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Abstract Genotype imputation is a foundational tool for population genetics. Standard statistical 
imputation approaches rely on the co-location of large whole-genome sequencing-based reference 
panels, powerful computing environments, and potentially sensitive genetic study data. This results 
in computational resource and privacy-risk barriers to access to cutting-edge imputation techniques. 
Moreover, the accuracy of current statistical approaches is known to degrade in regions of low and 
complex linkage disequilibrium. Artificial neural network-based imputation approaches may over-
come these limitations by encoding complex genotype relationships in easily portable inference 
models. Here, we demonstrate an autoencoder-based approach for genotype imputation, using a 
large, commonly used reference panel, and spanning the entirety of human chromosome 22. Our 
autoencoder-based genotype imputation strategy achieved superior imputation accuracy across the 
allele-frequency spectrum and across genomes of diverse ancestry, while delivering at least fourfold 
faster inference run time relative to standard imputation tools.

Editor's evaluation
The paper describes a novel neural-network-based strategy for imputing unmeasured genotypes, 
which is a standard part of most association testing pipelines. The method is computationally 
intensive to train, but once training is complete the imputation is fast and accurate and does not 
require further access to a reference panel. It has the potential to be a practically-appealing alterna-
tive to existing methods. although further work (eg training of models) is required before this new 
approach can be applied genome-wide.

Introduction
The human genome is inherited in large blocks from parental genomes, generated through a DNA-
sequence-dependent shuffling process called recombination. The non-uniform nature of recombi-
nation breakpoints producing these genomic blocks results in correlative genotype relationships 
across genetic variants, known as linkage disequilibrium. Thus, genotypes for a small subset (1–10%) 
of observed common genetic variants can be used to infer the genotype status of unobserved but 
known genetic variation sites across the genome (on the order of ~1 M of >10 M sites; Li et al., 2009; 
Marchini and Howie, 2010). This process, called genotype imputation, allows for the generation of 
nearly the full complement of known common genetic variation at a fraction of the cost of direct geno-
typing or sequencing. Given the massive scale of genotyping required for genome-wide association 
studies or implementation of genetically informed population health initiatives, genotype imputation 
is an essential approach in population genetics.
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Standard approaches to genotype imputation utilize Hidden Markov Models (HMM) (Browning 
et al., 2018; Das et al., 2016; Rubinacci et al., 2020) distributed alongside large WGS-based refer-
ence panels (Browning and Browning, 2016). In general terms, these imputation algorithms use 
genetic variants shared between to-be-imputed genomes and the reference panel and apply Hidden 
Markov Models (HMM) to impute the missing genotypes per sample (Das et al., 2018). The hidden 
states in the HMMs represent the haplotype in a reference panel that is most closely related to the 
haplotype being imputed. The HMM parameter estimation also depends on recombination rates, 
mutation rates, and/or genotype error rates that must be fit by Markov Chain Monte Carlo Algorithm 
(MCMC) or an expectation-maximization algorithm. Thus, HMM-based imputation is a computation-
ally intensive process, requiring access to both high-performance computing environments and large, 
privacy-sensitive, WGS reference panels (Kowalski et al., 2019). Often, investigators outside of large 
consortia will resort to submitting genotype data to imputation servers (Das et al., 2016), resulting in 
privacy and scalability concerns (Sarkar et al., 2021).

Recently, artificial neural networks, especially autoencoders, have attracted attention in func-
tional genomics for their ability to fill-in missing data for image restoration and inpainting (Chai-
tanya et al., 2017; Ghosh et al., 2020; Mao et al., 2016; Xie et al., 2012). Autoencoders are 
neural networks tasked with the problem of simply reconstructing the original input data, with 
constraints applied to the network architecture or transformations applied to the input data in 
order to achieve a desired goal like dimensionality reduction or compression, and de-noising or 
de-masking (Abouzid et al., 2019; Liu et al., 2020; Voulodimos et al., 2018). Stochastic noise 
or masking is used to modify or remove data inputs, training the autoencoder to reconstruct the 
original uncorrupted data from corrupted inputs (Tian et al., 2020). Autoencoders that receive 
corrupted or masked data as input and are trained to predict the original uncorrupted data as the 
output are also known as denoising autoencoders. These autoencoder characteristics are well-
suited for genotype imputation and may address some of the limitations of HMM-based impu-
tation by eliminating the need for dissemination of reference panels and allowing the capture of 

Figure 1. Schematic overview of the autoencoder training workflow. (A) Tiling of autoencoders across the genome is achieved by (A.1) calculating 
a n x n matrix of pairwise SNP correlations, thresholding them at 0.45 (selected values are shown in red background, excluded values in gray), 
(A.2) quantifying the overall local LD strength centered at each SNP by computing their local correlation box counts and splitting the genome into 
approximately independent segments by identifying local minima (recombination hotspots). The red arrow illustrates minima between strong LD 
regions. For reducing computational complexity, we calculated the correlations in a fixed sliding box size of 500x500 common variants (MAF ≥ 0.5%). 
Thus, the memory utilization for calculating correlations will be the same regardless of genomic density. (B) Ground truth whole genome sequencing 
data is encoded as binary values representing the presence (1) or absence (0) of the reference allele (blue) and alternative allele (red). (C) Variant 
masking (setting both alleles as absent, represented by 0, corrupts data inputs at a gradually increasing masking rate). Example masked variants are 
outlined. (D) Fully-connected autoencoders spanning segments defined as shown in panel (A), are then trained to reconstruct the original uncorrupted 
data from corrupted inputs; (E) the reconstructed outputs (imputed data) are compared to the ground truth states for loss calculation and are decoded 
back to genotypes.

https://doi.org/10.7554/eLife.75600
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non-linear relationships in genomic regions with complex linkage disequilibrium structures. Some 
attempts at genotype imputation using neural networks have been previously reported, though for 
specific genomic contexts (Naito et al., 2021) at genotype masking levels (5–20%) not applicable 
in typical real-world population genetics scenarios (Chen and Shi, 2019; Islam et al., 2021; Sun 
and Kardia, 2008), or in contexts where the neural network must be trained for imputation with 
specific input variant sets, i.e. the model must be re-trained for imputation from different geno-
typing array (Kojima et al., 2020).

Here, we present a generalized approach to unphased human genotype imputation using sparse, 
denoising autoencoders capable of highly accurate genotype imputation at genotype masking levels 
(98+%) appropriate for array-based genotyping and low-pass sequencing-based population genetics 
initiatives. We describe the initial training and implementation of autoencoders spanning all of human 
chromosome 22, achieving equivalent to superior accuracy relative to modern HMM-based methods, 
and dramatically improving computational efficiency at deployment without the need to distribute 
reference panels.

