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Abstract T-cell development in the thymus undergoes the process of differentiation, selective 
proliferation, and survival from CD4−CD8− double negative (DN) stage to CD4+CD8+ double positive 
(DP) stage prior to the formation of CD4+ helper and CD8+ cytolytic T cells ready for circulation. 
Each developmental stage is tightly regulated by sequentially operating molecular networks, of 
which only limited numbers of transcription regulators have been deciphered. Here, we identified 
Zfp335 transcription factor as a new player in the regulatory network controlling thymocyte devel-
opment in mice. We demonstrate that Zfp335 intrinsically controls DN to DP transition, as T-cell-
specific deficiency in Zfp335 leads to a substantial accumulation of DN3 along with reduction of DP, 
CD4+, and CD8+ thymocytes. This developmental blockade at DN stage results from the impaired 
intracellular TCRβ (iTCRβ) expression as well as increased susceptibility to apoptosis in thymocytes. 
Transcriptomic and ChIP-seq analyses revealed a direct regulation of transcription factors Bcl6 and 
Rorc by Zfp335. Importantly, enhanced expression of TCRβ and Bcl6/Rorc restores the develop-
mental defect during DN3 to DN4 transition and improves thymocytes survival, respectively. These 
findings identify a critical role of Zfp335 in controlling T-cell development by maintaining iTCRβ 
expression-mediated β-selection and independently activating cell survival signaling.

Editor's evaluation
The authors have discovered that the transcription factor Zfp335 is an important regulator of early 
T cell development in the thymus. This paper will be of interest to scientists within the field of T cell 
development. The authors show that Bcl6 and Rorc are direct gene targets of Zfp335 and dysregula-
tion of these are at least partly responsible for the impaired T cell development in Zfp335 mice.

Introduction
T-cell development proceeds in a series of developmental stages, which is precisely orchestrated by 
multiple signaling and molecular networks (Hosokawa and Rothenberg, 2021; López-Rodríguez 
et al., 2015; Rothenberg, 2014). Prethymic progenitor cells originated from bone marrow migrate 
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into the thymus and sequentially differentiate into CD4−CD8− (DN), CD4+CD8+ (DP), and the CD4+ or 
CD8+ (SP) stage. Based on the expression of CD44 and CD25, DN thymocytes are divided into several 
phenotypically distinct stages, including DN1 to DN4 (Rothenberg et al., 2008; Yang et al., 2010; 
Yui and Rothenberg, 2014; Kurd and Robey, 2016). In the presence of Notch signaling, early thymic 
progenitor (ETP)-DN1 cells transit into DN2a stage, initiating the T-cell lineage commitment, which is 
immediately accompanied by TCRβ gene arrangement. The majority of DN2 cells enter the DN3 stage 
with αβ lineage potential (Godfrey et al., 1993). Only DN3 cells with a complete pre-TCR complex, 
which consists of the functional TCRβ protein, pre-Tα (pTα) chain, and CD3 molecule, can successfully 
trigger the subsequent maturation into DN4 and DP thymocytes. Further differentiation into mature 
CD4+ or CD8+ T cells requires positive and negative selection at DP stage before they migrate to 
peripheral lymphoid organs (Dudley et al., 1994; Hoffman et al., 1996; von Boehmer and Fehling, 
1997; Malissen et al., 1999).

Pre-TCR signals regulate thymocyte differentiation by mediating protection from apoptosis, 
stimulating proliferation, and inducing allelic exclusion at the TCRβ locus in post-β-selection DN3b 
cells and promoting DN to DP transition (Hoffman et  al., 1996; Aifantis et  al., 1997; Kruis-
beek et al., 2000). Inactivation of pre-TCR components dampens T-lymphocyte development by 
arresting thymocytes at the DN3 stage and inducing apoptosis (Fehling et al., 1995; Malissen 
et al., 1995; Mombaerts et al., 1992a; Mombaerts et al., 1992b). Multiple transcription factors 
downstream of pre-TCR signaling are involved in T-cell differentiation and survival. The major pre-
TCR signaling is conducted through the dose-dependent expression of Notch controlled by the 
Id3–E2A axis (Liu et al., 2021). Abrogation of either Notch or E2A expression may lead to the 
developmental block of thymocytes at multiple stages (Ikawa et  al., 2006; Shah and Zúñiga-
Pflücker, 2014; Belle and Zhuang, 2014). In addition, activation of NF-κB (Voll et al., 2000), Ets1 
(Eyquem et al., 2004), and NFAT5 (Berga-Bolaños et al., 2013) by pre-TCR signals also contrib-
utes to the developmental block. The transcription factor T-cell factor 1 (TCF1), together with its 
downstream Bcl-11b, not only increases the potential to differentiate into T cells (Li et al., 2010; 
Ikawa et  al., 2010), but also positively regulates thymocyte development via promoting TCRβ 
recombination and expression, as well as DP cell survival (Albu et al., 2007; Li et al., 2013). Apart 
from the essential role in the T follicular helper cell lineage commitment (Yu et al., 2009), Bcl6 
induced by pre-TCR signals is also involved in the DN to DP transition and protection of DN4 cells 
from apoptosis (Solanki et al., 2020). Additionally, abrogation of Rorc expression in thymocytes 
leads to a decreased DP proportion and impaired DP survival in a Bcl-xl-dependent manner (Villey 
et al., 1999; Sun et al., 2000; Xi et al., 2006).

Although pre-TCR signaling is crucial for the β-selection checkpoint, it is not sufficient for progres-
sion to the DN3 stage. Other pathways or transcription factors coupled with or independent of 
conventional pre-TCR signaling are found to play important roles in the process (Ciofani et al., 2004). 
The developmental blockade in Smarca5- or Nkap-deficient thymocytes is confirmed by intact pre-
TCR signals in these mice (Pajerowski et al., 2009; Zikmund et al., 2019). Overall, it remains largely 
unknown which factors are crucial for T-cell development through mechanisms independent of pre-
TCR signaling.

Zfp335, also known as the nuclear hormone receptor coregulator (NRC) – interacting factor 1 
(NIF-1), is a zinc finger protein with a 13 C2H2 zinc finger repeating structure consisting of 1337 
amino acids (Han et al., 2016). The C2H2-ZF family encodes more than 700 proteins in the human 
genome, some of which play important roles in ontogenesis, immune cell differentiation, and disease 
occurrence (Li et al., 2010; Heizmann et al., 2018), yet the biological characteristics and functions 
of most members are unclear (Stubbs et al., 2011; Emerson and Thomas, 2009). Zfp335 regulates 
gene transcription by recruiting H3K4 methyltransferase complexes, interacting with coactivators, or 
directly binding to certain gene promoters (Han et al., 2016; Yang et al., 2012; Mahajan et al., 2002; 
Wolfe et al., 2000). Zfp335 plays important regulatory roles in early embryonic development and 
neurogenesis (Yang et al., 2012). Germline knockout of Zfp335 is embryonic lethal, while deletion 
of Zfp335 gene in nerve cells impairs the proliferation and differentiation of nerve progenitor cells 
in mice, eventually leading to severe microcephaly (Yang et al., 2012). Function of Zfp335 in T-cell 
development has been observed in the study of the Zfp335bloto allele, a missense mutation derived 
from ENU mutagenesis. While thymocyte development is not significantly affected by this hypomorph 
mutation, there is a significant reduction in the number of peripheral T cells due to defects in the 
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maturation and migration of thymocytes (Han et al., 2014). Without loss of function studies, it remains 
to be determined whether Zfp335 is required for intrathymic T-cell development.

In this study, we investigated Zfp335 expression during different thymocyte stages, as well as its 
function at the β-selection checkpoint and during DN to DP transition. We found that in the thymus, 
Zfp335 has the highest expression in DN3 thymocytes. Zfp335 is indispensable for thymocyte β-se-
lection and supports the transition from DN to DP stage by maintaining intracellular TCRβ (iTCRβ) 
expression, as well as by promoting DN and DP thymocyte survival via directly regulating Bcl6 and 
Rorc expression.

