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Abstract Divisive normalization of the neural responses by the activity of the neighboring 
neurons has been proposed as a fundamental operation in the nervous system based on its success 
in predicting neural responses recorded in primate electrophysiology studies. Nevertheless, exper-
imental evidence for the existence of this operation in the human brain is still scant. Here, using 
functional MRI, we examined the role of normalization across the visual hierarchy in the human visual 
cortex. Using stimuli form the two categories of human bodies and houses, we presented objects 
in isolation or in clutter and asked participants to attend or ignore the stimuli. Focusing on the 
primary visual area V1, the object-selective regions LO and pFs, the body-selective region EBA, and 
the scene-selective region PPA, we first modeled single-voxel responses using a weighted sum, a 
weighted average, and a normalization model and demonstrated that although the weighted sum 
and weighted average models also made acceptable predictions in some conditions, the response 
to multiple stimuli could generally be better described by a model that takes normalization into 
account. We then determined the observed effects of attention on cortical responses and demon-
strated that these effects were predicted by the normalization model, but not by the weighted sum 
or the weighted average models. Our results thus provide evidence that the normalization model 
can predict responses to objects across shifts of visual attention, suggesting the role of normaliza-
tion as a fundamental operation in the human brain.

Editor's evaluation
This study on object-based attention furthers of understanding of the role of normalization across 
the visual hierarchy in the human visual cortex. The authors provide solid functional MRI evidence 
that supports their claims, demonstrating that the normalization model predicts the observed effect 
when participants selectively attend to one of two stimulus categories. The paper is an important 
contribution to the fields of perceptual and cognitive neuroscience.

Introduction
The brain makes use of fundamental operations to perform neural computations in various modalities 
and different regions. Divisive normalization has been proposed as one of these fundamental opera-
tions. Under this computation, the response of a neuron is determined based on its excitatory input 
divided by a factor representing the activity of a pool of nearby neurons (Heeger, 1992; Carandini 
et al., 1997; Carandini and Heeger, 2011). Normalization was first introduced based on responses 
in the cat primary visual cortex (Heeger, 1992), and evidence of its operation in higher regions of the 
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monkey visual cortex has also been demonstrated both during passive viewing (Bao and Tsao, 2018) 
and when attention is directed towards a stimulus (Reynolds and Heeger, 2009; Lee and Maunsell, 
2010; Ni et al., 2012; Ni and Maunsell, 2019).

Normalization has also been proposed as a critical operation in the human brain based on evidence 
demonstrating the sublinear addition of responses to multiple stimuli in the visual cortex (Bloem and 
Ling, 2019). Nevertheless, in lieu of directly testing the normalization model to resolve multiple-
stimulus representation, several previous studies have shown that a weighted average model can 
account for multiple-stimulus responses in the monkey brain (Zoccolan et al., 2005; Macevoy and 
Epstein, 2009; Reddy et al., 2009; Kliger and Yovel, 2020). The only exception is a recent electro-
physiology study, which showed that in the category-selective regions of the monkey brain, a winner-
take-all, but not averaging, rule can explain neural responses in many cases (Bao and Tsao, 2018). 
Bao and Tsao, 2018 further demonstrated that the normalization model predicts such winner-take-all 
behavior. It is not clear whether this discrepancy has emerged as a result of different explored regions 
of the brain, or due to the diversity in stimuli or the task performed by the participants.

In addition to regional computations for multiple-stimulus representation, the visual cortex relies on 
top-down mechanisms such as attention to select the most relevant stimulus for detailed processing 
(Moran and Desimone, 1985; Desimone and Duncan, 1995; Chun et al., 2011; Baluch and Itti, 
2011; Noudoost et al., 2010; Maunsell, 2015; Thiele and Bellgrove, 2018; Itthipuripat et al., 2014; 
Moore and Zirnsak, 2017; Buschman and Kastner, 2015). Attention works through increasing the 
response gain (Treue and Martínez Trujillo, 1999; McAdams and Maunsell, 1999) or contrast gain 
(Reynolds et al., 2000; Martínez-Trujillo and Treue, 2002) of the attended stimulus. Previous studies 
have demonstrated how the normalization computation accounts for these observed effects of atten-
tion in the monkey brain. They have suggested that normalization attenuates the neural response in 
proportion to the activity of the neighboring neuronal pool (Reynolds and Heeger, 2009; Ni et al., 
2012; Boynton, 2009; Lee et al., 2009). These studies have focused on space-based (Reynolds and 
Heeger, 2009; Ni et al., 2012; Lee et al., 2009) or feature-based (Ni and Maunsell, 2019) attention. 
While it has been suggested that these different forms of attention affect neural responses in similar 
ways, there exist distinctions in their reported effects, such as different time courses (Hayden and 
Gallant, 2005) and the extent to which they affect different locations in the visual field (Serences 
and Boynton, 2007; Womelsdorf et al., 2006), suggesting that there are common sources as well as 
differences in modulation mechanisms between these forms of attention (Ni and Maunsell, 2019). This 
leaves open the question of whether normalization can explain the effects of object-based attention.

