hand knob area or dorsolateral STN 
respectively, and the random effect the subject. Repeating the analyses across electrodes and patients 
in a cross-validated manner revealed no significant predictive value (p>0.05). Thus, Euclidean distance 
to hand knob area for ECoG and therapeutic target for STN was significantly correlated with decoding 
performance within patients, but could not predict decoding performance across channels or patients.

Whole-brain connectomics can aid the discovery of brain networks 
underlying the neural encoding of grip-force
The ability to account for decoding performances for invasive electrodes may soon become as 
important as accounting for variance in stimulation effects, as bidirectional clinical brain computer 
interfaces will rely both on electrical sensing and stimulation. Recently, network mapping of neurostim-
ulation targets has shown utility to predict variance in clinical outcomes following DBS (Horn et al., 
2017b; Horn and Fox, 2020; Li et al., 2020). Here, we extended the same framework to predict 
variance in grip-force decoding performance observed from single channels, using the XGBOOST 
grip-force decoding results. In this approach – termed prediction network mapping – we calculated 
functional and structural connectivity fingerprints by projecting each recording location to a group 
connectome that was acquired in a cohort of PD patients. These fingerprints denote to which other 
brain areas each site is connected to. Using a discriminative fiber tracking analysis, (Baldermann 
et al., 2019; Li et al., 2020) we analyzed the predictive value of structural connectivity from ECoG 
recording locations (for an exemplar case see Figure  7A) for XGBOOST decoding performance. 
Therefore, diffusion imaging derived whole-brain fiber connectome data traversing to more than 
20% of recording locations were used (Figure 7B). The specific fiber distributions included structural 
projections spanning sensory, motor and prefrontal cortex, and could significantly predict decoding 
performance of left out channels (ρ=0.38, p<0.0001; thresholded at a false discovery rate α=0.05) 
and patients (ρ=0.37, p<0.0001) in a cross validated manner (Figure 7D). Next, we created spatial 
models of optimal decoding performance for functional connectivity (R-Maps are shown in Figure 7C). 
This model led to significant predictions of decoding performance in leave-one-channel-out (‍ρ‍=0.37, 
p<0.0001) and leave-one-subject-out cross validations (functional connectivity ‍ρ‍ = 0.37, p<0.0001) 
(Figure 7E). The results were further validated with voxel-wise correlations using the statistical para-
metric mapping (SPM) framework (see Materials and methods for further details). Models such as the 
two presented here could be generalized to all BCI applications and used to identify brain networks 
that encode specific behavioral and clinical target variables.

Discussion
Bidirectional brain computer interfaces will revolutionize the treatment of previously intractable brain 
disorders with brain signal decoding based adaptive neuromodulation. DBS provides a unique plat-
form to trailblaze neurophysiological approaches, disease-specific modulation and computational 
strategies for brain signal decoding for next-generation brain implants. Here, we investigated clin-
ical and computational strategies for grip-force decoding as a representative and pathophysiolog-
ically relevant behavioral target variable. We used multimodal invasive neurophysiology time-series 
data in PD patients undergoing DBS electrode implantation. Our findings can be broken down into 
four advances to the field: (1) we developed a new decoding approach based on multispectral time-
concatenated band-power measures, subjected to Bayesian optimized extreme gradient boosted 

left hemisphere shows peak performances in sensorimotor cortex. STN interpolated decoding performance peaks 
in the dorsolateral portion of the STN, in proximity to the best therapeutic target (Caire et al., 2013).

The online version of this article includes the following source data for figure 6:

Source data 1. Single channel XGBOOST coordinates and performances.

Figure 6 continued

https://doi.org/10.7554/eLife.75126
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ensembles (XGBOOST): this outperformed traditional linear model-based methods and may be 
generalized to all brain signal-based regression problems. (2) Next, we demonstrate that electro-
corticography signals outperform subthalamic LFP for grip-force decoding, supporting the utility of 
additional ECoG in adaptive DBS research for PD patients. (3) Our findings link PD motor impairment, 
PD pathophysiology with deterioration in decoding performance, highlighting a potential impairment 
in movement coding capacity through subthalamic low-beta bursts during motor preparation and 
execution periods. (4) Finally, we could significantly predict how well a specific recording site would 
perform to decode grip force based on brain connectivity. This novel framework (termed prediction 
network mapping) can be used in future implants to identify connectomic networks from which brain 
sensing can predict symptoms and behavior.

Limitations
Our analysis is retrospective in nature and the data were obtained in context of a Go/No-Go task, 
which may have implications on the generalizability of the findings in the application during naturalistic 

Figure 7. Structural and functional movement decoding network analysis reveals cerebellar as well as sensorimotor cortical decoding capacity. 
(A) Visualization of fibers originating from the ECoG recording locations of subject 1. (B) Decoding performance across all subjects and channels 
significant fiber tracts are displayed. All ECoG contacts were projected to the left hemisphere. For every fiber a t-test statistic between connected and 
unconnected brain regions was calculated. Only significant fibers, indicating structural connectivity to grip-force decoding performance, are shown. 
(C) The optimal R-Map is shown for the cortical surface as well as cerebellum for fMRI functional connectivity. Fingerprints were calculated between 
the functional connectivity of every electrode contact to all other voxels. The R-Map was then calculated as a correlation between individual contact 
fingerprints and the contact specific ‍R2‍ decoding performance. (D) Fiber tracking connectivity predicts grip-force decoding performance (leave one 
channel out cross validation ρ=0.38, p<0.0001, leave one patient out cross validation ρ=0.24, p=0.0004) (Figure 7—source data 1). Here, each 
individual point represents a statistic of connected and unconnected fibers of each contact or patient. The previously calculated fiber statistic within 
each cross-validation fold could thus predict the channel or patient specific performance. (E) Functional connectivity predicts decoding performance 
(leave one channel out cross validation ρ=0.37, p<0.0001, leave one patient out cross validation ρ=0.25, p=0.0004) (Figure 7—source data 2). The 
spatial correlation between individual fingerprints and the cross-validation specific R-Map, predicts left out decoding performances.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Fiber Tracking network decoding performance prediction.