A

B WT KO

WT KO
0.0

0.5

1.0

8

12 **

Th
ym

oc
yt

es
(x

10
7 )

C

WT KO
0

25

50

75

100

%
D

N
ce

lls

****

WT KO
0

2

4
60
70
80

%
D

P
ce

lls

****

WT KO
0

2

4

6

8

%
C

D
4+

T
ce

lls ****

WT KO
0.0

0.5

1.0

1.5

%
C

D
8+

T
ce

lls ***

WT KO
0

1

2

3

4

5

D
N

ce
lls

(x
10

6 ) **

WT KO
0.0

0.5

1.0
40
60
80

D
P

ce
lls

(x
10

6 ) **

WT KO
0.0

0.1

0.2
2

4

6

C
D

4+
T

ce
lls

(x
10

6 ) ***

WT KO
0.00

0.02

0.04
1.0

1.5

2.0

C
D

8+
T

ce
lls

(x
10

6 ) ****

WT KO
0

10

20

30

%
C

D
4+

T
ce

lls

****

WT KO
0

2

4

6

8
%

C
D

8+
T

ce
lls

***

WT KO
0

20

40

60

80

%
C

D
4+

T
ce

lls

****

WT KO
0

5

10

15

%
C

D
8+

T
ce

lls ****

WT KO
0

5

10

15

20

25

C
D

4+
T

ce
lls

(x
10

6 )

***

WT KO
0

1

2

3

4

5

C
D

8+
T

ce
lls

(x
10

6 ) **

WT KO
0

5

10

15

C
D

4+
Tc

el
ls

(x
10

6 ) *

WT KO
0.0

0.5

1.0

1.5

2.0
C

D
8+

T
ce

lls
(x

10
6 ) *

C
D

4

D

E

C
D

4

F G

I

86.686.45

1.605.28

2.941.29

0.6295.14

1.44

4.24

5.76

27.96

10.01

70.20

0.77

3.46

H

J

1cm

DN3
DN4 DP

CD4
CD8

NKT
γδ

T
0.0

0.5

1.0

1.5

Fo
ld

ch
an

ge

****** ****
*******

CD8

SP

LN

WT

KO

CD8

WT KO

Figure 1. Impaired thymocyte development in Zfp335-deficient mice. (A) DN3, DN4, DP, CD4, CD8, NKT, and γδT cells were sorted from C57BL/6 
thymocytes by flow cytometry. The mRNA levels of Zfp335 were measured by qPCR. (B) Thymi from LckCre+Zfp335+/+ (WT) and LckCre+Zfp335fl/fl (KO) 
mice. Representative thymi and total cell number of thymocytes. Scale bar, 1 cm. (C–E) The different stages of thymocyte development in WT and KO 
mice were measured by flow cytometry. (C) Representative flow cytometry (FACS) plots of DN, DP, CD4, and CD8 thymocytes. (D) The percentages of 
DN, DP, CD4, and CD8 thymocytes. (E) The numbers of DN, DP, CD4, and CD8 thymocytes. (F–J) CD4+ and CD8+ cells in spleen and lymph nodes from 
WT and KO mice were measured by flow cytometry. (F) Representative FACS plots of CD4+ and CD8+ cells in spleen and lymph nodes. The percentage 
and number of CD4+ T cells (G) and CD8+ T cells (H) in the spleen from WT and KO mice. The percentage and number of CD4+ T cells (I) and CD8+ T 
cells (J) in the lymph nodes from WT and KO mice. Results represent three independent experiments. n = 4 mice per group. *p < 0.05, **p < 0.01, ***p 
< 0.001, and ****p < 0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Figure 1D The percentages of DN, DP, CD4, and CD8 thymocytes from WT and KO mice.

Figure supplement 1. Zfp335 protein expression in thymocytes.

Figure supplement 1—source data 1. Figure 1—figure supplement 1B.

Figure supplement 2. The transcriptional profiling of Zfp335 expression in various subsets of thymocytes.

Figure supplement 3. Verification of Zfp335 conditional knockout mouse strain.

Figure supplement 3—source data 1. The gel of Zfp335 DNA in WT and KO mice.

https://doi.org/10.7554/eLife.75508


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Immunology and Inflammation

Wang, Jiao, Sun, et al. eLife 2022;11:e75508. DOI: https://doi.org/10.7554/eLife.75508 � 4 of 23

Results
Impaired thymic αβ T-cell development in Zfp335-deficient mice
To study the role of Zfp335 in T-cell development, we first assessed the expression of Zfp335 among 
different thymocyte subsets, including DN3, DN4, DP, CD4, CD8, NKT, and γδ T cells. We found 
that DN3 cells displayed a relatively high level of Zfp335 mRNA expression (Figure  1A). Flow 
cytometry analysis also revealed that Zfp335 protein had the highest expression in DN3 thymocytes 
(Figure 1—figure supplement 1A, B). Consistently, microarray data from ImmGen showed higher 
expression of Zfp335 specifically at the DN3a stage during T-cell development from ETP to CD4/
CD8 SP (Figure 1—figure supplement 2A). Although RNA-seq data from ImmGen exhibited the 
highest expression of Zfp335 in DP thymocytes, a gradually increased expression was observed 
from ETP to DN3 (Figure 1—figure supplement 2B). Given the importance of DN3 stage during 
β-selection checkpoint, we obtained T-cell-specific Zfp335 mice by crossing Zfp335fl/fl strain with 
Lck-Cre strain (Figure 1—figure supplement 3A). Zfp335 deletion was confirmed by real-time PCR 
(qPCR) analysis in DN4 cells (Figure 1—figure supplement 3B). Strikingly, LckCre+Zfp335fl/fl (KO) 
mice exhibited significantly smaller thymi and drastically decreased thymocyte numbers than WT 
control (Figure 1B). Further analysis showed that both percentages and numbers of DP cells, as 
well as CD4 SP and CD8 SP cells, were considerably reduced in KO mice (Figure 1C–E). Conversely, 
the percentage of DN cells was increased by nearly 10–15-folds, although the total number was 
decreased (Figure 1C–E). In secondary lymphoid organs, we also observed reduced CD4+ and CD8+ 
cells in the spleen and lymph nodes (Figure 1F–J). Thus, Zfp335 is essential for the development of 
αβT cells in the thymus.

Zfp335 intrinsically regulates T-cell development in the thymus
To address whether Zfp335 deletion intrinsically affects T-cell development, Lin−CD25+CD44− DN3 
cells from WT or KO mice were harvested and plated with OP9-DL1 cells in the presence of Flt3L and 
IL-7, an in vitro model for T-cell development (Figure 2A; Kondo et al., 2017). On both days 2 and 
4, KO group produced fewer DP cells than WT control (Figure 2B–D, Figure 2—figure supplement 
1A). When DN3 cells from WT (CD45.1+) and KO (CD45.2+) mice were mixed and cocultured at a 1:4 
ratio (KO cells were rapidly competed out when used at a 1:1 ratio), significantly lower percentage 
and cell proportion of DP cells were also observed in KO group (Figure  2E–G, Figure  2—figure 
supplement 1B). Furthermore, in vivo T-cell development was investigated by adoptively transferring 
T- and B-cell-depleted bone marrow cells from WT (CD45.1+) and KO (CD45.2+) mice with a 1:4 ratio 
into WT (CD45.1+CD45.2+) recipients (Figure 2H). When thymocytes were analyzed 6 weeks post 
transfer, both the percentages and cell numbers of DP, CD4, and CD8 cells were significantly reduced 
while DN percentage was increased in the mice that received KO cells (Figure 2I, J, Figure 2—figure 
supplement 1C). Consistently, when WT and KO bone marrow cells were mixed at a 1:4 ratio for 
cotransfer experiments, fewer DP cell proportion detected in KO compared to WT group (Figure 2K, 
L; Figure 2—figure supplement 1D). In addition, DN3 cells from KO mice also generated fewer γδ T 
cells, despite a higher percentage, in comparison to WT controls after culturing for 4 days (Figure 2—
figure supplement 2A–C). Together, we demonstrate that Zfp335 intrinsically regulates thymocyte 
development from DN to DP stage.

Loss of Zfp335 blocks the transition from DN3 to DN4 stage
We further examined the impact of Zfp335 deletion on DN thymocyte development. Staining of 
CD44 and CD25 on pregated lineage (CD4/CD8/TCRβ/TCRδ/NK1.1/CD19/CD11b/CD11c)-negative 
thymocytes was performed in WT and KO mice. The results showed that a higher percentage of 
CD44−CD25+ DN3 cells but a lower percentage of CD44−CD25− DN4 cells were found in KO group 
compared to WT group (Figure 3A, B), in which the numbers of both DN3 and DN4 thymocytes were 
decreased (Figure 3C). The developmental blockade from DN3 to DN4 in Zfp335-deficient cells was 
verified by in vitro coculture assays on day 2 using OP9-DL1 cultured with WT and KO DN3 cells, 
respectively (Figure 3D, E) or mixed at a 1:4 ratio (Figure 3F, G) as described above. The in vivo bone 
marrow chimera models further confirmed the development block at the DN3 stage (Figure 3H–K), 
indicating that Zfp335 is indispensable for DN3 to DN4 transition during early-stage differentiation.

https://doi.org/10.7554/eLife.75508
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Figure 2. An intrinsic block from DN to DP stage in Zfp335-deficient mice. (A) Schematic overview of the in vitro OP9-DL1 stromal coculture assay 
for T-cell differentiation from WT (CD45.1+) and KO (CD45.2+) DN3 thymocytes to DP and SP thymocytes. (B–D) WT and KO DN3 thymocytes were 
cultured with OP9-DL1 feeder cells in vitro in the presence of IL-7 (1 ng/ml) and Flt3L (5 ng/ml) for 2 and 4 days. The DN and DP thymocytes were 
measured by flow cytometry (n = 3). (B) Representative FACS plots of DN, DP, CD4+, and CD8+ thymocytes. (C) The percentages of DN, DP, CD4+, and 

Figure 2 continued on next page
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Ablation of Zfp335 promotes apoptosis in thymocytes
During the β-selection, efficient proliferation of pre-T cells is necessary for DN to DP progression 
(Kreslavsky et al., 2012), during which the pre-TCR signal functions as a positive regulator of thymo-
cyte survival, allowing for differentiation from pre-T cells into DP thymocytes. We sought to examine 
whether the defect in Zfp335 KO thymocyte development is due to impaired proliferation or survival. 
The in vivo BrdU incorporation assay showed comparable or even higher percentages of BrdU+ DN3 
and DN4 cells (Figure 4A, B) as well as Ki67+ DN3 and DN4 cells (Figure 4—figure supplement 
1). Nevertheless, when we examined thymocyte apoptosis, KO mice showed a remarkably higher 
percentages of Annexin V+ DN3 and DN4 cells compared to WT cells (Figure 4C, D). After coculture 
with OP9-DL1 for 4 days, both Zfp335-deficient DN3 and DN4 cells showed an increased percentage 
of Annexin V+ cells (Figure  4E, F). Further examination of the transition between the DN3a and 
DN3b stages found that the frequencies of both DN3a and DN3b were comparable between WT 
and Zfp335-deficient groups (Figure 4—figure supplement 2A–C). However, both cell populations 
showed enhanced cell apoptosis in Zfp335-deficient cells (Figure  4—figure supplement 2D–F), 
indicating that Zfp335 regulates thymocyte apoptosis in a TCR-independent manner. Moreover, in 
mixed bone marrow chimeras, Zfp335-deficient DN3 and DN4 cells also displayed significantly higher 
Annexin V+ cells (Figure 4G, H), indicating an intrinsic role of Zfp355 in regulating thymocyte survival.