Materials and methods
Overview
Sparse, de-noising autoencoders spanning all bi-allelic SNPs observed in the Haplotype Reference 
Consortium were developed and optimized. Each autoencoder receives masked data as input and is 
trained to predict the original uncorrupted data as the output. Each bi-allelic SNP was encoded as two 
binary input nodes, representing the presence or absence of each allele (Figure 1B, E). This encoding 
allows for the straightforward extension to multi-allelic architectures and non-binary allele presence 
probabilities. A data augmentation approach using modeled recombination events and offspring 
formation coupled with random masking at an escalating rate drove our autoencoder training strategy 
(Figure 1C). Because of the extreme skew of the allele frequency distribution for rarely present alleles 
(Auton et al., 2015), a focal-loss-based approach was essential to genotype imputation performance. 
The basic architecture of the template fully-connected autoencoder before optimization to each 
genomic segment is depicted in Figure 1D. Individual autoencoders were designed to span genomic 
segments with boundaries defined by computationally identified recombination hotspots (Figure 1A). 
The starting point for model hyperparameters were randomly selected from a grid of possible combi-
nations and were further tuned from a battery of features describing the complexity of the linkage-
disequilibrium structure of each genomic segment.

Genotype encoding
Genotypes for all bi-allelic SNPs were converted to binary values representing the presence (1) or 
absence (0) of the reference allele A and alternative allele B, respectively, as shown in Equation 1.
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(1)

where x is a vector containing the two allele presence input nodes to the autoencoder and their 
encoded allele presence values derived from the original genotype, G, of variant i. The output nodes 
of the autoencoder are similarly rescaled to 0–1 by a sigmoid function, split into three genotype 
outputs (homozygous reference, homozygous alternate, and heterozygous), and normalized using the 
Softmax function. The normalized outputs can also be regarded as probabilities and can be combined 
for the calculation of alternative allele dosage and as a measure of imputation quality. This represen-
tation is extensible to other classes of genetic variation, and allows for the use of probabilistic loss 
functions.

https://doi.org/10.7554/eLife.75600
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Training data, masking, and data augmentation
Training data
Whole-genome sequence data from the Haplotype Reference Consortium (HRC) was used for training 
and as the reference panel for comparison to HMM-based imputation (McCarthy et al., 2016). The 
dataset consists of 27,165  samples and 39,235,157 biallelic SNPs generated using whole-genome 
sequence data from 20 studies of predominantly European ancestry (HRC Release 1.1): 83.92% 
European, 2.33% East Asian, 1.63% Native American, 2.17% South Asian, 2.96% African, and 6.99% 
admixed ancestry individuals. Genetic ancestry was determined using continental population clas-
sification from the 1000 Genomes Phase3 v5 (1000  G) reference panel and a 95% cutoff using 
Admixture software (Alexander et al., 2009). Genotype imputation autoencoders were trained for 
all 510,442 unique SNPs observed in HRC on human chromosome 22. For additional comparisons, 
whole-genome sequence data from 31 studies available through the NHLBI Trans-Omics for Precision 
Medicine (TOPMed) program were used as an alternative reference panel for HMM-based imputation 
tools (Taliun et al., 2021). We downloaded Freeze 8 of TOPMed, which is the latest version with all 
consent groups genotyped across the same set of jointly called variants. GRCh38 TOPMed cohorts 
were converted to hg19 with Picard 2.25 (‘Picard toolkit’, 2019), and multi allelic SNPs removed with 
bcftools v.1.10.2 (Danecek et al., 2021). Any variants with missing genotypes were excluded as well, 
yielding a final reference panel for chr22 consisting of 73,586 samples and 11,089,826 biallelic SNPs. 
Since the ARIC and MESA cohorts are used for model selection and validation, they were excluded 
from the TOPMed reference panel. Relatedness analysis using the KING robust kinship estimator 
revealed significant data leakage boosting HMM-based imputation performance through individuals 
directly participating in the MESA and other TOPMed cohorts, as well as through numerous first- and 
second-degree familial relationships spanning MESA individuals and individuals in other TOPMed 
cohorts.

Validation and testing data
A balanced (50%:50% European and African genetic ancestry) subset of 796 whole genome sequences 
from the Atherosclerosis Risk in Communities cohort (ARIC) (Mou et al., 2018), was used for model 
validation and selection. The Wellderly (Erikson et al., 2016), Human Genome Diversity Panel (HGDP) 
(Cann et al., 2002), and Multi-Ethnic Study of Atherosclerosis (MESA) (Bild et al., 2002 ) cohorts 
were used for model testing. The Wellderly cohort consisted of 961 whole genomes of predominantly 
European genetic ancestry. HGDP consisted of 929 individuals across multiple ancestries: 11.84% 
European, 14.64% East Asian, 6.57% Native American, 10.98% African, and 55.97% admixed. MESA 
consisted of 5370 whole genomes across multiple ancestries: 27.62% European, 11.25% East Asian, 
4.99% Native American, 5.53% African, and 50.61% admixed. MESA, Wellderly, and HGDP are all 
independent datasets, not used for autoencoder training, nor model selection, whereas HRC and 
ARIC were utilized for training and model selection, respectively.

GRCh38 mapped cohorts (HGDP and MESA) were converted to hg19 using Picard v2.25 (Broad 
Institute, 2022). All other datasets were originally mapped and called against hg19. Multi-allelic 
SNPs, SNPS with >10% missingness, and SNPs not observed in HRC were removed with bcftools 
v1.10.2 (Danecek et al., 2021). Mock genotype array data was generated from these WGS cohorts 
by restricting genotypes to those present on commonly used genotyping arrays (Affymetrix 6.0, UKB 
Axiom, and Omni 1.5  M). For chromosome 22, intersection with HRC and this array-like masking 
respectively resulted in: 9025, 10,615, and 14,453 out of 306,812 SNPs observed in ARIC; 8630, 
10,325, and 12,969 out of 195,148 SNPs observed in the Wellderly; 10,176, 11,086, and 14,693 out 
of 341,819 SNPs observed in HGDP; 9237, 10,428, and 13,677 out of 445,839 SNPs observed in 
MESA. All input genotypes from all datasets utilized in this work are unphased, and no pre-phasing 
was performed.

Data augmentation
We employed two strategies for data augmentation – random variant masking and simulating further 
recombination with offspring formation. During training, random masking of input genotypes was 
performed at escalating rates, starting with a relatively low masking rate (80% of variants) that is 
gradually incremented in subsequent training rounds until up to only five variants remain unmasked 
per autoencoder. Masked variants are encoded as the null case in Equation 1. During finetuning we 

https://doi.org/10.7554/eLife.75600
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used sim1000G (Dimitromanolakis et al., 2019) to simulate of offspring formation using the default 
genetic map and HRC genomes as parents. A total of 30,000 offspring genomes were generated and 
merged with the original HRC dataset, for a total of 57,165 genomes.

Loss function
In order to account for the overwhelming abundance of rare variants, the accuracy of allele presence 
reconstruction was scored using an adapted version of focal loss (FL) (Lin et  al., 2017), shown in 
Equation 2.