Source data 2. fMRI network decoding performance prediction.

Figure supplement 1. 'Prediction Network Mapping’ allows for prediction of machine learning decoding performances using functional and structural 
connectivity.

https://doi.org/10.7554/eLife.75126
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behavior. All model training and evaluations were conducted offline. Nevertheless, we took metic-
ulous care to exclude any circularity in processing and machine learning applications. To this date, 
such circularities are overlooked in some movement decoding papers with filtering, normalization 
and time frequency transformation across entire sessions, thus reaching into the future from the 
point of the individually decoded sample. Ridding our analysis from data that would be unavailable 
in a real-time setting as reported in this study, leads to worse performances, but gives a more real-
istic estimate of model performance in the clinical use-case. While gripping is a relevant motor skill 
for human behavior, our findings are restricted to the decoding of grip-force and may have limited 
generalizability to other movements. The overall number of patients in this study is low. This may 
have limited a more detailed analysis of bias and other factors, beyond the described correlation of 
clinical symptom severity, subthalamic beta burst dynamics, electrode location and connectomics. 
Most importantly, the signal to noise ratio may further impact decoding accuracies differently for 
ECoG and LFP signals. This could in part explain why decoding from ECoG signals may benefit more 
from complex and non-linear model architectures. The comparability of ECoG and LFP recordings 
was further affected by the higher number of available ECoG channels, when compared to only three 
bipolar LFP channels. However, the large effect size of superior decoding performances with ECoG 
may indicate that this bias does not relevantly impact the interpretation of our findings. An additional 
limitation was the relatively small amount of available data per patient, which was constrained by the 
intraoperative setting (see Table 1). For deep learning approaches, we expect better performances 
with increased dataset sizes, which may become available, either through externalized extraopera-
tive recordings (He et al., 2021) or sensing enabled implantable devices (Opri et al., 2020; Gilron 
et al., 2021). Importantly, our finding that decoding performances from single contacts outperform 
multi-electrode models may be a consequence of a combination of short recording durations in this 
study, suboptimal computational model selection and the fact that sensorimotor cortex and STN are 
part of the same circuit that is synchronized in oscillations. While we have made an effort to accom-
modate models that are optimized for spatio-spectral feature learning, and we are confident that 
these cannot outperform single channel approaches in this dataset, future studies should cautiously 
reinterrogate this issue in larger datasets, for example by implementing neural networks optimized 
for this purpose (Peterson et al., 2021). Finally, we should acknowledge that the exploration of the 
neural feature space in this study was non-exhaustive, and further raw data features, such as the local 
motor potential (Mehring et al., 2004), waveform shape features (Cole and Voytek, 2017), and 
aperiodic signal components (Wilson et al., 2022) could further improve decoding performances in 
future movement decoding studies.

Table 1. Subject characteristics.

N Gender
UPDRS 
total Hemisphere Age Movements

Disease 
duration 
[years]

ECoG Strip 
Contact 
Number 
Left

ECoG 
Strip 
Contact 
Number 
Right

0 Male 28 R 60.3 128 10.7 0 6

1 Male 27 L+R 51.2 464 14 28 28

2 Male 33 L+R 53.8 213 7.2 8 8

3 Male 31 L+R 44.2 285 10.1 8 8

4 Male 32 2L+2 R 63.6 381 13.1 28+8 28+8

5 Male 52 L 59.6 84 5.9 6 0

6 Male 55 L 71.6 161 1.4 6 0

7 Male 50 L 52.5 131 8.7 6 0

8 Male 62 L+R 66.8 547 9.8 6 6

9 Male 48 L 67.9 86 17.1 6 0

10 Female 31 R 69 205 10.4 0 6

https://doi.org/10.7554/eLife.75126
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Decoding grip force based on invasive electrophysiology
Our study defines a novel computational strategy to decode grip-force based on ECoG and LFP in 
patients undergoing DBS for PD. It explores defined oscillatory feature sets and compares machine-
learning models with varying complexity, from linear models to artificial neural networks and regression 
trees. ECoG-based movement decoding of varying movement types has been previously investigated 
in epilepsy patients that underwent electrophysiological monitoring (Leuthardt et al., 2004) through 
which local motor potentials and gamma band activity were highlighted as informative features 
(Gunduz et al., 2016). First analyses based on STN-LFPs in PD patients have shown that Wiener Filter 
architectures can be successfully used for grip-force decoding (Tan et al., 2016; Shah et al., 2018). 
The present study extends these previous reports to a continuous non-trial-based decoding approach. 
Furthermore, a direct comparison of ECoG and LFP performance with relation to systematic machine 
learning methods was lacking. Our findings indicate that sensorimotor ECoG recordings are more 
informative than LFP recordings from the STN for grip-force decoding. While this finding is robust, we 
should acknowledge that the size and shape of electrodes (see Supplementary file 1a) and the spatial 
orientation and size of the neural architectures that are sampled are not directly comparable across 
these methods. Thus, it is difficult to derive the relative importance of the different brain regions 
for grip-force and vigor processing in motor control from this comparison. Instead, we interpret our 
result as a practical demonstration of the greater utility of ECoG signals for movement decoding. The 
results in this study are based on extracted band-power features and show superior performances 
with XGBOOST, when compared to other model architectures and algorithms. More specifically, best 
performances were obtained for Bayesian optimized XGBOOST models trained on data from single 
ECoG channels without additional benefit from channel combinations or combined ECoG and STN 
channel sets. In the future, this machine learning approach can be adopted to extend the clinical utility 
of invasive brain stimulation approaches for other brain disorders, e.g. through decoding of tics or 
obsessive compulsive behavior in neuropsychiatric DBS indications.