Ectopic expression of TCRαβ overcomes DN3 stage block in Zfp335-
deficient mice
The pre-TCR signal-controlled β-selection is essential for thymocyte differentiation from DN3 to DN4 
stage (Zhao et al., 2019). We then examined the expression of genes involved in the pre-TCR complex 
in DN3 and DN4 cell populations. The expression of Ptcra (encoding pTα) was slightly increased while 
Trbc1, Trbc2, and Cd3e in DN3 and DN4 cells were comparable in WT and KO group (Figure 5—
figure supplement 1A, B). Additionally, the expression of intracellular CD3 (iCD3) was also unaffected 
in both Zfp335-deficient DN3 and DN4 cells (Figure 5—figure supplement 2A, B). Interestingly, flow 
cytometry analysis showed no substantial difference in iTCRβ expression between WT and KO DN3 
cells, whereas Zfp335-deficient mice displayed a significant decrease in the percentage of iTCRβ+ 
DN4 cells (Figure 5A, B). To further address whether Zfp335 deficiency affects TCRβ expression, we 
compared differential usage of TCRβ in DN4 cells between WT and KO mice, in which the expression 
of TCR Vβ5, Vβ6, Vβ8, and Vβ12 were decreased concomitantly (Figure 5C–F). However, genomic 
DNA analysis for V-DJβ5 and V-DJβ8 rearrangements showed no difference between WT and KO DN3 

CD8+ thymocytes 2 days post culture in vitro. (D) The percentage of DN, DP, CD4+, and CD8+ thymocytes 4 days post culture in vitro. (E–G) A mixed 
population of WT and KO DN3 thymocytes at a 1:4 ratio was cocultured with OP9-DL1 feeder cells in vitro in the presence of IL-7 (1 ng/ml) and Flt3L 
(5 ng/ml) for 2 and 4 days. The DN and DP thymocytes were phenotyped by flow cytometry (n = 3). (E) Representative FACS plots of DN, DP, CD4+, 
and CD8+ thymocytes. (F) Percentages of DN, DP, CD4+, and CD8+ thymocytes 2 days post culture in vitro. (G) Percentages of DN, DP, CD4+, and 
CD8+ thymocytes 4 days postculture in vitro. (H) Schematic overview of the in vivo bone marrow chimeric mice model for T-cell differentiation from WT 
(CD45.1+) and KO (CD45.2+) progenitors cells to DP and SP thymocytes. (I, J) Full chimeric mice were generated by transplanting WT (CD45.1+) or KO 
(CD45.2+) bone marrow progenitor cells into lethally irradiated (8.5 Gy) WT recipient mice (CD45.1+CD45.2+). Six weeks after transplantation, thymi from 
recipient mice were harvested. (I) Representative FACS plots of DN, DP, CD4+, and CD8+ thymocytes. (J) The percentages of DN, DP, CD4+, and CD8+ 
thymocytes. (K, L) Full chimeric mice were generated by transplanting a mixed population of WT (CD45.1+) and KO (CD45.2+) bone marrow progenitor 
cells at a 1:4 ratio into lethally irradiated WT recipients (CD45.1+CD45.2+) with 8.5 Gy. Six weeks after transplantation, thymi from recipient mice were 
harvested. (K) Representative FACS plots of DN, DP, CD4+, and CD8+ thymocytes. (L) Percentages of DN, DP, CD4+, and CD8+ thymocytes. Results 
represent three independent experiments. n = 4 mice per group. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Figure 2C, D. The percentages of DN, DP, CD4+, and CD8+ thymocytes 2 and 4 days post separate culture in vitro.

Figure supplement 1. Zfp335 deletion caused defects of thymocyte development.

Figure supplement 1—source data 1. Figure 2—figure supplement 1A. The numbers of DN, DP, CD4+, and CD8+ thymocytes 2 and 4 days post 
separate culture in vitro.

Figure supplement 2. Effect of Zfp335 deletion on γδ T-cell percentages and cellularity in vitro.

Figure supplement 2—source data 1. Figure 2—figure supplement 2B, C. The percentages and numbers of γδ T cells in WT and KO mice 2 and 4 
days post coculture in vitro.

Figure 2 continued

https://doi.org/10.7554/eLife.75508


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Immunology and Inflammation

Wang, Jiao, Sun, et al. eLife 2022;11:e75508. DOI: https://doi.org/10.7554/eLife.75508 � 7 of 23

cells (Figure 5—figure supplement 3). Thus, the reduced iTCRβ expression may be a consequence 
of protein degradation.

Given that Zfp355 deficiency led to diminished iTCRβ expression in DN4 cells, we next inves-
tigated the effect of TCR overexpression on aberrant thymocyte development caused by Zfp335 
deficiency. Offspring (LckCre+Zfp335fl/flOT1+) of LckCre+Zfp335fl/fl mice crossed to OT1 transgenic 
(Tg) mice was generated to constitutively express Tcra-V2 and Tcrb-V5 Tg gene (OT1Tg KO). Notably, 
forced expression of αβTCR successfully restored the decreased percentage of iTCRβ+ DN4 cells in 
the KO mice, despite with little impact on the number of iTCRβ+ DN4 cells (Figure 5G–I). Importantly, 
developmental arrest at the DN3 stage in Zfp335-deficient mice was fully rescued by OT1 trans-
gene (Figure 5J–L). Unfortunately, DN3 and DN4 cells from OT1Tg KO mice still exhibited a similar 
degree of apoptosis with Zfp335-deficient cells (Figure 5—figure supplement 4), suggesting Zfp335 
affects thymocyte apoptosis in a TCR-independent manner. Consistently, the proportions of DN, DP, 
CD4, and CD8 were still comparable in KO and OT1Tg KO mice (Figure 5M, N; Figure 5—figure 
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Figure 3. Zfp335-deficient thymocytes undergo a developmental block during DN3 to DN4 transition. (A–C) Thymi were harvested from 6- to 8-week-
old WT and KO mice. The different stages of DN thymocytes in WT and KO mice were measured by flow cytometry (n = 4). (A) Representative FACS 
plots of DN1 (CD25−CD44+), DN2 (CD25+CD44+), DN3 (CD25+CD44−), and DN4 (CD25−CD44−) thymocytes. (B) The percentages of DN3 and DN4 
thymocytes. (C) The numbers of DN3 and DN4 thymocytes. (D–E) WT and KO DN3 thymocytes were cultured with OP9-DL1 feeder cells in vitro 
in the presence of IL-7 (1 ng/ml) and Flt3L (5 ng/ml) for 2 days. The expression of CD44 versus CD25 was measured by flow cytometry (n = 3). (D) 
Representative FACS plots of DN3 and DN4 thymocytes. (E) The ratio of DN3 to DN4 thymocytes 2 days post culture in vitro. (F–G) A mixed population 
of WT and KO DN3 thymocytes at a 1:4 ratio was cocultured with OP9-DL1 feeder cells in vitro in the presence of IL-7 (1 ng/ml) and Flt3L (5 ng/ml) for 
2 days. The expression of CD44 versus CD25 was measured by flow cytometry (n = 3). (F) Representative FACS plots of DN3 and DN4 thymocytes. (G) 
The ratio of DN3 to DN4 thymocytes 2 days post culture in vitro. (H, I) Full chimeric mice were generated by transplanting WT (CD45.1+) or KO (CD45.2+) 
bone marrow progenitor cells into lethally irradiated (8.5 Gy) WT recipients (CD45.1+CD45.2+). Six weeks after transplantation, thymi from recipient mice 
were harvested. The expression of CD44 versus CD25 was measured by flow cytometry (n = 4). (H) Representative FACS plots of DN3 and DN4 cells. (I) 
The ratio of DN3 to DN4 thymocytes. (J, K) Full chimeric mice were generated by transplanting a mixed population of WT (CD45.1+) and KO (CD45.2+) 
bone marrow progenitor cells at a 1:4 ratio into lethally irradiated (8.5 Gy) WT recipient mice (CD45.1+CD45.2+). Six weeks after transplantation, thymi 
from recipient mice were harvested. The expression of CD44 versus CD25 was measured by flow cytometry (n = 4). (J) Representative FACS plots of DN3 
and DN4 thymocytes. (K) The ratio of DN3 to DN4 thymocytes. Results represent three independent experiments. *p < 0.05, **p < 0.01, and ***p < 
0.001.

