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Abstract Exome sequencing on tens of thousands of parent-proband trios has identified 
numerous deleterious de novo mutations (DNMs) and implicated risk genes for many disor-
ders. Recent studies have suggested shared genes and pathways are enriched for DNMs across 
multiple disorders. However, existing analytic strategies only focus on genes that reach statistical 
significance for multiple disorders and require large trio samples in each study. As a result, these 
methods are not able to characterize the full landscape of genetic sharing due to polygenicity and 
incomplete penetrance. In this work, we introduce EncoreDNM, a novel statistical framework to 
quantify shared genetic effects between two disorders characterized by concordant enrichment of 
DNMs in the exome. EncoreDNM makes use of exome-wide, summary-level DNM data, including 
genes that do not reach statistical significance in single-disorder analysis, to evaluate the overall 
and annotation-partitioned genetic sharing between two disorders. Applying EncoreDNM to DNM 
data of nine disorders, we identified abundant pairwise enrichment correlations, especially in 
genes intolerant to pathogenic mutations and genes highly expressed in fetal tissues. These results 
suggest that EncoreDNM improves current analytic approaches and may have broad applications in 
DNM studies.

Editor's evaluation
Lu et al. provide a powerful statistical method that measures excess sharing of de novo mutations 
between pairs of disorders. This method extends the concept of 'genetic correlation' to disorders 
caused by de-novo mutations, measuring the correlation in excess de-novo mutations in genome-
wide genes for different classes of mutations. The authors apply the method to nine disorders 
including a developmental disorder, autism spectrum disorder, congenital heart disease, schizo-
phrenia, and intellectual disability, finding a statistically significant overlap between 12 pairs of 
disorders in de novo mutations that cause a loss of gene function. This method will be of interest to 
researchers working on disorders caused by de-novo mutations.
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Introduction
De novo mutations (DNMs) can be highly deleterious and provide important insights into the 
genetic cause for disease (Veltman and Brunner, 2012). As the cost of sequencing continues to 
drop, whole-exome sequencing (WES) studies conducted on tens of thousands of family trios have 
pinpointed numerous risk genes for a variety of disorders (Lelieveld et al., 2016; Kaplanis et al., 
2020; Satterstrom et  al., 2020). In addition, accumulating evidence suggests that risk genes 
enriched for pathogenic DNMs may be shared by multiple disorders (Hoischen et al., 2014; Fromer 
et al., 2014; Homsy et al., 2015; Li et al., 2016; Nguyen et al., 2020). These shared genes could 
reveal biological pathways that play prominent roles in disease etiology and shed light on clinically 
heterogeneous yet genetically related diseases (Homsy et al., 2015; Li et al., 2016; Nguyen et al., 
2020).

Most efforts to identify shared risk genes directly compare genes that are significantly associated 
with each disorder (Nguyen et al., 2017; Willsey et al., 2018). There have been some successes 
with this approach in identifying shared genes and pathways (e.g. chromatin modifiers) underlying 
developmental disorder (DD), autism spectrum disorder (ASD), and congenital heart disease (CHD), 
thanks to the large trio samples in these studies (Kaplanis et al., 2020; Satterstrom et al., 2020; 
Jin et al., 2017), whereas findings in smaller studies remain suggestive (Allen et al., 2013; Jin et al., 
2020b). Even in the largest studies to date, statistical power remains moderate for risk genes with 
weaker effects (Kaplanis et al., 2020; Howrigan et al., 2020). It is estimated that more than 1000 
haploinsufficient genes contributing to developmental disorder risk have not yet achieved statistical 
significance in large WES studies (Kaplanis et al., 2020). Therefore, analytic approaches that only 
account for top significant genes cannot capture the full landscape of genetic sharing in multiple 
disorders. Recently, a Bayesian framework named mTADA was proposed to jointly analyze DNM 
data of two diseases and improve risk gene mapping (Nguyen et  al., 2020). Although mTADA 
produces estimates for the proportion of shared risk genes, the statistical property of these param-
eter estimates has not been studied. There is a pressing need for powerful, robust, and interpretable 
methods that quantify concordant DNM association patterns for multiple disorders using exome-
wide DNM counts.

Recent advances in estimating genetic correlations using summary data from genome-wide associ-
ation studies (GWAS) may provide a blueprint for approaching this problem in DNM research (Zhang 
et  al., 2021a). Modeling ‘omnigenic’ associations as independent random effects, linear mixed-
effects models leverage genome-wide association profiles to quantify the correlation between addi-
tive genetic components of multiple complex traits (Lee et al., 2012; Bulik-Sullivan et al., 2015; Lu 
et al., 2017; Ning et al., 2020). These methods have identified ubiquitous genetic correlations across 
many human traits and revealed significant and robust genetic correlations that could not be inferred 
from significant GWAS associations alone (Shi et  al., 2017; Brainstorm, 2018; Guo et  al., 2021; 
Zhang et al., 2021b).

Here, we introduce EncoreDNM (Enrichment correlation estimator for De Novo Mutations), a 
novel statistical framework that leverages exome-wide DNM counts, including genes that do not 
reach exome-wide statistical significance in single-disorder analysis, to estimate concordant DNM 
associations between disorders. EncoreDNM uses a generalized linear mixed-effects model to quan-
tify the occurrence of DNMs while accounting for de novo mutability of each gene and technical 
inconsistencies between studies. We demonstrate the performance of EncoreDNM through extensive 
simulations and analyses of DNM data of nine disorders.

