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Abstract 22 

Changes in DNA methylation (DNAm) are linked to aging. Here, we profile highly conserved 23 
CpGs in 339 predominantly female mice belonging to the BXD family for which we have deep 24 
longevity and genomic data. We use a ‘pan-mammalian’ microarray that provides a common 25 
platform for assaying the methylome across mammalian clades. We computed epigenetic 26 
clocks and tested associations with DNAm entropy, diet, weight, metabolic traits, and genetic 27 
variation. We describe the multifactorial variance of methylation at these CpGs, and show that 28 
high fat diet augments the age-associated changes. Entropy increases with age. The progression 29 
to disorder, particularly at CpGs that gain methylation over time, was predictive of genotype-30 
dependent life expectancy. The longer-lived BXD strains had comparatively lower entropy at a 31 
given age. We identified two genetic loci that modulate rates of epigenetic age acceleration 32 
(EAA): one on chromosome (Chr) 11 that encompasses the Erbb2/Her2 oncogenic region, and a 33 
second on Chr19 that contains a cytochrome P450 cluster. Both loci harbor genes associated 34 
with EAA in humans including STXBP4, NKX2-3, and CUTC. Transcriptome and proteome 35 
analyses revealed associations with oxidation-reduction, metabolic, and immune response 36 
pathways. Our results highlight concordant loci for EAA in humans and mice, and demonstrate a 37 
tight coupling between the metabolic state and epigenetic aging. 38 
 39 
 40 
Keywords: epigenetic clock, lifespan, entropy, DNA methylation, genetic mapping, QTL, weight, 41 
diet  42 
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Introduction 43 

Epigenetic clocks are widely used molecular biomarkers of aging.1 These DNA methylation 44 
(DNAm) age predictors are based on the methylation levels of select CpGs that are distributed 45 
across the genome. Each CpG that is used in a clock model is assigned a specific weight, 46 
typically derived from supervised training algorithms,2-4 and collectively, the methylation status 47 
across this ensemble of “clock CpGs” are used to estimate the epigenetic age (DNAmAge). This 48 
estimate tracks closely, but not perfectly, with an individual’s chronological age. How much the 49 
DNAmAge deviates from the known chronological age can be a measure of the rate of 50 
biological aging. Denoted as “epigenetic age acceleration” (or EAA), a more accelerated clock 51 
(positive EAA) suggests an older biological age, and a decelerated clock (negative EAA) suggests 52 
a younger biological age. While DNAmAge predicts age, its age-adjusted counterpart, EAA, is 53 
associated with variation in health, fitness, exposure to stressors, body mass index (BMI), and 54 
even life expectancy.5-9  55 

DNAm clocks were initially reported for humans.10-12 Since then, many different models of 56 
human DNAm clock have been develop, and this rapid expansion was made possible by reliable 57 
DNAm microarrays that provide a fixed CpG content—starting with the Illumina Infinium 27K to 58 
the current 850K EPIC array.11,13-15 These clock variants differ in the subset of CpGs that go into 59 
the age estimation model. Some clock models are specific to cells or tissues, others are multi-60 
tissue. Some clocks perform better at predicting chronological age, others better capture 61 
biological aging and predict health and life expectancy. 8,16-18 The performance of these clocks 62 
depend heavily on the training models, and the size and tissue types of the training set.13   63 

The DNAm age biomarker has also been extended to model organisms, and this has opened up 64 
the possibility of directly testing the effects of different interventions such as calorie restriction, 65 
rapamycin, and genetic manipulation.3,19-23 However, one point to note is that model organisms 66 
have not benefitted from a microarray platform comparable to that of the human methylation 67 
Infinium arrays. Most rodent studies have used enrichment-based DNAm sequencing, and this 68 
limits the transferability and reproducibility of clocks between datasets since the same CpGs 69 
are not always covered.21 Moreover, these studies are usually performed in a single inbred 70 
strain (for mouse, the canonical C57BL/6), or at most, a few genetic backgrounds, and this 71 
makes it impossible to carry out genetic mapping studies that can complement the human 72 
genome-wide association studies (GWAS) of epigenetic aging.24-28 73 

A new microarray was recently developed to profile CpGs that have high conservation in 74 
mammals. This pan-mammalian DNAm array (HorvathMammalMethylChip40) surveys over 37K 75 
CpGs and provides a unifying platform to study epigenetic aging in mammals.29 This array has 76 
been used to build multi-tissue universal clocks and lifespan predictors that are applicable to a 77 
variety of mammalian species.30,31 Here, we use this array to examine the dynamism and 78 
variability of the conserved CpGs in a genetically diverse cohort of mice belonging to the BXD 79 
family.32,33  80 

The BXDs are one of the pre-eminent murine genetic reference panels used as the experimental 81 
paradigm of precision medicine.34  They are a large family of recombinant inbred (RI) strains 82 
made by crossing the C57BL/6J (B6) and DBA/2J (D2) parental strains. The family has been 83 
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expanded to 150 fully sequenced progeny strains.34,35 The individual members of the BXD family 84 
(e.g., BXD1, BXD27, BXD102), each represents a replicable isogenic cohort. The family 85 
segregates for a high level of genetic variation, and likewise, family members have high 86 
variation in their metabolic profiles, responses to diet, aging rates, and life expectancies.32-34,36-87 
38 The availability of deep sequence data, and unrivaled multi-omic and phenomic data make 88 
the BXDs a powerful tool with which to evaluate the causal linkage between genome, 89 
epigenome, and aging rates.  90 

In our previous work, we used an enrichment-based sequencing to assay the methylome in a 91 
modest number of BXD mice, and reported rapid age-dependent methylation changes in mice 92 
on high fat diet, and in mice with higher body weight.39 In the present work, we start by testing 93 
the performance of new pan-tissue and liver-specific epigenetic mouse clocks, and evaluate 94 
how these relate to metabolic states, genotype-dependent life expectancy, and methylome 95 
entropy. We also apply a multi-factor analysis of site-specific CpG methylation to understand 96 
association among four key variables—chronological age, diet, weight, and lifespan—and the 97 
liver methylome. We perform quantitative trait locus (QTL) mapping, along with multi-omic 98 
gene expression analyses, and identify upstream gene loci that modulate the DNAm clocks in 99 
mice. 100 

Our results are consistent with a faster clock for cases on HFD, and with higher body weight. 101 
This may be partly because exposure to HFD augmented the age-dependent gains in 102 
methylation at specific CpGs. We also observed that BXD genotypes with longer life expectancy 103 
tend to have lower methylation at CpGs that undergo age-dependent methylation gains, and 104 
the entropy computed from this set of CpGs have a significant inverse correlation with strain 105 
lifespan. QTL mapping uncovered loci on chromosomes (Chrs) 11 and 19 that are associated 106 
with EAA. A strong candidate gene in the chromosome (Chr) 11 interval (referred to as Eaa11) is 107 
Stxbp4, a gene that has been consistently associated with EAA by human genome-wide 108 
association studies (GWAS).24,26,27 The Chr19 QTL (Eaa19) also harbors strong contenders 109 
including Cyp26a1, Myof, Cutc, and Nkx2–3, and the conserved genes in humans have been 110 
associated with longevity and EAA.27,40,41 We performed gene expression analyses using 111 
transcriptomic and proteomic data to clarify the molecular pathways associated with epigenetic 112 
aging, and this highlighted metabolic networks, and also apolipoproteins (including APOE) as 113 
strong expression correlates. 114 

Results 115 

Description of samples 116 

Liver DNAm data was from 321 female and 18 male belonging to 45 members of the BXD 117 
family, including both parental strains and F1 hybrids. Age ranged from 5.6 to 33.4 months. 118 
Mice were all weaned onto a normal chow (control diet; CD) and a balanced subset of cases 119 
were then randomly assigned to HFD (see Roy et al. for details33). Tissues were collected at 120 
approximately six months intervals (see Williams et al.32). Individual-level data are in 121 
Supplementary file 1.  122 

DNAm clocks, entropy, and chronological age prediction 123 
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We built three different mouse clocks, and each was developed as a pair depending on whether 124 
the training set used all tissues (pan-tissue) or a specific tissue (in this case, liver). These are: (1) 125 
a general DNAm clock (referred to simply as DNAmAge): clock trained without pre-selecting for 126 
any specific CpGs; (2) developmental clock (dev.DNAmAge): built from CpGs that change during 127 
development (defined as the period from prenatal to 1.6 months); and (3) interventional clock 128 
(int.DNAmAge): built from CpGs that change in response to aging related interventions (calorie 129 
restriction and growth hormone receptor knockout). The clocks we report here were trained in 130 
a larger mouse dataset that excluded the BXDs and are therefore unbiased to the 131 
characteristics of the BXD Family.30,31,42 The specific clock CpGs and coefficients for DNAmAge 132 
computation are in Supplementary file 2. All the mouse clocks performed well in age 133 
estimation and had an average r of 0.89 with chronological age. However, the interventional 134 
clocks had higher deviation from chronological age and higher median predictive error (Table 1; 135 
Figure 1a). The age-adjusted EAA derived from these clocks showed wide individual variation 136 
(Figure 1b). 137 

We next estimated the methylome-wide entropy as a measure of randomness and information 138 
loss. This was computed from 27966 probes that provide high-quality data and have been 139 
validated to perform well in mice.29 Consistent with previous reports,10,43 this property 140 
increased with chronological age, and age accounted for about 6% (in CD) to 28% (in HFD) of 141 
the variance in entropy (Figure 1c). As direct correlates of chronological age, all the DNAmAge 142 
estimates also had significant positive correlations with entropy (Table 1). We hypothesized 143 
that higher entropy levels will be associated with higher EAA, and based on this bivariate 144 
comparison, most of the EAA showed a significant positive correlation with entropy (Figure 1d; 145 
Supplementary file 3). 146 

Table 1. Chronological age prediction and correlation with methylome-wide entropy 147 