In the human visual cortex, normalization has been speculated to underlie response modulations in 
the presence of attention, with evidence provided both by behavioral studies of space-based (Herr-
mann et al., 2010) and feature-based (Herrmann et al., 2012; Schwedhelm et al., 2016) attention, as 
well as neuroimaging studies of feature-based attention (Bloem and Ling, 2019). Although previous 
studies have qualitatively suggested the role of normalization in the human visual cortex (Bloem and 
Ling, 2019; Kliger and Yovel, 2020; Itthipuripat et al., 2014; Zhang et al., 2016), evidence for 
directly testing the validity of the normalization model in predicting human cortical responses in a 
quantitative way remains scarce. A few studies have demonstrated the quantitative advantage of 
normalization-based models compared to linear models in predicting human fMRI responses using 
gratings, noise patterns, and single objects (Kay et al., 2013a; Kay et al., 2013b), as well as moving 
checkerboards (Aqil et al., 2021; Foster and Ling, 2021). However, whether normalization can also 
be used to predict cortical responses to multiple objects, and if and to what extent it can explain the 
modulations in response caused by attention to objects in the human brain remain unanswered.

To fill this gap and to explore the discrepancies reported about multiple-stimulus responses, here, 
we aimed to evaluate the predictions of the normalization model against observed responses to visual 
objects in several regions of the human brain in the presence and absence of attention. In an fMRI 
experiment using conditions with isolated and cluttered stimuli and recording the response with or 
without attention, we provide a comprehensive account of normalization in different regions of the 
visual cortex, showing its success in adjusting the gain related to each stimulus when it is attended or 
ignored. We also demonstrate that normalization is closer to average in the absence of attention, as 
previously reported by several studies (Zoccolan et al., 2005; Macevoy and Epstein, 2009; Kliger 
and Yovel, 2020), but that the results of the weighted average model and the normalization model 
diverge to a greater extent in the presence of attention. Our work in the human brain, along with 
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previous studies of normalization in the monkey and human brain, suggests the role of normalization 
as a canonical computation in the primate brain.

Results
Attention modulates responses to isolated and paired stimuli
In a blocked-design fMRI paradigm, human participants (N = 19) viewed semi-transparent gray-scale 
stimuli from the two categories of houses and human bodies (Figure  1a). Each experimental run 
consisted of one-stimulus (isolated) and two-stimulus (paired) blocks, with attention directed either 

Figure 1. Stimuli, paradigm, and regions of interest. (a) The two stimulus categories (body and house), with the ten exemplars of the body category. 
(b) Experimental paradigm including the timing of the trials and the inter-stimulus interval. In the example block depicted on the left, both stimulus 
categories were presented, and the participant was cued to attend to the house category. The two stimuli were superimposed in each trial, and the 
participant had to respond when the same stimulus from the house category appeared in two successive trials. The color of the fixation point randomly 
changed in some trials from red to orange, but the participants were asked to ignore the color change. The example block depicted on the right 
illustrates the condition in which stimuli were ignored and participants were asked to attend to the fixation point color, and respond when they detected 
a color change. Subjects were highly accurate in performing these tasks (see Figure 1—figure supplement 1). (c) The eight task conditions in each 
experimental run. For illustration purposes, we have shown the attended category in each block with orange outlines. The outlines were not present in 
the actual experiment. (d) Regions of interest for an example participant, including the primary visual cortex V1, the object-selective regions LO and pFs, 
the body-selective region EBA, and the scene-selective region PPA.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Behavioral performance of participants for the main experiment.