Results
Method overview
DNM counts in the exome deviate from the null (i.e. expected counts based on de novo mutability) 
when mutations play a role in disease etiology. Disease risk genes will show enrichment for delete-
rious DNMs in probands and non-risk genes may be slightly depleted for DNM counts. Our goal is 
to estimate the correlation of such deviation between two disorders, which we refer to as the DNM 
enrichment correlation. More specifically, we use a pair of mixed-effects Poisson regression models 
(Munkin and Trivedi, 1999) to quantify the occurrence of DNMs in two studies.

https://doi.org/10.7554/eLife.75551
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Here, ‍Yi1, Yi2‍ are the DNM counts for the i-th gene and ‍N1, N2‍ are the number of parent-proband 
trios in two studies, respectively. The log Poisson rates of DNM occurrence are decomposed into 
three components: the elevation component, the background component, and the deviation compo-
nent. The elevation component ‍βk‍ (‍k = 1, 2‍) is a fixed effect term adjusting for systematic, exome-wide 
bias in DNM counts. One example of such bias is the batch effect caused by different sequencing and 
variant calling pipelines in two studies. The elevation parameter ‍βk‍ tends to be positive when DNMs 
are over-called with higher sensitivity and negative when DNMs are under-called with higher speci-
ficity (Wei et al., 2015). The background component ‍log

(
2Nkmi

)
‍ is a gene-specific fixed effect that 

reflects the expected mutation counts determined by the genomic sequence context under the null 
(Samocha et al., 2014). ‍mi‍ is the de novo mutability for the i-th gene, and ‍2N1mi‍ and ‍2N2mi‍ are the 
expected DNM counts in the i-th gene under the null in two studies. The deviation component ‍ϕik‍ is a 
gene-specific random effect that quantifies the deviation of DNM profile from what is expected under 
the null (i.e. no risk genes for the disorder). ‍ϕi1‍ and ‍ϕi2‍ follow a multivariate normal distribution with 
dispersion parameters ‍σ1‍ and ‍σ2‍ and a correlation ‍ρ‍. A larger value of the dispersion parameter ‍σk‍ 
indicates a more substantial deviation from the null. That is, DNM counts show strong enrichment in 
some genes and depletion in other genes compared to the expectation based on de novo mutability. 
A smaller value of ‍σk‍ suggests that the DNM count data is well in line with what is expected based on 
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Figure 1. EncoreDNM workflow. The inputs of EncoreDNM are de novo mutability of each gene and exome-wide, annotated DNM counts from two 
studies. We fit a mixed-effects Poisson model to estimate the DNM enrichment correlation between two disorders for each variant class.
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the null model. DNM enrichment correlation is denoted by ‍ρ‍ and is our main parameter of interest. It 
quantifies the concordance of DNM burden in two disorders.

Parameters in this model can be estimated using a Monte Carlo maximum likelihood estimation 
(MLE) procedure. Standard errors of the estimates are obtained through inversion of the observed 
Fisher information matrix. In practice, we use annotated DNM data as input and fit mixed-effects 
Poisson models for each variant class separately: loss of function (LoF), deleterious missense (Dmis, 
defined as MetaSVM-deleterious), tolerable missense (Tmis, defined as MetaSVM-tolerable), and 
synonymous (Figure 1). More details about model setup and parameter estimation are discussed in 
Materials and methods.

Simulation results
We conducted simulations to assess the parameter estimation performance of EncoreDNM in various 
settings. We focused on two variant classes, that is, Tmis and LoF variants, since they have the 
highest and lowest median mutabilities in the exome. We used EncoreDNM to estimate the elevation 
parameter ‍β‍, dispersion parameter ‍σ‍, and enrichment correlation ‍ρ‍ (Materials and methods). Under 
various parameter settings, EncoreDNM always provided unbiased estimation of the parameters 
(Figure 2 and Figure 2—figure supplements 1–2). Furthermore, the 95% Wald confidence intervals 
achieved coverage rates close to 95% under all simulation settings, demonstrating the effectiveness 
of EncoreDNM to provide accurate statistical inference.

Next, we compared the performance of EncoreDNM with mTADA (Nguyen et  al., 2020), a 
Bayesian framework that estimates the proportion of shared risk genes for two disorders. First, we 
simulated DNM data under the mixed-effects Poisson model. We evaluated two methods across a 
range of combinations of elevation parameter, dispersion parameter, and sample size for two disor-
ders. The false positive rates for our method were well-calibrated in all parameter settings, but mTADA 
produced false positive findings when the observed DNM counts were relatively small (e.g. due to 
reduced elevation or dispersion parameters or a lower sample size; Figure 3a). We also assessed the 
statistical power of two approaches under a baseline setting where false positives for both methods 
were controlled. As enrichment correlation increased, EncoreDNM achieved universally greater statis-
tical power compared to mTADA (Figure 3b).

To ensure a fair comparison, we also considered a mis-specified model setting where we randomly 
distributed the total DNM counts for each disorder into all genes with an enrichment in causal genes 
(Materials and methods). EncoreDNM showed well-controlled false positive rate across all simulation 
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Figure 2. Parameter estimation results of EncoreDNM. (a) Boxplot of ‍β‍ estimates in single-trait analysis with ‍σ‍ fixed at 0.75. (b) Boxplot of ‍σ‍ estimates 
in single-trait analysis with ‍β‍ fixed at –0.25. (c) Boxplot of ‍ρ‍ estimates in cross-trait analysis with ‍β‍ and ‍σ‍ fixed at –0.25 and 0.75. True parameter values 
are marked by dashed lines. The number above each box represents the coverage rate of 95% Wald confidence intervals. Each simulation setting was 
repeated 100 times.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Estimation results of elevation parameter ‍β‍ under a mixed-effects Poisson regression model.

Figure supplement 2. Estimation results of dispersion parameter ‍σ‍ under a mixed-effects Poisson regression model.
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settings, whereas severe inflation of false positives arose for mTADA when the total mutation count, 
the proportion of probands that can be explained by DNMs, or the sample size were small (Figure 3c). 
Furthermore, we compared the statistical power of two methods under this model in a baseline setting 
where false positive rate was controlled. EncoreDNM showed higher statistical power compared to 
mTADA as the fraction of shared causal genes increased (Figure 3d).