	﻿‍ FL = −αt
(
1 − pt

)γ [
xt log

(
pt
)

+
(
1 − xt

)
log

(
1 − pt

)]
‍� (2)

where the classic cross entropy (shown as binary log loss in brackets) of the truth class (xt) predicted 
probability (pt) is weighted by the class imbalance factor αt and a modulating factor (1 - pt)γ. t represents 
the index of each allele in a genomic segment. The modulating factor is the standard focal loss factor 
with hyperparameter, γ, which amplifies the focal loss effect by down-weighting the contributions of 
well-classified alleles to the overall loss (especially abundant reference alleles for rare variant sites)(Lin 
et al., 2017). αt is an additional balancing hyperparameter set to the truth class frequency.

This base focal loss function is further penalized and regularized to encourage simple and sparse 
models in terms of edge-weight and hidden layer activation complexity. These additional penalties 
result in our final loss function as shown in Equation 3.
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where ‍∥W∥1‍ and ‍∥W∥2‍ are the standard L1 and L2 norms of the autoencoder weight matrix (W), 
with their contributions mediated by the hyperparameters λ1 and λ2. S is a sparsity penalty, with 
its contribution mediated by the hyperparameter β, which penalizes deviation from a target hidden 
node activation set by the hyperparameter vs the observed mean activation ‍ρ‍ over a training batch j 
summed over total batches n, as shown in Equation 4:

	﻿‍
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Genome tiling
All model training tasks were distributed across a diversified set of NVIDIA graphical processing units 
(GPUs) with different video memory limits: 5 x Titan Vs (12 GB), 8x A100s (40 GB), 60x V100s (32 GB). 
Given computational complexity and GPU memory limitations, individual autoencoders were designed 
to span approximately independent genomic segments with boundaries defined by computationally 
identified recombination hotspots (Figure 1E). These segments were defined using an adaptation of 
the LDetect algorithm (Berisa and Pickrell, 2016). First, we calculated a n x n matrix of pairwise SNP 
correlations using all common genetic variation (≥0.5% minor allele frequency) from HRC. Correlation 
values were thresholded at 0.45, which is the threshold that returns the minimum number of segments 
spanning chromosome 22 with an average size per segment that fits into the video memory of GPUs. 
While developing the tiling algorithm, we tested lower thresholds, which made the segments smaller 
and more abundant, and thus made the GPU memory workload less efficient (e.g. many tiles resulted 
in many autoencoders per GPU, which thus caused a CPU-GPU communication overhead). Due to 
the obstacles related to computational inefficiency, CPU-GPU communication overhangs, and GPU 
memory limits, we did not proceed with model training on segments generated with other correla-
tion thresholds. For each SNP, we calculated a box count of all pairwise SNP correlations spanning 
500 common SNPs upstream and downstream of the index SNP. This moving box count quantifies 
the overall local LD strength centered at each SNP. Local minima in this moving box count were 
used to split the genome into approximately independent genomic segments of two types – large 
segments of high LD interlaced with short segments of weak LD corresponding to recombination 
hotspot regions. Individual autoencoders were designed to span the entirety of a single high LD 
segment plus its adjacent upstream and downstream weak LD regions. Thus, adjacent autoencoders 
overlap at their weak LD ends. If an independent genomic segment exceeded the threshold number 
of SNPs amenable to deep learning given GPU memory limitations, internal local minima within the 
high LD regions were used to split the genomic segments further to a maximum of 6000 SNPs per 

https://doi.org/10.7554/eLife.75600
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autoencoder. Any remaining genomic segments still exceeding 6000 SNPs were further split into 6000 
SNP segments with large overlaps of 2500 SNPs given the high degree of informative LD split across 
these regions. This tiling process resulted in 256 genomic segments spanning chromosome 22: 188 
independent LD segments, 32 high LD segments resulting from internal local minima splits, and 36 
segments further split due to GPU memory limitations.

Hyperparameter initialization and grid search
We first used a random grid search approach to define initial hyperparameter combinations producing 
generally accurate genotype imputation results. The hyperparameters and their potential starting 
values are listed in Table 1. This coarse-grain grid search was performed on all genomic segments 
of chromosome 22 (256 genomic segments), each tested with 100 randomly selected hyperparam-
eter combinations per genomic segment, with a batch size of 256 samples, training for 500 epochs 
without any stop criteria, and validating on an independent dataset (ARIC). To evaluate the perfor-
mance of each hyperparameter combination, we calculated the average coefficient of determination 
(r-squared) comparing the predicted and observed alternative allele dosages per variant. Concor-
dance and F1-score were also calculated to screen for anomalies but were not ultimately used for 
model selection.

Hyperparameter tuning
In order to avoid local optimal solutions and reduce the hyperparameter search space, we used an 
ensemble-based machine learning approach (Extreme Gradient Boosting–XGBoost) to predict the 
expected performance (r-squared) of each hyperparameter combination per genomic segment using 
the results of the coarse-grid search and predictive features calculated for each genomic segment. 
These features include the number of variants, average recombination rate and average pairwise 

Table 1. Description and values of hyperparameters tested in grid search.
λ1: scaling factor for Least Absolute Shrinkage and Selection Operator (LASSO or L1) regularization; 
λ2: scaling factor for Ridge (L2) regularization; β: scaling factor for sparsity penalty described in 
Equation 4; ρ: target hidden layer activation described in Equation 4; Activation function type: 
defines how the output of a hidden neuron will be computed given a set of inputs; Learning rate: 
step size at each learning iteration while moving toward the minimum of the loss function; γ: 
amplifying factor for focal loss described in Equation 3; Optimizer type: algorithms utilized to 
minimize the loss function and update the model weights in backpropagation; Loss type: algorithms 
utilized to calculate the model error (Equation 2); Number of hidden layers: how many layers of 
artificial neurons to be implemented between input layer and output layer; Hidden layer size ratio: 
scaling factor to resize the next hidden layer with reference to the size of Its previous layer; Learning 
rate decay ratio: scaling factor for updating the learning rate value on every 500 epochs.

Hyperparameter description Tested values (coarse-grid search)

λ1 for L1 regularization [1e-3, 1e-4, 1e-5, 1e-6, 1e-1, 1e-2, 1e-7, 1e-8]

λ2 for L2 regularization [1e-3, 1e-4, 1e-5, 1e-6, 1e-1, 1e-2, 1e-7, 1e-8]

Sparsity scaling factor (β) [0, 0.001, 0.01, 0.05, 1, 5, 10]

Target average hidden layer activation (ρ) [0.001, 0.004, 0.007, 0.01, 0.04, 0.07, 0.1, 0.4, 0.7, 1.0]

Activation function type [‘sigmoid’, ‘tanh’, ‘relu’, ‘softplus’]

Learning rate [0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100]

Amplifying factor for focal loss (γ) [0, 0.5, 1, 2, 3, 5]

Optimizer type [‘Adam’, ‘RMS Propagation’, ‘Gradient Descent’]

Loss type [‘Binary Cross Entropy’, ‘Custom Focal Loss’]

Number of hidden layers [1, 2, 4, 6, 8]

Hidden layer size ratio [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

Learning rate decay ratio [ 0.0, 0.25, 0.5, 0.75, 0.95, 0.99, 0.999, 0.9999]

https://doi.org/10.7554/eLife.75600
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Pearson correlation across all SNPs, proportion of rare and common variants across multiple minor 
allele frequency (MAF) bins, number of principal components necessary to explain at least 90% of 
variance, and the total variance explained by the first two principal components. The observed accu-
racies of the coarse-grid search, numbering 25,600 training inputs, were used to predict the accuracy 
of 500,000 new hyperparameter combinations selected from Table 1 without training. All categorical 
predictors (activation function name, optimizer type, loss function type) were one-hot encoded. The 
model was implemented using XGBoost package v1.4.1 in Python v3.8.3 with 10-fold cross-validation 
and default settings.