https://doi.org/10.7554/eLife.75726
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to an object stimulus or to the color of the fixation point. There was an additional fixation color block 
in each run with no object stimuli, in which the participants were asked to attend to the fixation point 
color. The experiment, therefore, had a total number of eight conditions (four isolated, three paired, 
and one fixation conditions, see Figure 1c). In paired blocks, we superimposed the two stimuli to mini-
mize the effect of spatial attention and force participants to use object-based attention (Figure 1b 
and c). Participants were asked to perform a one-back repetition detection task on the attended 
object, or a color change detection task on the fixation point (Figure 1b, see Methods for details). 
Independent localizer runs were used to localize the primary visual cortex (V1), the object-selective 
regions in the lateral occipital cortex (LO) and posterior fusiform gyrus (pFs), the extrastriate body 
area (EBA), and the parahippocampal place area (PPA) for each participant (Figure 1d).

Each task condition was named based on the presented stimuli and the target of attention, 
with B and H denoting the presence of body and house stimuli, respectively, and the superscript 
‍at‍ denoting the target of attention. Therefore, the seven task conditions include Bat, BatH, BHat, 
Hat, B, H, and BH. For instance, the Hat condition refers to the isolated house condition with atten-
tion directed to house stimuli, and the BH condition refers to the paired condition with atten-
tion directed to the fixation point color. Overall, the average accuracy was higher than 86% in 
all conditions. Averaged across participants, accuracy was 94%, 89%, 86%, 93%, 94%, 96%, 95%, 
and 96% for Bat, BatH, BHat, Hat, B, H, and BH conditions and the fixation block with no stimulus, 
respectively. A one-way ANOVA test across conditions showed a significant effect of condition on 
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Figure 2. Average fMRI regression coefficients and voxel preference for the two categories in all regions of interest (ROIs). (a–e) Average fMRI 
regression coefficients for each condition are illustrated in the five ROIs. Each condition’s label denotes the presented stimuli and the target of attention, 
with B and H, respectively, denoting the presence of body and house stimuli and the superscript ‍at‍ denoting the target of attention. Therefore, the 
seven task conditions include Bat, BatH, BHat, Hat, B, H, and BH. For instance, the Hat condition refers to the isolated house condition with attention 
directed to houses, and the BH condition refers to the paired condition with attention directed to the fixation point color. Error bars represent standard 
errors of the mean for each condition, calculated across participants after removing the overall between-subject variance. N = 19 human participants. 
(f) The ratio of voxels preferring bodies and houses in each ROI. Both the regression coefficients and the voxel preference ratios were consistent across 
odd and even runs (see Figure 2—figure supplement 1 and Figure 2—figure supplement 1).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Average fMRI regression coefficients for each condition and voxel preference for the two categories in all ROIs, illustrated 
seperately for odd and even runs.

https://doi.org/10.7554/eLife.75726
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accuracy (‍F(7, 126) = 8.24, p < 0.0001‍) and reaction time (‍F(7, 126) = 22.57, p < 0.0001‍). As expected, 
post-hoc t-tests showed that this was due to lower performance in the BatH and BHat conditions (see 
Figure 1—figure supplement 1). There was no significant difference in performance between any 
other conditions (‍ps > 0.07, corrected ‍).

To examine the cortical response in different task conditions, we fit a general linear model and 
estimated the regression coefficients for each voxel in each condition. Figure 2 illustrates the average 
voxel coefficients for different conditions in the five regions of interest (ROIs), including V1, LO, pFs, 
EBA, and PPA. Note that we have not included the responses related to the fixation block with no 
stimulus since this condition was only used to select the voxels that were responsive to the presented 
stimuli in each ROI (see Methods). We observed that the average voxel coefficients related to the four 
conditions in which attention was directed to the body or the house stimuli (the first four conditions, 
Bat, BatH, BHat, Hat) were generally higher than the response related to the last three conditions (B, H, 
and BH conditions) in which the body and house stimuli were unattended (‍ts > 4, ps < 0.01, corrected‍). 
This is in agreement with previous research indicating that attention to objects increases their cortical 
responses (Reddy et al., 2009; Roelfsema et al., 1998; O’Craven et al., 1999).