0.00

0.25

0.50

0.75

1.00

(− 0.25,0.75,5000)
baseline

(− 1,0.75,5000)
small β

(− 0.25,0.5,5000)
small σ

(− 0.25,0.75,1000)
small N

(β, σ, N)

Fa
ls

e 
po

si
tiv

e 
ra

te

Method
EncoreDNM
mTADA

a

0.25

0.50

0.75

1.00

0.05 0.10 0.15 0.20

ρtrue
Po

w
er

Method
EncoreDNM
mTADA

b

0.0

0.2

0.4

0.6

0.8

(0.95,0.25,5000)
baseline

(0.75,0.25,5000)
small u

(0.95,0.15,5000)
small p

(0.95,0.25,1000)
small N

(u, p, N)

Fa
ls

e 
po

si
tiv

e 
ra

te

Method
EncoreDNM
mTADA

c

0.25

0.50

0.75

1.00

0.015 0.020 0.025 0.030

π3

Po
w

er

Method
EncoreDNM
mTADA

d

Figure 3. Comparison of EncoreDNM and mTADA. (a) False positive rates under a mixed-effects Poisson regression model. (b) Statistical power of two 
methods under a mixed-effects Poisson regression model as the enrichment correlation increases. Parameters (‍β,σ, N ‍) were fixed at (–0.25, 0.75, 5000) 
for both disorders. (c) False positive rates under a multinomial model. (d) Statistical power under a multinomial model with varying proportion of shared 
causal genes. Parameters (‍u, p, N ‍) were fixed at (0.95, 0.25, 5000) for both disorders. Each simulation setting was repeated 100 times.
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Pervasive enrichment correlation of damaging DNMs among 
developmental disorders
We applied EncoreDNM to DNM data of nine disorders (Supplementary file 1-STable 1; Materials 
and methods): developmental disorder (n=31,058; number of trios; Kaplanis et al., 2020), autism 
spectrum disorder (n=6430; Satterstrom et al., 2020), schizophrenia (SCZ; n=2772; Howrigan et al., 
2020), congenital heart disease (n=2645; Jin et al., 2017), intellectual disability (ID; n=820; Lelieveld 
et al., 2016), Tourette disorder (TD; n=484) Willsey et al., 2017, epileptic encephalopathies (EP; 
n=264; Allen et  al., 2013), cerebral palsy (CP; n=250; Jin et  al., 2020b), and congenital hydro-
cephalus (CH; n=232; Jin et al., 2020a). In addition, we also included 1789 trios comprising healthy 
parents and unaffected siblings of autism probands as controls (Krumm et al., 2015).

We first performed single-trait analysis under the mixed-effects Poisson model for each disorder. 
The estimated elevation parameters (i.e. ‍β‍) were negative for almost all disorders and variant classes 
(Figure 4a), with LoF variants showing particularly lower parameter estimates. This may be explained 
by more stringent quality control in LoF variant calling (Jin et al., 2017) and potential survival bias (Lek 
et al., 2016). It is also consistent with a depletion of LoF DNMs in healthy control trios (Homsy et al., 
2015). The dispersion parameter estimates (i.e. ‍σ‍) were higher for LoF variants than other variant 
classes (Figure 4b), which is consistent with our expectation that LoF variants have stronger effects 
on disease risk and should show a larger deviation from the null mutation rate in disease probands. 
We also compared the goodness of fit of our proposed mixed-effects Poisson model to a simpler 
fixed-effects model without the deviation component (Materials and methods). The expected distri-
bution of recurrent DNM counts showed substantial and statistically significant improvement under 
the mixed-effects Poisson model (Figure 4c–f, Figure 4—figure supplement 1, and Supplementary 
file 1-STable 2).
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Figure 4. Model fitting results for nine disorders. (a, b) Estimation results of ‍β‍ and ‍σ‍ for nine disorders and four variant classes. Error bars represent 
1.96*standard errors. Sample sizes of DNM datasets for each disorder are provided in Supplementary file 1-STable 1. (c–f) Distribution of DNM events 
per gene in four variant classes for developmental disorder. Red and green bars represent the expected frequency of genes under the fixed-effects and 
mixed-effects Poisson regression models, respectively. Blue bars represent the observed frequency of genes.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Likelihood ratio test shows significantly improved goodness of fit of the mixed-effects Poisson model compared to a fixed-effects 
model without the deviation component.
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Next, we estimated pairwise DNM enrichment correlations for 9 disorders. In total, we identified 25 
pairs of disorders with significant correlations at a false discovery rate (FDR) cutoff of 0.05 (Figure 5 
and Figure 5—figure supplement 1), including 12 significant correlations for LoF variants, 7 for Dmis 
variants, 5 for Tmis variants, and only 1 significant correlation for synonymous variants. Notably, all 
significant correlations are positive (Supplementary file 1-STable 3). No significant correlation was 
identified between any disorder and healthy controls (Figure 5—figure supplement 2). This is consis-
tent with our expectation, since DNMs in the control groups will distribute proportionally according 
to the de novo mutability without showing enrichment in certain genes. The number of identified 
significant correlations for each disorder was proportional to the sample size in each study (Spearman 
correlation = 0.70) with controls being a notable outlier (Figure 5—figure supplement 3).

Figure 5. EncoreDNM identifies pervasive enrichment correlations of damaging DNMs among nine disorders. (a) Shows sample size (for example, 
number of trios) for each disease. X-axis denotes sample size on the log scale. (b) Heatmap of enrichment correlations for LoF (upper triangle) and 
synonymous (lower triangle) DNMs among nine disorders. Larger squares represent more significant p-values, and deeper color represents stronger 
correlations. Significant correlations (FDR <0.05) are shown as full-sized squares marked by asterisks.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. DNM enrichment correlations of nine disorders based on Dmis and Tmis variants.

Figure supplement 2. DNM enrichment correlations between nine disorders and controls.

Figure supplement 3. Number of significant correlations identified for each disorder is proportional to its sample size.

Figure supplement 4. Lollipop plot for LoF DNMs in CTNNB1.

Figure supplement 5. Lollipop plot for LoF DNMs in FBXO11.

Figure supplement 6. DNM genetic sharing in nine disorders estimated for LoF, Dmis, Tmis, and synonymous DNMs using mTADA.

Figure supplement 7. DNM genetic sharing in nine disorders and controls identified by mTADA.

Figure supplement 8. Comparison of GWAS- and DNM-based estimation of genetic sharing among five disorders.