We then ranked all hyperparameter combinations by their predicted performance and selected the 
top 10 candidates per genomic segment along with the single best initially tested hyperparameter 
combination per genomic segments for further consideration. All other hyperparameter combina-
tions were discarded. Genomic segments with sub-optimal performance relative to Minimac were 
subjected to tuning with simulated offspring formation. For tuning, the maximum number of epochs 
was increased (35,000) with automatic stop criteria: if there is no improvement in average loss value 
of the current masking/training cycle versus the previous one, the training is interrupted, otherwise 
training continues until the maximum epoch limit is reached. Each masking/training cycle consisted 
of 500 epochs. Final hyperparameter selection was based on performance on the validation dataset 
(ARIC).

This process results in 256 unique autoencoders spanning the genomic segments of chromosome 
22. Each genomic segment consists of a different number of input variables (genetic variants), sparsity, 
and correlation structure. Thus, 256 unique autoencoder models span the entirety of chromosome 22 
(e.g.: each autoencoder has different edge weights, number of layers, loss function, as well as regu-
larization and optimization parameters).

Performance testing and comparisons
Performance was compared to Minimac4 (Das et al., 2016), Beagle5 (Browning et al., 2018), and 
Impute5 (Rubinacci et al., 2020) using default parameters. We utilized HRC as reference panel for the 
HMM-based imputation tools, which is the same dataset used for training the autoencoders, and we 
applied the same quality control standards for both HMM-based and autoencoder-based imputation. 
We also provide additional comparisons to HMM-based imputation using the TOPMed cohort. No 
post-imputation quality control was applied. Population level reconstruction accuracy is quantified 
by measuring r-squared across multiple strata of data: per genomic segment, at whole chromosome 
level, and stratified across multiple minor allele frequency bins: [0.001–0.005], [0.005–0.01], [0.01–
0.05], [0.05–0.1], [0.1–0.2], [0.2–0.3], [0.3–0.4], [0.4–0.5]. While r-squared is our primary comparison 
metric, sample-level and population-level model performance is also evaluated with concordance and 
the F1-score. Wilcoxon rank-sum testing was used to assess the significance of accuracy differences 
observed. Spearman correlations were used to evaluate the relationships between genomic segment 
features and observed imputation accuracy differences. Standard errors for per variant imputation 
accuracy r-squared is equal or less than 0.001 where not specified. Performance is reported only for 
the independent test datasets (Wellderly, MESA, and HGDP). Note that MESA ultimately is not inde-
pendent of the TOPMed cohort when used for HMM-based imputation.

We used the MESA cohort for inference runtime comparisons. Runtime was determined using the 
average and standard error of three imputation replicates. Two hardware configurations were used 
for the tests: (1) a low-end environment: 16-core Intel Xeon CPU (E5-2640 v2 2.00 GHz), 250 GB 
RAM, and one GPU (NVIDIA GTX 1080); (2) a high-end environment: 24-Core AMD CPU (EPYC 7352 
2.3 GHz), 250 GB RAM, using one NVIDIA A100 GPU. We report computation time only, input/output 
(I/O) reading/writing times are excluded as separately optimized functions. Since the computational 
burden of training the models remains on the developer side, the runtime results refer to the task of 
imputing the missing genotypes given a pre-trained autoencoder set.

Data availability
The data that support the findings of this study are available from dbGAP and European Genome-
phenome Archive (EGA), but restrictions apply to the availability of these data, which were used under 
ethics approval for the current study, and so are not openly available to the public. The computational 
pipeline for autoencoder training and validation is available at https://github.com/TorkamaniLab/​

https://doi.org/10.7554/eLife.75600
https://github.com/TorkamaniLab/Imputation_Autoencoder/tree/master/autoencoder_tuning_pipeline
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Imputation_Autoencoder/tree/master/autoencoder_tuning_pipeline; Dias et  al., 2022. The python 
script for calculating imputation accuracy is available at https://github.com/TorkamaniLab/impu-
tation_accuracy_calculator; Dias, 2021. Instructions on how to access the unique information on 
the parameters and hyperparameters of each one of the 256 autoencoders is shared through our 
source code repository at https://github.com/TorkamaniLab/imputator_inference, copy archived at 
swh:1:rev:2fbd203acf8aaf320a520c6374d6f4d57f068a7c; Dias, 2022. We also shared the pre-trained 
autoencoders and instructions on how to use them for imputation at https://github.com/Torkama-
niLab/imputator_inference; Dias, 2022.

Imputation data format
The imputation results are exported in variant calling format (VCF) containing the imputed genotypes 
and imputation quality scores in the form of class probabilities for each one of the three possible 

Figure 2. HMM-based (y-axis) versus autoencoder-based (x-axis) imputation accuracy prior to tuning. Minimac4 
and untuned autoencoders were tested across three independent datasets–- MESA (top), Wellderly (middle), 
and HGDP (bottom) and across three genotyping array platforms–- Affymetrix 6.0 (left), UKB Axiom (middle), 
Omni1.5M (right). Each data point represents the imputation accuracy (average r-squared per variant) for an 
individual genomic segment relative to its WGS-based ground truth. The numerical values presented on the 
left side and below the identity line (dashed line) indicate the number of genomic segments in which Minimac4 
outperformed the untuned autoencoder (left of identity line) and the number of genomic segments in which the 
untuned autoencoder surpassed Minimac4 (below the identity line). Statistical significance was assessed through 
two-proportion Z-test p-values.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Beagle5 (y-axis) versus autoencoder-based (x-axis) imputation accuracy prior to tuning.

Figure supplement 2. Impute5 (y-axis) versus autoencoder-based (x-axis) imputation accuracy prior to tuning.

Figure supplement 3. Relationship between genomic segment features and autoencoder performance.