Looking more closely at the results in the regions EBA and PPA that have strong preferences for 
body and house stimuli, respectively, it seems that the effect of attention interacts with the regions’ 
preference. For instance, in the body-selective region EBA, the response to attended body stimuli 
in isolation is similar to the response to attended body stimuli paired with unattended house stimuli 
(compare Bat and BatH bars). On the other hand, the response to attended house stimuli in the isolated 
condition is significantly less than the response to attended house stimuli paired with unattended 
body stimuli. We can observe similar results in PPA, but not in V1 or the object-selective regions LO 
and pFs. But note that the latter three regions do not have strong a preference for one stimulus versus 
the other. Therefore, in order to examine the interaction between attention and preference more 
closely, we determined preferences at the voxel level in all ROIs.

We defined the preferred (P) and null (N) stimulus categories for each voxel in each ROI according to 
the voxel’s response to isolated body and isolated house conditions. Figure 2f shows the percentage 
of voxels in each region that were selective to bodies and houses averaged across participants. As 
illustrated in the figure, in the object-selective regions LO and pFs, almost half of the voxels were 
selective to each category, while in the EBA and PPA regions, the general preference of the region 
prevailed (Even though these regions were selected based on their preference, the noise in the fMRI 
data and other variations due to imperfect registration led to some voxels showing different prefer-
ences in the main session compared to the localizer session Peelen and Downing, 2005).

After determining voxel preferences, we rearranged the seven task conditions according to each 
voxel’s preference. The conditions are hereafter referred to as: Pat, PatN, PNat, Nat, P, PN, N, with ‍P‍ 
and ‍N ‍ denoting the presence of the preferred and null stimuli, respectively, and the superscript ‍at‍ 
denoting the attended category. Mean voxel responses in the five ROIs for all task conditions are illus-
trated by navy lines in Figure 3a–e. Note that although the seven conditions constitute a discrete and 
not a continuous variable, we have connected the responses in attended conditions (in which body 
or house stimuli were attended) and unattended conditions (in which body and house were ignored 
and the fixation point color was attended) separately. This was done for visual purposes and ease of 
understanding.

We observed that the mean voxel response was generally higher when each stimulus was attended 
compared to the condition in which it was ignored. For instance, the response in the Pat condition (in which 
the isolated preferred stimulus was attended) was higher than in the P condition (where the isolated 
preferred stimulus was ignored) in LO, pFs, and PPA (‍ts > 3.6, ps < 0.01, corrected‍), marginally higher in 
EBA (‍t(18) = 2.69, p = 0.07, corrected‍), and not significantly higher in V1 (‍t(18) = 2.52, p = 0.1, corrected‍). 
Similarly, comparing the N and Nat conditions in each ROI, we observed an increase in response caused 
by attention in all ROIs (‍ts > 4, ps < 0.01, corrected‍) except for V1 (‍t(18) = 2.4, p = 0.13, corrected‍). A 
similar trend of response enhancement due to attention could also be observed in the paired condi-
tions: attending to either stimulus increased the response in all ROIs (‍ts > 4.4, ps < 0.01, corrected‍) 
except for V1 (‍ts < 2.59, ps > 0.08, corrected‍). In all cases, the effect of attention was absent or only 
marginally significant in V1, which is not surprising since attentional effects are much weaker (McAdams 
and Maunsell, 1999) or even absent (Luck et al., 1997) in V1 compared to the higher-level regions 
of the occipito-temporal cortex. Next, we asked whether we could predict these response variations 

https://doi.org/10.7554/eLife.75726
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and attentional modulations caused by the change in the presented stimuli and the target of attention 
using three different models.