Figure supplement 9. Group-wise jackknife method and inversion of Fisher information matrix method produced similar standard error estimates for 
LoF variants.

https://doi.org/10.7554/eLife.75551
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We identified highly concordant and significant LoF DNM enrichment among developmental 
disorder, autism, intellectual disability, and congenital heart disease, which is consistent with previous 
reports (Li et al., 2016; Nguyen et al., 2020; Nguyen et al., 2017; Hormozdiari et al., 2015). Schizo-
phrenia shows highly significant LoF correlations with developmental disorder (p=2.0e-3) and intel-
lectual disability (3.7e-5). The positive enrichment correlation between autism and cerebral palsy in 
LoF variants (‍ρ‍=0.81, p=3.3e-3) is consistent with their co-occurrence (Christensen et al., 2014). The 
high enrichment correlation between intellectual disability and cerebral palsy in LoF variants (‍ρ‍=0.68, 
p=1.0e-4) is consistent with the associations between intellectual disability and motor or non-motor 
abnormalities caused by cerebral palsy (Reid et al., 2018). A previous study also suggested signifi-
cant genetic sharing of intellectual disability and cerebral palsy by overlapping genes harboring rare 
damaging variants (Jin et al., 2020b). Here, we obtained consistent results after accounting for de 
novo mutabilities and potential confounding bias.

Some significant correlations identified in our analysis are consistent with phenotypic associations 
in epidemiological studies, but have not been reported using genetic data to the extent of our knowl-
edge. For example, the LoF enrichment correlation between congenital heart disease and cerebral 
palsy (‍ρ‍=0.88, p=1.7e-3) is consistent with findings that reduced supply of oxygenated blood in fetal 
brain due to cardiac malformations may be a risk factor for cerebral palsy (Garne et al., 2008). The 
enrichment correlation between intellectual disability and congenital hydrocephalus in LoF variants 
(‍ρ‍=0.63, p=2.4e-3) is consistent with lower intellectual performance in a proportion of children with 
congenital hydrocephalus (Lumenta and Skotarczak, 1995).

Genes showing pathogenic DNMs in multiple disorders may shed light on the mechanisms under-
lying enrichment correlations (Supplementary file 1-STable 4). We identified five genes (CTNNB1, 
NBEA, POGZ, SPRED2, and KMT2C) with LoF DNMs in five different disorders and 21 genes had LoF 
DNMs in four disorders (Supplementary file 1-STable 5). These 26 genes with LoF variants in at least 
four disorders were significantly enriched for 63 gene ontology (GO) terms with FDR <0.05 (Supple-
mentary file 1-STable 6). Chromatin organization (p=7.8e-11), nucleoplasm (p=2.8e-10), chromosome 
organization (p=6.8e-10), histone methyltransferase complex (p=1.4e-9), and positive regulation of 
gene expression (p=2.2e-9) were the most significantly enriched GO terms. One notable example 
consistently included in these gene sets is CTNNB1 (Figure 5—figure supplement 4). It encodes 

‍β‍-catenin, is one of the only two genes reaching genome-wide significance in a recent WES study for 
cerebral palsy (Jin et al., 2020b), and also harbors multiple LoF variants in developmental disorder, 
intellectual disability, autism, and congenital heart disease. It is a fundamental component of the 
canonical Wnt signaling pathway which is known to confer genetic risk for autism (O’Roak et al., 
2012). Genes with recurrent damaging DNMs in multiple disorders also revealed shared biological 
function across these disorders (Rees et  al., 2021). We identified 30 recurrent cross-disorder LoF 
mutations that were not recurrent in developmental disorder alone (Supplementary file 1). FBXO11, 
encoding the F-box only protein 31, shows two recurrent p.Ser831fs LoF variants in autism and 
congenital hydrocephalus (Figure 5—figure supplement 5; p=1.9e-3; Materials and methods). The 
F-box protein constitutes a substrate-recognition component of the SCF (SKP1-cullin-F-box) complex, 
an E3-ubiquitin ligase complex responsible for ubiquitination and proteasomal degradation (Cardozo 
and Pagano, 2004). DNMs in FBXO11 have been previously implicated in severe intellectual disability 
individuals with autistic behavior problem (Jansen et al., 2019) and neurodevelopmental disorder 
(Gregor et al., 2018).

For comparison, we also applied mTADA to the same nine disorders and control trios. In total, 
mTADA identified 117 disorder pairs with significant genetic sharings at an FDR cutoff of 0.05 
(Supplementary file 1-STable 8 and Figure 5—figure supplement 6). Notably, we identified signif-
icant synonymous DNM correlations for all 36 disorder pairs and between all disorders and healthy 
controls (Figure 5—figure supplement 7). These results are consistent with the simulation results and 
suggest a substantially inflated false positive rate in mTADA.

Partitioning DNM enrichment correlation by gene set
To gain biological insights into the shared genetic architecture of nine disorders, we repeated 
EncoreDNM correlation analysis in several gene sets. First, we defined genes with high/low probability 
of intolerance to LoF variants using pLI scores (Karczewski et al., 2020), and identified genes with 
high/low brain expression (HBE/LBE) (Werling et al., 2020; Materials and methods; Supplementary 
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file 1-STable 9). We identified 11 and 12 disorder pairs showing significant enrichment correlations 
for LoF DNMs in high-pLI genes and HBE genes, respectively (Figure  6a–b). We observed fewer 
significant correlations for Dmis and Tmis variants in these gene sets (Figure 6—figure supplements 
1–2). All identified significant correlations were positive (Supplementary file 1-STables 10 -11). No 
significant correlations were identified for synonymous variants (Figure 6—figure supplements 1–2) 
or between disorders and controls (Figure 6—figure supplements 3–4).

We observed a clear enrichment of significant correlations in disease-relevant gene sets. Overall, 
high-pLI genes showed substantially stronger correlations across disorders than genes with low pLI 
(one-sided Kolmogorov-Smirnov test; p=2.3e-6). Similarly, enrichment correlations were stronger in 
HBE genes than in LBE genes (p=8.8e-7). Among the 11 disorder pairs showing significant enrich-
ment correlations in high-pLI genes, two pairs, that is, autism-schizophrenia (‍ρ‍=0.68, p=2.4e-3) and 
developmental disorder-congenital hydrocephalus (‍ρ‍=0.43, p=1.5e-3), were not identified in the 
exome-wide analysis. We also identified four novel disorder pairs with significant correlations in HBE 
genes, including developmental disorder-cerebral palsy (‍ρ‍=0.80, p=9.5e-5), developmental disorder-
congenital hydrocephalus (‍ρ‍=0.67, p=1.4e-3), autism-congenital hydrocephalus (‍ρ‍=0.82, p=4.7e-4), 
and schizophrenia-epileptic encephalopathies (‍ρ‍=0.66, p=2.0e-3). These novel enrichment correla-
tions are consistent with known comorbidities between these disorders (Kielinen et al., 2004; Kilin-
caslan and Mukaddes, 2009) and findings based on significant risk genes (Li et al., 2016; Jin et al., 
2020a; Kume et al., 1998; Cao and Wu, 2015).