Towards machine-learning-based adaptive stimulation in Parkinson’s 
disease
Adaptive DBS (aDBS) has the potential for significant innovation in movement disorders (Starr, 2018). 
For Parkinson’s disease, different control policies of subthalamic beta band activity are now tested in 
clinical trials to improve the treatment for patients with akinetic rigid dominant PD (https://clinical-
trials.gov/ Identifier: NCT04681534, NCT04547712) (Little et al., 2013; Arlotti et al., 2018; Velisar 
et al., 2019). Beyond subthalamic beta power, ECoG recordings were previously used to success-
fully decode the presence of dyskinesia through elevated levels of gamma band synchronization. 
This could be used to reduce stimulation intensity to alleviate medication and stimulation induced 
dyskinesia (Swann et al., 2018). Such single biomarker approaches have the advantage that patho-
physiological mechanisms may be the direct target of intervention, while machine learning based 
decoding methods derive correlates of symptoms and behavior indirectly through learning poten-
tially noisy correlations (Neumann et al., 2019). Therefore, single biomarker based aDBS presents 
an optimal starting point for investigating the clinical utility of aDBS in controlled study designs. 
However, single biomarkers alone cannot account for the diverse and complex set of clinical signs 
of PD and behavior, for example during gait (Molina et al., 2021; Thenaisie et al., 2022), speech, 
and tremor (Hirschmann et al., 2013; Hirschmann et al., 2017). Here, a versatile decoding based 
control algorithm may further improve clinical outcome for these patients in the future (Neumann 
et al., 2019; Merk et al., 2022a). Indeed, machine learning-based decoding has been successfully 
described in first translational breakthrough studies (Opri et al., 2020; Gilron et al., 2021; He et al., 
2021). In a complementary approach, we focused on direct grip-force decoding, motivated by the 
hypothesis that future aDBS studies increasing DBS amplitude during periods of higher movement 
vigor may advance the successful treatment of bradykinesia in PD. While our previous findings indi-
cate that relative amounts of beta can still signal bradykinesia during movement, (Lofredi et al., 2019; 
Feldmann et al., 2021) further positive control parameters could keep stimulation proportional to 
intended movement vigor. Moreover, recent reports that beta power correlates negatively with phasic 
dopamine release may further substantiate the idea of movement/kinematics based STN stimulation 
to support intrinsic movement related dopamine signals (Schwerdt et al., 2020). We may speculate 
that DBS constitutes a network modulation that is similar to dopamine transients by suppressing local 

https://doi.org/10.7554/eLife.75126
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firing of the subthalamic nucleus (Milosevic et al., 2018) and shifting the balance of basal ganglia from 
indirect to direct pathway activity. As highlighted above it was recently shown in non-human primates 
that phasic decreases in beta in the basal ganglia are correlated to phasic dopamine signals during 
movement (Schwerdt et al., 2020). Thus, in order to support the intrinsic dopaminergic capacity of 
PD patients, future machine learning based aDBS approaches could be complemented by algorithms 
that inform the stimulation on behavioral and motor adjustments to mimic intrinsic phasic dopamine 
signals. Previous studies have successfully decoded the presence of movement using cortical beta 
activity (Opri et al., 2020) which could also become a viable treatment option in PD. However, getting 
an estimate of movement vigor that is through the prediction of grip-force may complement advanced 
aDBS control policies, as multivariate models emerge for the next-generation of neurotherapeutics.

Notably, the proposed adaptive stimulation would require a fast algorithmic adaptation of stimu-
lation to ongoing behavior. This could be combined with additional slower adaptations in response 
to medication or sleep cycles. Specifically for PD, beta-activity-based adaptive stimulation can be 
well suited to track the patient’s overall symptom state (Tinkhauser and Moraud, 2021) while more 
rapid stimulation adaptations based on vigor can follow fast kinematic changes. The utility of vigor-
based stimulation and the combination of this approach with additional slower adaptation algorithms, 
require further proof-of-concept studies before the clinical utility can be foreseen. In our study, we 
demonstrate that motor symptom severity itself can have direct and negative effects on decoding 
performance, which we should keep in mind during clinical decision making. Previous studies have 
shown that the presence of beta bursts correlated with motor performance in cortex (Little, 2019) 
and STN (Torrecillos et al., 2018), which could degrade decoding performance (Khawaldeh et al., 
2020). Our study replicates and extends these findings, as we show a direct correlation between 
movement related beta burst dynamics and PD motor sign severity. More importantly, our results 
show that the amount of time the STN is bursting in the low-beta band, during motor preparation and 
movement execution is inversely correlated with ECoG based grip-force decoding performance. An 
obvious interpretation of this finding is that excessive synchronization in the STN may impair flexible 
motor control by decreasing information coding capacity and neural entropy as previously suggested 
in animal studies (Mallet et al., 2008; Cruz et al., 2009) and recently suggested for subthalamic beta 
bursts (Velasco et al., 2022). Again based on the inverse relationship of beta activity and dopamine 
(Schwerdt et al., 2020), we may speculate that beta bursts may relate to transient dips in dopamine 
signaling. Dopamine was shown to precede and invigorate future movement (da Silva et al., 2018). 
If subthalamic beta bursts indicate phasic decreases in dopaminergic innervation, we could expect 
a loss of invigoration and reinforcement of ongoing neural population activity in the cortex – basal 
ganglia – thalamic loop, which offers an elegant explanation for the lower decoding performance from 
ECoG signals in the absence of obvious cortical activity patterns.

Beyond beta bursts our findings indicate general impact of motor symptoms in the hypodopami-
nergic state on machine learning based kinematic decoding capacity. This highlights the conceptual 
relevance of disease specific interactions with computational models. Interestingly, in the hypodopa-
minergic state, the model output underestimated the grip force extent produced by the patients. This 
could reflect a loss of neural vigor representations related to insufficient dopaminergic modulation 
(Turner and Desmurget, 2010). In the future, we will have to account for the individual impact of 
disease specific changes in brain signals that affect decoding performance. Further, our results corrob-
orate the notion that dopamine plays a key role in coding and modulating neural representations of 
movement kinematics in the human brain.