Figure supplement 4. Projecting autoencoder performance from hyperparameters and genomic features.

https://doi.org/10.7554/eLife.75600
https://github.com/TorkamaniLab/Imputation_Autoencoder/tree/master/autoencoder_tuning_pipeline
https://github.com/TorkamaniLab/imputation_accuracy_calculator
https://github.com/TorkamaniLab/imputation_accuracy_calculator
https://github.com/TorkamaniLab/imputator_inference
https://archive.softwareheritage.org/swh:1:dir:bcdf526c7102b44428af0a8edc41c95c449c7713;origin=https://github.com/TorkamaniLab/imputator_inference;visit=swh:1:snp:1f1e9662e49b6476f0475c52ca54929ae422184d;anchor=swh:1:rev:2fbd203acf8aaf320a520c6374d6f4d57f068a7c
https://github.com/TorkamaniLab/imputator_inference
https://github.com/TorkamaniLab/imputator_inference
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genotypes (homozygous reference, heterozygous, and homozygous alternate allele). The probabilities 
can be used for quality control of the imputation results.

Results
Untuned performance and model optimization
A preliminary comparison of the best performing autoencoder per genomic segment vs HMM-
based imputation was made after the initial grid search (Minimac4: Figure 2, Beagle5 and Eagle5: 
Figure 2—figure supplements 1–2). Untuned autoencoder performance was generally inferior to all 
tested HMM-based methods except when tested on the European ancestry-rich Wellderly dataset 
when masked using the Affymetrix 6.0 and UKB Axiom marker sets, but not Omni 1.5 M markers. 
HMM-based imputation was consistently superior across the more ancestrally diverse test datasets 
(MESA and HGDP) (two proportion test, p≤8.77 × 10–6). Overall, when performance across genomic 
segments, test datasets, and test array marker sets was combined, the autoencoders exhibited an 
average r-squared per variant of 0.352±0.008 in reconstruction of WGS ground truth genotypes 
versus an average r-squared per variant of 0.374±0.007, 0.364±0.007, and 0.357±0.007 for HMM-
based imputation methods (Minimac4, Beagle5, and Impute5, respectively) (Table 2). This difference 
was statistically significant only relative to Minimac4 (Minimac4: Wilcoxon rank-sum test p=0.037, 
Beagle5 and Eagle5: p≥0.66).

In order to understand the relationship between genomic segment features, hyperparameter 
values, and imputation performance, we calculated predictive features (see Materials and methods) for 

Table 2. Performance comparisons between untuned autoencoder (AE) and HMM-based imputation 
tools (Minimac4, Beagle5, and Impute5).
Average r-squared per variant was extracted from each genomic segment of chromosome 22. 
We applied Wilcoxon rank-sum tests to compare the HMM-based tools to the reference tuned 
autoencoder (AE). * represents p-values ≤0.05, ** indicates p-values ≤0.001, and *** indicates p-
values ≤0.0001.

MESA Wellderly HGDP
Affymetrix 
6.0

UKB 
Axiom Omni 1.5 M Combined

AE (untuned) 0.303±0.008 0.470±0.009 0.285±0.006 0.339±0.008 0.356±0.007 0.362±0.008 0.352±0.008

Minimac4 0.337±0.007* 0.471±0.008 0.314±0.006** 0.352±0.008 0.370±0.006 0.400±0.007** 0.374±0.007*

Beagle5 0.336±0.007* 0.460±0.008 0.296±0.005 0.342±0.007 0.367±0.006 0.384±0.007* 0.364±0.007

Impute5 0.326±0.007* 0.458±0.008 0.289±0.006 0.336±0.008 0.354±0.006 0.383±0.008* 0.358±0.007

Table 3. Top 10 best performing hyperparameter combinations that advanced to fine-tuning.
See Materials and methods and Table 1 for a detailed description of the hyperparameters.

λ1 λ2 β ρ Activation
Learn 
rate γ Optimizer

Loss 
type

Hidden 
layers Size ratio Decay

0.1 0 0.01 0.01 tanh 1.0*10–4 0 adam CE 4 1 0.95

0.1 0 1 0.5 sigmoid 1.0*10–4 1 adam CE 2 0.9 0.95

0.1 0 5 0.5 sigmoid 1.0*10–1 4 adam CE 2 0.5 0

0.1 0 1 0.005 relu 1.0*10–1 4 adam FL 6 1 0.25

0.1 0 5 0.01 relu 1.0*10–5 5 adam FL 4 1 0.95

0.1 0 0.01 0.1 leakyrelu 1.0*10–5 0 adam FL 8 0.9 0.95

0.1 0 1 0.01 tanh 1.0*10–4 0 adam CE 6 1 0.95

0 1.0*10–8 0.001 0.05 relu 1.0*10–5 4 adam CE 8 0.6 0.95

0.1 0 0 0.01 relu 1.0*10–1 5 adam FL 8 0.9 0

0.1 0 0.01 0.01 tanh 1.0*10–3 5 adam CE 2 1 0.95

https://doi.org/10.7554/eLife.75600
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each genomic segment and determined their Spearman correlation with the differences in r-squared 
observed for the autoencoder vs Minimac4 (Figure  2—figure supplement 3). We observed that 
the autoencoder had superior performance when applied to the genomic segments with the most 
complex LD structures: those with larger numbers of observed unique haplotypes, unique diplotypes, 
and heterozygosity, as well as high average MAF, and low average pairwise Pearson correlation across 
all SNPs (average LD) (Spearman correlation ρ≥0.22, p≤9.8 × 10–04). Similarly, we quantified genomic 
segment complexity by the proportion of variance explained by the first two principal components 
as well as the number of principal components needed to explain at least 90% of the variance of 
HRC genotypes from each genomic segment. Concordantly, superior autoencoder performance was 
associated with a low proportion explained by the first two components and positively correlated with 
the number of components required to explained 90% of variance (Spearman ρ≥0.22, p≤8.3 × 10–04). 
These observations, with predictive features determined in the HRC training dataset and performance 
determined in the ARIC validation dataset, informed our tuning strategy.

We then used the genomic features significantly correlated with imputation performance in the 
ARIC validation dataset to predict the performance of and select the hyperparameter values to 
advance to fine-tuning. An ensemble model inference approach was able to predict the genomic 
segment-specific performance of hyperparameter combinations with high accuracy (Figure 2—figure 
supplement 4, mean r-squared=0.935 ± 0.002 of predicted vs observed autoencoders accuracies via 
10-fold cross validation). The top 10 best performing hyperparameter combinations were advanced 
to fine-tuning (Table 3). Autoencoder tuning with simulated offspring formation was then executed as 
described in Materials and methods.