Furthermore, we estimated DNM enrichment correlations in genes with high/low expression in 
mouse developing heart (HHE/LHE) (Homsy et al., 2015; Materials and methods; Supplementary 
file 1-STable 9). We identified 9 significant enrichment correlations for LoF variants in HHE genes 
(Figure 6c). Strength of enrichment correlations did not show a significant difference between HHE and 
LHE genes (p=0.846), possibly due to a lack of cardiac disorders in our analysis. Finally, we estimated 
enrichment correlations between congenital heart disease and other disorders in known pathways for 
congenital heart disease (Zaidi and Brueckner, 2017; Materials and methods; Supplementary file 
1-STable 9). We identified five significant correlations for LoF variants (Figure 6d), including a novel 
correlation between congenital heart disease and Tourette disorder (‍ρ‍=0.93, p=3.3e-9). Of note, 
arrhythmia caused by congenital heart disease is a known risk factor for Tourette disorder (Gulisano 
et al., 2011). In these analyses, all significant enrichment correlations were positive (Supplementary 
file 1) and other variant classes showed generally weaker correlations than LoF variants (Figure 6—
figure supplements 5–6). We did not observe significant correlations in these gene sets between 
disorders and controls (Figure 6—figure supplements 7–8).

Discussion
In this paper, we introduced EncoreDNM, a novel statistical framework to quantify correlated DNM 
enrichment between two disorders. Through extensive simulations and analyses of DNM data for 
nine disorders, we demonstrated that our proposed mixed-effects Poisson regression model provides 
unbiased parameter estimates, shows well-controlled false positive rate, and is robust to exome-wide 
technical biases. Leveraging exome-wide DNM counts and genomic context-based mutability data, 
EncoreDNM achieves superior fit for real DNM datasets compared to simpler models and provides 
statistically powerful and computationally efficient estimation of DNM enrichment correlation. 
Further, EncoreDNM can quantify concordant genetic effects for user-defined variant classes within 
pre-specified gene sets, thus is suitable for exploring diverse types of hypotheses and can provide 
crucial biological insights into the shared genetic etiology in multiple disorders. In comparison, the 
Bayesian approach implemented in mTADA can produce false positives findings, especially when the 
DNM count is low, possibility due to the overestimated proportion of risk genes. We still observed 
inflation in false positive rates under a more stringent significance cutoff or using posterior probability 
threshold strategy (Supplementary file 1-STables 14-17).

Multi-trait analyses of GWAS data have revealed shared genetic architecture among many neuro-
psychiatric traits (Brainstorm, 2018; Lee et al., 2013; Gratten et al., 2014; Abdellaoui and Verweij, 
2021). These findings have led to the identification of pleiotropic variants, genes, and hub genomic 
regions underlying many traits and have revealed multiple psychopathological factors jointly affecting 
human neurological phenotypes (Lee, 2019; Wang et  al., 2015). Although emerging evidence 
suggests that causal DNMs underlying several disorders with well-powered studies (e.g. congenital 
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Figure 6. DNM enrichment correlations in disease-relevant gene sets. (a) Enrichment correlations in high-pLI genes (upper triangle) and low-pLI genes 
(lower triangle) for LoF variants. Here, pLI is the probability of being loss-of-function intolerant (see Materials and methods). (b) Enrichment correlations 
in HBE genes (upper triangle) and LBE genes (lower triangle) for LoF variants. (c) Enrichment correlations in HHE genes (upper triangle) and LHE genes 
(lower triangle) for LoF variants. (d) Enrichment correlations in CHD-related pathways for LoF and synonymous variants. Larger squares represent more 
significant p-values, and deeper color represents stronger correlations. Significant correlations (FDR <0.05) are shown as full-sized squares marked by 
asterisks.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. DNM enrichment correlations in high-pLI genes (upper triangle) and low-pLI genes (lower triangle) for Dmis, Tmis, and 
synonymous variants.

Figure supplement 2. DNM enrichment correlations in HBE genes (upper triangle) and LBE genes (lower triangle) for Dmis, Tmis, and synonymous 
variants.

Figure 6 continued on next page
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heart disease and neurodevelopmental disorders; Homsy et al., 2015) may be shared, our under-
standing of the extent and the mechanism underlying such sharing remains incomplete. Applied to 
DNM data for nine disorders, EncoreDNM identified pervasive enrichment correlations of DNMs. We 
observed particularly strong correlations in pathogenic variant classes (e.g. LoF and Dmis variants) 
and disease-relevant genes (e.g. genes with high pLI and genes highly expressed in relevant tissues). 
Genes underlying these correlations were significantly enriched in pathways involved in chromatin 
organization and modification and gene expression regulation. The DNM correlations were substan-
tially attenuated in genes with lower expression and genes with frequent occurrences of LoF variants 
in the population. A similar attenuation was observed in less pathogenic variant classes (e.g., synony-
mous variants). Further, no significant correlations were identified between any disorder and healthy 
controls. We also compared DNM enrichment correlations of five disorders with genetic correlations 
estimated from GWAS summary statistics (Supplementary file 1-STable 18). We had consistent find-
ings from GWAS and DNM data (Spearman correlation = 0.70; Figure 5—figure supplement 8 and 
Supplementary file 1-STable 19). These results lay the groundwork for future investigations of pleio-
tropic mechanisms of DNMs.

Our study has some limitations. First, EncoreDNM assumes probands from different input studies 
to be independent. In rare cases when two studies have overlapping proband samples, enrichment 
correlation estimates may be inflated and must be interpreted with caution. Second, genetic correla-
tion methods based on GWAS summary data provided key motivations for the mixed-effects Poisson 
regression model in our study. Built upon genetic correlations, a plethora of methods have been 
developed in the GWAS literature to jointly model more than two GWAS (Turley et al., 2018), identify 
and quantify common factors underlying multiple traits (Grotzinger et al., 2019; Grotzinger et al., 
2020), estimate causal effects among different traits (Pickrell et al., 2016), and identify pleiotropic 
genomic regions through hypothesis-free scans (Guo et al., 2021). Future directions of EncoreDNM 
include using enrichment correlation to improve gene discovery, learning the directional effects and 
the causal structure underlying multiple disorders, and dynamically searching for gene sets and anno-
tation classes with shared genetic effects without pre-specifying the hypothesis.