The online version of this article includes the following source data for figure 3:

Source data 1. Figure 3B, C. The percentages and numbers of DN3 and DN4 thymocytes from WT and KO mice.

https://doi.org/10.7554/eLife.75508
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supplement 5), demonstrating that the aberrant DP development has not yet been restored by 
αβTCR overexpression.

Zfp335 directly targets Bcl6 and Rorc in DN thymocytes
To address the underlying molecular mechanisms of Zfp335-mediated thymocyte development, we 
performed comprehensive RNA-seq analysis comparing DN4 cells from WT and KO mice. Volcano 

WT KO
0

5

10

15

20

%
B

rd
U

+
D

N
3

ce
lls

WT KO
0

10

20

30

40

%
B

rd
U

+
D

N
4

ce
lls **

WT KO
0

5

10

15

20

%
A

nn
ex

in
V

+
D

N
3

ce
lls **

WT KO
0

10

20

30

40

%
A

nn
ex

in
V

+
D

N
4

ce
lls

**Br
dU

DN3

DN4

C D

WT KO
0

5

10

15

20

25

%
A

nn
ex

in
V

+
D

N
3

ce
lls ****

WT KO
0

5

10

15

20

%
A

nn
ex

in
V

+
D

N
4

ce
lls

**

E F
FSC

A B
WT KO

WT KO

WT KO
0

1

2

3

4

%
An

ne
xi

n
V+

D
N

3
ce

lls

**

WT KO
0

5

10

15

%
An

ne
xi

n
V+

D
N

4
ce

lls

**

G H

C
ou

nt

DN3

DN4

Annexin V

C
ou

nt

DN3

DN4

Annexin V

WT KO

C
ou

nt

DN3

DN4

Annexin V

WT KO

14.94 14.96

23.80 31.69

3.54 11.16

8.98 20.18

3.93 19.64

9.98 15.06

1.81 3.00

3.11 11.57

(x103)

In vivo

In vitro BMC

Figure 4. Zfp335 deficiency promotes thymocyte apoptosis in vivo and in vitro. (A, B) Thymi were harvested from 6- to 8-week-old WT and KO mice. 
The expression of BrdU in DN3 and DN4 thymocytes from WT and KO thymi was measured by flow cytometry (n = 3). (A) Representative FACS plots of 
BrdU expression in DN3 and DN4 thymocytes. (B) The percentages of BrdU+ thymocytes in DN3 and DN4 cells. (C, D) The binding of Annexin V in DN3 
and DN4 thymocytes from WT and KO thymi was measured by flow cytometry (n = 3). (C) Representative FACS plots of Annexin V binding in DN3 and 
DN4 thymocytes. (D) The percentages of Annexin V+ DN3 and DN4 cells. (E, F) A mixed population of WT and KO DN3 thymocytes at a 1:4 ratio was 
cocultured with OP9-DL1 feeder cells in vitro in the presence of IL-7 (1 ng/ml) and Flt3L (5 ng/ml) for 4 days. The binding of Annexin V was measured 
by flow cytometry (n = 3). (E) Representative FACS plots of Annexin V+ DN3 and DN4 cells. (F) The percentage of Annexin V+ DN3 and DN4 cells. (G, H) 
Full chimeric mice were generated by transplanting a mixed population of WT (CD45.1+) and KO (CD45.2+) bone marrow progenitor cells at a 1:4 ratio 
into lethally irradiated WT recipient mice (CD45.1+CD45.2+) with 8.5 Gy. Five weeks after transplantation, thymi from recipient mice were harvested. The 
binding of Annexin V was measured by flow cytometry (n = 4). (G) Representative FACS plots of Annexin V+ DN3 and DN4 cells. (H) The percentage of 
Annexin V binding in DN3 and DN4 thymocytes. Results represent three independent experiments. **p < 0.01 and ****p < 0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Figure 4B. The percentages of BrdU+ thymocytes in DN3 and DN4 cells from WT and KO mice.

Figure supplement 1. Zfp335 deficiency has no effect on the proliferation of DN3 and DN4 cells.

Figure supplement 1—source data 1. Figure 4—figure supplement 1B. The percentages of Ki67+ thymocytes in DN3 and DN4 cells from WT and 
KO mice.

Figure supplement 2. Effect of Zfp335 deletion on DN3a and DN3b Cells.

Figure supplement 2—source data 1. Figure 4—figure supplement 2E, F. The percentages of Annexin V+ DN3a and DN3b cells from WT and KO 
mice.

https://doi.org/10.7554/eLife.75508
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Figure 5. OT1 transgenic TCR overexpression rescued Zfp335 deficiency-induced defect during DN3 to DN4 transition. (A, B) Thymi were harvested 
from 6- to 8-week-old WT and KO mice. The expression of iTCRβ in DN3 and DN4 thymocytes was measured by flow cytometry (WT n = 3; KO n = 4). (A) 
Representative FACS plots of iTCRβ expression in DN3 and DN4 thymocytes. (B) Percentages and numbers of iTCRβ+ thymocytes in DN3 and DN4 cells. 
Representative FACS plots of intercellular TCR Vβ5 (C), Vβ6 (D), Vβ8 (E), and Vβ12 (F) expression in DN4 cells from WT and KO mice. (G–I) Thymi from 
WT, KO, OT1+ (OT1Tg), and OT1+LckCre+Zfp335fl/fl (OT1Tg KO) mice were harvested. The expressions of iTCRβ in DN3 (up) and DN4 (down) thymocytes 
were measured by flow cytometry (WT n = 3; KO n = 5; OT1Tg n = 3; OT1Tg KO n = 5). (G) Representative FACS plots of iTCRβ expression in DN3 and 
DN4 thymocytes. (H) The percentage of iTCRβ+ DN3 and DN4 cells in WT, KO, OT1Tg, and OT1Tg KO mice. (I) The numbers of iTCRβ+ DN3 and DN4 
cells in WT, KO, OT1Tg, and OT1Tg KO mice. (J–L) The different stages of DN thymocytes in WT, KO, OT1Tg, and OT1Tg KO mice were measured by flow 
cytometry (WT n = 3; KO n = 5; OT1Tg n = 3; OT1Tg KO n = 5). (J) Representative FACS plots of DN3 and DN4 thymocytes. (K) The percentages of DN3 
and DN4 thymocytes. (L) The numbers of DN3 and DN4 thymocytes. (M, N) The different stages of thymocyte development in WT, KO, OT1Tg, and 
OT1Tg KO mice were measured by flow cytometry (WT n = 3; KO n = 5; OT1Tg n = 3; OT1Tg KO n = 5). (M) Representative FACS plots of thymocytes. (N) 
The percentages of DN, DP, CD4+CD8−, and CD4−CD8+ thymocytes. Results represent three independent experiments. n = 3 per group. *p < 0.05, **p < 
0.01, ***p < 0.001, and ****p < 0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Figure 5B. The percentages and numbers of iTCRβ+ thymocytes in DN3 and DN4 cells from WT and KO mice.

Figure supplement 1. Effect of Zfp335 deletion on pre-TCR complex expression in DN3 and DN4 cells.

Figure 5 continued on next page

https://doi.org/10.7554/eLife.75508
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plot showed that Zfp335-deficient DN4 cells had a total 566 downregulated and 899 upregulated 
genes (fold change >1.25, p < 0.05) (Figure 6A, Supplementary file 1). Gene ontology (GO) analysis 
highlighted a large fraction of genes downregulated in KO group belonging to lymphocyte differ-
entiation and apoptotic pathways (Figure  6B). Prominently downregulated genes associated with 
lymphocyte differentiation and apoptosis were summarized in the heatmap (Figure 6C). To further 
determine genes directly regulated by Zfp335, we analyzed Zfp335 by chromatin immunoprecipitation 
followed by deep sequencing (ChIP-seq). We screened a total of 2797 Zfp335-binding sites (Supple-
mentary file 2) and the prevalence of binding peaks across genomic regions was displayed as a pie 
chart (Figure 6—figure supplement 1). To identify the Zfp335-targeting candidates, 119 profoundly 
downregulated genes were further selected out by a cutoff of twofold change, and 22 genes were 
overlapped with Zfp335-targeting genes from ChIP-seq data (Figure  6—figure supplement 2A, 
Supplementary file 3). Among these genes, top 10 genes were listed based upon their expression 
level from RNA-seq result (Figure 6—figure supplement 2B). qPCR analysis was performed to confirm 
their downregulation in KO DN4 cells (Figure 6—figure supplement 2C). Next, we focused on genes 
related to lymphocyte differentiation and apoptosis. In line with RNA-seq results (Figure 6C), qPCR 
analysis verified that Bcl6 and Rorc were significantly downregulated in KO DN4 cells (Figure 6D). 
Importantly, Zfp335 directly targeted the promoter regions of Bcl6 and Rorc in ChIP-seq analysis 
(Figure  6E), which were further verified by luciferase assay (Figure  6F). Taken together, in depth 
genomic analysis of DN thymocytes supports that Zfp335 directly regulates the transcription of Bcl6 
and Rorc.