Tuned performance
After tuning, autoencoder performance surpassed HMM-based imputation performance across all 
imputation methods, independent test datasets, and genotyping array marker sets. At a minimum, 
autoencoders surpassed HMM-based imputation performance in >62% of chromosome 22 genomic 
segments (two proportion test p=1.02 × 10–11) (Minimac4: Figure 3, Beagle5 and Eagle5: Figure 3—
figure supplements 1–2). Overall, the optimized autoencoders exhibited superior performance with 
an average r-squared of 0.395±0.007 vs 0.374±0.007 for Minimac4 (Wilcoxon rank sum test p=0.007), 
0.364±0.007  for Beagle5 (Wilcoxon rank sum test p=1.53*10–4), and 0.358±0.007  for Impute5 
(Wilcoxon rank sum test p=2.01*10–5) (Table 4). This superiority was robust to the marker sets tested, 
with the mean r-squared per genomic segment for autoencoders being 0.373±0.008, 0.399±0.007, 
and 0.414±0.008 vs 0.352±0.008, 0.370±0.006, and 0.400±0.007 for Minimac4 using Affymetrix 6.0, 
UKB Axiom, and Omni 1.5 M marker sets (Wilcoxon rank-sums test P-value = 0.029, 1.99*10–4, and 
0.087, respectively). Detailed comparisons to Beagle5 and Eagle5 are presented in Figure 3—figure 
supplements 1–2.

Tuning improved performance of the autoencoders across all genomic segments, generally 
improving the superiority of autoencoders relative to HMM-based approaches in genomic segments 
with complex haplotype structures while equalizing performance relative to HMM-based approaches 
in genomic segments with more simple LD structures (as described in Materials and methods, by 
the number of unique haplotypes: Figure  3—figure supplement 3, diplotypes: Figure  3—figure 
supplement 4, average pairwise LD: Figure 3—figure supplement 5, proportion variance explained: 
Figure 3—figure supplement 6). Concordantly, genomic segments with higher recombination rates 
exhibited the largest degree of improvement with tuning (Figure 3—figure supplement 7). Use of 
the augmented reference panel did not improve HMM-based imputation, having no influence on 
Minimac4 performance (original overall r-squared of 0.374±0.007 vs 0.363±0.007 after augmentation, 
Wilcoxon rank-sum test p=0.0917), and significantly degrading performance of Beagle5 and Impute5 
(original r-squared of 0.364±0.007 and 0.358±0.007 vs 0.349±0.006 and 0.324±0.007 after augmen-
tation, p=0.026 and p=1.26*10–4, respectively). Summary statistics for these comparisons are available 
in Supplementary file 1.

Overall chromosome 22 imputation accuracy
After merging the results from all genomic segments, the whole chromosome accuracy of autoencoder-
based imputation remained superior to all HMM-based imputation tools, across all independent 
test datasets, and all genotyping array marker sets (Wilcoxon rank-sums test p≤5.55 × 10–67). The 

https://doi.org/10.7554/eLife.75600
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autoencoder’s mean r-squared per variant ranged from 0.363 for HGDP to 0.605 for the Wellderly 
vs 0.340–0.557 for Minimac4, 0.326–0.549 for Beagle5, and 0.314–0.547 for Eagle5, respectively. 
Detailed comparisons are presented in in Table 5 and Supplementary file 2.

Further, when imputation accuracy is stratified by MAF bins, the autoencoders maintain superiority 
across all MAF bins by nearly all test dataset and genotyping array marker sets (Figure 4, and Supple-
mentary file 3). Concordantly, autoencoder imputation accuracy is similarly superior when measured 
with F1-scores (Figure 4—figure supplement 1) and concordance (Figure 4—figure supplement 2), 
though these metrics are less sensitive at capturing differences in rare variant imputation accuracy.

Figure 3. HMM-based (y-axis) versus autoencoder-based (axis) imputation accuracy after tuning. Minimac4 
and tuned autoencoders were validated across three independent datasets–- MESA (top), Wellderly (middle), 
and HGDP (bottom) and across three genotyping array platforms–- Affymetrix 6.0 (left), UKB Axiom (middle), 
Omni1.5M (right). Each data point represents the imputation accuracy (average r-squared per variant) for an 
individual genomic segment relative to its WGS-based ground truth. The numerical values presented on the 
left side and below the identity line (dashed line) indicate the number of genomic segments in which Minimac4 
outperformed the untuned autoencoder (left of identity line) and the number of genomic segments in which the 
untuned autoencoder surpassed Minimac4 (below the identity line). Statistical significance was assessed through 
two-proportion Z-test p-values.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Beagle5 (y-axis) versus autoencoder-based (axis) imputation accuracy after tuning.

Figure supplement 2. Impute5 (y-axis) versus autoencoder-based (axis) imputation accuracy after tuning.

Figure supplement 3. Imputation accuracy as a function of unique haplotype abundance.

Figure supplement 4. Imputation accuracy as a function of unique diplotype abundance.

Figure supplement 5. Imputation accuracy as a function of linkage disequilibrium (LD).

Figure supplement 6. Imputation accuracy as a function of data complexity.

Figure supplement 7. Imputation accuracy as a function of recombination rate.

https://doi.org/10.7554/eLife.75600
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When we upgraded the reference panel of the HMM-based tools with the more expansive TOPMed 
cohort, the superior performance of the HRC-trained autoencoder was still sustained across all data-
sets except for MESA (Figure  4—figure supplement 3). Given that MESA is a sub-cohort of the 
TOPMed cohort, we evaluated the possibility of residual data leakage after the removal of MESA from 
the TOPMed cohort and found that 44 MESA individuals were duplicated in other TOPMed cohorts, 
182 MESA individuals had a first degree relative in other TOPMed cohorts, and >92% of MESA indi-
viduals had at least one second degree relative in other TOPMed cohorts, resulting in improved 
imputation performance. Notably, across the most diverse and truly independent HGDP validation 
dataset, the autoencoder displays superior performance despite only being exposed to training on 
the less diverse HRC reference cohort.

Ancestry-specific chromosome 22 imputation accuracy
Finally, we evaluated ancestry-specific imputation accuracy. As before, overall autoencoder-based 
imputation maintains superiority across all continental populations present in MESA (Figure  5, 
Wilcoxon rank-sums test p=5.39 × 10–19). The autoencoders’ mean r-squared ranged from 0.357 
for African ancestry to 0.614 for East Asian ancestry vs 0.328–0.593 for Minimac4, 0.330–0.544 for 
Beagle5, and 0.324–0.586 for Impute5, respectively. Note, East Asian ancestry exhibits a slightly 
higher overall imputation accuracy relative to European ancestry due to improved rare variant imputa-
tion. Autoencoder superiority replicates when HGDP is split into continental populations (Figure 5—
figure supplement 1).

Further stratification of ancestry-specific imputation accuracy results by MAF continues to support 
autoencoder superiority across all ancestries, MAF bins, and nearly all test datasets, and genotyping 
array marker sets (Figure 5, Figure 5—figure supplement 1). Minimum and maximum accuracies 
across MAF by ancestry bins ranged between 0.177–0.937 for the autoencoder, 0.132–0.907 for 
Minimac4, 0.147–0.909 for Beagle5, and 0.115–0.903 for Impute5, with a maximum standard error 
of ±0.004.