Taken together, we provide a new analytic approach to an important problem in DNM studies. 
We believe EncoreDNM improves the statistical rigor in multi-disorder DNM modeling and opens 
up many interesting future directions in both method development and follow-up analyses in WES 
studies. As trio sample size in WES studies continues to grow, EncoreDNM will have broad applica-
tions and can greatly benefit DNM research.

Materials and methods
Statistical model
For a single study, we assume that DNM counts in a given variant class (for example, synonymous 
variants) follow a mixed-effects Poisson model:

	﻿‍ Yi ∼ Poisson
(
λi
)

,‍�

	﻿‍ log
(
λi
)

= β + log
(
2Nmi

)
+ ϕi,‍�

	﻿‍
ϕi ∼ N

(
0,σ2

)
, for i = 1, . . . , G,

‍�

Figure supplement 3. DNM enrichment correlations between nine disorders and controls in high-pLI and low-pLI gene sets.

Figure supplement 4. DNM enrichment correlations between nine disorders and controls in HBE and LBE genes.

Figure supplement 5. DNM enrichment correlations in HHE genes (upper triangle) and LHE genes (lower triangle) for Dmis, Tmis, and synonymous 
variants.

Figure supplement 6. DNM enrichment correlations in CHD-related pathways for Dmis and Tmis variants.

Figure supplement 7. DNM enrichment correlations between nine disorders and controls in HHE and LHE gene sets.

Figure supplement 8. DNM enrichment correlations between CHD and controls in CHD-related pathways.

Figure 6 continued
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where ‍Yi‍ is the DNM count in the i-th gene, ‍N ‍ is the number of trios, ‍mi‍ is the de novo mutability 
for the i-th gene (for example, mutation rate per chromosome per generation) which is known a priori 
(Samocha et al., 2014), and ‍G‍ is the total number of genes in the study. The elevation parameter ‍β‍ 
quantifies the global elevation of mutation rate compared to mutability estimates based on genomic 
sequence alone. Gene-specific deviation from expected DNM rate is quantified by random effect ‍ϕi‍ 
with a dispersion parameter ‍σ‍. Here, the ‍ϕi‍ are assumed to be independent across different genes, in 
which case the observed DNM counts of different genes are independent. There is no constraint on 
the value of ‍β‍, and the dispersion parameter ‍σ‍ can be any positive value.

Next, we describe how we expand this model to quantify the shared genetics of two disorders. We 
adopt a flexible Poisson-lognormal mixture framework that can accommodate both overdispersion 
and correlation (Munkin and Trivedi, 1999). We assume DNM counts in a given variant class for two 
diseases follow:

	﻿‍
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where ‍Yi1, Yi2‍ are the DNM counts for the i-th gene and ‍N1, N2‍ are the trio sizes in two studies, 
respectively. Similar to the single-trait model, ‍mi‍ is the mutability for the i-th gene. ‍β1,β2‍ are the eleva-
tion parameters, and ‍ϕi1,ϕi2‍ are the gene-specific random effects with dispersion parameters ‍σ1,σ2‍ , 
for two disorders respectively. ‍ρ‍ is the enrichment correlation which quantifies the concordance of the 
gene-specific DNM burden between two disorders. Here, ‍β1,β2,σ1,σ2, ρ‍ are unknown parameters. 
The gene specific effects for two disorders are assumed to be independent for different genes. We 
also assume that there is no shared sample for two disorders, in which case ‍Yi1‍ is independent with 

‍Yi2‍ given 

‍


 λi1

λi2



‍

 .

Parameter estimation
We implement an MLE procedure to estimate unknown parameters. For single-trait analysis, the log-
likelihood function can be expressed as follows:

	﻿‍
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. Note that there is no closed form for the integral in the log-likelihood function. Therefore, we use 
Monte Carlo integration to evaluate the log-likelihood function. Let ‍ϕij = σξij‍ , where the ‍ξij‍ are inde-
pendently and identically distributed random variables following a standard normal distribution. We 
have

	﻿‍
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where ‍λij = 2Nmi exp
(
β + σξij

)
‍ , and ‍M ‍ is the Monte Carlo sample size which is set to be 1,000. 

Then, we could obtain the MLE of ‍β,σ‍ through maximization of ‍l
′
(β,σ|Y)‍. We obtain the standard 

error of the MLE through inversion of the observed Fisher information matrix. However, when the 
DNM count is small, the Fisher information may be non-invertible and the parameter vector is not 
numerically identifiable. In this case, we employ group-wise jackknife using 100 randomly partitioned 
gene groups to obtain standard errors for parameter estimates. This approach produces consistent 
standard errors compared to the Fisher information approach (Figure 5—figure supplement 9).
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The estimation procedure can be generalized to multi-trait analysis. Log-likelihood function can be 
expressed as follows:

	﻿‍
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. We use Monte Carlo integration to evaluate the log-likelihood function. Let ‍ϕi1j = σ1ξi1j‍ and 

‍
ϕi2j = σ2

(
ρξi1j +

√
1 − ρ2ξi2j

)
‍
 , where the ‍ξi1j‍ and ‍ξi2j‍ are independently and identically distributed 

random variables following a standard normal distribution. We have
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obtain the MLE of ‍β1,β2,σ1,σ2, ρ‍ through maximization of ‍l
′ (β1,β2,σ1,σ2, ρ|Y1, Y2

)
‍ . Standard error 

of MLE can be obtained either through inversion of the observed Fisher information matrix or group-
wise jackknife if non-invertibility issue occurs.

Computation time
Analysis of a typical pair of disorders with 18,000 genes takes about 10 min on a 2.5 GHz cluster with 
1 core.