Defects in thymocyte development caused by Zfp335 deficiency can be 
rescued by Bcl6 and Rorc
To determine whether Bcl6 and Rorc participate in the regulation of thymocyte development down-
stream of Zfp335, overexpression of Bcl6 and Rorc was conducted in vitro in the thymocyte develop-
ment model (Figure 7A). DN3 cells from KO mice were cocultured with OP9-DL1 cells and transduced 
with retrovirus encoding Mock-GFP, Zfp335-GFP, Bcl6-GFP, or Rorc-GFP. After 3.5 days, overexpres-
sion of Bcl6 and Rorc resulted in a substantial DP generation, particularly in the Bcl6 group, resulting in 
a similar DP proportion to that in Zfp335-overexpressing cells (Figure 7B, C). Of note, overexpression 
of Psmg2, Dctn1, Ankle2, Cep76, Fgf13, and Ddx31 identified in the qPCR results (Figure 6—figure 
supplement 2B, C) in KO DN3 cells did not restore DP generation in vitro (Figure 7—figure supple-
ment 1). Importantly, enhanced expression of Bcl6 in DN3 cells rescued DN thymocyte apoptosis 
(Figure 7D, E), while overexpression of both Bcl6 and Rorc rescued DP thymocytes from enhanced 
apoptosis (Figure 7F, G). p53, negatively regulated by Bcl6, is involved in lymphocyte apoptosis (Haks 
et al., 1999; Guidos et al., 1996; Mombaerts et al., 1995). Thus, we crossed Zfp335 KO strain with 
Trp53 KO strain to obtain double knockout mice, in which Trp53 deletion resulted in a partial recovery 
of DP percentage, but not cell number (Figure  7—figure supplement 2), further supporting the 
role of Bcl6 in Zfp335-controlled thymocyte survival. Together, these data demonstrate that Zfp335 
controls DN thymocyte survival through direct regulation of Bcl6 and Rorc expression.

Figure supplement 2. Intercellular CD3 (iCD3) expression in Zfp335-deficient DN3 and DN4 thymocytes.

Figure supplement 2—source data 1. Figure 5—figure supplement 2B. Intercellular CD3 expression in Zfp335-deficient DN3 and DN4 thymocytes.

Figure supplement 3. Effect of Zfp335 deletion on TCRβ rearrangement in DN3 thymocytes.

Figure supplement 3—source data 1. The gel of CD14 gene.

Figure supplement 3—source data 2. The gel of TCR Vb5.

Figure supplement 3—source data 3. The gel of TCR Vb8.

Figure supplement 4. TCRβ overexpression could not rescue the increased DN cell apoptosis caused by Zfp335 deficiency.

Figure supplement 4—source data 1. Figure 5—figure supplement 4B, C. The percentages of Annexin V+ DN3 and DN4 cells in WT, KO, OT1Tg, and 
OT1Tg KO mice.

Figure supplement 5. OT1Tg failed to rescue thymocyte numbers.

Figure supplement 5—source data 1. Figure 5—figure supplement 5. The numbers of DN, DP, CD4+, and CD8+ thymocytes in WT, KO, OT1Tg, and 
OT1Tg KO mice.

Figure 5 continued

https://doi.org/10.7554/eLife.75508
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Discussion
In this study, we reveal that Zfp335 is essential for thymocyte development, particularly during DN 
to DP transition. Zfp335 deficiency in T cells led to a significant loss of DP, CD4 SP, and CD8 SP cells 
while an accumulation of DN3 cells. Mechanistically, the developmental blockade is attributed to both 
impaired pre-TCR signal and increased susceptibility to apoptosis. Serving as a transcription factor, 
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Figure 6. Zfp335 downstream target analysis in DN4 thymocytes. (A) Volcano plot depicting log2 (fold change) (x-axis) and −log10 (p value) (y-axis) for 
differentially expressed genes (FC >1.25, p < 0.05) in DN4 thymocytes sorted from WT and KO mice; upregulated (red) and downregulated (blue). n 
= 2 per group. (B) Gene ontology (GO) analysis of genes that downregulated in Zfp335-deficient DN4 thymocytes, showing the GO terms related to 
lymphocyte differentiation and apoptosis (left), the number of genes overlapped with database from the indicated terms (middle left column), p values 
(middle column) and Q values (middle right column) and genes annotated to the indicated term (right). (C) Heatmap of representative genes related 
to lymphocyte differentiation and apoptosis. The scale ranges from minimum (green boxes) to medium (black boxes) to maximum (red boxes) relative 
expression. (D) The mRNA level of Bcl6 (top) and Rorc (bottom) in DN4 thymocytes from WT and KO mice (n = 3). (E) ChIP-seq analysis for binding of 
Zfp335 to the Bcl6 and Rorc loci in wild-type DN4 cells. (F) Luciferase assay for the binding of different domains of Zfp335 to the promoter regions of 
Bcl6 and Rorc. The pGL4.16 plasmid was transfected into 293T cells together with MSCV vector carrying different domains (n = 3). Data represent three 
independent experiments. *p < 0.05, **p < 0.01, and ****p < 0.0001.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. ChIP-seq analysis of Zfp335-binding sites.

Figure supplement 2. The intersection analysis of Zfp335 by RNA- and ChIP-seq.

https://doi.org/10.7554/eLife.75508


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology | Immunology and Inflammation

Wang, Jiao, Sun, et al. eLife 2022;11:e75508. DOI: https://doi.org/10.7554/eLife.75508 � 12 of 23

B

F

ED

C

Annexin V

2.972.97

2.4091.65

29.6117.95

9.7742.68

27.099.37

2.0561.49

13.9946.81

0.5138.68

40.69 17.76 39.1623.55

CD8

KO Mock KO Zfp335 KO RorcKO Bcl6

C
D

4

Annexin V

KO Mock KO Zfp335 KO RorcKO Bcl6

C
ou

nt
C

ou
nt

G
KO_M

oc
k

KO_Z
fp3
35

KO_B
cl6

KO_R
orc

0

20

40

60

%
An

ne
xi

n
V+

D
N

ce
lls

*** **

KO_M
oc
k

KO_Z
fp3
35

KO_B
cl6

KO_R
orc

0

10

20

30
%

An
ne

xi
n

V+
D

P
ce

lls

****
****

**

18.89 4.05 5.4111.36

KO_M
oc
k

KO_Z
fp3
35

KO_B
cl6

KO_R
orc

0
10
20
30
40
50

%
D

P
ce

lls ****
****

***

KO Mock KO Zfp335 KO RorcKO Bcl6

DN

DP

KO DN3 thymocytes

1ng/ml IL7
5ng/ml flt3L

16h

Mock/Zfp335/Bcl6/Rorc
Virus Supernatant

3.5d Gate GFP+CD45.2+ cells 
for FACS analysis

A

Figure 7. Identification of Bcl6 and Rorc as functional targets of Zfp335 for regulating thymocyte development. (A) Schematic overview of the in vitro 
gene overexpression in KO DN3 thymocytes and following T-cell differentiation in OP9-DL1 coculture system. (B, C) Zfp335-deficient DN3 thymocytes 
(KO) were cultured with OP9-DL1 feeder cells in vitro, then transduced with either Mock, Zfp335-, Bcl6-, or Rorc-overexpressing vector for 3.5 days. The 
different stages of thymocyte development from GFP-positive cells were measured by flow cytometry (n = 3). (B) Representative FACS plots of DN and 
DP thymocytes from the indicated groups. (C) The percentage of DP thymocytes from GFP-positive cells. (D–G) KO DN3 thymocytes were cultured with 
OP9-DL1 feeder cells in vitro, then transduced with either Mock, Zfp335-, Bcl6-, or Rorc-overexpressing vector for 3.5 days. The expressions of Annexin 
V in DN and DP thymocytes were measured by flow cytometry (n = 3). (D) Representative FACS plots of Annexin V+ DN thymocytes from the indicated 
groups. (E) The percentage of Annexin V+ DN thymocytes from GFP-positive cells. (F) Representative FACS plots of Annexin V+ DP thymocytes from the 
indicated groups. (G) The percentage of Annexin V+ DP thymocytes from GFP-positive cells. Results shown represent three independent experiments. 
**p < 0.01, ***p < 0.001, and ****p < 0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Figure 7C. The percentages of DP cells differentiated from KO DN3 thymocytes transduced with Mock, or Zfp335, Bcl6, and Rorc genes.

Figure 7 continued on next page

https://doi.org/10.7554/eLife.75508
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Zfp335 directly promotes Bcl6 and Rorc expression in DN thymocytes to ensure their survival during 
early development.

Zfp335 was previously demonstrated to be crucial for early embryonic development as homozy-
gous deletion of this gene resulted in neonatal death (Garapaty et al., 2009). Conditional knockout 
of Zfp335 in neural system led to severely reduced cortical size and impaired neurogenesis. Mecha-
nistically, Zfp335 was required for neural progenitor cell self-renewal and proliferation, and neuronal 
differentiation (Yang et al., 2012) and neuronal morphogenesis (Zhao et al., 2015). Besides, defi-
ciency of naive T cells in mice carrying a hypomorph allele of Zfp335 (Zfp335bloto) uncovered its role 
in immune system (Han et al., 2014). So far, there is still very limited information about the functions 
of Zfp335 in other aspects of immune system. Here, we found that Zfp335 is absolutely required for 
multiple steps of early T-cell development. Of note, it will be worth investigating whether and how 
Zfp335 is involved in the regulation of mature T-cell differentiation and functions under static and 
immunized conditions in future.