Table 4. Performance comparisons between tuned autoencoder (AE) and HMM-based imputation tools (Minimac4, Beagle5, and 
Impute5).
Average r-squared per variant was extracted from each genomic segment of chromosome 22. We applied Wilcoxon rank-sum tests to 
compare the HMM-based tools to the reference untuned autoencoder (AE). * represents p-values ≤0.05, ** indicates p-values ≤0.001, 
and *** indicates p-values ≤0.0001.

MESA Wellderly HGDP Affymetrix 6.0 UKB Axiom Omni 1.5 M Combined

AE (tuned) 0.355±0.007 0.505±0.008 0.327±0.006 0.373±0.008 0.399±0.007 0.414±0.008 0.396±0.007

AE (untuned) 0.303±0.008*** 0.470±0.009* 0.285±0.006*** 0.339±0.008* 0.356±0.007*** 0.362±0.008*** 0.352±0.008***

Minimac4 0.337±0.007* 0.471±0.008** 0.314±0.006 0.352±0.008* 0.370±0.006** 0.400±0.007 0.374±0.007*

Beagle5 0.336±0.007* 0.460±0.008*** 0.296±0.005*** 0.342±0.007** 0.367±0.006*** 0.384±0.007** 0.364±0.007**

Impute5 0.326±0.007* 0.458±0.008*** 0.289±0.006*** 0.336±0.008** 0.354±0.006*** 0.383±0.008** 0.358±0.007***

Table 5. Whole chromosome level comparisons between autoencoder (AE) and HMM-based imputation tools (Minimac4, Beagle5, 
and Impute5).
Average r-squared per variant was extracted at whole chromosome level. We applied Wilcoxon rank-sum tests to compare the HMM-
based tools to the reference tuned autoencoder (AE). * represents p-values ≤0.05, ** indicates p-values ≤0.001, and *** indicates 
p-values ≤0.0001. Standard errors that are equal or less than 0.001 are not shown.

MESA Wellderly HGDP

Affymetrix 6.0 UKB Axiom Omni 1.5 M Affymetrix 6.0 UKB Axiom Omni 1.5 M Affymetrix 6.0 UKB Axiom Omni 1.5 M

AE (tuned) 0.410 0.395 0.452 0.537 0.605 0.586 0.363 0.364 0.392

Minimac4 0.390*** 0.364*** 0.436*** 0.500*** 0.557*** 0.551*** 0.350*** 0.340*** 0.385***

Beagle5 0.383*** 0.379*** 0.420*** 0.484*** 0.549*** 0.534*** 0.326*** 0.328*** 0.353***

Impute5 0.384*** 0.356*** 0.429*** 0.485*** 0.547*** 0.539*** 0.328*** 0.314*** 0.359***

https://doi.org/10.7554/eLife.75600
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Thus, with training on equivalent reference cohorts, autoencoder performance was superior across 
all variant allele frequencies and ancestries with the primary source of superiority arising from hard 
to impute regions with complex LD structures. When the reference panel of the HMM-based tools 
is upgraded to the more diverse TOPMed dataset, the HRC-trained autoencoder remains superior 
across all ancestry groups of HGDP (Figure 5—figure supplement 2), as well as in the MESA ances-
tries well represented in HRC (European and East Asian) but not in MESA ancestries where representa-
tion is significantly enhanced by the TOPMed reference panel (American and African) with additional 
imputation performance deriving from a significant degree of familial relationships spanning the 
TOPMed reference panel and MESA test cohort (Figure 5—figure supplement 3).
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Figure 4. HMM-based versus autoencoder-based imputation accuracy across MAF bins. Autoencoder-based 
(red) and HMM-based (Minimac4 (blue), Beagle5 (green), and Impute5 (purple)) imputation accuracy was 
validated across three independent datasets–- MESA (top), Wellderly (middle), and HGDP (bottom) and across 
three genotyping array platforms–- Affymetrix 6.0 (left), UKB Axiom (middle), Omni1.5M (right). Each data point 
represents the imputation accuracy (average r-squared per variant) relative to WGS-based ground truth across 
MAF bins. Error bars represent standard errors. We applied Wilcoxon rank-sum tests to compare the HMM-based 
tools to the tuned autoencoder (AE). * represents p-values ≤0.05, ** indicates p-values ≤0.001, and *** indicates 
p-values ≤0.0001, ns represents non-significant p-values.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. HMM-based versus autoencoder-based imputation accuracy across MAF bins (F1 score).

Figure supplement 2. HMM-based versus autoencoder-based imputation accuracy across MAF bins 
(concordance).

Figure supplement 3. TOPMed cohort HMM-based imputation versus HRC cohort autoencoder-based 
imputation accuracy across MAF bins.

https://doi.org/10.7554/eLife.75600
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Figure 5. HMM-based versus autoencoder-based imputation accuracy across ancestry groups. Autoencoder-
based (red) and HMM-based (Minimac4 (blue), Beagle5 (green), and Impute5 (purple)) imputation accuracy was 
validated across individuals of diverse ancestry from MESA cohort (EUR: European (top); EAS: East Asian (2nd row); 
AMR: Native American (3rd row); AFR: African (bottom)) and multiple genotype array platforms (Affymetrix 6.0 (left), 
UKB Axiom (middle), Omni1.5M (right)). Each data point represents the imputation accuracy (average r-squared 
per variant) relative to WGS-based ground truth across MAF bins. Error bars represent standard errors. We applied 
Wilcoxon rank-sum tests to compare the HMM-based tools to the tuned autoencoder (AE). * represents p-values 
≤0.05, ** indicates p-values ≤0.001, and *** indicates p-values ≤0.0001, ns represents non-significant p-values.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. HMM-based versus autoencoder-based imputation accuracy across ancestry groups.

Figure supplement 2. TOPMed cohort HMM-based versus HRC cohort autoencoder-based imputation accuracy 
across ancestry groups.

Figure supplement 3. TOPMed cohort HMM-based versus HRC cohort autoencoder-based imputation accuracy 
across ancestry groups.

https://doi.org/10.7554/eLife.75600
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Inference speed
Inference runtimes for the autoencoder vs HMM-
based methods were compared in a low-end 
and high-end computational environment as 
described in Methods. In the low-end environ-
ment, the autoencoder’s inference time is at least 
~4 X faster than all HMM-based inference times 
(summing all inference times from all genomic 
segments of chromosome 22, the inference time 
for the autoencoder was 2.4±1.1*10–3 seconds 
versus 1,754±3.2, 583.3±0.01, and 8.4±4.3*10–3 
s for Minimac4, Beagle5, and Impute5, respec-
tively (Figure 6A)). In the high-end environment, 
this difference narrows to a~3  X advantage 
of the autoencoder vs HMM-based methods 
(2.1±8.0*10–4 versus 374.3±1.2, 414.3±0.01, and 
6.1±2.1*10–4) seconds for Minimac4, Beagle5, 
and Impute5, respectively (Figure  6B). These 

unoptimized results indicate that autoencoder-based imputation can be executed rapidly, without a 
reference cohort, and without the need for a high-end server or high-performance computing (HPC) 
infrastructure. However, we must note that to deploy the autoencoder-based imputation to produc-
tion, the autoencoders must be pre-trained separately across all segments of all chromosomes in the 
human genome. This initial pre-training can require months of computation time, depending upon 
the GPU resources available, whereas HMM-based imputation does not require any pre-training after 
initial parameters are defined. Thus, the HMM-based approach is more flexible to the de-novo use of 
alternative reference panels – though recent cohorts have revealed scaling limitations. On the other 
hand, unlike HMM-based imputation tools, pre-trained autoencoders retain the information learned 
from pre-training and can be continuously fine-tuned with additional genomes and reference panels 
as they become available. Thus, once pre-trained, autoencoders may be incrementally upgraded 
using newly available reference panels.