Divisive normalization explains voxel responses in different stimulus 
conditions
We used the three models of weighted sum, weighted average, and normalization to predict voxel 
responses in different task conditions. Based on the weighted sum model, the response to multiple 
stimuli is determined by the sum of the responses to each individual stimulus presented in isolation, 
and attention to each stimulus increases the part of the response associated with the attended stim-
ulus. For instance, in the presence of a null and a preferred stimulus with attention to the preferred 
stimulus, the response can be determined by ‍RPat,N = βRP + RN ‍, with ‍RPat,N ‍ , ‍RP‍, and ‍RN ‍, denoting the 
response elicited by both stimuli with attention directed to the preferred stimulus, the response to 
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Figure 3. Divisive normalization explains voxel responses in different stimulus conditions. (a–e) Average fMRI responses and model predictions in 
the five regions of interest. Navy lines represent average responses. Light blue, gray, and orange lines show the predictions of the weighted sum, the 
weighted average, and the normalization models, respectively. The x-axis labels represent the 7 task conditions, Pat, PatN, PNat, Nat, P, PN, N, with P 
and N denoting the presence of the preferred and null stimuli and the superscript ‍at‍ denoting the attended category. For instance, P refers to the 
condition in which the unattended preferred stimulus was presented in isolation, and PatN refers to the paired condition with the attended preferred and 
unattended null stimuli. Error bars represent standard errors of the mean for each condition, calculated across participants after removing the overall 
between-subject variance. N = 19 human participants. (f) Mean explained variance, averaged over voxels in each region of interest for the 5 conditions 
predicted by the three models. Light blue, gray, and orange bars show the average variance explained by the weighted sum, the weighted average, and 
normalization models, respectively. Error bars represent the standard errors of the mean. N = 19 human participants. Dashed lines above each set of 
bars indicate the noise ceiling in each ROI, with the light blue shaded area representing the standard errors of the mean calculated across participants 
(see Figure 3—figure supplement 1 for an example illustration of how the goodness of fit was calculated for each voxel). As observed in the figure, 
the normalization model was a better fit for the data compared to the weighted sum (ps < 0.02) and the weighted average (ps < 0.0001) models. 
Simulation results demonstrate that this superiority is not related to the higher number of parameters or the nonlinearity of the normalization model 
(see Figure 3—figure supplement 2).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Calculation of model goodness of fit for an example voxel.

Figure supplement 2. Goodness of fit of the three models for the simulated neural populations.

https://doi.org/10.7554/eLife.75726
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the isolated preferred stimulus, and the response to the isolated null stimulus, respectively. ‍β‍ is the 
attention-related parameter.

According to the weighted average model, the response to multiple stimuli is determined by 
the average of isolated-stimulus responses, and weighted by the parameter related to attention. 
Therefore, with an attended preferred and an ignored null stimulus, the response can be written as: 

‍RPat,N = βRP+RN
2 ‍.

Finally, based on the normalization model, the response to a stimulus is determined based on 
the excitation due to that stimulus and the suppression due to the neighboring neuronal pool. 
Therefore, the response to an attended preferred and an ignored null stimulus is determined by: 

‍RPat,N = βcPLP+cNLN
βcP+cN+σ ‍, where ‍LP‍ and ‍LN ‍ respectively denote the excitation caused by the preferred and 

the null stimulus, and ‍σ‍ represents the semi-saturation constant. ‍cP‍ and ‍cN ‍ are the respective contrasts 
of the preferred and null stimuli. Zero contrast for a stimulus denotes that the stimulus is not present 
in the visual field. In our experiment, we set contrast values to one when a stimulus was presented, 
and to zero when the stimulus was not presented (see Methods for detailed descriptions of models).

Although many studies have demonstrated that responses to multiple stimuli are added sublinearly 
in the visual cortex (Heeger, 1992; Bloem and Ling, 2019; Reddy et al., 2009; Aqil et al., 2021), 
it has been suggested that for weak stimuli, response summation can approach a linear or even a 
supralinear regime (Rubin et al., 2015; Heuer and Britten, 2002). Since the stimuli we used in this 
experiment were presented in a semi-transparent form and were therefore not in full contrast, we 
found it probable that the response might be closer to a linear summation regime in some cases. We 
thus used the weighted sum model to examine whether the response approaches linear summation 
in any region.

To compare the three models in their ability to predict the data, we split the fMRI data into two 
halves (odd and even runs) and estimated the model parameters separately for each voxel of each 
participant twice: once using the first half of the data, and a second time using the second half of 
the data. All comparisons of data with model predictions were made using the left-out half of the 
data in each case. All model results illustrate the average of these two cross-validated predictions. 
Note that this independent prediction is critical since the numbers of parameters in the three models 
are different. Possible over-fitting in the normalization model with more parameters will not affect 
the independent predictions (Kay et al., 2013b). The predictions of the three models for the five 
modeled task conditions are illustrated in Figure 3a–e (the two isolated ignored conditions P and N 
were excluded as they were used by the weighted sum and the weighted average models to predict 
responses in the remaining five conditions, see Methods).