Connectomics can aid the discovery of brain networks underlying 
encoding of clinical and behavioral target variables
Decoding performance for clinical BCI may be drastically improved when adjusting brain signal 
recording sites to the underlying interconnected network that is relevant for encoding of the specific 
target behavior. For instance, when decoding language or speech, one could envision that recordings 
at either Broca’s or Wernicke’s region could be helpful, but a combination of both could be optimal. 
The two regions form a network with direct connections via the Arcuate Fascicle. In the present study, 
we have leveraged multisite recordings from various electrode locations across patients to identify 
the network that would be most informative for grip force decoding. For this endeavor, we adapted 
two existing methods that are able to isolate (i) connected voxels and (ii) connected fiber tracts (Horn 
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et al., 2017b; Li et al., 2020) associated with a specific target metric (such as grip-force decoding 
performance in the present case). While Euclidean distance to motor target, i.e. hand knob area for 
ECoG and therapeutic target for STN, was significantly correlated with decoding performance within-
subject, this simplistic notion could not predict decoding performance across channels or patients. 
Thus, proximity to landmarks alone does not reliably help the identification of optimal recording 
sites. Given the complexity and vast distribution of movement related brain areas, from cerebellum 
to frontal cortex to parietal cortex, it may not be surprising that whole-brain connectomics outper-
form single region of interest based distance metrics for predicting informative recording locations. 
The development of a connectomic identification of optimal decoding locations has important impli-
cations in clinical adoptions of BCI technology. Preoperative identification of brain networks would 
allow the design of optimal electrode architectures and targeted implantation to cover strategic 
nodes of distributed networks for decoding of clinical variables and behavior. Moreover, connectomic 
approaches can inform the optimal spatial feature selection of pretrained machine learning models 
to facilitate brain signal decoding without the requirement for individual (re-)training. Importantly, 
the connectomic models that we used can be trained based on multiple dimensions of input-output 
relationships, for example for decoding of behavior like grip-force, but also for decoding clinical signs, 
such as tremor or mood disturbances. Thus, when implanting a high-density ECoG grid, connectomic 
analyses can generate target specific contact combinations, for example focusing on primary cortex 
for tremor and supplementary motor area for motor intention and bradykinesia. Our results high-
light the utility of whole-brain connectomics to predict machine learning-based brain signal decoding 
performance that can be generalized to any bidirectional clinical brain-computer interface use-case. In 
the future, neurosurgeons may not target individual sensing locations in isolation, but instead deter-
mine optimal implant trajectories in accordance with whole-brain connectomic fingerprints for optimal 
BCI performance.

Conclusion
Our analysis from PD patients undergoing DBS implantation showed that ECoG recordings outper-
form STN-LFP recordings for grip-force decoding throughout different machine learning methods, 
with XGBOOST showing the highest performance. Parkinsonian motor sign severity and subthalamic 
low-beta bursts were associated with loss of decoding performance, indicating a specific link between 
PD pathophysiology, kinematic coding capacity and motor impairment. To investigate the spatial rela-
tionship of ECoG decoding performances in the brain, we have formalized a connectomic framework 
that could cross-predict decoding performances across recording sites and patients, based on under-
lying whole brain MRI connectivity patterns. Our findings highlight the utility of ECoG for intelligent 
adaptive stimulation in PD, corroborate the role of PD symptom severity in kinematic coding and pave 
the way for connectomic neurosurgery for machine learning-based brain signal decoding. We hypoth-
esize that future neurotechnological treatments may have the potential to outperform traditional drug 
regimes, due to a key advantage in the temporal and spatial precision of therapeutic delivery towards 
a precision medicine approach for intelligent adaptive DBS (Neumann et al., 2019; Neumann and 
Rodriguez-Oroz, 2021; Merk et al., 2022a).

Materials and methods
Participants
The current study is based on previously published data (Alhourani et al., 2020). In brief, subtha-
lamic LFP and subdural ECoG recordings were simultaneously acquired from 11 PD patients. The 
patients were subjected to bilateral STN-DBS lead implantation, as proposed by standard clinical 
indications criteria. In accordance with protocol #PRO13110420, approved by the Institutional 
Review Board of the University of Pittsburgh, informed consent for all patients was obtained prior 
to any surgical procedure. The subject characteristics are detailed in Table 1. UPDRS Part III scores 
for the off-medication conditions were collected in a time period of 1–3 months prior to surgery by 
movement disorder neurologists. Dopaminergic medications were withheld for at least 12 hr before 
intraoperative testing.

https://doi.org/10.7554/eLife.75126
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Behavioral paradigm
The behavioral task performed for this study was previously described (Kondylis et al., 2016; Alhou-
rani et al., 2020; Fischer et al., 2020) and it is schematically shown in Figure 1A. The task included Go/
No-Go cues with randomized inter-trial interval durations. Feedback durations were adjusted based 
on grip force reaction times. In the present analyses, time-series were virtually streamed as continuous 
data to simulate real-time grip-force decoding, irrespective of task trials. Subjects were fully awake, 
and no anesthetic agents were administered for at least 1 hr before the task procedure. No medica-
tion was given during the task. The task paradigm was implemented using the Psychophysics Toolbox 
(Brainard, 1997) on a portable computer. The trials consisted of a simultaneous presentation of a 
yellow traffic light in the center of a screen, and a cue on one side indicating which hand the subject 
should use for the subsequent response of squeezing the handgrip. The cue remained on screen for 
1000–2000ms, followed by the traffic light changing either green or red, signaling a ‘go cue’ and 
‘no-go cue’, respectively. Subjects performed the task for a cumulative total time of 10–25 min. As the 
present study focuses on grip-force decoding performance based on the electrophysiological signals, 
all sessions containing valid movements were merged per subject for further analysis. To validate that 
the used grip-force label in our data varies not only between two movement states, but constitutes a 
relevant regression problem with varying force amplitude and velocity, all movement maximum ampli-
tudes and velocity traces are visualized in the Figure 1—figure supplement 1.