Discussion
Artificial neural network-based data mining techniques are revolutionizing biomedical informatics 
and analytics (Dias and Torkamani, 2019; Jumper et al., 2021). Here, we have demonstrated the 
potential for these techniques to execute a fundamental analytical task in population genetics, geno-
type imputation, producing superior results in a computational efficient and portable framework. The 
trained autoencoders can be transferred easily, and execute their functions rapidly, even in modest 
computing environments, obviating the need to transfer private genotype data to external imputation 
servers or services. Furthermore, our fully trained autoencoders robustly surpass the performance of 
all modern HMM-based imputation approaches across all tested independent datasets, genotyping 
array marker sets, minor allele frequency spectra, and diverse ancestry groups. This superiority was 
most apparent in genomic regions with low LD and/or high complexity in their linkage disequilibrium 
structure.

Superior imputation accuracy is expected to improve GWAS power, enable more complete 
coverage in meta-analyses, and improve causal variant identification through fine-mapping. More-
over, superior imputation accuracy in low LD regions may enable the more accurate interrogation of 
specific classes of genes under a greater degree of selective pressure and involved in environmental 
sensing. For example, promoter regions of genes associated with inflammatory immune responses, 
response to pathogens, environmental sensing, and neurophysiological processes (including sensory 
perception genes) are often located in regions of low LD (Dias and Torkamani, 2019; Frazer et al., 
2007). These known disease-associated biological processes that are critical to interrogate accurately 
in GWAS. Thus, the autoencoder-based imputation approach both improves statistical power and 
biological coverage of individual GWAS’ and downstream meta-analyses.
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Figure 6. HMM-based versus autoencoder-based 
inference runtimes. We plot the average time and 
standard error of three imputation replicates. Two 
hardware configurations were used for the tests: (A) a 
low-end environment: 16-core Intel Xeon CPU (E5-2640 
v2 2.00 GHz), 250 GB RAM, and one GPU (NVIDIA GTX 
1080); (B) a high-end environment: 24-Core AMD CPU 
(EPYC 7352 2.3 GHz), 250 GB RAM, using one NVIDIA 
A100 GPU.
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HMM-based imputation tools depend on end-user access to large reference panels or datasets 
to impute a single genome whereas pre-trained autoencoder models eliminate that dependency. 
However, further development is required to actualize this approach in practice for broad adop-
tion. Autoencoders must be pre-trained and validated across all segments of the human genome 
– a computationally expensive task. Here we performed training only for chromosome 22. Autoen-
coder training is computationally intensive, shifting the computational burden to model trainers, and 
driving performance gains for end-users. As a result, inference time scales only with the number of 
variants to be imputed, whereas HMM-based inference time depends on both reference panel and 
the number of variants to be imputed. This allows for autoencoder-based imputation to extend to 
millions of genomes but introduces some challenges in the continuous re-training and fine-tuning 
of the pre-trained models as larger reference panels are made available. In addition, our current 
encoding approach lacks phasing information and no pre-phasing was performed. Pre-phasing can 
lead to substantial improvements in imputation accuracy. Future models will need to address the need 
for phasing and continuous fine-tuning of models for application to modern, ever-growing, genomic 
datasets.

Ideas and speculation
After expanding this approach across the whole genome, our work will provide a more efficient geno-
type imputation platform on whole genome scale and thus benefit genomic research especially in 
contexts where the computational power required for modern HMM-based imputation is not acces-
sible. In addition to the speed, cost, and accuracy benefits, our proposed approach can potentially 
improve automation for downstream analyses. The autoencoder naturally generates a hidden encoding 
with latent features representative of the original data. This latent representation of the original data 
acts as an automatic feature extraction and dimensionality reduction technique for downstream tasks 
such as genetic risk prediction. Moreover, the autoencoder-based imputation approach only requires 
a reference panel during training – only the neural network needs to be distributed for implementa-
tion. Thus, the neural network is portable and avoids privacy issues associated with standard statis-
tical imputation. This privacy-preserving feature will allow developers to deploy real-time data-driven 
algorithms on personal devices (edge computing). These new features will expand the clinical appli-
cations of genomic imputation, as well as its role in preventive healthcare. Another point related to 
data privacy is that the autoencoders segment the genome, making reconstruction of an individual 
genome impossible even if reference data were somehow recoverable from the neural networks. 
Nevertheless, while there are no official data sharing restrictions on deep learning model weights 
generated from genomic data, future privacy risks may be discovered, necessitating further research 
into privacy concerns and differential privacy techniques for autoencoder-based genotype imputation.
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The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

McCarthy S, Das S, 
Kretzschmar W

2016 Haplotype Reference 
Consortium

https://​ega-​archive.​
org/​studies/​
EGAS00001001710

EGA European Genome-
Phenome Archive, 
EGAS00001001710

1000 Genomes 
Project Consortium

2015 The 1000 Genomes Project 
Consortium

https://www.​
internationalgenome.​
org/​data-​portal/​data-​
collection/​phase-3

Internationalgenome, 
phase-3

Bild DE, Bluemke DA, 
Burke GL

2002 MESA (Multi-Ethnic Study 
of Atherosclerosis) study

https://www.​ncbi.​nlm.​
nih.​gov/​projects/​gap/​
cgi-​bin/​study.​cgi?​
study_​id=​phs001416.​
v2.​p1

NCBI Gene Expression 
Omnibus, phs001416.v2.p1

The ARIC 
investigators 
consortium

1989 Atherosclerosis Risk in 
Communities (ARIC)

https://www.​ncbi.​nlm.​
nih.​gov/​projects/​gap/​
cgi-​bin/​study.​cgi?​
study_​id=​phs001211.​
v4.​p3

NCBI Gene Expression 
Omnibus, phs001211.v4.p3

Bergström A, 
McCarthy SA, Hui R

2020 Human Genome Diversity 
Project (HGDP)

https://www.​
internationalgenome.​
org/​data-​portal/​data-​
collection/​hgdp

Internationalgenome, hgdp

Taliun D, Harris DN, 
Kessler MD

2021 TOPMed Cohort https://​topmed.​nhlbi.​
nih.​gov/

Multiple, topmed
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