DNM data and variant annotation
We obtained DNM data from published studies (Supplementary file 1-STable 1). DNM data for 
epileptic encephalopathies from the original release (Allen et  al., 2013) were not in an editable 
format and were instead collected from denovo-db (Turner et al., 2017). We used ANNOVAR (Wang 
et al., 2010) to annotate all DNMs. Synonymous variants were determined based on the ‘synonymous 
SNV’ annotation in ANNOVAR; Variants with ‘startloss’, ‘stopgain’, ‘stoploss’, ‘splicing’, ‘frameshift 
insertion’, ‘frameshift deletion’, or ‘frameshift substitution’ annotations were classified as LoF; Dmis 
variants were defined as nonsynonymous SNVs predicted to be deleterious by MetaSVM Dong et al., 
2015; nonsynonymous SNVs predicted to be tolerable by MetaSVM were classified as Tmis. Other 
DNMs which did not fall into these categories were removed from the analysis. For each variant 
class, we estimated the mutability of each gene using a sequence-based mutation model (Samocha 
et al., 2014) while adjusting for the sequencing coverage factor based on control trios as previously 
described (Jin et al., 2017; Supplementary file 1-STable 20). We included 18,454 autosomal protein-
coding genes in our analysis. TTN was removed due to its substantially larger size.

Description and implementation of mTADA
The method mTADA employs a Bayesian framework and estimates the proportion of shared risk 
genes. Specifically, mTADA assigns all genes into four groups: genes that are not relevant for either 
disorder, risk genes for the first disorder alone, risk genes for the second disorder alone, and risk 
genes shared by both disorders. The proportion of these groups are parametrized as ‍π0,π1,π2,π3‍ , 
respectively. In particular, parameter ‍π3‍ quantifies the extent of genetic sharing between two disor-
ders, with a larger value indicating stronger genetic overlap (Nguyen et al., 2020). The 95% credible 
interval constructed through MCMC is used to measure the uncertainty in ‍π3‍ estimates.

The software mTADA requires the following parameters as inputs: proportion of risk genes (‍π
S
1,πS

2 ‍), 

mean relative risks (‍
−
γ

S
1, −γ

S
2‍), and dispersion parameters (‍

−
β

S

1,
−
β

S

2‍) for both disorders. We used extTADA 
(Nguyen et al., 2017 )to estimate these parameters as suggested by the mTADA paper (Nguyen 
et al., 2020). mTADA reported the estimated proportion of shared risk genes ‍π3‍ (posterior mode 
of ‍π3‍) and its corresponding 95% credible interval ‍

[
LB, UB

]
‍. We considered ‍π

S
1 ∗ πS

2 ‍ as the expected 
proportion of shared risk genes, and there is significant genetic sharing between two disorders when 

https://doi.org/10.7554/eLife.75551


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics

Guo et al. eLife 2022;11:e75551. DOI: https://doi.org/10.7554/eLife.75551 � 14 of 20

‍LB > πS
1 ∗ πS

2 ‍ . We quantify statistical evidence for genetic sharing by comparing the posterior distri-
bution of ‍π3‍ with ‍π

S
1 ∗ πS

2 ‍ ,
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where ‍π
i
3‍ is the i-th MCMC iteration sample, ‍NMCMC‍ is the number of iterations, and ‍I

()
‍ is the indi-

cator function. This is also equivalent to performing two-sided inference using posterior probability 

P 
‍

(
π3 > πS

1 ∗ πS
2

)
‍
 . Number of MCMC chain was set as 2 and number of iterations was set as 10,000.

Simulation settings
We assessed the performance of EncoreDNM under the mixed-effects Poisson model. We performed 
simulations for two variant classes: Tmis and LoF variants, which have the largest and the smallest 
median mutability values across all genes. First, we performed single-trait simulations to assess esti-
mation precision of elevation parameter ‍β‍ and dispersion parameter ‍σ‍. We set the true values of ‍β‍ 
to be −0.5,–0.25, and 0, and the true values of ‍σ‍ to be 0.5, 0.75, and 1. These values were chosen 
based on the estimated parameters in real DNM data analyses and ensured simulation settings to 
be realistic. Next, we performed simulations for cross-trait analysis to assess estimation precision of 
enrichment correlation ‍ρ‍, whose true values were set to be 0, 0.2, 0.4, 0.6, and 0.8. Sample size for 
each disorder was set to be 5000. Coverage rate was calculated as the percentage of simulations 
that the 95% Wald confidence interval covered the true parameter value. Each parameter setting was 
repeated 100 times.

We also carried out simulations to compare the performance of EncoreDNM and mTADA. False 
positive rate and statistical power for EncoreDNM were calculated as the proportion of simulation 
repeats that p-value for enrichment correlation ‍ρ‍ was smaller than 0.05. and the proportion of simula-
tion repeats that p-value for estimated proportion of shared risk genes ‍π3‍ was smaller than 0.05 was 
used for mTADA. We aggregated all variant classes together, so mutability for each gene was deter-
mined as the sum of mutabilities across four variant classes (i.e. LoF, Dmis, Tmis, and synonymous).

First, we simulated DNM data under the mixed-effects Poisson model. To see whether two methods 
would produce false positive findings, we performed simulations under the null hypothesis that the 
enrichment correlation ‍ρ‍ is zero. We compared two methods under a range of parameter combina-
tions of (‍β,σ, N ‍) for both disorders: (–0.25, 0.75, 5000) for the baseline setting, (–1, 0.75, 5000) for a 
setting with small ‍β‍, (–0.25, 0.5, 5000) for a setting with small ‍σ‍, and (–0.25, 0.75, 1000) for a setting 
with small sample size. We also assessed the statistical power of two methods under the alternative 
hypothesis. True value of enrichment correlation ‍ρ‍ was set to be 0.05, 0.1, 0.15, and 0.2. In the power 
analysis, parameters (‍β,σ, N ‍) were fixed at (–0.25, 0.75, 5000) as in the baseline setting when both 
methods had well-controlled false positive rate.