Electrophysiological recordings
Subdural electrode strips were implanted temporarily through standard frontal burr holes located 
near the coronal suture and aimed posteriorly to the hand knob motor cortex region. Strip targeting 
has been previously described and was based on markings of stereotactically defined overlying scalp 
locations (Kondylis et  al., 2016). STN-DBS electrodes were implanted bilaterally, targeting the 
dorsolateral motor area of the STN. ECoG data were recorded intra-operatively using six-contact (left 
n=5 patients, right n=3), eight-contact (left n=3, right n=3) and twenty-eight-contact (left n=2, right 
n=2) strip electrodes. The electrode details are shown in Supplementary file 1a and all ECoG and 
STN electrodes are plotted in Figure 1B (mean number of electrode contacts were 10.18±11.29 for 
left and 8.9±12 for right hemispheres). A referential montage was used in which the reference elec-
trode was placed in the scalp and a ground electrode was placed in the skin overlying the acromion 
process. ECoG and STN signals were filtered (0.3–7.5 kHz), amplified, and digitized at 30 kHz using 
a Grapevine neural interface processor (Ripple Inc). Force signals were digitally recorded simultane-
ously with the ECoG and STN-LFP signals. LFPs from the STN were recorded using the clinical DBS 
lead (model 3389, Medtronic) from all four contacts and referenced offline in a bipolar montage. All 
signals were resampled to 1 kHz for offline analysis. To investigate the variability of grip-force as a 
potential bias for decoding performance, we calculated the variance of peak force across movement 
repetitions.

Electrode localization
Subdural electrode reconstructions were obtained by aligning pre-operative MRI, intra-operative fluo-
roscopy, and postoperative CT. Representative images of this technique were previously shown in 
detail (Randazzo et al., 2016). In short, the CT and MRI were co-registered using mutual information 
using the SPM software library and rendered onto 3D skull and brain surfaces using Osirix (v7.5) (Rosset 
et al., 2004) and Freesurfer (v5.3) software packages (Dale et al., 1999), respectively. These surfaces 
and the fluoroscopy images were then aligned according to common points: stereotactic frame pins, 
implanted depth electrodes, and skull outline positions (Randazzo et al., 2016). The parallax effect of 
the fluoroscopic images was accounted for using the obtained distance from the radiation source to 
the subject’s skull. Succeeding the surface-to-fluoroscopic image orientation alignment, a 3D location 
for each electrode contact was projected from the fluoroscopic image to the cortical surface. Deep 
brain stimulation electrode locations were reconstructed using the advanced neuroimaging pipeline 
defined by Lead-DBS using default settings (Horn et al., 2019). In brief, preoperative MRI and post-
operative CT scans were co-registered and normalized to MNI 2009b NLIN ASYM space. Electrode 
artefacts were visually identified and marked to obtain MNI coordinates of DBS electrode contacts. 
All electrode localizations are visualized in Figure 1B.

https://doi.org/10.7554/eLife.75126
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ECoG and LFP preprocessing and feature extraction
The entire preprocessing pipeline used in the present study was optimized for real-time performance 
and inspired by the Berlin Brain Computer Interface (Blankertz, 2006). Processing was performed 
in Python using custom code based on MNE-python (Gramfort et al., 2013), mne_bids (Appelhoff 
et al., 2019) and pybv (https://pybv.readthedocs.io/en/stable/). All raw data files were saved in the 
iEEG-BIDS structure (Holdgraf et  al., 2019). To account for baseline drifts, the force traces were 
cleaned using a normalization approach presented for previous ECoG finger trajectory decoding (Xie 
et al., 2018). A real-time data stream of untouched electrophysiological raw data was emulated to 
ensure that all processing that can impact decoding is performed in a real-time compatible manner. 
Referencing was performed online (i.e. after streaming virtual data packets). All LFP recordings were 
referenced bipolarly, against the adjacent contacts (0–1, 1–2, 2–3 with contact 0 being the lowest by 
convention of the manufacturer). Throughout the manuscript, we adopt the clinical usage of elec-
trodes (also named ‘leads’) and contacts from the DBS realm. During preprocessing (in pseudo real 
time), we derive three bipolar STN-LFP channels from four adjacent contacts in one DBS electrode 
(also called ‘lead’). We also follow this nomenclature for ECoG, where we call the entire strip an 
‘electrode’. ECoG electrodes in our dataset can have varying number of contacts (see Supplemen-
tary file 1a). ECoG recordings were referenced by subtracting the common average of all ECoG 
electrodes, therefore the number of channels per ECoG electrode is equal to the number of contacts 
per strip. To facilitate computationally efficient real-time enabled algorithms, time frequency decom-
position for the machine learning analysis was conducted by bandpass filtering in the ‍θ‍(4–8  Hz), 
‍α‍(8–12 Hz), ‍β‍(13–35 Hz), low ‍β‍(13–20 Hz), high ‍β‍(20–35 Hz), all ‍γ‍(60–200 Hz), low ‍γ‍(60–80 Hz) and 
high-frequency activity, (90–200 Hz) frequency bands. Overlapping broad ‍β‍ and ‍γ‍ bands were added 
in addition to subbands to enable the investigation of distinct interactions within these frequency 
bands (Figure 1C). To estimate band specific activity, different time durations were used for band-
pass filtering with longer time segments for lower frequencies, and shorter time segments for higher 
frequencies (‍θ‍=1000ms, α and β bands = 500ms, γ = 100ms). To get an estimate of amplitude of 
the activity in the filtered signals, variance was extracted in intervals of 1 s in a sliding window of 
100ms resulting in a time resolution of 10 Hz. All variance estimates were normalized by subtracting 
and dividing by the median in a sliding window of 10 s to account for differences in impedance and 
proximity to the source before subjecting the data to the machine learning analysis. All features were 
clipped as an artifact rejection mechanism when they exceeded a normalized value of [–2 2]. The used 
normalization is fully compatible with a real-time prediction approach, as data acquired in the future 
do not influence the present predictions. See Figure 1E for an outline of the methods pipeline. For 
the purpose of visualization, Morlet wavelets (7 cycles) were used to demonstrate the entire time-
frequency decomposition (Figure 1C).