We have shown that Zfp335 expression was upregulated specifically in DN3 thymocytes and signifi-
cantly decreased in the subsequent stages, suggesting a critical role at the DN3 stage. Of note, loss 
of Zfp335 led to a dramatic reduction in both thymus size and thymocyte number. The accumulation 
of DN3 cells results from an intrinsic mechanism that hinders the transition from DN3 to DN4 stage, 
leading to the reduction of DP thymocytes and mature T cells in the periphery. These data are in line 
with another recent study reporting that Zfp335 mutation led to a reduction in peripheral T cells as 
a result of defective naive T cells and SP thymocytes (Han et al., 2014). However, given the intact 
thymic selection with Zfp335 mutation, the report was inconsistent with our observation of decreased 
β-selection with Zfp335 deficiency. The discrepancy is likely due to the different approaches used to 
disrupt Zfp335 function since a single-nucleotide missense mutation of Zfp335 may affect its function 
differently. Nevertheless, by knocking out the entire Zfp335 protein, we provide evidence that Zfp335 
is indispensable for early thymocyte development.

Thymocyte β-selection is a critical developmental checkpoint allowing for the progression from 
DN3 to DN4 stage and the maintenance of DP cell numbers, which is primarily dependent on TCRβ 
and pre-TCR signals constituted with a functional iTCRβ paired with a pTα chain (Yamasaki and Saito, 
2007). Pre-TCR signaling regulates thymocytes differentiation, proliferation, and survival in the full 
developmental process (Koch and Radtke, 2011). In addition, there are reports that other pathways 
or transcription factors coupled with or independent of conventional pre-TCR signaling are found to 
play important roles in the process (Ciofani et al., 2004; Pajerowski et al., 2009; Zikmund et al., 
2019). While Zfp335-deficient DN4 cells exhibited no defects in the rearrangement of TCRβ chain 
genes and pTα gene expression, our results clearly demonstrated that Zfp335 deficiency markedly 
impaired iTCRβ expression and led to an unbiased reduction of the majority of Vβ genes in DN4 popu-
lations. Future studies will investigate the mechanisms how Zfp335 regulates iTCRβ expression. Impor-
tantly, forced iTCRβ expression in DN3 and DN4 cells by transduction of OT1-TCR completely rescued 
the developmental impairment during the DN3-DN4 transition in Zfp335-deficient mice despite the 
failure to rescue the DN3, DN4, and DP population size. This suggests that Zfp335 controls the DN3–
DN4 transition dependent on pre-TCR signals, but other mechanisms may also regulate the DP popu-
lation size.

The large population of DP thymocytes is maintained by both cell proliferation and survival mech-
anisms. Zfp335-deficient DN3 and DN4 cells showed slightly higher or unchanged incorporation of 
BrdU, suggesting that cell proliferation was not affected. However, our data revealed a significant 
increase in apoptosis in Zfp335-deficient DN3 and DN4 thymocytes. Transcriptomic analysis (RNA-seq 

Figure supplement 1. Identification of the top 10 overlapped genes in KO DN3 thymocytes for the regulation of thymocyte development.

Figure supplement 2. Examination of Trp53 as the target of Zfp335 during the regulation of thymocyte development.

Figure supplement 2—source data 1. Figure 7—figure supplement 2B, C. The percentages and numbers of DN, DP, CD4+, and CD8+ thymocytes 
from WT, KO, and Trp53DKO mice.

Figure supplement 3. Intracellular TCRβ (iTCRβ) expression in DN4 cells infected by Zfp335, Bcl6, and Rorc overexpression retrovirus.

Figure supplement 3—source data 1. Figure 7—figure supplement 3. iTCRβ expression in DN4 cells infected by Zfp335, Bcl6, and Rorc 
overexpression retrovirus.

Figure 7 continued

https://doi.org/10.7554/eLife.75508
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and qPCR) unveiled the downregulation of Bcl6 and Rorc signaling which are critically involved in 
thymocyte apoptosis (Solanki et  al., 2020; Xi et  al., 2006). Indeed, we have demonstrated that 
Zfp335, a transcription factor, direct bound to the promoter regions of Bcl6 and Rorc genes. More 
importantly, enhanced expression of Bcl6 and Rorc could improve thymocyte survival and substantially 
restore the DP thymocyte population. Trp53 deletion resulted in a partial recovery of DP cells, further 
supporting the role of Bcl6 in Zfp335-controlled thymocyte survival. Of note, Zfp335 may also control 
thymocyte survival through directly regulating other targets.

In our study, Zfp335 is indispensable for thymocyte β-selection given that T-cell-specific deficiency 
in Zfp335 leads to impaired iTCRβ expression, blockade of thymocytes at DN stage as well as a 
substantial DN cell apoptosis. Though enhanced expression of TCRβ restores the developmental 
defect during DN3 to DN4 transition, it had little impact on the population size of DN3, DN4, and DP 
cells, suggesting the regulation of Zfp335 on DN cell apoptosis through mechanisms more than β-se-
lection. Indeed, we provided the evidence that Zfp335-controlled DN cell survival through regulating 
Bcl6 and Rorc expression. Moreover, Zfp335 regulates TCRβ expression independent on Bcl6 and 
Rorc since overexpression of neither Bcl6 or Rorc in Zfp335-deficient DN3 thymocytes could restore 
the decreased iTCRβ expression (Figure 7—figure supplement 3).

Several key factors have been shown to involve in the regulation of T-cell developmental process 
from DN3 to DP stages. Notch signaling is required for early T-cell commitment and β-selection 
(Radtke et al., 2010; Ciofani and Zúñiga-Pflücker, 2005; Hosokawa and Rothenberg, 2018), which 
is subsequently weaken by Bcl6 repression for the differentiation from DN to DP stage development 
(Solanki et  al., 2020). Consistently, our results found that Zfp335 could directly target Bcl6, and 
Zfp335 deficiency led to decreased expression of Bcl6 and upregulation of Notch target genes such 
as Dtx1 and Notch1 (data not shown), which collectively contributing to the developmental block 
from DN to DP stage. In addition, Tcf1 plays a vital role in T-cell lineage commitment since Tcf1−/− 
DN3 thymocytes failed to progress to DN4 and subsequent DP stage through regulating Bcl11b 
and Gata3 expression (Garcia-Perez et al., 2020). Bcl11b and Gata3 also differentially regulate the 
differentiation and survival of thymocytes at DN3, DN4, and subsequent ISP stages via TCR or/and 
survival signals (Inoue et al., 2006; Pai et al., 2003). However, we did not detect reduced expression 
of Tcf1, Bcl11b, or Gata3 in Zfp335-deficient DN4 cells, suggesting that Zfp335 regulates DN3 to DP 
thymocyte development independent on these molecules.

In conclusion, our study reveals that the C2H2 zinc finger protein Zfp335 plays a novel and crucial 
role during thymocyte development, specifically during the transition from DN to DP stage. Mecha-
nistically, Zfp335 promotes Bcl6 and Rorc signaling to prevent thymocytes apoptosis and ensure the 
survival and differentiation of thymocytes. Collectively, we provide evidence that Zfp335 is essential 
for thymocyte development through both pre-TCR-dependent and -independent mechanisms.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) or 
resource Designation

Source or 
reference Identifiers

Additional 
information

Genetic reagent (M. 
musculus) C57BL/6J background Jackson Laboratory Stock No. 000664

Genetic reagent (M. 
musculus) C57BL/6-Zfp335tm1Caw Jackson Laboratory Stock No. 022413

Genetic reagent (M. 
musculus) C57BL/6-Tg(TcraTcrb)1,100Mjb/J Jackson Laboratory Stock No. 003831 Common Name: OT-1

Genetic reagent (M. 
musculus) B6.Cg-Tg(Lck-cre)548Jxm/J Jackson Laboratory Stock No. 003802

Genetic reagent (M. 
musculus) C3Ou.129S2(B6)-Trp53tm1Tyj/J Jackson Laboratory Stock No. 002547

Antibody anti-mouse CD4 APC/Cyanine7 (Rat monoclonal) Biolegend
Cat# 100414; 
RRID:AB_312699

cell surface staining 
1:400

https://doi.org/10.7554/eLife.75508
https://www.jax.org/strain/002547
https://identifiers.org/RRID/RRID:AB_312699
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Reagent type (species) or 
resource Designation

Source or 
reference Identifiers

Additional 
information

Antibody anti-mouse CD8a PE (Rat monoclonal) Biolegend
Cat# 100708; 
RRID:AB_312747

cell surface staining 
1:400

Antibody anti-mouse CD8a Pacific Blue (Rat monoclonal) Biolegend
Cat# 100725; 
RRID:AB_493425

cell surface staining 
1:400

Antibody anti-mouse CD8a PE/Cyanine7 (Rat monoclonal) Biolegend
Cat# 100722; 
RRID:AB_312761

cell surface staining 
1:400

Antibody anti-mouse TCR Vβ5.1, 5.2 PE (Mouse monoclonal) Biolegend
Cat# 139504, 
RRID:AB_10613279

cell surface staining 
1:400

Antibody anti-mouse TCR Vβ6 PE (Rat monoclonal) Biolegend
Cat# 140004; 
RRID:AB_10643583

cell surface staining 
1:400

Antibody anti-mouse TCR Vβ8.1, 8.2 PE (Mouse monoclonal) Biolegend
Cat# 140104; 
RRID:AB_10639942

cell surface staining 
1:400

Antibody anti-mouse TCR Vβ12 PE (Mouse monoclonal) Biolegend
Cat# 139704; 
RRID:AB_10639729

cell surface staining 
1:400

Antibody
anti-mouse TCR β chain APC/Cyanine7 (Armenian 
Hamster monoclonal) Biolegend