Clock type DNAmAge 
name Tissue r with age 

(n=339) 1 

Age 
prediction 

median 
error 

r with entropy 
(n=339)1, 2 

Standard 
clocks DNAmAge 

pan 0.89 0.12 0.43 
liver 0.92 0.10 0.40 

Developmental 
clocks dev.DNAmAge 

pan 0.87 0.14 0.39 
liver 0.91 0.12 0.37 

Interventional 
clocks int.DNAmAge 

pan 0.85 0.17 0.29 
liver 0.86 0.15 0.47 

1p < .0001; 2p < .0001 Methylome-wide entropy calculated from ~28K CpGs 148 

How the epigenetic readouts relate to diet, sex, and metabolic traits 149 

Diet. HFD was associated with higher EAA for four of the clocks (Table 2). For instance, the 150 
liver-specific interventional clock diverged between the diets (Figure 1a), and CD mice had an 151 
average of –0.04 years of age deceleration, and HFD mice had an average of +0.11 years of age 152 
acceleration (Table 2). The two clocks that were not affected by diet were the liver general and 153 
developmental clocks. Methylome-wide entropy was not different between the diets. 154 
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Body weight. Body weight was first measured when mice were at an average age of 4.5 ± 2.7 155 
months. We refer to this initial weight as baseline body weight (BW0). For mice on HFD, this  156 

  157 

 
Figure 1. Correlates and modifiers of epigenetic clocks and methylome-wide entropy 
(a) Correlation between chronological age and predicted age (shown for the liver 
intervention clock or int.DNAmAge). Black circles are control diet (CD, n = 210); red crosses 
are high fat diet mice (HFD, n = 128) (b) Violin plots of age-adjusted epigenetic age 
acceleration (EAA) (“int” stands for interventional, “dev” stands for developmental). (c) 
Shannon entropy, calculated from the full set of high quality CpGs, increases with age. (d) 
Methylome entropy has a direct correlation with EAA (shown for the liver int.EAA). (e) For 
48 mice, initial body weight (BW0) was measured 1 or 3 days after introduction to HFD, 
and these showed significant correlation with EAA. (f) Weight was first measured at mean 
age of 4.5 ± 2.7 months (BW0), and then at 6.3 ± 2.8 months (BW1). Weight gains during 
this interval (deltaBW = BW1 – BW0) is a direct correlate of EAA. (g) For BXD genotypes 
with males and females samples, males have higher age acceleration. Bars represent mean 
± standard error; 40 females (26 CD, 14 HFD) and 18 males (10 CD, 8 HFD). (h) Relative 
effects of different predictor variables on EAA shown as logworth scores (-log10p). The 
dashed lines correspond to p = 0.01. Positive logworth values indicate positive regression 
estimates (for diet, positive means higher in high fat diet compared to control diet). BWF is 
final weight; Chol is serum total cholesterol; Gluc is fasted glucose levels. (g) The residual 
plot display association between methylome-wide entropy and the pan-tissue int.EAA 
after adjustment for diet, age, weight, glucose, cholesterol, and batch. 
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Table 2. Association with diet and weight, and heritability of the epigenetic readouts 158 
Type EAA Diet Mean (SD) Diet 

(p) 
r

BW0 a 
p

BW0 
r

BWF a 
p

BWF h2 Strain 
r b 

Mouse 
clocks 

EAA, pan 
CD -0.05 ± 0.21 

<.0001 
0.19 0.006 0.29 <.0001 0.49 

0.54 HFD 0.07 ± 0.21 0.21 0.01 0.42 <.0001 0.50 

EAA, liver 
CD 0 ± 0.17 

ns 
0.09 ns 0.20 0.003 0.40 

0.73 HFD 0.03 ± 0.14 0.22 0.01 0.49 <.0001 0.52 
dev.EAA, 
pan 

CD -0.04 ± 0.23 
0.004 

0.09 ns 0.22 0.001 0.53 
0.76 HFD 0.03 ± 0.22 0.27 0.002 0.45 <.0001 0.61 

dev.EAA, 
liver 

CD 0 ± 0.2 
ns 

0.19 0.002 0.29 <.0001 0.46 
0.78 HFD 0 ± 0.16 0.29 0.0007 0.47 <.0001 0.60 

int.EAA, pan 
CD -0.05 ± 0.25 

0.0003 
0.03 ns 0.21 0.002 0.27 

0.66 HFD 0.06 ± 0.33 0.22 0.01 0.46 <.0001 0.45 
int.EAA, 
liver 

CD -0.04 ± 0.22 
<.0001 

0.05 ns 0.18 0.01 0.59 
0.80 HFD 0.11 ± 0.25 0.27 0.002 0.58 <.0001 0.54 

Entropy - 
CD 2.67 ± 0.02 

ns 
0.09 ns 0.05 ns 0.31 0.24 

(ns) HFD 2.67 ± 0.02 0.15 0.09 0.15 0.09 0.32 
a BW0 is body weight at about 4.5 months of age (n = 339; 210 CD and 129 HFD); BWF is final weight at tissue collection (1 HFD case missing data; n = 338; 210 159 
CD and 128 HFD) 160 
b Pearson correlation between strain means for n = 29 BXD genotypes kept on CD and HFD161 
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was usually before introduction to the diet, except for 48 cases that were first weighed 1 or 3 162 
days after HFD (Supplementary file 1). In the CD group, only the EAA from the pan-tissue 163 
standard and liver developmental clocks showed modest but significant positive correlations 164 
with BW0 (Table 2). In the HFD group, the positive correlation with BW0 was more robust and 165 
consistent across all the clocks, and this may have been due to the inclusion of the 48 cases that 166 
had been on HFD for 1 or 3 days. Taking only these 48 cases, we found that higher weight even 167 
after 1 day of HFD had an age-accelerating effect on all the clocks, and this was particularly 168 
strong for the interventional clocks (r = 0.45, p = 0.001 for the pan-tissue int.EAA; r = 0.58, p < 169 
0.0001 for the liver int.EAA) (Figure 1e). Second weight was measured 7.4 ± 5.2 weeks after 170 
BW0 (mean age 6.3 ± 2.8 months).  We refer to this as BW1 and we estimated the weight 171 
change as deltaBW = BW1 – BW0. DeltaBW was a positive correlate of EAA on both diets, albeit 172 
more pronounce in the HFD group (Figure 1f). The final body weight (BWF) was measured at 173 
the time of tissue harvest, and EAA from all the mouse clocks were significant correlates of BWF 174 
on both diets (Table 2). In contrast, entropy did not show an association with either BW0 or 175 
BWF. We do note that when stratified by diet, the entropy level had a slight positive correlation 176 
with BW1 in the HFD group (r = 0.23, p = 0.008), but not in the CD group (Supplementary file 3). 177 

Sex. Four BXD genotypes (B6D2F1, D2B6F1, BXD102, B6) had cases from both males and 178 
females. We used these to test for sex effects. All the clocks showed significant age acceleration 179 
in male mice, and this effect was particularly strong for the both dev.EAA, and the pan-tissue 180 
int.EAA (Figure 1g; Supplementary file 3). This effect was independent of the higher BWF of 181 
males, and the higher age-acceleration in males was detected after adjusting for BWF 182 
(Supplementary file 4a). There was no significant difference in entropy between the sexes. 183 

Metabolic measures. 278 cases with DNAm data also had fasted serum glucose and total 184 
cholesterol,32,33 and we examined whether these metabolic traits were associated with either 185 
the EAA measures or methylome entropy. Since these are highly dependent on diet, weight, 186 
and age, we applied a multivariable model to jointly examine how the different metabolic 187 
variables (cholesterol and glucose, as well as diet and weight) and entropy relate to EAA after 188 
adjusting for age. To test the robustness of associations, we also include the methylation array 189 
batch as another covariate (Supplementary file 1 has batch information; Supplementary file 5 190 
has the full statistics). Figure 1h shows the relative strengths and directions of associations 191 
between these variables and the EAA traits. Except for the pan-tissue interventional clock, 192 
entropy had a strong positive association with EAA. For example, a plot of residuals between 193 
entropy and the liver int.EAA indicates that after adjusting for all the other covariates, the 194 
methylome-wide entropy explains 17% of the variance in int.EAA (Figure 1i). Since diet strongly 195 
influences BWF, the inclusion of BWF in the regression diminished the effect of diet. For the 196 
two clocks that were not influenced by diet (the liver EAA and liver dev.EAA), adjusting for the 197 
effect of BWF resulted in an inverse association with diet (i.e., the residual EAA values after 198 
accounting for BWF were slightly lower in the HFD group). Fasted glucose did not have a 199 
significant effect on EAA. Cholesterol had a positive association with the interventional clocks 200 
but the effects were modest (residual R2 = 0.02 and p = 0.02 for cholesterol and the pan-tissue 201 
int.EAA). 202 

We also performed a similar analysis with BW0 instead of BWF (Figure 1-figure supplement 1), 203 
and here, HFD remained as an accelerator of the pan-tissue EAA and liver int.EAA. Cholesterol 204 
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also became a significant positive correlate of EAA for the interventional clocks. This would 205 
suggest that the effect of diet on EAA is mostly mediated by its impact on physiological and 206 
metabolic traits, and BWF becomes a prominent predictor of EAA.  207 

To summarize, our results indicate that the degree of disorder in the methylome increases with 208 
age, and may partly contribute to the epigenetic clocks as higher entropy is associated with 209 
higher EAA. The EAA traits were also associated with biological variables (i.e., body weight, diet, 210 
and sex). Of these, BWF was the strongest modulator of EAA.  211 

How the epigenetic readouts relate to strain longevity 212 

We next obtained longevity data from a parallel cohort of female BXD mice that were allowed 213 
to age on CD or HFD.33 Since the strain lifespan was determined from female BXDs, we 214 
restricted this to only the female cases. For strains with natural death data from n ≥ 5, we 215 
computed the minimum (minLS), 25th quartile (25Q-LS), mean, median lifespan, 75th quartile 216 
(75Q-LS), and maximum lifespan (maxLS) (Supplementary file 1). Specifically, we postulated an 217 
accelerated clock for strains with shorter lifespan (i.e., inverse correlation). Overall, the EAA 218 
measures showed the expected inverse correlation trend with the lifespan statistics 219 
(Supplementary file 4b). However, these correlations were weak. The correlations were 220 
significant only for the pan-tissue general clock (Figure 1-figure supplement 2a) and the liver 221 
intervention clock, with explained variance in lifespan of only ~3% (Figure 1-figure supplement 222 
2b, 2c).  When separated by diet, these correlations became weaker indicating that while we 223 
see the expected inverse relationship, the EAA is only weakly predictive of strain longevity. 224 
Entropy estimated from the full set of CpGs was unrelated to strain longevity. 225 