Machine learning training and evaluation
A rigorous nested cross-validation approach was implemented. An outer threefold cross validation 
split the data into folds of two third training and one third test set. For each individual channel, a 
Bayesian Optimization hyperparameter search (Frazier, 2018) was then conducted for 10 rounds using 
the training set only. For each round the training data was trained and tested in an inner threefold 
cross-validation with 80% training size. Post-hoc assessment confirmed convergence in performance 
after a maximum of 5 rounds in all recordings. The mean ‍R2‍ coefficient of determination of every test 
set estimate of the outer cross-validation was used as the performance measure as defined below:

	﻿‍

R2(y, ŷ) = 1 −

n∑
i=1

(yi−ŷi)2

n∑
i=1

(yi−ȳ)2

‍�

Since the ‍R2‍ metric can be lower than zero for predictions that are worse than constant predictions, 
we used a lower threshold at zero to make performances comparable for the purpose of visualization. 
The input features for every model were all eight previously described frequency bands. In order to 
test the contribution of time points preceding the decoded target sample, frequency band features of 
different time points were concatenated and compared with respect to their decoding performance. 
The present study investigated commonly used and promising linear and non-linear machine learning 
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algorithms, specifically elastic net regularized linear models, linear Wiener filters, neural networks, 
gradient boosted decision trees (XGBOOST) and source power comodulation.

Linear models
Linear models can capture underlying feature dependencies and reveal those as correlations in each 
weight parameter. Input features are multiplied by a weight coefficient. The dot product of the weight 
vector ‍w‍ and feature vector ‍x‍ is then shifted by the bias ‍b‍. The feature vector in this analysis is the 
vector of all frequency bands for a single time point. The prediction label ‍y‍ is the baseline corrected 
gripping force. For a linear regression the activation function is linear, is defined as follows:

	﻿‍ y = wx + b‍�

To prevent overfitting, regularization in the form of ‍l1‍ and ‍l2‍ norm is commonly used. Here we 
tested different parameters of the elastic-net (enet) regularization (Zou and Hastie, 2005), which is a 
combination of the ‍l1‍ and ‍l2‍ norm specified by the regularization hyperparameters ‍α‍ and ‍ρ‍, respec-
tively. The objective function of the enet model follows:

	﻿‍
min

w
1

2nsamples
∥Xw − y∥2

2 + αρ ∥w∥1 + α
(

1−p
)

2 ∥w∥2
2‍�

where ‍X‍ is a matrix of dimension ‍n‍ x ‍m‍ whom ith row is the feature vector ‍x‍ of size ‍m‍ and ‍w‍ is 
the solution vector, which, due to the ‍l1‍ sparse regularization term, most of the coefficient will be 
expected to be zero. For hyperparameter-search, ‍α‍ and ‍ρ‍ were both sampled from a uniform distri-
bution ranging from zero to one. Since elastic nets are solved using gradient descent, the maximum 
training iteration also needs to be specified. Here an iteration number of 1000 has been used. The 
implementation was done using the scikit learn Python package (Pedregosa, 2011).

Wiener filters
Tan et al. described the use Wiener filters in the application of force estimation from STN-LFP signals 
(Shah et al., 2018). Here, the output ‍y‍ is a weighted sum of features in the time and frequency domain 
in the weight matrix ‍W ‍. ‍I ‍ frequency band features are used together with ‍J ‍ lags. For the regression 
analysis the activation function is kept linear, as follows:

	﻿‍
y
(
n
)

=
J∑

j=0

I∑
i=0

wijxi
(
n − j

)
‍�

This equation has a closed form solution, known as the normal equation (Proakis and Monolakis, 
1996). Wiener filters essentially implement a multivariable linear model with multiple time-steps. 
Using Wiener filters, we tested the contribution of different concatenated time-steps of brain signals 
preceding the decoded target sample. This provides insight about the optimal feature length in the 
time domain.

Neural networks
We have further investigated the utility of artificial neural networks. While linear models and Wiener 
filters may underfit the data, neural networks can be very complex and have a higher risk to overfit 
with increasing complexity. The ideal model architecture finds a balance between under and over- 
fitting to the training dataset. In this context not only single weight correlations of band features 
could contribute to force decoding performances, but a richer representation of feature invariances 
in combinations of different frequency bands may be learned by additional layers and units of the 
model. The architecture of neural networks is derived from linear models with non-linear activation 
functions, which are referred to in this context as units. Multiple units are combined in different layers 
with different activation functions.