Cat# 109220; 
RRID:AB_893624

cell surface staining 
1:400

Antibody
anti-mouse TCR β chain PE/Cyanine5 (Armenian 
Hamster monoclonal) Biolegend

Cat# 109210; 
RRID:AB_313433

cell surface staining 
1:400

Antibody
anti-mouse TCR β chain PE/Cyanine7 (Armenian 
Hamster monoclonal) Biolegend

Cat# 109222; 
RRID:AB_893625

cell surface staining 
1:400

Antibody
anti-mouse TCR γ/δ FITC (Armenian Hamster 
monoclonal) Biolegend

Cat# 118106; 
RRID:AB_313830

cell surface staining 
1:400

Antibody
anti-mouse TCR γ/δ PerCP/Cyaninne5.5 (Armenian 
Hamster monoclonal) Biolegend

Cat# 118118; 
RRID:AB_10612756

cell surface staining 
1:400

Antibody
anti-mouse TCR γ/δ APC (Armenian Hamster 
monoclonal) Biolegend

Cat# 118116; 
RRID:AB_1731813

cell surface staining 
1:400

Antibody
anti-mouse/human CD44 PE/Cyanine7 (Rat 
monoclonal) Biolegend

Cat# 103030; 
RRID:AB_830787

cell surface staining 
1:400

Antibody anti-mouse CD25 PE (Rat monoclonal) Biolegend
Cat# 102008; 
RRID:AB_312857

cell surface staining 
1:400

Antibody anti-mouse CD25 PE/Cyanine5 (Rat monoclonal) Biolegend
Cat# 102010; 
RRID:AB_312859

cell surface staining 
1:400

Antibody anti-mouse CD4 FITC (Rat monoclonal) Biolegend
Cat# 100510; 
RRID:AB_312713

cell surface staining 
1:400

Antibody anti-mouse CD8a FITC (Rat monoclonal) Biolegend
Cat# 100706; 
RRID:AB_312745

cell surface staining 
1:400

Antibody
anti-mouse TCR β chain FITC (Armenian Hamster 
monoclonal) Biolegend

Cat# 109206; 
RRID:AB_313429

cell surface staining 
1:400

Antibody anti-mouse NK-1.1 FITC (Mouse monoclonal) Biolegend
Cat# 108706; 
RRID:AB_313393

cell surface staining 
1:400

Antibody anti-mouse CD19 FITC (Rat monoclonal) Biolegend
Cat# 115506; 
RRID:AB_313641

cell surface staining 
1:400

Antibody anti-mouse CD11b FITC (Rat monoclonal) Biolegend
Cat# 101206; 
RRID:AB_312789

cell surface staining 
1:400

Antibody
anti-mouse CD11c FITC (Armenian Hamster 
monoclonal) Biolegend

Cat# 117306; 
RRID:AB_313775

cell surface staining 
1:400

Antibody
anti-mouse TER-119/Erythroid Cells FITC (Rat 
monoclonal) Biolegend Cat# 116206; RRID:AB_313707

 Continued on next page

 Continued

https://doi.org/10.7554/eLife.75508
https://identifiers.org/RRID/RRID:AB_312747
https://identifiers.org/RRID/RRID:AB_493425
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Reagent type (species) or 
resource Designation

Source or 
reference Identifiers

Additional 
information

Antibody
anti-mouse TCR β chain Pacific Blue (Armenian 
Hamster monoclonal) Biolegend Cat# 109226; RRID:AB_1027649

Antibody anti-mouse CD45.1 APC/Cy7 (Mouse monoclonal) Biolegend
Cat# 110716; 
RRID:AB_313505

cell surface staining 
1:400

Antibody anti-mouse CD45.2 PE (Mouse monoclonal) Biolegend Cat# 109808; RRID:AB_313445

Antibody anti-mouse CD45.2 APC (Mouse monoclonal) Biolegend Cat# 109814; RRID:AB_389211

Antibody
anti-mouse CD3 Pacific Blue (Armenian Hamster 
monoclonal) Biolegend Cat# 640918; RRID:AB_493645

Antibody
anti-mouse CD27 FITC (Armenian Hamster 
monoclonal) Biolegend Cat# 124208; RRID:AB_1236466

Antibody anti-BrdU FITC (Mouse monoclonal) Biolegend Cat# 364104; RRID:AB_2564481

Antibody anti-BrdU FITC (3D4) Biolegend Cat# 364104; RRID:AB_2564481

Antibody anti-mouse Ki-67 PE (16A8) Biolegend Cat# 652404; RRID:AB_2561525

Antibody Anti-Zfp335 antibody Novus Cat# NB100-2579

Peptide, recombinant 
protein Annexin V Pacific Blue Biolegend Cat# 640918; RRID:AB_1279044

Peptide, recombinant 
protein DNaseI Solarbio Cat# D8071

Commercial assay or kit Fixation Buffer Biolegend Cat# 420,801

Commercial assay or kit
Intracellular Staining Permeabilization Wash Buffer 
(10×) Biolegend Cat# 421,002

Commercial assay or kit MojoSort Streptavidin Nanobeads Biolegend Cat# 480,016

Commercial assay or kit
Fixation/Permeabilization Solution Kit with BD 
GolgiPlug BD biosciences Cat# 555,028

Commercial assay or kit One-Day Chromatin Immunoprecipitation Kits MILLIPORE Cat# 17-10085

Commercial assay or kit Quick-RNA MicroPrep Kit QIAGEN Cat# R1051

Commercial assay or kit Fixation Buffer Biolegend Cat# 420,801

Software, algorithm FlowJo software v10.7 FlowJo LLC https://www.flowjo.com/; RRID:SCR_008520

Software, algorithm GSEA Broad Institute
https://www.broadinstitute.org/gsea; 
RRID:SCR_003199

Software, algorithm Prism8 (v8.1.0) GraphPad Software https://www.graphpad.com/

Software, algorithm RStudio RStudio https://rstudio.com/; RRID: SCR_000432

 Continued

Mice
Zfp335f/f, LckCre, Trp53DKO, and OT-1 strains were purchased from The Jackson Laboratory (Bar Harbor, 
ME, USA). LckCre mice were crossed with Zfp335f/f mice to generate LckCre+Zfp335f/f (KO) mice and 
LckCre+Zfp335+/+ (WT) mice. Mice aged 6–8 weeks were used for analyses in the study. All mice were 
housed in specific-pathogen-free conditions by the Xi’an Jiaotong University Division of Laboratory 
Animal Research. All animal procedures were approved by the Institutional Animal Care and Use 
Committee of Xi’an Jiaotong University.

Antibodies and reagents
The following antibodies and kits were purchased from Biolegend (San Diego, CA, USA): APC/Cy7 
anti-CD4 (clone GK1.5), PE anti-CD8α (clone 53–6.7), Pacific Blue anti-CD8α (clone 53–6.7), PE/
Cyanine7 anti-CD8α (clone 53–6.7), PE anti-TCRVβ5.1, 5.2 (clone MR9-4), PE anti-TCRVβ6 (clone RR4-
7), PE anti-TCRVβ8.1, 8.2 (clone MR5-2), PE anti-TCRVβ12 (clone MR11-1), APC/Cyanine7 anti-TCRβ 
(clone H57-597), PE/Cyanine5 anti-TCRβ (clone H57-597), PE/Cy7 anti-TCRβ (clone H57-597), FITC 

https://doi.org/10.7554/eLife.75508
https://identifiers.org/RRID/RRID:AB_1027649
https://identifiers.org/RRID/RRID:AB_313505
https://identifiers.org/RRID/RRID:AB_313445
https://identifiers.org/RRID/RRID:AB_389211
https://identifiers.org/RRID/RRID:AB_493645
https://identifiers.org/RRID/RRID:AB_1236466
https://identifiers.org/RRID/RRID:AB_2564481
https://identifiers.org/RRID/RRID:AB_2564481
https://identifiers.org/RRID/RRID:AB_2561525
https://identifiers.org/RRID/RRID:AB_1279044
https://www.flowjo.com/
https://identifiers.org/RRID/RRID:SCR_008520
https://www.broadinstitute.org/gsea
https://identifiers.org/RRID/RRID:SCR_003199
https://www.graphpad.com/
https://rstudio.com/
https://identifiers.org/RRID/RRID:SCR_000432
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anti-TCRγδ (clone GL3), PE/Cyanine5 anti-TCRγδ (clone GL3), APC anti-TCRγδ (clone GL3), PE/Cy7 
anti-CD44 (clone IM7), PE anti-CD25 (clone PC61), PE/Cyanine5 anti-CD25 (clone PC61), FITC anti-
CD4 (clone GK1.5), FITC anti-CD8 (clone 53-6.7), FITC anti-TCRβ (clone H57-597), FITC anti-NK1.1 
(clone PK136), FITC anti-CD19 (clone 6D5), FITC anti-CD11b (clone M1/70), FITC anti-CD11c (clone 
N418), FITC anti-TER-119/Erythroid Cells (TER-119), Pacific Blue anti-TCRβ (clone H57-597), APC/
Cy7 anti-CD45.1 (clone A20), PE anti-CD45.2 (clone 104), APC anti-CD45.2 (clone 104), Pacific Blue 
anti-Annexin V (Cat # 640918), Pacific Blue anti-CD3 (clone 17A2), FITC anti-CD27 (clone LG.3A10), 
FITC anti-BrdU (clone Bu20a), and the Fixation/Permeabilization Solution Kit (Cat # 554722). PE anti-
Ki67 monoclonal antibody (clone SolA15) was purchased from eBioscience (San Diego, CA, USA). 
Quick-RNA Microprep Kit (Cat # R1051) was obtained from Zymo Research (Irvine, CA, USA).