Multifactor variance of the conserved CpGs 226 

Both the entropy and clock readouts capture the overall variation across multiple CpGs, and to 227 
gain insights into the underlying variance patterns, we performed a multivariable epigenome-228 
wide association study (EWAS). For this, we applied a site-by-site regression on the 27966 229 
validated CpGs,29 and tested for association with age, BWF, diet, and genotype-dependent 230 
strain median lifespan (full set of probes, annotations, and EWAS results in Supplementary file 231 
6). 232 
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Age was clearly the most influential variable, and this is apparent from the volcano plots (Figure 233 
2a–d). We used a cutoff of Bonferroni p ≤ 0.05 to define differentially methylated CpGs (DMCs), 234 
and 6553 CpGs were associated with age (referred to as age-DMCs), 733 with weight (weight-235 
DMCs), 321 with diet (diet-DMCs), and 236 with genotype-dependent lifespan (LS-DMCs). We  236 
note extensive overlap among the lists of DMCs that shows that variation at these CpGs are 237 
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multifactorial in nature (Figure 1e). Majority of the age-DMCs (77%) gained methylation (or 238 
age-gain), and consistent with previous observations, age-gain CpGs tended to be in regions 239 
with low methylation, whereas age-DMCs that declined in methylation (age-loss) were in 240 
regions with high methylation (Figure 2f).39,43,44 By overlaying the volcano plots with the age-241 
gain and age-loss information, we see distinct patterns in how these age-DMCs vary with 242 
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weight (Figure 2b), diet (Figure 2c), and genotype lifespan (Figure 2d). While the majority of 243 
CpGs, including several age-loss CpGs, had negative regression estimates for weight (i.e., 244 
decrease in DNAm with unit increase in weight), HFD was associated with higher methylation 245 
levels (positive regression estimates) including at several age-DMCs (Figure 2c). This pattern of 246 
inverse correlation with weight but heightened methylation due to HFD is illustrated by the CpG 247 

Figure 2. Multivariable analysis of site-specific methylation 
(a) Volcano plot comparing regression estimates (change in methylation beta-value per day 
of age) versus the statistical significance for age effect. Dashed line denotes the Bonferroni 
p = 0.05 for ~28K tests). Similar volcano plots for predictor variables: (b) final body weight 
(regression estimates are change per gram of weight), (c) diet (change in high fat compared 
to control diet), and (d) strain median lifespan (per day increase in median longevity). CpGs 
that were significantly associated with age are denoted by colored markers (red circles: 
age-gain; yellow triangles: age-loss). (e) Overlap among the lists of differentially methylated 
CpGs. (f) Each dot represents the mean methylation beta-values for the 5030 age-gain, and 
1523 age-loss CpGs. (g) Correlation between body weight and methylation beta-values for 
the CpG (cg10587537) located in the 3’UTR of Mettl23. Mice on high fat diet (HFD) have 
higher methylation than mice on control diet (CD), but the inverse correlation with weight 
is consistent for both groups (r = –0.45, p < .0001 for CD; r = –0.15, p = 0.08 for HFD). (h) 
Contour density plot for the 6553 CpGs that are significantly associated with age (age-
DMCs). This relates the pattern of change with age (x-axis) with change on HFD (y-axis). 
CpGs that gain methylation with age are also increased in methylation by HFD. (i) 
Correlation between age and methylation at the Mettl23 3’UTR CpG (r = 0.35 for CD; r = 
0.46). (j) For the 6553 age-DMCs, the contour density plot relates the pattern of change 
with age (x-axis) vs. change with median longevity (y-axis). CpGs that gain methylation with 
age have lower methylation with higher lifespan. 
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in the 3’UTR of Mettl23 (cg10587537) (Figure 2g). Taking the 6553 age-DMCs, a comparison of 248 
the regression estimates for age (i.e., the change in methylation per day of aging) versus diet 249 
(difference in HFD relative to CD) shows that the age-gains were augmented in methylation by 250 
HFD (Figure 2h), and again, this is illustrated by the CpG in the Mettl23 3’UTR (Figure 2i). For 251 
the LS-DMCs, sites that had negative regression estimates for lifespan (i.e., lower DNAm per 252 
day increase in strain median longevity) had higher proportion of age-gain CpGs (Figure 2d). A 253 
comparison between the regression estimates for age versus the regression estimates for 254 
lifespan shows that CpGs that gain methylation with age tended to have lower methylation in 255 
strains with longer lifespan (Figure 2j).  256 

As in Sziráki et al.,43 we divided the CpGs by age effect: age-gain, age-loss, and those that do not 257 
change strongly with age (age-ns; i.e., the remaining 21413 CpGs that were not classified as 258 
age-DMCs). For these conserved CpGs, both sets of age-DMCs had significant increases in 259 
entropy with age regardless of diet (Figure 3a, 3b), and even the age-ns showed a modest 260 
entropy gain with age in the HFD group (Figure 3c). The reason for this increase in disorder 261 
becomes evident when we compare the density plots using the full set of CpGs for one of the 262 
younger mice (UT319; 0.56 years old) and one of the older mice (UT573; 2.3 years) (Figure 3d). 263 
Concordant with previous reports,43,45 the older sample showed a subtle flattening of the 264 
bimodal peaks towards a slightly more hemi-methylated state. The entropy of the age-gain 265 
CpGs was modestly but significantly higher in the HFD group (p = 0.001; Figure 3e). Entropy of 266 
the age-loss and age-ns CpGs were not different between the diets. Body weight on the other 267 
hand, was associated specifically with the entropy score of the age-loss CpGs, and both higher 268 
BW0 (Figure 3f) and BWF predicted higher entropy for age-loss CpGs.  269 

We applied a multivariable regression to compare the relative effects of age, diet, BWF, 270 
glucose, cholesterol, and strain median lifespan (Figure 3g; full statistics in Supplementary file 271 
7). Entropy of age-gain CpGs was increased by HFD but was not associated with BWF. Strain 272 
median lifespan showed a significant inverse correlation with the entropy of age-gain CpGs with 273 
an explained variance of 6% (Figure 3h). Entropy of the age-loss CpGs had a significant positive 274 
correlation with BWF (Figure 3i), but was not associated with diet, and also had a modestly 275 
significant inverse correlation with median lifespan. Cholesterol was unrelated to the entropy 276 
values. Glucose on the other hand, showed a significant inverse association with entropy of 277 
both the age-gain (Figure 3j) and age-loss CpGs, and this suggests slightly lower entropy with 278 
higher fasted glucose. 279 

Taken together, our results show that the conserved CpGs are influenced by multiple 280 
predictors. HFD augmented the age-dependent changes with a prominent effect on age-gain 281 
CpGs. Body weight showed a strong association with the age-loss CpGs. Additionally, strains 282 
with longer life expectancy tended to have lower methylation levels at age-gain CpGs with an 283 
overall lower entropy state at these CpGs that suggests a more “youthful” methylome for 284 
longer lived genotypes. 285 

Functional and genomic context of DMCs 286 
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To uncover the potential biological pathways represented by the DMCs, we performed genomic 287 
regions enrichment analyses for the CpGs.46 The age-gain CpGs were highly enriched in 288 
transcription factors, regulators of development and growth, menarche and menstrual phases, 289 
energy metabolism, and transcription factor networks such as HNF1 and HNF3B pathways 290 
(Supplementary file 8). The age-loss CpGs had somewhat modest enrichment, and represented 291 

 
Figure 3. Entropy at age-associated CpGs 
Entropy values were calculated for the 5020 age-gain and 1523 age-loss CpGs separately. 
For both control diet (CD) and high fat diet (HFD), there is significant increase in entropy 
with age at the (a) age-gain and (b) age-loss CpGs. (c) The HFD mice also showed a slight 
increase in entropy at CpGs that were not strongly associated with age (age-ns). (d) The 
methylome-wide distribution of beta-values in a young adult mouse (0.6 year old; black 
dashed line), and an older mouse (2.3 year old; red line); both CD mice. The young mouse 
has higher peaks at the hypo-methylated (closer to 0.1) and hyper-methylated (around 0.9) 
beta-values compared to the older mouse. (e) The HFD group has higher entropy at the age-
gain CpGs compared to the CD group. (f) Entropy at age-loss CpGs is higher with higher 
baseline weight (BW0). (g) Relative effects of predictor variables on entropy shown as 
logworth scores (-log10p). The dashed lines correspond to p = 0.01. Positive values indicate 
positive regression estimates (for diet, positive value means higher in HFD). BWF is final 
weight; Chol is serum total cholesterol; Gluc is fasted glucose levels; LS is the strain median 
lifespan. (h) The residual plot (adjusted for age, diet, BWF, glucose, cholesterol, and batch) 
shows the inverse association between entropy at age-gain sites, and lifespan. Similar 
residual plots show the association between (i) BWF and age-loss entropy, and (j) between 
fasted serum glucose and age-gain entropy.  
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cell adhesion and cytoskeletal processes, endothelial cell proliferation, and p38 signaling. The 292 
BW-DMCs were enriched in actin and protein metabolism, and WNT, and platelet-derived 293 
growth factor (PDGF) and ErbB signaling. Similarly, the diet-DMCs were highly enriched in PDGF, 294 
epidermal growth factor (EGFR) and ErbB signaling, as well as the mTOR signaling pathway, and 295 
regulation of energy homeostasis (Supplementary file 8). Seeming to converge on common 296 
pathways, the LS-CpGs that were negatively correlated with lifespan had modest enrichment in 297 
cell signaling pathways such as EGFR, PDGF, and ErbB signaling. The LS-CpGs with positive 298 
correlation with lifespan were highly enriched in lipid metabolic genes, and also included 299 
pathways related to chromosome maintenance and telomere expansion (Supplementary file 300 
8). 301 

We next examined the genomic annotations and chromatin states of the DMCs. Consistent with 302 
previous reports,39,43 age-gain CpGs were enriched in promoter and 5’UTR CpGs, but depleted 303 
in 3’UTR, exon, and intergenic CpGs (Figure 2-figure supplement 1a; Supplementary file 9). 304 
Diet- and weight-DMCs were depleted in promoter regions, and enriched in exons and 3’UTR, 305 
and along with the age-loss CpGs, enriched in introns. For chromatin states, we annotated the 306 
CpG regions using the 15-states chromatin data for neonatal (P0) mouse liver.47,48 Also included 307 
were regions labelled as No Reproducible State or NRS; i.e., regions that were not replicated 308 
(Supplementary file 6 has annotations for each site).48 Compared to the array content as 309 
background, the age-gain CpGs were selectively enrich in polycomb associated 310 
heterochromatin (Hc-P) and bivalent promoters (Pr-Bi), chromatin states that were highly 311 
depleted among the other DMCs (Figure 2-figure supplement 1b). In contrast, strong and 312 
permissive transcription sites (Tr-S and Tr-P, respectively) were depleted among the age-gain 313 
CpGs, and enriched among the BW- and diet-DMCs. Age-loss CpGs were enriched in Tr-P and Tr-314 
I (transcription initiation). Distal enhancers (strong distal or En-Sd, and poised distal or En-Pd) 315 
were also highly enriched among the BW- and diet-DMCs, and also showed some enrichment 316 
among the age-DMCs. 317 