Explicitly, the output ‍y‍ of the ith unit in layer ‍l‍ is the weighted sum of activations of the previous 
layer units ‍y

l−1
k ‍ with weights ‍w

l
ik‍ ,

	﻿‍
yl

i = fl
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ikyl−1
k + bl
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Neural networks are trained through a cost function using a gradient descent algorithm. Hyper-
parameters were adjusted in order to prevent over -and underfitting (Geman et al., 1992). Here, 
neural networks were tested with at least one hidden layer. The input nodes of this layer were in the 
hyperparameter search uniformly sampled in a range of 1–10. The number of hidden dense layers 
were sampled from a range of 1–3 layers. The hidden dense layer neurons were uniformly sampled 
in a range of 1–10. Sigmoidal and hyperbolic tangent activation functions were tested in the hidden 
layers. After each hidden layer a batch normalization layer and a dropout layer with a factor of 0.2 
was added. The output activation function was set linear. The used training algorithm was the Adam 
optimizer (the learning rate was sampled from a log uniform distribution from 0.0001 to 0.01, ‍β1‍ was 
set to 0.9, ‍β2‍ to 0.999 and ‍ε‍ to 0.999). The Adam optimizer improves backpropagation such that each 
weight parameter is adapted according to its first and second momentum (Kingma and Ba, 2015). 
Each neural network was trained using 1,000 epochs with a batch size of 100. The loss function was 
set to the mean squared error. To prevent overfitting, the training set was further split into train and 
validation set with 80% train. The validation dataset was then used for early stopping with a patience 
parameter of 10 epochs. The model with lowest validation error is then used for test set prediction. 
Due to poor performances, the inner cross-validation was left out for the neural network training 
sequence. Neural Networks were implemented using the TensorFlow framework (Abadi, 2016).

Gradient boosted trees using the XGBOOST framework
A common problem with neural networks is the high dependency on the provided set of features and 
potential to learn spurious input-output associations. In this analysis, a feature vector of all 8 frequency 
bands concatenated for 5 time points requires a Wiener Filter with 40 weights. In an architecture-like 
neural networks all these features are contributing to the overall force prediction, nevertheless not 
all weight parameters are promising. Decision Tree algorithms overcome this problem naturally by 
implementing optimization of input feature use in their architecture. Thus, decision trees and random 
forests, first described by Breiman, 2001, were proven to be a robust, accurate and successful tool for 
solving machine learning tasks, including classification, regression, density estimation and manifold 
learning or semi-supervised learning (Gall and Lempitsky, 2013). Random forests are an ensemble 
method consisting of many decision trees. A decision tree is a statistical optimal data segregation 
method, that is only controlled by conditional sequences. Different implementations were proposed 
on top of Decision Trees. AdaBoost (Schapire, 2009) is an adaptive learning algorithm that builds 
up successive decision trees iteratively. By that an ensemble of multiple weighted weak learners are 
combined to yield a strong estimator. Gradient Boosting is built using the same concept. According 
to Empirical Risk Minimization it fits each decision tree based on the residuals of a defined objective 
function. This objective function is typically based on an error loss and a regularization term. The 
model is initialized using a constant value. In an iterative process, the new trees are added to the 
model up till the maximum defined estimators are reached. Here, the scalable tree boosting frame-
work XGBOOST (Chen and Guestrin, 2016) was used. In this analysis the number of boosting rounds 
is set to 10. The depth of each tree is sampled uniformly in a range from 1 to 100. When adding new 
trees to the model the parameter learning rate ‍η‍ is scaling the contribution of each tree prediction 
and is sampled here log uniformly from of the range [ ‍10−5‍ , 1]. Regularization in Gradient Boosted 
Trees is controlled by different factors. One of the factors is the minimum splitting loss ‍γ‍. For every 
decision tree, new nodes were added only if the gain metric was above ‍γ‍. It is here sampled from a 
uniform distribution between 1 and 10. Hyperparameters for all used machine learning methods are 
listed in detail in Supplementary file 1b.

Source power comodulation
A state-of-the-art movement prediction approach is the source separating framework called Source 
Power Comodulation (SPoC) (Dähne et al., 2014). Oscillatory sources are here extracted based on 
their power comodulation with the force gripping target. SPoC was implemented using the MNE 
framework (Gramfort et al., 2013). Thus, discriminant neural sources are made visible. In this context, 
the band-power at each frequency band of interest was calculated by taking the logarithm of the 
variance of the projected signal in the source space. For sake of comparison, only one spatial filter 
was used for feature computation at each frequency band. In the same manner as before, a Wiener 
filter was then applied in order to resample time lags up to 500ms. Here again, the band power 
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features are then used as input features. A Bayesian Optimization hyperparameter search was also 
here implemented for both the enet model as well as the XGBOOST framework with the aforemen-
tioned parameters.

Hyperparameter search: Bayesian optimization
All models underwent an extensive hyperparameter search using Bayesian optimization. A common 
problem using machine-learning algorithms is finding the optimal hyperparameter settings given a 
certain architecture. Grid search exhaustively tries out all provided hyperparameters while Random 
search only draws random parameters from the given hyperparameter distributions. Sampling the error 
loss function can be computationally expensive. Bayesian Optimization formulates this problem into 
an optimization problem. Here, a cost function is minimized given a set of hyperparameters. Instead 
of sampling from the objective cost function, a probabilistic model is defined. The hyperparameters 
minimizing the negative expected improvement are selected given a multinomial Gaussian process 
using a Matern kernel. Those parameters are then used to sample from the respective regressor in 
the given dataset. The resulting error is used to update the gaussian process distribution and given 
the maximum expected improvement, the next best hyperparameter set is drawn. This process is 
repeated for the elastic net, neural networks and XGBOOST architecture for 10 iterations. For every 
round, a threefold cross validation is used in order to prevent overfitting. Given log-uniform distribu-
tions a wide range of hyperparameters can thus be sampled in a computationally efficient manner. 
The implementation was done using the scikit-optimize framework (https://scikit-optimize.github.io/​
stable/). Supplementary file 1b lists the hyperparameters subjected to Bayesian optimization. The 
chosen methodology is non-exhaustive and primarily serves the comparison of variance in decoding 
explained by the recording location of the signal (ECoG vs. STN), motor symptom severity (UPDRS-III), 
beta bursts and brain networks. It further gives an intuition about the potential of more complex and 
elaborate machine learning methods for brain computer interfaces.