FACS analysis and Sorting
Lymphocytes from LckCre+Zfp335+/+ and LckCre+Zfp335fl/fl mice were isolated. For surface staining, 
single cell suspension was prepared. A total of 1 × 106 cells were stained in the dark at 4℃ for 30 min 
with indicated antibodies. The analysis was performed on a CytoFLEX flow cytometer (Beckman 
Coulter; Brea, CA, USA). DN3 (Lin−CD25+CD44−) and DN4 (Lin−CD25−CD44−) cells were collected by 
BD FACSAria Ⅱ cell sorter (BD Biosciences, San Jose, CA, USA). FACS data were recorded and anal-
ysed using CytExpert software (Version 2.3.0.84; Beckman Coulter; Indianapolis, IN, USA).

Intracellular staining
DN and DP thymocytes were phenotyped using a combination of surface antibodies against lineage 
markers (CD4, CD8α, TCRβ, TCRγδ, NK1.1, CD19, CD11b, CD11c, and Ter119), together with CD44 
and CD25 antibodies. For intracellular cytokine staining, the thymocytes were fixed and permeabi-
lized using a Fixation/Permeabilization Solution Kit (Biolegend), followed by staining using indicated 
antibodies. The cells were analyzed on a CytoFLEX flow cytometer (Beckman Coulter).

Quantitative RT-PCR
Cell lysis was performed with RNA extraction and cDNA synthesis using Quick-RNA Microprep Kit 
(Zymo Research) and ReverTra Ace qPCR RT Master Mix Kit (TOYOBO), respectively. The qRT-PCR 
reactions were carried out using StepOnePlus Real-Time PCR Systems (ABI) with SYBR mixture 
(Genstar) to determine relative gene expression. The sequences for the primers are list in Supple-
mentary file 4.

Bone marrow transplantation
Lineage-negative BM cells from CD45.1+ mice and LckCre+Zfp335fl/fl mice (CD45.2+) were sorted, and 
mixed at a 1:4 ratio and cotransferred into lethally irradiated (8.5 Gy) recipient mice (CD45.1+CD45.2+). 
Six weeks after bone marrow transplantation, thymocytes from recipient mice were harvested for 
FACS analysis.

In vitro OP9-DL1 cell coculture
Both Lin−CD25+CD44− DN3 cells and Lin−CD25−CD44− DN4 cells were sorted from the thymi of 
LckCre+Zfp335+/+ and LckCre+Zfp335fl/fl mice and cocultured with OP9-DL1 feeder cells in α-MEM 
medium in the presence of IL-7 (1 ng/ml, PeproTech) and Flt3-L (5 ng/ml, PeproTech). On days 2 and 
4, total cells were collected and stained with indicated antibodies for FACS analysis.

Retroviral transduction of DN3 thymocytes
Retroviruses were produced from BOSC cells transfected with Mock-GFP, Zfp335-GFP, Bcl6-GFP, and 
Rorc-GFP retroviral plasmids. For retroviral transduction, Lin−CD25+CD44− DN3 thymocytes were 
sorted by FACSAria flow cytometry (BD) and cocultured with OP9-DL1 feeder cells overnight in the 
presence of 1 ng/ml IL-7 and 5 ng/ml Flt3L. Retroviral infection was performed 16 hr later by centrifu-
gation (2500 rpm for 90 min at 37°C) in the presence of retroviral supernatants and 8 µg/ml polybrene. 
After spinning, supernatants were replaced by α-MEM medium with 10% FCS supplemented with 
1 ng/ml IL-7 and 5 ng/ml Flt3L. 3.5 days later, GFP+ cells were examined using flow cytometry analysis.

https://doi.org/10.7554/eLife.75508
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Luciferase assay
To assess whether Zfp335 regulates Bcl6 and Rorc by directly binding to their promoter regions, the 
DNA fragments were cloned into the pGL4.16 (luc2CP/Hgro) vector (Promega) which contains the 
luciferase reporter gene luc2CP. The pGL4.16 plasmid, control vector pGL4.74 (hRluc/TK) encoding 
the luciferase reporter gene hRluc (Renilla reniformis), along with plasmids expressing candidate 
genes were transfected separately into 293T cell line (ATCC). Forty-eight hours post-transfection, the 
luciferase activity of both Firefly and Renilla luciferase was measured using a Dual-Luciferase Reporter 
kit (Promega) on SYNERGY Neo2 multimode reader (BioTek).

RNA-seq library preparation and sequencing
Lin−CD25−CD44− DN4 cells were sorted from the thymi of LckCre+Zfp335+/+ and LckCre+Zfp335fl/

fl mice. The DN4 cell numbers in each group were as followed: WT1, 8 × 105 cells pulled from 4 
mice; WT2, 9 × 105 cells from 5 mice; KO1, 6.7 × 105 cells from 13 mice; KO2, 7 × 105 cells from 15 
mice. RNA isolation was performed using the RNeasy Mini Kit (Qiagen) according to the manufac-
turer’s protocol. RNA quality and quantity were detected by the Qubit RNA broad range assay in 
the Qubit Fluorometer (Invitrogen). After quality control using RNase-free agarose gel and Agilent 
2100 (Agilent Technologies, Palo Alto, CA, USA), RNA-seq libraries were prepared by using 200 ng 
total RNA with TruSeq RNA sample prep kit (Illumina). Oligo(dT)-enriched mRNAs were fragmented 
randomly with fragmentation buffer, followed by first- and second-strand cDNA synthesis. After a 
series of terminal repair, the double-stranded cDNA library was obtained through PCR enrichment 
and size selection. cDNA libraries were sequenced with the Illumina Hiseq 2000 sequencer (Illumina 
HiSeq 2000 v4 Single-Read 50 bp) after pooling according to its expected data volume and effective 
concentration.

Two biological replicates were performed in the RNA-seq analysis. Raw reads were then aligned 
to the mouse genome (GRCm38) using Tophat2 RNA-seq alignment software, and unique reads were 
retained to quantify gene expression counts from Tophat2 alignment files. Data were analyzed and 
preprocessed in the R environment. Differential expression analysis was performed using R package 
DESeq2 (adjusted p value < 0.05 and fold change >1.25). Heat maps and volcano plots were visual-
ized using the R package.

ChIP-seq library preparation and sequencing
Both Lin−CD25+CD44− DN3 cells and Lin−CD25−CD44− DN4 cells were sorted from the thymi of 100 
WT mice by FACSAria flow cytometry (BD). Anti-Zfp335 antibody (Novus) and Millipore 17-10,085 
ChIP kit were used in the ChIP assay. Immunoprecipitated DNA was used for Illumina ChIP-seq 
sample preparation. In brief, 5 × 107 cells were crosslinked to chromatin with 1% formaldehyde. Reac-
tion was stopped with 0.125  M glycine. Cells were then resuspended in cold nuclear lysis buffer 
and sonicated to obtain DNA with ~300–500 bp size, followed by precipitation by incubation with 
immunoprecipitation-grade anti-Zfp335 antibody and Magnetic Protein A/G Beads overnight. The 
following day, beads were sequentially washed by low-salt, high-salt, LiCl, and TE buffers. Bound 
complexes were eluted in 150 μl of elution buffer at 62°C for 2 hr with shaking, followed by reversal of 
formaldehyde crosslinking at 95°C for 10 min. DNA was eventually purified with spin columns.

The concentration of immunoprecipitated DNA was detected by the Qubit DNA broad range 
assay in the Qubit Fluorometer (Invitrogen). 10  ng immunoprecipitated DNA was prepared for 
sequencing using the Illumina ChIP-seq sample preparation protocol. Blunt-end DNA fragments 
were ligated to Illumina adaptors, amplified, and sequenced using the SE150 model. Raw reads 
were filtered firstly to remove low-quality or adaptor sequences by SOAPnuke (version 1.5.6). Clean 
reads were mapped to the reference genome of GRCm39 with SOAPaligner/soap2 (version 2.21t) 
using default settings. The MACS2 software (Version 2.1.1) was used to process peak calling. MACS 
(Model-based Analysis of ChIP-Seq) is a commonly used computational method which is designed 
to identify peaks from ChIP-seq data. MACS assigns every candidate region an enrichment p value, 
and targeted genes are identified as final peaks passing the threshold p value < 1e−5 (Feng et al., 
2012; Feng et  al., 2011). The different enrichment peaks from different samples were plotted 
by MAnorm (version 1.1). Genomic graphs were generated and viewed with the IGV (Integrative 
Genomics Viewer).

https://doi.org/10.7554/eLife.75508
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Statistical analysis
Data were presented as mean ± standard error of the mean. Statistical analyses were applied to 
biologically independent mice or technical replicates for each experiment which was independently 
repeated at least three times. Two-tailed Student’s t-test was used for all statistical calculations using 
GraphPad Prism seven software. All bar graphs include means with error bars to show the distribution 
of the data. The level of significance is indicated as follows: *p < 0.05, **p < 0.01, ***p < 0.001, and 
****p < 0.0001.
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