For an overview of the general methylation and variance patterns by chromatin annotations, 318 
we used the full set of 27966 CpGs and computed the average methylation beta-values, and 319 
average regression coefficients (i.e, change in beta-value per unit change in the respective 320 
predictor variable, or contrast between diets). As expected, promoter CpGs and Hc-P were sites 321 
with the lowest methylation. Hc-H, Tr-S, and Tr-P had higher methylation, and many of the 322 
enhancer sites were in the hemi-methylated zone. For age effect, mean regression estimates 323 
had a significant inverse linear fit with mean methylation (r = –0.63, p = 0.009; Figure 2-figure 324 
supplement 1c) and this is consistent with the greater age-loss at hypermethylated CpGs, and 325 
greater age-gains at hypomethylated CpGs (Figure 2f). The effects of diet and weight were not 326 
linearly related to the mean methylation of the chromatin states. Instead, both showed a U-327 
shaped fit with a significant negative quadratic effect for diet (R2 = 0.69, p = 0.0005, quadratic 328 
estimate = –0.05; Figure 2-figure supplement 1d), and a positive quadratic effect for weight (R2 329 
= 0.50, p = 0.01, quadratic estimate = 0.001; Figure 2-figure supplement 1e). Methylation 330 
variation as a function on strain longevity did not relate to mean methylation with either a 331 
linear or polynomial fit, and indicates that variance due to background genotype is less 332 
dependent on the chromatin and mean methylation status. While this is a very low-resolution 333 
and broad view of methylation levels and methylation variation, the observations show that 334 
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while aging results in erosion of the hypo- and hypermethylated peaks, diet and body weight 335 
appear to have generally stronger associations with hemi-methylated sites.  336 

Genetic analysis of epigenetic age acceleration 337 
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The EAA traits had moderate heritability at an averaged h2 of 0.50 (Table 2).34 Another way to 338 
gauge level of genetic correlation is to compare between members of strains maintained on 339 
different diets. All the EAA traits shared high strain-level correlations between diets, indicating 340 
an effect of background genotype that is robust to dietary differences (Table 2). The 341 
methylome-wide entropy had a heritability of ~0.30, and had no strain-level correlation 342 
between diets.  343 

To uncover genetic loci, we applied QTL mapping using mixed linear modeling that corrects for 344 
the BXD kinship structure.49 First, we performed the QTL mapping for each EAA traits with 345 

 
Figure 4. QTL maps for the DNAm readouts 
The Manhattan plots represent the location of genotyped markers (x-axis), and linkage –
log10p (y-axis). (a) The peak quantitative trait locus (QTL) for age acceleration from the 
pan-tissue interventional clock (int.EAA) is on chromosome (Chr) 11 at ~93 Mb. The inset 
shows the mean (± standard error) trait values for BXDs the are homozygous for the 
C57BL/6J allele (BB; grey) versus BXDs homozygous for the DBA/2J allele (DD; black) on 
control diet (CD) and high fat diet (HFD). (b) The liver-specific int.EAA has a peak QTL on 
Chr19 (~38 Mb). Trait means by genotype at this locus are shown in inset; BB has higher 
age acceleration. (c) Linkage statistics are weaker for the methylome-wide entropy. 
However, there is a nominally significant linkage on the Chr19 loci, but the peak markers 
are at ~47.5 Mb. Here the BB genotype has higher entropy. 
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adjustment for diet and body weight. EAA from the two interventional clocks had the strongest 346 
QTLs (Supplementary file 10). The pan-tissue int.EAA had a significant QTL on Chr11 (90–99 347 
Mb) with the highest linkage at ~93 Mb (p = 3.5E-06; equivalent to a LOD score of 4.7) (Figure 348 
4a). Taking a genotype marker at the peak interval (BXD variant ID DA0014408.4 at Chr11, 349 
92.750 Mb)34, we segregated the BXDs homozygous for either the D2 (DD) or the B6 (BB) 350 
alleles. Strains with DD genotype at this locus had significantly higher int.EAA (Figure 4a inset). 351 
The liver int.EAA had the highest QTL on Chr19 (35–45 Mb) with the most significant linkage at 352 
markers between 38–42 Mb (p = 9E-07; LOD score of 5.2) (Figure 4b). We selected a marker at 353 
the peak interval (rs48062674 at Chr19, 38.650 Mb), and the BB genotype had significantly 354 
higher liver int.EAA compared to DD (Figure 4b inset).  355 

We performed a similar QTL mapping for methylome-wide entropy with adjustment for major 356 
covariates (diet, chronological age, and body weight). There were no genome-wide significant 357 
QTLs. A region on Chr19 that overlapped the liver int.EAA showed a modest peak (Figure 4c; 358 
Supplementary file 10). However, the peak markers for entropy were located slightly distal to 359 
the peak EAA QTL (~47.5 Mb at rs30567369, minimum p = 0.0005). At this locus, the BB 360 
genotype had higher average entropy. 361 

To identify regulatory loci that are consistent across the different EAA measures, we applied a 362 
multi-trait analysis and derived the linkage meta-p-value using a p-value combination for the six 363 
EAA traits.50 The peaks on Chrs 11 and 19 attained the highest consensus p-values (Figure 4-364 
figure supplement 1a). There was another potential consensus peak at combined –log10p > 6 on 365 
Chr3 (~54 Mb). We focus on the Chrs 11 and 19 QTLs and refer to these as EAA QTL on Chr 11 366 
(Eaa11), and EAA QTL on Chr 19 (Eaa19). Eaa11 extends from 90–99 Mb. For Eaa19, we 367 
delineated a broader interval from 35–48 Mb that also encompasses the peak markers for 368 
entropy. 369 

We performed marker-specific linkage analyses for each of the clocks using a regression model 370 
that adjusted for diet. With the exception of the liver int.EAA, all the EAA traits had nominal to 371 
highly significant associations with the representative Eaa11 marker (DA0014408.4), and the DD 372 
genotype had higher age acceleration (Table 3). Mean plots by genotype and diet shows that 373 
this effect was primarily in the CD mice (Figure 4-figure supplement 1b). The effect of this locus 374 
appeared to be higher for the pan-tissue clocks compared to the corresponding liver-specific 375 
clocks. For proximal Eaa19, the representative marker (rs48062674) was associated with all the 376 
EAA traits and the BB mice had higher age acceleration on both diets (Figure 4-figure 377 
supplement 1c). We also tested if these peak markers were associated with the recorded 378 
lifespan phenotype and we found no significant association with the observed lifespan of the 379 
BXDs. 380 

Table 3: Marker specific linkage analyses for epigenetic age acceleration and body weight 381 
trajectory 382 
 Linear regression1 
Predictor Outcome Estimate Std Error t Ratio p 

Eaa11 
DA0014408.4[DD] 
Chr11, 92.750 Mb 

EAA, pan 0.096 0.023 4.184 3.8E-05 
EAA, liver 0.067 0.017 3.880 0.0001 
dev.EAA, pan 0.077 0.025 3.041 0.003 
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(133 BB cases, 
and 173 DD cases) 

dev.EAA, liver 0.037 0.020 1.878 0.06 
int.EAA, pan 0.153 0.029 5.278 2.5E-07 
int.EAA, liver -0.033 0.025 -1.284 0.20 

Eaa19 
rs48062674[DD] 
Chr19, 38.650 Mb 
(238 BB cases, 
and 67 DD cases) 

EAA, pan -0.083 0.028 -2.954 0.003 
EAA, liver -0.137 0.020 -6.972 2.0E-11 
dev.EAA, pan -0.206 0.029 -7.218 4.3E-12 
dev.EAA, liver -0.124 0.023 -5.461 9.9E-08 
int.EAA, pan -0.143 0.035 -4.028 7.1E-05 
int.EAA, liver -0.250 0.027 -9.238 4.6E-18 

 Mixed model for longitudinal change in body weight2 
Predictor Outcome Estimate Std Error t Ratio p 
Eaa11 
DA0014408.4[DD] 
Number of 
observations = 
6885; number of 
individuals = 2112 

Body weight 0.619 0.345 1.794 0.07 

Eaa19 
rs48062674[DD] 
Number of 
observations =  
6132; number of 
individuals = 1852 

Body weight -1.847 0.374 -4.945 7.6E-07 

1Regression model: lm(EAA ~ genotype + diet); 2lmer(weight ~ age + diet + genotype + (1|mouseID)  383 

Association of EAA QTLs with 384 
body weight trajectory 385 

Since gain in body weight with age 386 
was an accelerator of the clocks, we 387 
examined whether the selected 388 
markers in Eaa11 and Eaa19 were also 389 
related to body weight change. We 390 
retrieved longitudinal weight data 391 
from a larger cohort of the aging BXD 392 
mice that were weighed at regular 393 
intervals. After excluding 394 
heterozygotes, we tested the effect of 395 
genotype. Concordant with the higher 396 
EAA for the DD genotype at Eaa11 in 397 
the CD group, the DD genotype in the 398 
CD group also had slightly higher 399 
mean weight at older adulthood (12 400 
and 18 months; Figure 5a). However, 401 
this marker had no significant 402 
association with body weight when 403 
tested using a mixed effects model (p 404 

 
Figure 5. Body weight trajectory by diet and 
genotype 
Body weight was measured at regular age intervals 
(x-axis) from (a) 2112 BXD mice that were 
homozygous at the Eaa11 marker (DA0014408.4; 
842 BB, 1279 DD), and (b) 1852 BXD mice that were 
homozygous at the proximal Eaa19 marker 
(rs48062674; 1252 BB, 600 DD). Mice were 
maintained on either control diet (CD) or high fat 
diet (HFD). The graphs show the segregation of 
body weight over time by diet and genotype. Mean 
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= 0.07; Table 3). In Eaa19, it was the BB genotype that consistently exhibited an accelerated 405 
clock on both diets, and also higher entropy, and the BB genotype had higher average body 406 
weight by 6 months of age (Figure 5b), and this locus had a significant influence on the body 407 
weight trajectory (p = 7.6E-07; Table 3). 408 