Definition of best model and best channels
Previous studies have repeatedly demonstrated that using a single optimal channel in the STN is 
advantageous over using all available channels (Shah et  al., 2018). Most importantly, addition of 
more channels leads to decreased generalization and higher risk of overfitting with little performance 
benefit. Based on these results and to account for varying numbers of available electrode contacts, one 
channel with optimal decoding performance on the cross-validation test set was chosen per patient 
to quantify and compare decoding performance for the ECoG and STN analysis across patients. Since 
hyperparameter optimization is implemented only within each inner cross validation fold, any circu-
larity and data leakage is circumvented. A robust decoding performance estimate is thus obtained 
through left out testing data only.

Analysis of beta bursts during motor preparation and movement 
execution periods
To investigate a potential relationship between grip-force decoding performance and beta burst 
activity, we have adopted a previously validated approach to movement related burst analyses (Torre-
cillos et al., 2018; Lofredi et al., 2019). Therefore, the beta feature time-series were used and a 
threshold constituting the 75th percentile of the rest periods were calculated. Next, threshold cross-
ings of at least 100ms lengths in the motor preparation (−1–0  s with respect to movement) and 
movement execution (0–1 s with respect to movement execution) were marked as bursts. In previous 
reports, the most informative metric was the ‘time spent in burst’ which is calculated as the sum of 
burst durations in the time period of interest. This metric is directly proportional to the burst prob-
ability at a given time-point. All burst analyses were repeated for the low-beta and high-beta bands 
in ECoG and STN-LFP. The times spent in bursts were correlated with UPDRS-III and ECoG based 
decoding performances.

Prediction Network Mapping with whole-brain connectomics
To investigate whether decoding performance from different recording locations can cross-predict 
decoding performances across patients, we developed a whole-brain connectomics based approach. 
Therefore, ECoG electrode recording locations were projected to normative structural and functional 
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MRI data (Parkinson’s Progression Markers Initiative [PPMI]; https://www.ppmi-info.org/) using 
Lead-DBS software in Matlab (https://www.lead-dbs.org/). (Horn et al., 2019) The PPMI connectomes 
of patients with PD (n = 74) was priorly computed (Ewert et al., 2018) and has been used in context of 
DBS multiple times (Horn et al., 2017c; Neumann et al., 2018; de Almeida Marcelino et al., 2019; 
Lofredi et al., 2021). No patient-specific diffusion or functional MRI was required for this analysis. 
Seeding from each recording site resulted in connectivity profiles (fingerprints) that were expressed 
as voxel-wise whole-brain volumes for functional and structural connectivity and a set of streamline 
connections for structural connectivity. We have adapted three previously published methods lever-
aging normative connectomes as predictive models.

First, fiber streamlines representative of structural connectivity between ECoG channels and all 
other brain areas were isolated and assigned with a ‘Fiber T-score’, associating XGBOOST decoding 
performance with the fiber tracts connectivity from respective ECoG recording locations across 
patients using mass-univariate two-sample t-tests between ‍R2‍ scores in connected vs. unconnected 
recording locations. Only fibers with significant t-scores surviving FDR correction at an alpha level 
0.05 were considered further. Next, T-values were used as weights in an aggregated fiber score to 
predict out of training sample channel and patients’ performances. Next, functional connectivity maps 
were used to generate an ‘R-Map’, a connectivity model which is associated with optimal decoding 
performance, by performing voxel-wise correlations of connectivity and decoding performance from 
recording locations. The connectomic fingerprint from each recording location can then be assigned 
a spatial correlation coefficient that may have predictive value for the underlying decoding perfor-
mance. The predictive value of these two methods were confirmed using ‘leave-one-channel-out’ and 
‘leave-one-subject-out’ cross-validation. Finally, statistical parametric mapping was used to confirm 
the described correlations of structural and functional connectivity using linear-mixed effects models. 
In a voxel-wise approach, structural connectivity between ECoG channels and all other brain areas was 
calculated using Lead Mapper (https://www.lead-dbs.org/). Statistical voxel-wise correlation between 
decoding performance and structural and functional connectivity, separate mixed effects models, with 
a subject based random effect, were corrected for multiple comparisons with random field theory 
as implemented in the Statistical parametric mapping (SPM12) toolbox (https://www.fil.ion.ucl.ac.uk/​
spm/). Functional connectivity strengths between recording sites and sensorimotor cortex (peak coor-
dinate x = –38, y = –22, z=72), parietal lobe (x=6, y = –32, z=82), striatum (x = –34, y = –24, z=26). 
and cerebellum (x=18, y = –50, z = –50 and x = –22, y = –52, z = –54) accounted for decoding perfor-
mance. Similarly, for structural connectivity, a significant cluster in the sensorimotor region (x = –44, 
y = –18, z=70) correlated with high decoding performance. All connectivity analyses were performed 
using ECoG recording locations with contralateral ‍R2‍ performances (Figure 1E). A schematic illus-
trating the different steps of functional and structural prediction network mapping can be found in 
Figure 7—figure supplement 1.

Statistical analysis
Results are stated as mean ± standard deviation. All significance testing was performed using two-
sided Monte-Carlo permutation tests and bootstrapping. p-Values were obtained by shuffling value 
positions and determining the resulting original rho value percentile in the distribution of surrogate 
combinations. Spearman’s correlations were performed because of small sample size and varying 
distributions. Clinical correlations were performed using preoperative UPDRS-III total scores. To test 
for the temporal specificity of the clinical correlation with decoding performance, we performed 
sample-wise correlations of decoding output with UPDRS-III total scores across subjects. Multiple 
comparisons were corrected by adjusting the significance threshold α to the false discovery rate 
(Benjamini and Hochberg, 2016).

Data availability
All raw data in BIDS for iEEG format are openly available through the Harvard Dataverse 
(https://doi.org/10.7910/DVN/IO2FLM). Code and derived source data for the reproduc-
tion of all figures and the machine learning and statistical analysis are provided through 
GitHub (https://github.com/neuromodulation/ECoG_vs_STN; Merk, 2022b; copy archived at 
swh:1:rev:09d3ea5b846681d28edb26943b4315ae5f5a37dd).
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