To ensure a fair comparison, we also compared EncoreDNM and mTADA under a multinomial 
model, which is different from the data generation processes for the two approaches. For each disorder 
(‍k = 1, 2‍), we randomly selected causal genes of proportion ‍π

S
k ‍ . A proportion (i.e. ‍π3‍) of causal genes 

overlap between two disorders. We assumed that the total DNM count to follow a Poisson distribu-

tion: 
‍
Ck ∼ Poisson

(
uk∗2Nk

G∑
i=1

mi

)

‍
, where ‍uk‍ represents an elevation factor to represent systematic bias 

in the data. Let ‍Yk‍ denote the vector of DNMs counts in the exome, ‍m‍ denote the vector of mutability 
values for all genes, and ‍mcausal, k‍ denote the vector of mutability with values set to be 0 for non-causal 
genes of disorder ‍k‍. We assumed that a proportion ‍pk‍ of the probands could be attributed to DNMs 
burden in causal genes, and ‍1 − pk‍ of the probands obtained DNMs by chance:

	﻿‍ Yk = Ycausal,k + Ybackground,k,‍�

	﻿‍ Ycausal,k ∼ Multinomial
(
pkCk, mcausal, k
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,‍�

	﻿‍ Ybackground,k ∼ Multinomial
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To check whether false positive findings could arise, we performed simulations under the null 
hypothesis that ‍π3 = πS

1 ∗ πS
2 ‍ across a range of parameter combinations of (‍u, p, N ‍) for both disorders: 

(0.95, 0.25, 5000) for the baseline setting, (0.75, 0.25, 5000) for a setting with small ‍u‍ (i.e., reduced 
total mutation count), (0.95, 0.15, 5000) for a setting with small ‍p‍ (fewer probands explained by 

https://doi.org/10.7554/eLife.75551
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DNMs), and (0.95, 0.25, 1000) for a setting with smaller sample size. ‍π
S
1 ‍ and ‍π

S
2 ‍ were set as 0.1. We 

also assessed the statistical power of two methods under the alternative hypothesis that ‍π3 > πS
1 ∗ πS

2 ‍ . 
In power analysis, (‍u, p, N ‍) were fixed at (0.95, 0.25, 5000) as in the baseline setting when false positive 
rate for both methods were well-calibrated.

Comparison to the fixed-effects Poisson model
For single-trait analysis, the fixed-effects Poisson model assumes that

	﻿‍ Yi ∼ Poisson
(
λi
)

,‍�

	﻿‍ log
(
λi
)

= β + log
(
2Nmi

)
, for i = 1, . . . , G.‍�

Note that the fixed-effects Poisson model is a special case of our proposed mixed-effects Poisson 
model when ‍σ = 0‍. We compared the two models using likelihood ratio test. Under the null hypothesis 
that ‍σ = 0‍, ‍2

(
lalt − lnull

)
∼ 1

2χ
2
1‍ asymptotically, where ‍lalt‍ and ‍lnull‍ represent the log likelihood of the 

fitted mixed-effects and fixed-effects Poisson models respectively.

Recurrent genes and DNMs
We used FUMA (Watanabe et al., 2017) to perform GO enrichment analysis for genes harboring LoF 
DNMs in multiple disorders. Due to potential sample overlap between the studies of developmental 
disorder (Kaplanis et al., 2020) and intellectual disability (Lelieveld et al., 2016), we excluded intel-
lectual disability from the analysis of recurrent DNMs. We calculated the probability of observing 
two identical DNMs in two disorders using a Monte Carlo simulation method. For each disorder, we 
simulated exome-wide DNMs profile from a multinomial distribution, where the size was fixed at the 
observed DNM count and the per-base mutation probability was determined by the tri-nucleotide 
base context. We repeated the simulation procedure 100,000 times to evaluate the significance of 
recurrent DNMs. Lollipop plots for recurrent mutations were generated using MutationMapper on the 
cBio Cancer Genomics Portal (Cerami et al., 2012).

Implementation of cross-trait LD score regression
We used cross-trait LDSC (Bulik-Sullivan et al., 2015) to estimate genetic correlations between disor-
ders. LD scores were computed using European samples from the 1000 Genomes Project Phase 3 
data (Auton et al., 2015). Only HapMap 3 SNPs were used as observations in the explanatory variable 
with the --merge-alleles flag. Intercepts were not constrained in the analyses.

Estimating enrichment correlation in gene sets
Genes with a high/low probability of intolerance to LoF variants (high-pLI/low-pLI) were defined as the 
4,614 genes in the upper/lower quartiles of pLI scores (Karczewski et al., 2020). Genes with high/low 
brain expression (HBE/LBE) were defined as the 4,614 genes in the upper/lower quartiles of expres-
sion in the human fetal brain (Werling et al., 2020). Genes with high/low heart expression (HHE/LHE) 
were defined as the 4,614 genes in the upper/lower quartiles of expression in the developing heart 
of embryonic mouse (Zaidi et al., 2013). Five biological pathways have been reported to be involved 
in congenital heart disease: chromatin remodeling, Notch signaling, cilia function, sarcomere struc-
ture and function, and RAS signaling (Zaidi and Brueckner, 2017). We extracted 1730 unique genes 
that belong to these five pathways from the gene ontology database (Ashburner et al., 2000) and 
referred to the union set as CHD-related genes. We repeated EncoreDNM enrichment correlation 
analysis in these gene sets. One-sided Kolmogorov-Smirnov test was used to assess the statistical 
difference between enrichment correlation signal strength in different gene sets.

URLs
GWAS summary statistics data of autism spectrum disorder, schizophrenia, and Tourette disorder 
were downloaded on the PGC website, https://www.med.unc.edu/pgc/download-results/; 
Summary statistics of cognitive performance were downloaded on the SSGAC website, https://​
thessgac.com/; Summary statistics of epilepsy were downloaded on the epiGAD website, https://
www.epigad.org/; pLI scores were downloaded from gnomAD v3.1 repository https://gnomad.​
broadinstitute.org/downloads; mTADA, https://github.com/hoangtn/mTADA, Nguyen et  al., 

https://doi.org/10.7554/eLife.75551
https://www.med.unc.edu/pgc/download-results/
https://thessgac.com/
https://thessgac.com/
https://www.epigad.org/
https://www.epigad.org/
https://gnomad.broadinstitute.org/downloads
https://gnomad.broadinstitute.org/downloads
https://github.com/hoangtn/mTADA
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2021; denovo-db, https://denovo-db.gs.washington.edu/denovo-db/; MutationMapper on cBio-
Portal, https://www.cbioportal.org/mutation_mapper; LDSC, https://github.com/bulik/ldsc; 
Schorsch, 2020.

Code availability
EncoreDNM software is available at https://github.com/ghm17/EncoreDNM; Guo, 2022.
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