Candidate genes for epigenetic age acceleration 409 

There are several positional candidate genes in Eaa11 and Eaa19. To narrow the list, we applied 410 
two selection criteria: genes that (1) contain missense and/or stop variants, and/or (2) contain 411 
non-coding variants and regulated by cis-acting expression QTLs (eQTL). For the eQTL analysis, 412 
we utilized an existing liver transcriptome data from the same aging cohort.32 We identified 24 413 
positional candidates in Eaa11 that includes Stxbp4, Erbb2 (Her-2 oncogenic gene), and Grb7 414 
(growth factor receptor binding) (Supplementary file 11; Figure 4a). Eaa19 has 81 such 415 
candidates that includes a cluster of cytochrome P450 genes, and Chuk (inhibitor of NF-kB) in 416 
the proximal region, and Pcgf6 (epigenetic regulator) and Elovl3 (lipid metabolic gene) in the 417 
distal region (Supplementary file 11; Figure 4b, 4c).  418 

For further prioritization, we converted the mouse QTL regions to the corresponding syntenic 419 
regions in the human genome, and retrieved GWAS annotations for these intervals.51 We 420 
specifically searched for the traits: epigenetic aging, longevity, age of 421 
menarche/menopause/puberty, Alzheimer’s disease, and age-related cognitive decline and 422 
dementia. This highlighted 5 genes in Eaa11, and 3 genes in Eaa19 (Supplementary file 4c). We 423 
also identified a GWAS study that found associations between variants near Myof-Cyp26a1 and 424 
human longevity,41 and a meta-GWAS that found gene-level associations between Nkx2–3 and 425 
Cutc, and epigenetic aging (Supplementary file 4c).27 426 

Gene expression correlates of EAA 427 

A subset of the BXD cases had liver RNA-seq data (94 CD, and 59 HFD).32 Using this set, we 428 
performed transcriptome-wide correlation analysis for the general pan-tissue EAA, and the 429 
more specific liver int.EAA. To gain insights into biological pathways, we selected the top 2000 430 
transcriptome correlates for functional enrichment analysis (Supplementary file 12a). The 431 
common themes for both clocks were: (1) there were far fewer negative correlates (223 out of 432 
2000 for pan-tissue EAA, and 337 out of 2000 transcripts for liver int.EAA) than positive 433 
correlates, (2) the negative correlates were highly enriched (Bonferroni correct p < 0.05) in 434 
oxidation-reduction and mitochondrial genes (Supplementary file 12b, 12c). The pan-tissue 435 
general clock was also highly enriched in pathways related to steroid metabolism, epoxygenase 436 
p450 pathway, and xenobiotics, which are pathways that are particularly relevant to liver. The 437 
p450 genes included candidates that are in Eaa19 (e.g., Cyp2c29, Cyp2c37). The positive 438 
correlates were enriched in a variety of gene functions including mitosis for both clocks, and 439 
immune and inflammatory response for the general pan-tissue clock (functions that are not 440 
specific to liver). 563 transcripts (315 unique genes) were correlated with both the pan-tissue 441 
EAA, and the liver int.EAA. Based on hierarchical clustering (HC) of these common mRNA 442 
correlates of EAA, the transcripts could be clustered into 3 groups (Figure 6a; heatmap in Figure 443 
6-figure supplement 1a). While none of these were significantly enriched in any particular gene 444 
ontology (GO), cluster 3 included several oxidation-reduction genes including the Eaa11 445 
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candidate, Cyp2c29, and cluster 2 included several cell cycle genes (Figure 6a). To verify that 446 
these transcriptomic associations are robust to the effect of diet, we repeated the correlation 447 
and enrichment analysis in the CD group only for the pan-tissue general clock (n = 94). Again, 448 
taking the top 2000 correlates (|r| ≤ 0.22; p ≤ 0.03), we found the same enrichment profiles for 449 
the positive correlates (immune, cell cycle) and the negative correlates (oxidation-reduction  450 
and mitochondrial).  451 

Liver proteome was also available for 164 of the BXDs, and 53 also had adipose proteome. The 452 
liver proteome data quantifies over 32000 protein variants from 3940 unique genes and has 453 
been reported in Williams et al.32 Similar to the transcriptome-wide analysis, we extracted the 454 
top 2000 protein correlates of EAA (Supplementary file 12d), and performed functional 455 
enrichment analysis (Supplementary file 12b, 12c). For both the liver int.EAA  and the pan-456 

 
Figure 6. Gene expression correlates of epigenetic age acceleration 
(a) mRNAs that were correlated with the acceleration of both the pan-tissue general clock 
(pan EAA), and the liver interventional clock (liver int.EAA) were grouped based on 
unsupervised hierarchical clustering (HC). Few representative genes and gene ontologies are 
highlighted. For liver proteome, the level of APOE was the strongest correlate for both the 
(b) liver int.EAA, and (c) the pan-tissue EAA. (d) For liver proteins that were correlated with 
both pan-tissue EAA and liver int.EAA, HC grouped the proteins into clusters that were 
enriched in oxidation-reduction and lipid metabolism, and a cluster enriched in glycogen 
metabolism. In adipose tissue, the expression level of the APOE protein was higher with 
higher age acceleration for both the (e) liver int.EAA, and (f) the pan-tissue EAA. 
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tissue EAA, the top liver protein correlate was APOE, and higher expression of APOE was 457 
associated with higher age acceleration (Figure 6b, c). Similar to the transcriptome, the 458 
negative correlates of EAA were highly enriched in oxidation-reduction (several cytochrome 459 
proteins), steroid metabolism, and epoxygenase 450 pathway. The positive correlates were also 460 
highly enriched in oxidation-reduction (several hydroxy-delta-5 steroid dehydrogenases 461 
proteins), lipid and carbohydrate metabolism, as well as phospholipid efflux (particularly 462 
enriched for the liver int.EAA). There was a high degree of overlap at the proteomic level for the 463 
two clocks and 1241 proteins variants (332 unique genes) were correlated with both the pan-464 
tissue EAA and the liver int.EAA (Supplementary file 12d). For these common protein 465 
correlates, the HC divided the proteins into clusters that represented metabolic pathways 466 
mainly related to steroid metabolism, but also glycolysis and gluconeogenesis (Figure 6d; 467 
heatmap in Figure 6-figure supplement 1b).  468 

Finally, we used the adipose proteome data for a proteome-wide correlational analysis for the 469 
pan-tissue EAA and liver int.EAA. We took only the top 1000 correlates (due to the small sample 470 
size), and a functional enrichment analysis showed consistent enrichment in metabolic 471 
pathways related to fatty acids and also carbohydrates, and cell proliferation genes for the pan-472 
tissue EAA (Supplementary file 12b, 12c). For the adipose proteome, the cytochrome p450 473 
genes were no longer enriched. However, the overall functional profile highlighted metabolic 474 
pathways as important gene expression correlates of EAA. Furthermore, for both the liver and 475 
adipose proteomes, APOE levels were highly correlated with EAA that indicates a higher level of 476 
this apolipoprotein in both tissues is associated with higher age acceleration (Figure 6e, 6f). 477 

Discussion 478 

Here we have tested the performance of DNAm clocks derived from highly conserved CpGs, and 479 
described the dynamism and variability of site-specific methylation. While age is a major source 480 
of variance, we detected joint modulation by diet, body weight, and genotype-by-diet life 481 
expectancy. HFD had an age accelerating effect on the clocks, and this is concordant with our 482 
previous report where we found more rapid age-associated changes in methylation.39 This also 483 
concurs with studies in humans that have found that obesity accelerates epigenetic aging.52,53 484 
However, when BWF was included in the regression term, the effect of diet became 485 
inconsistent. This suggests that the effect of diet on EAA is mediated by the changes in weight 486 
and metabolic traits such as total cholesterol. Body weight in particular, had a strong age-487 
accelerating effect. The effect of weight may manifest early on, and even in the CD group, 488 
higher weight gains at younger age (between 4–6 months) was associated with higher EAA later 489 
in life.  490 

We tested different mouse DNAm clocks, and the main difference between these clocks was 491 
the subsets of CpGs that were used for training. It is well-known that DNAm clocks have high 492 
level of degeneracy.3,14 In other words, highly accurate predictors of chronological age can be 493 
built from entirely different sets of CpGs and different weight coefficients. This is likely because 494 
a large proportion of CpGs undergo some degree of change with age, and combinatorial 495 
information from any subset of this is informative of age. For instance, even at a very stringent 496 
cutoff of Bonferroni 0.05 that treated the 27966 CpGs as “independent”, we still detected 6553 497 
CpGs as age-DMC, i.e., close to a quarter of the CpGs we tested. Clocks built from pre-selected 498 
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CpGs that are at conserved sequences are known to be sensitive to the effects of pro-longevity 499 
interventions such as calorie restriction and growth hormone receptor deletion.3,54 And while 500 
all these DNAm clocks achieve reasonably high prediction of chronological age, the age 501 
divergence derived from these different clocks (EAA) can capture slightly different facets of 502 
biological aging, and the better a clock is at predicting chronological age, the lower its 503 
association with mortality risk.13,14 In the present study, we find that the interventional clocks 504 
deviated most from chronological age, and this is expected as these were built from a much 505 
smaller set of CpGs (see Methods). The interventional clocks were also associated with BWF 506 
and cholesterol, but had weaker associations with BW0. The liver int.EAA had the highest 507 
positive correlation with methylome-wide entropy, and was the clock that had the strongest 508 
inverse correlation with strain longevity. In contrast, the developmental clocks, which were 509 
based on CpGs that change early in life, showed a stronger association with BW0. The contrast 510 
between the interventional and developmental clocks suggests that while one is more 511 
modifiable, the other is more informative of baseline characteristics that influence aging later in 512 
life. The pan-tissue clock, which was not constrained to any preselected set of CpGs or tissue, 513 
also performed well in capturing biological aging and was accelerated by both BW0 and BWF, 514 
diet (when BW0 was the weight term in the regression model), higher entropy, and had a 515 
modest but significant inverse correlation with strain lifespan.  516 

Entropy, a measure of noise and information loss, increases as a function of time and age.10,55-57 517 
In the context of the methylome, the shift to higher entropy represents a tendency for the 518 
highly organized hypo- and hypermethylated landscape to erode towards a more hemi-519 
methylated state.10,43,45 This increase in disorder, particularly across CpGs that are highly 520 
conserved, could have important functional consequences. The entropy of age-gain CpGs 521 
predicted strain lifespan, and was increase by HFD. Overall, we find that mice belonging to 522 
longer-lived BXD strains had a more “youthful” methylome with lower entropy at the age-gain 523 
CpGs. The entropy of age-loss CpGs on the other hand, was related to the body weight of mice, 524 
and both higher BW0 and BWF were associated with higher entropy. This leads us to suggest 525 
that the rate of noise accumulation, an aspect of epigenomic aging, can vary between 526 
individuals, and the resilience or susceptibility to this shift towards higher noise may be partly 527 
modulate by diet as well as genetic factors.  528 

Somewhat surprising was the inverse correlation between the entropy of age-DMCs and fasted 529 
glucose. This lower entropy of age-gain CpGs with higher glucose is somewhat counter to the 530 
general tendency for strains with shorter lifespan to have higher glucose.33 In biological 531 
systems, entropy is kept at bay by the uptake of chemical energy, and investment in 532 
maintenance and repair,57 and we can only speculate that at least in mice, the higher amount of 533 
glucose after overnight fast may be associated with a more ordered methylome. The centrality 534 
of bioenergetics for biological systems may explain why we detect this coupling between the 535 
DNAm readouts (i.e., the clocks, and entropy), and indices of metabolism including weight, diet, 536 
levels of macronutrients, and even expression of metabolic genes. As cogently highlighted by 537 
Donohoe and Bultman,58 many metabolites (e.g., SAM, NAD+, ATP) are essential co-factors for 538 
enzymes that shape the epigenome, and these could serve as nutrient sensors and mechanistic 539 
intermediaries that regulate how the epigenome is organized in response to metabolic 540 
conditions. Close interactions between macro- and micronutrients, and DNAm is a conserved 541 
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process and plays a critical role in defining both physiology and body morphology.59,60 Overall, 542 
our results suggests that a higher metabolic state is associated with higher entropy and EAA, 543 
and potentially, lower lifespan. 544 

For the BXDs, life expectancy is highly dependent on the background genotype, and mean 545 
lifespan varies from under 16 months for strains such as BXD8 and BXD13, to over 28 months in 546 
strains such as BXD91 and BXD175.33,36,38  The EAA showed the expected inverse correlation 547 
with lifespan, but the effect was modest and only significant for the pan-tissue EAA and the 548 
liver int.EAA. The association of lifespan with the entropy of age-gain CpGs was slightly 549 
stronger. We must point out that the analysis between the epigenetic readouts and lifespan 550 
was an indirect comparison. Unlike the comparison with body weight and metabolic traits, 551 
which were traits measured from the same individual, the lifespan data are strain 552 
characteristics computed from a parallel cohort of mice that were allowed to survive till natural 553 
mortality, and this may partly explain the weaker associations with EAA. Nonetheless, our 554 
observations indicate that genotypes with higher life-expectancy have generally lower entropy, 555 
and lower methylation levels at the age-gain CpGs, and these properties of the methylome are 556 
likely to be partly under genetic modulation. 557 

Our goal was to take these different clocks and identify regulatory loci that were the most 558 
stable and robust to the slight algorithmic differences in building the clocks. A notable 559 
candidate in Eaa11 is Syntaxin binding protein 4 (Stxbp4, aka, Synip), located at 90.5 Mb. Stxbp4 560 
is a high-priority candidate due to the concordant evidence from human genetic studies. The 561 
conserved gene in humans is a replicated GWAS hit for the intrinsic rate of epigenetic 562 
aging.24,26,27 In the BXDs, Stxbp4 contains several non-coding variants, and a missense mutation 563 
(rs3668623), and the expression of Stxbp4 in liver is modulated by a cis-eQTL. Stxbp4 plays a 564 
key role in insulin signaling,61 and has oncogenic activity and implicated in different cancers.62,63 565 
Furthermore, GWAS have also associated STXBP4 with age of menarche.64,65 Eaa11 corresponds 566 
to the 17q12-21 region in humans, and the location of additional oncogenic genes, e.g., 567 
ERBB2/HER2, GRB7, and BRCA1.66 The mouse Brca1 gene is a little distal to the peak QTL region 568 
and is not considered a candidate here, although it does segregate for two missense variants in 569 
the BXDs. Erbb2 and Grb7 are in the QTL region, and Erbb2 contains a missense variant 570 
(rs29390172), and Grb7 is modulated by a cis-eQTL. Nr1d1 is another candidate in Eaa11, and 571 
the co-activation of Erbb1, Grb7, and Nr1d1 has been linked to breast and other cancers.67,68  572 

Eaa19 was consistently associated with EAA from all the clocks we evaluated, and also with 573 
body weight gains, irrespective of diet. DNAm entropy may also have a weak association with 574 
markers at this interval. The EAA traits have peak markers in the proximal part of Eaa19 (around 575 
the cytochrome cluster), and the methylome-wide entropy had a weak peak that was in the 576 
distal portion (over candidates like Elovl3, Pcgf3). Two candidates in Eaa19 have been 577 
implicated in epigenetic aging in humans based on gene-level meta-GWAS: NK homeobox 3 578 
(Nkx2-3, a developmental gene), and CutC copper transporter (Cutc).27 Eaa19 is also the 579 
location of the Cyp26a1-Myof genes, and the human syntenic region is associated with 580 
longevity, metabolic traits, and lipid profiles.41,69,70 Another noteworthy candidate in Eaa19 is 581 
Chuk, a regulator of mTORC2, that has been associated with age at menopause.64,71 Eaa19 582 
presents a complex and intriguing QTL related to the DNAm readouts that may also influence 583 
body weight gains over the course of life. Both Eaa19 and Eaa11 exemplify the major challenge 584 
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that follows when a genetic mapping approach leads to gene- and variant-dense regions.72,73 585 
Both loci have several biologically relevant genes, and identifying the causal gene (or genes) will 586 
require a more fine-scaled functional genomic dissection. 587 

The gene expression analyses highlighted metabolic pathways. At the mRNA level, the negative 588 
correlates of EAA were highly enriched in metabolic genes related to oxidation-reduction and 589 
steroid metabolism, while the positive correlates were enriched in pathways related to mitosis, 590 
and immune response for the pan-tissue general EAA. This convergence on metabolic, immune 591 
and cell division genes is very consistent with previous reports.14,28,44 Here we should note that 592 
depending on the tissue(s) in which the clocks are trains, and the tissue from which the 593 
DNAmAge is estimated, the EAA derivative may put an emphasis on biological pathways or 594 
genes that are most relevant to that tissue. For instance, clocks optimized for neural tissue are 595 
more closely related to neurodegeneration and neuropathologies.18,74 With the liver clocks, 596 
expression correlates highlighted aspects of metabolism that are relevant to liver function (e.g., 597 
the cytochrome p450 epoxygenase genes), and this is detected both at the transcriptomic, and 598 
proteomic levels. For the adipose tissue proteome, the cytochrome genes become less 599 
prominent, but the enriched pathways still remained consistent (i.e., oxidation-reduction, lipid 600 
and carbohydrate metabolism, and cell proliferation for the positive correlates of the pan-tissue 601 
EAA). At the proteome level, we also find several phospholipid efflux genes (APOC1, APOA2, 602 
APOC3, APOA1, APOA4, APOE) that are positive correlates of EAA. For both the liver and 603 
adipose proteomes, APOE stands out as the top protein correlate of EAA. A recent human study 604 
has also identified the APOE locus as the strongest GWAS hit for two measures of biological age 605 
acceleration (the phenoAge, and the bioAge).28 While more specific to liver, the cytochrome 606 
P450 genes presents as both positional candidates, and expression correlates of EAA. These 607 
genes have high expression in liver, and have major downstream impact on metabolism.75-77 608 
One caveat is that these CYP genes are part of a gene cluster in Eaa19 that includes transcripts 609 
with cis-eQTLs (e.g., Cyp2c66, Cyp2c39, Cyp2c68), and the tight clustering of the genes, and 610 
proximity of trait QTL and eQTLs may result in tight co-expression due to linkage 611 
disequilibrium.78 Nonetheless, the cytochrome genes in Eaa19 are strong candidate modulators 612 
of EAA derived from liver tissue that calls for further investigation.  613 

Aside from Eaa11 and Eaa19, another locus with evidence for consensus QTL was detected on 614 
Chr3. We do not delve into this in the present work, but the Chr3 interval is near genes 615 
associated with human epigenetic aging (Ift80, Trim59, Kpna4).24,27 However, this QTL is 616 
dispersed across a large interval, and the peak markers do not exactly overlap these human EAA 617 
GWAS hits. While we have focused on Eaa11 and Eaa19, the Chr3 locus presents a potentially 618 
important region for EAA. 619 

In summary, we have identified two main QTLs—Eaa11 and Eaa19—that contribute to variation 620 
in EAA. Eaa11 contains several genes with oncogenic properties (e.g., Stxbp4, Erbb2), while 621 
Eaa19 contains a dense cluster of metabolic genes (e.g., Elovl3, Chuk, the cytochrome genes). 622 
We demonstrate that metabolic profile and body weight are closely related to epigenetic aging 623 
and methylome entropy. The convergence of evidence from genetic and gene expression 624 
analyses indicates that genes involved in metabolism and energy balance contribute to the age-625 
dependent restructuring of the methylome, which in turn forms the basis of the epigenetic 626 
clocks.  627 
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Materials and Methods 628 

Biospecimen collection and processing 629 

Samples for this study were selected from a larger colony of BXD mice that were housed in a 630 
specific pathogen-free (SPF) facility at the University of Tennessee Health Science Center 631 
(UTHSC). All animal procedures were in accordance with a protocol approved by the 632 
Institutional Animal Care and Use Committee (IACUC) at the UTHSC. Detailed description of 633 
housing conditions and diet can be found in.32,33 Mice were given ad libitum access to water, 634 
and either standard laboratory chow (Harlan Teklad; 2018, 18.6% protein, 6.2% fat, 75.2% 635 
carbohydrates), or high-fat chow (Harlan Teklad 06414; 18.4% protein, 60.3% fat, 21.3% 636 
carbohydrate). Animals were first weighed within the first few days of assignment to either 637 
diets, and this was mostly but not always prior to introduction to HFD. Following this, animals 638 
were weighed periodically, and a final time (BWF) when animals were humanely euthanized 639 
(anesthetized with avertin at 0.02 ml per g of weight, followed by perfusion with phosphate-640 
buffered saline) at specific ages for tissue collection. The present work utilizes the biobanked 641 
liver specimens that were pulverized and stored in -80 °C, and overlaps samples described in 642 
Williams et al.32 DNA was extracted using the DNeasy Blood & Tissue Kit from Qiagen. Nucleic 643 
acid purity was inspected with a NanoDrop spectrophotometer, and quantified using a Qubit 644 
fluorometer dsDNA BR Assay. 645 

Methylation array and quality checks 646 

DNA samples from ~350 BXD mice were profiled on the Illumina HorvathHumanMethylChip40 647 
array. Samples were in 96-well plate format (Supplementary file 1), and the plates were 648 
randomized for major covariates such as age and diet. Details of this array are described in 649 
Arneson et al.29,79 The array contains probes that target ~36K highly conserved CpGs in 650 
mammals. Over 33K probes map to homologous regions in the mouse genome. For 651 
downstream statistical tests, we further filtered the probes and used only 27966 probes that 652 
have been validated for the mouse genome using calibration data generated from synthetic 653 
mouse DNA.29 Data was normalized using the SeSame method.80 Unsupervised HC was 654 
performed to identify outliers and failed arrays, and those were excluded. We also performed 655 
strain verification as an additional quality check. While majority of the probes were free of DNA 656 
sequence variants, we found 45 probes that overlapped variants in the BXD family. We 657 
leveraged these as proxies for genotypes, and performed a principal component analysis (PCA). 658 
The top genotype principal components (genoPC1 and genoPC2; Supplementary file 1) 659 
segregated the samples by strain identity, and samples that did not cluster close to the 660 
reported strains were removed. After excluding outliers, failed arrays, and samples that failed 661 
strain verification, the final liver DNAm data consisted of 339 samples. The beta-values for 662 
these ~28K probes in the 339 samples show the expected bimodal distribution (Figure 2-figure 663 
supplement 2a), but for these highly conserved CpGs, we note a much higher representation of 664 
hypermethylated CpGs instead of the slightly hypomethylated state of the methylome when a 665 
wider spectrum of CpGs is assayed.43 666 

BXD-unbiased mouse clock estimation 667 
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Three different mouse clocks are reported here, and all three are based on penalized regression 668 
modeling using glmnet.81  Training was done in a larger mouse dataset that excluded the 669 
BXDs.30,31,42 The clocks are therefore unbiased to the characteristics of the BXDs. For pan-tissue 670 
clocks, all mouse samples were used for training. For the liver specific clocks, the training was 671 
limited to data from liver samples.  672 

The general DNAmAge clock did not preselect for any CpGs and the full set of CpGs that map to 673 
Mus musculus was used. First, a log-linear transformation was applied to the chronological age 674 
using the function: 675 

𝑓ሺ𝐴𝑔𝑒ሻ =  ቐ 𝐴𝑔𝑒1.2 + 0.06 + logሺ1.2 + 0.06ሻ − 1.21.2 + 0.06 , 𝐴𝑔𝑒 > 1.2logሺ𝐴𝑔𝑒 + 0.06ሻ, 𝐴𝑔𝑒 ≤ 1.2  

This is similar to the age transformation described in the original Horvath pan-tissue human 676 
clock, but with offset at 0.06, and adult mouse age at 1.2.11  Following this transformation, an 677 
elastic net regression was implemented to regress the transformed chronological age on the 678 
CpG beta-values in the training data. The alpha was set at 0.5, and the optimal lamda 679 
parameter was determined by 10-fold cross-validation (function cv.glmnet). This selected 680 
subsets of clock CpGs and coefficients. DNAmAge was then calculated as:  681 𝐷𝑁𝐴𝑚𝐴𝑔𝑒 =  𝑓ିଵ ൬𝑏଴ + 𝑏ଵ𝐶𝑝𝐺ଵ + 𝑏ଶ𝐶𝑝𝐺ଶ + ⋯ + 𝑏௜𝐶𝑝𝐺௜𝑏଴ + 𝑏ଵ + 𝑏ଶ + ⋯ + 𝑏௜ ൰ 

where b0 is the intercept, and b1 to bi are the coefficients, and CpG1 to CpGi denote the beta-682 
values for the respective clock CpGs, and f-1() denotes the inverse function of f(). 683 

A similar method was used to build the developmental and interventional clocks, but for these, 684 
the CpGs were pre-selected. For the liver-specific developmental clock, CpGs that change 685 
during mouse development was selected in liver samples based on Pearson correlation with 686 
age in mice that were <1.6 months old. The top 1000 negative and top 1000 positive correlates 687 
were then classified as “developmental CpGs”, and the training was done using only this subset 688 
of CpGs. For the pan-tissue dev.DNAmAge, the top 1000 positive and top 1000 negative 689 
developmental CpGs were based on a multi-tissues EWAS, also using Pearson correlation with 690 
age for mice <1.6 months old, and these are CpGs that are strongly correlated with age during 691 
the mouse developmental period when all available tissues are considered.  692 

Training for the interventional clock started with 537 CpGs that relate to gold-standard anti-693 
aging interventions (calorie restriction, growth hormone receptor knockout).42,82 These 694 
“interventional CpGs” were identified from an independent mouse liver calorie restriction (n = 695 
95), and one growth hormone receptor knockout (n = 71) data that were not included in the 696 
clock estimation.42 Top CpGs associated with these interventions were identified and the 537 697 
CpGs are the sites that are consistently associated with these anti-aging interventions. Of the 698 
537, 121 CpGs increased in methylation, and 417 decreased in methylation with application of 699 
the pro-longevity interventions. Given the small number of CpGs that went into training for the 700 
int.DNAmAge, we expected this clock to be less correlated with chronological age, and possibly 701 
more responsive variables such as diet. 702 
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Entropy calculation 703 

Methylome-wide entropy was calculated from the 27966 probes. The beta-values were 704 
discretized into 20 bins, and the Shannon entropy for each sample was estimated using the R 705 
package, “entropy” (v1.2.1) with method = “ML”: maximum likelihood.83 The optimal number of 706 
bins was determined using the Freedman-Diaconis rule (breaks = “FD” for the hist() function in 707 
R). We also estimated the methylome-wide entropy after discretizing into 100 and 2000 bins 708 
(values provided in Supplementary file 1), and the results we report are consistent and robust 709 
to the number of bins. For the age-gain, age-loss, and age-ns CpGs, entropy for each set was 710 
estimated, also following discretization into 20 bins. 711 

Statistics 712 

Statistical analyses were done using R or the JMP Pro software (version 15). Association 713 
between the epigenetic predictors and continuous variables (body weight, strain lifespan, 714 
fasted serum glucose, and total cholesterol) were based on Pearson correlations, and t-test was 715 
used to evaluate the effect of categorical predictors (sex, diet). Multivariable regression models 716 
were also used to control for covariates (R regression equations provided with relevant tables 717 
and supplementary files). All these traits are directly accessible from GeneNetwork 2 (GN2; 718 
more information on how to retrieve these data from GN2 are provided in Supplementary file 719 
13).84,85 Longevity data was obtained from a parallel cohort of BXD mice housed in the same 720 
UTHSC colony, and members of this “longevity cohort” were allowed to age until natural death 721 
(more detail on the longevity cohort can be found in 33). Males were excluded and strain-by-722 
diet lifespan summary statistics were derived. Only strain-by-diet groups with 5 or more 723 
observations were included in the correlational analyses with the epigenetic predictors.  724 

Multivariable EWAS 725 

Site-by-site differential methylation analysis (EWAS) was performed on the 27966 CpGs using a 726 
multivariable regression model. As such genome-wide explorations are vulnerable to 727 
unmeasured confounders, we included the top PC derived from a PCA of the 27966 probes.86 728 
The top 10 principal components PCs cumulatively accounted for ~62% of the variance (Figure 729 
2-figure supplement 2b). A plot of PC1 (19% of variance) and PC2 (14% of variance) showed 730 
that PC1 captured some noise due to batch (Figure 2-figure supplement 2b). The remaining top 731 
PCs (PC2 onwards) were strongly associated with biological variables, particular age, and also 732 
weight and diet (top 10 PCs provided in Supplementary file 1). For this reason, we included PC1 733 
as a correction factor in the EWAS. The regression model we used was: lm(CpGi~ age + median 734 
lifespan + diet + BWF+ PC1), where CpGi is the ith CpG from 1 to 27966. As lifespan was from 735 
female mice, this EWAS excluded the few male samples. 736 

CpG annotation and enrichment  737 

Functional annotation and enrichment analyses for the DMCs were done using the genomic 738 
region enrichment R package, rGREAT (version 3.0.0)46 with the array content (i.e., the 27966 739 
CpGs) as background. Enrichment p-values are based on hypergeometric tests, and categories 740 
with Benjamini-Hochberg adjusted p-values ≤ 0.05 are reported. Annotations were for the 741 
GRCm38/mm10 reference genome. 742 
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For chromatin state annotation, we used bedtools to annotate the 27966 CpGs coordinates 743 
using chromatin annotation .bed files for neonatal (P0) mouse liver tissue created by Gorkin et 744 
al.48,87 This provides the 15-states model using ChromHMM,47 and we downloaded the file for 745 
the “replicated set” (here, the regions annotated as NRS are sites that did not produce 746 
replicable signal). Enrichment and depletion analyses for genomic annotations, and chromatin 747 
annotations were based on the hypergeometric test (phyper R function). The R codes are 748 
provided with the results data (Supplementary file 9).   749 

Genetic analyses 750 

Heritability within diet was estimated as the fraction of variability that was explained by 751 
background genotype.34,88,89 For this, we applied an anova: aov(EAA ~ strain), and heritability 752 
was computed as: h2 = SSqstrain/(SSqstrain + SSqresidual), where SSqstrain is the strain sum of squares, 753 
and SSqresidual is the residual sum of squares.  754 

All QTL mapping was done on the GN2 platform (trait accession IDs provided in Supplementary 755 
file 13).84  In the GN2 home page, the present set of BXD mice belongs to the Group: BXD NIA 756 
Longevity Study, and GN2 provides a direct interface to the genotype data. All QTL mapping 757 
was done for genotypes with minor allele frequency ≥ 0.05 using the genome-wide efficient 758 
mixed model association (GEMMA) algorithm,49 which corrects for the BXD kinship matrix. For 759 
the EAA traits, diet, weight at 6 months, and final weight were fitted as cofactor. Chronological 760 
age had not correlation with EAA and this was not included as a cofactor (including age does 761 
not change the results). Genome-wide linkage statistics were downloaded for the full set of 762 
markers that were available from GN2 (7320 markers in Supplementary file 10). For the 763 
combined p-values, QTL mapping was done separately using GEMMA for each EAA traits, then 764 
the Fisher’s p-value combination was applied to get the meta-p-value.50 We used this method 765 
to simply highlight loci that had consistent linkage across the different EAA measures. QTL 766 
mapping for methylome-wide entropy was done using GEMMA with adjustment for 767 
chronological age, diet, weight at 6 months, and final weight. 768 

For marker specific linkage, we selected SNPs located at the peak QTL regions (DA0014408, 769 
rs48062674), and grouped the BXDs by their genotypes (F1 hybrids and other heterozygotes 770 
were excluded from this), and marker specific linkage was tested using ANOVA and linear 771 
regression (R regression equation given in Table 3). rs48062674 is a reference variant that is 772 
already catalogued in dbSNP,90 and is used as a marker in the QTL mapping. DA0014408.4 is an 773 
updated variant at a recombinant region in the Chr11 interval and within the peak QTL 774 
interval.34 Genotypes at these markers for individual BXD samples are in Supplementary file 1. 775 

To test the effect of genotype on body weight change, body weight data measured at 776 
approximately 4 (baseline), 6, 12, 18, and 24 months were downloaded from GN2 777 
(Supplementary file 13). Detailed description of these weight data are in Roy et al.33 We then 778 
applied a mixed effects regression model using the lme4 R package91: lmer(weight ~ age + diet + 779 
genotype + (1|ID)), where ID is the identifier for individual mouse.  780 

Bioinformatic tools for candidate genes selection 781 

Sequence variation between B6 and D2 in the QTL intervals (Chr11:90–99 Mb, and Chr19:35–48 782 
Mb) were retrieved from the Wellcome Sanger Institute Mouse Genomes Project database 783 
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(release 1505 for GRCm38/mm10).92-94 Positional candidates were required to contain at least 784 
one coding variant (missense and/or nonsense variants), or have non-coding variants with 785 
evidence of cis-regulation in liver tissue of the BXDs. Cis-eQTLs for the candidate genes were 786 
obtained from the liver RNA-seq data described in 32. An interface to search and analyze this 787 
transcriptome data is available from GN2, and is catalogued under Group: BXD NIA Longevity 788 
Study; Type: Liver mRNA; and Dataset: UTHSC BXD Liver RNA-seq (Oct 19) TMP Log2.  789 

For human GWAS annotations, we navigated to the corresponding syntenic regions on the 790 
human genome by using the coordinate conversion tool in the UCSC Genome Browser. The 791 
Chr11 90–95 Mb interval on the mouse reference genome (GRCm38/mm10) corresponds to 792 
human Chr17:50.14–55.75 Mb (GRCh38/hg38) (40.7% of bases; 100% span). The Chr11 95–99 793 
Mb interval in the mouse corresponds to human Chr17:47.49–50.14 Mb (29.3% of bases, 57.9% 794 
span), and Chr17:38.19–40.39 Mb (20.7% of bases, 44.1% span). Likewise, for the Chr19 QTL, 795 
the mm10 35–40 Mb corresponds to hg38 Chr10:89.80–95.06 Mb (32.2% of bases, 89.2% span), 796 
40–45 Mb corresponds to hg38 Chr10:95.23–100.98 Mb (46.6% of bases, 95.6% span), and 45–797 
48 Mb corresponds to hg38 Chr10:100.98–104.41 Mb (46.5% of bases, 100% span). We then 798 
downloaded the GWAS data for these regions from the NHGRI-EBI GWAS catalog,51 and 799 
retained the GWAS hits that were related to aging. 800 

Transcriptome and proteome analyses 801 

The liver RNA-seq data mentioned above was also used for the transcriptome-wide 802 
correlational analysis for EAA in the 153 cases that had both DNAm and RNA-seq data. We 803 
considered the top 2000 highest mRNA correlates (|r| = 0.24, p = 0.003 for the pan-tissue EAA; 804 
|r| = 0.3, p = 0.0002 for the liver int.EAA), and the list of transcripts were collapsed to a non-805 
redundant list of gene symbols, and this was uploaded to the DAVID Bioinformatics Database 806 
(version 2021 update) for GO enrichment analysis.95,96  Proteome correlational analysis was 807 
carried out using the data: Group: BXD NIA Longevity Study; Type: Liver Proteome; and Dataset: 808 
EPFL/ETHZ BXD Liver Proteome CD-HFD (Nov19). Detailed description of this data is in Williams 809 
et al.32 164 BXD cases had both DNAm and liver proteomics, and similar to the RNA-seq, we 810 
selected the top 2000 correlates ((|r| = 0.24, p = 0.002 for both the pan-tissue EAA and liver 811 
int.EAA) for enrichment analysis. 812 

59 of the BXD cases also have proteome data from adipose tissue (Group: BXD NIA Longevity 813 
Study; Type: Adipose Proteome; and Dataset: Riken-Wu BXD Liver Proteome CD-HFD (Sep20)). 814 
While small in sample number, we used this data to test whether we could recapitulate the 815 
same functional enrichment profiles in a different tissue. Details on sample preparation and 816 
processing steps for the adipose proteome is provided in the dataset’s “Info” page on GN2. In 817 
brief, protein was extracted from the adipose samples by first lysis in a buffer with protease 818 
inhibitor, followed by homogenization with a glass dounce and sonication. The protein fraction 819 
was isolated from the homogenate by centrifugation, and processed for assay on a liquid 820 
chromatography tandem mass spectrometry (LC-M/MS) using a modified Phase Transfer 821 
Surfactant Method as described in Mostafa et al.97,98 Samples were measured using a Q 822 
Exactive Plus Orbitrap LC–MS/MS System (Thermo Fisher). For each sample, 600 ng was 823 
injected and the samples were measured with data-independent acquisition (DIA).  A portion of 824 
the peptides from the samples were pooled and fractionated using a Pierce High pH Reversed-825 
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Phase (HPRP) Peptide Fractionation Kit (Thermo Fisher Scientific) to generate a spectral library. 826 
For the HPRP fractions, 450 ng was injected and the samples were measured with data-827 
dependent acquisition (DDA). For protein identification, the raw measurement files were 828 
searched against a mouse database using the (uniprot-reviewed_Mus_musculus_10090_.fasta) 829 
using Proteome Discoverer v2.4 software (Thermo Fisher Scientific). Filtered output was used to 830 
generate a sample-specific spectral library using the Spectronaut software (Biognosys, 831 
Switzerland). Raw files from DIA measurements were used for quantitative data extraction with 832 
the generated spectral library, as previously described.98 The false discovery rate was estimated 833 
with the mProphet approach and set to 0.01 at both peptide precursor level and protein 834 
level.99,100 Due to the small sample size, for this dataset, we considered the top 1000 protein 835 
correlates of EAA (|r| = 0.25, p = 0.06 for the pan-tissue EAA; |r| = 0.31, p = 0.02 for the liver 836 
int.EAA). 837 

Data availability 838 

The normalized microarray data and raw files are available from the NCBI Gene Expression 839 
Omnibus (accession ID GSE199979). The HorvathMammalMethylChip40 array manifest files and 840 
genome annotations of CpGs can be found on Github at 841 
https://github.com/shorvath/MammalianMethylationConsortium.79 Individual level BXD data, 842 
including the processed microarray data are  available on www.genenetwork.org84 on FAIR+ 843 
compliant format; data identifiers, and way to retrieve data are described in Supplementary 844 
file 13.  845 
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Figure 1-figure supplement 1. Relative effects of different predictor variables on epigenetic 907 
age acceleration (EAA)  908 
Logworth scores of the predictors (–log10p) with dashed lines corresponding to p = 0.01. 909 
Positive logworth values indicate positive regression estimates, and negative values indicate 910 
negative regression estimates (for diet, positive means higher in high fat diet compared to 911 
control diet). BW0 is baseline weight; Chol is serum total cholesterol, Gluc is fasted glucose 912 
levels. 913 

Figure 1-figure supplement 2. BXD strains with shorter life expectancy have slightly more 914 
accelerated clocks 915 
This inverse correlation is depicted for the (a) 75th quartile age at natural death, (b) the 916 
minimum lifespan, and (c) the median lifespan (analysis in 302 female samples with lifespan 917 
data). CD is control diet; HFD is high fat diet. The negative correlations are modest with 918 
explained variance values, r2, of about ~3%. 919 

Figure 2-figure supplement 1. Genomic and chromatin states of differentially methylated 920 
CpGs 921 
Enrichment is (a) genomic location, and (b) chromatin states among the differentially 922 
methylated CpGs (DMC) (expansions for the chromatin states are provided in Supplementary 923 
file 9). Asterisks denote hypergeometric enrichment p < 0.001. For the 15 chromatin states (and 924 
regions with no replicable signal, NRS), we compare the methylation levels, and mean 925 
regression estimates for the effects of (c) age, (d) diet, and (e) body weight. 926 

Figure 2-figure supplement 2. Array quality check 927 
(a) Density plot for the 339 cases using the full set of CpG probes. (b) Variance explained by the 928 
top 10 principal components (PCs) derived from the full set of probes. (c) Plot between 929 
component 1 and 2 shows the PC1 captures some batch effect. Here batch is the 96-well plates. 930 

Figure 4-figure supplement 1. Consensus QTL mapping for epigenetic age acceleration 931 
(s) The Manhattan plot displays the combined meta p-values for epigenetic age acceleration 932 
(EAA). These meta p-values are based on a simple p-value combination for the six EAA QTL 933 
traits, and is mainly to highlight regions with the highest consensus QTLs. The highest peaks are 934 
on chromosomes 11 (Eaa11), and 19 (Eaa19). (b) BXDs were segregated by genotype at a 935 
representative marker in Eaa11 (variant at 92.750 Mb). In the control diet group (CD), mean 936 
EAA (± standard error) is higher for mice with the DD genotype. Only the EAA derived from the 937 
liver interventional clock (int.EAA) shows no difference between the genotypes. (c) BXDs were 938 
segregated by the genotype at a marker in Eaa19 (38.650 Mb). Mean EAA is higher in the BB 939 
genotype, and this genotype effect is seen for all the clocks on both diets. Bars are standard 940 
error. 941 

Figure 6-figure supplement 1. Hierarchical clustering heatmaps for the top expression 942 
correlates of epigenetic age acceleration. The dendrograms represent the liver expression of 943 
(a) mRNA, and (b) proteins that are correlated with age acceleration derived from both the 944 
pan-tissue general clock, and the liver interventional clock. 945 
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