As evident in the figure, the predictions of the normalization model (in orange) are generally better 
than the predictions of the weighted sum and the weighted average models (light blue and gray, 
respectively) in all regions. To quantify this observation, we calculated the goodness of fit for each 
voxel by taking the square of the correlation coefficient between the predicted model response and 
the respective fMRI responses across the five modeled conditions (Figure  3—figure supplement 
1). We also calculated the noise ceiling in each region separately as the r-squared of the correlation 
between the odd and even halves of the data. Given that the correlation between the model and 
the data cannot exceed the reliability of the data (as calculated by the correlation between the data 
from odd and even runs), the r-squared can also not exceed the squared split-half reliability. The noise 
ceiling (squared split-half reliability), therefore, determines the highest possible goodness of fit a 
model can reach. The results are illustrated in Figure 3f.

We first compared the goodness of fit of the three models across the five ROIs using a 
‍3 × 5‍ repeated measures ANOVA. The results showed a significant main effect of model 
(‍F(2, 36) = 72.9, p < 0.0001‍) and ROI (‍F(4, 72) = 26.66, p < 0.0001‍), and a significant model by ROI 
interaction (‍F(8, 144) = 24.96, p < 0.0001‍). On closer inspection, the normalization model was a 
better fit to the data than both the weighted sum (‍ps < 0.02, corrected‍) and the weighted average 
(‍ps < 0.0001, corrected‍) models in all ROIs. Since the normalization model had more parameters, we 
also used the AIC measure to correct for the difference in the number of parameters. The normaliza-
tion model was a better fit according to the AIC measure as well (see Supplementary file 2). It is note-
worthy that while the weighted average model performed better than the weighted sum model in LO 
and EBA (‍ps < 0.002, corrected‍), it was not significantly better in pFs and PPA (‍ps > 0.37, corrected‍), 
and worse than the weighted sum model in V1 (‍p < 0.0001, corrected‍).

https://doi.org/10.7554/eLife.75726
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We then calculated the normalization model’s r-squared difference from the noise ceiling (NRD) for 
each ROI (Equation 7). NRD is a measure of the ability of the model in accounting for the explainable 
variation in the data; the lower the difference between the noise ceiling and a model’s goodness of 
fit, the more successful that model is in predicting the data. We ran a one-way ANOVA to test for 
the effect of ROI on NRD, and observed that this measure was not significantly different across ROIs 
(‍F(4, 72) = 0.58, p = 0.61‍), demonstrating that the normalization model was equally successful across 
ROIs in predicting the explainable variation in the data.

Interestingly, just focusing on the paired condition in which none of the stimuli were attended 
(the PN condition), the results of the weighted average model were closer to normalization (the gray 
and orange isolated data points on the subplots a-e of Figure 3 are similarly close to the navy point 
of data in some regions). For this condition, the predictions of the normalization model were signifi-
cantly closer to the data compared to the predictions of the weighted average model in V1, pFs, and 
PPA (‍ps < 0.03, corrected‍) but not significantly closer to the data in LO and EBA (‍ps > 0.09, corrected‍). 
These results are in agreement with previous studies suggesting that the weighted average model 
provides good predictions of neural and voxel responses in the absence of attention (Zoccolan et al., 
2005; Macevoy and Epstein, 2009; Kliger and Yovel, 2020). However, when considering all the 
attended and unattended conditions, our results show that the normalization model is a generally 
better fit across all ROIs.

To ensure that the superiority of the normalization model over the weighted sum and weighted 
average models were not caused by the normalization model’s nonlinearity or its higher number of 
parameters, we ran simulations of three neural populations. Neurons in each population calculated 
responses to multiple stimuli and attended stimuli by a summing, an averaging, and a normalizing 
rule (see Methods). We then used the three models to predict the population responses. Our simu-
lation results demonstrate that despite the higher number of parameters, the normalization model 
is only a better fit for the population of normalizing neurons and not for summing or averaging 
neurons, as illustrated in Figure 3—figure supplement 2. These results confirm that the better fits 
of the normalization model cannot be related to the model’s nonlinearity or its higher number of 
parameters.

Normalization accounts for the change in response with the shift of 
attention
Next, comparing the responses in different conditions, we observed two features in the data. First, 
for the paired conditions, shifting attention from the preferred to the null stimulus caused a reduc-
tion in voxel responses. We calculated this reduction in response for each voxel by ‍(PatN − PNat)‍ 
(Figure 4a, top panel). This response change was significantly greater than zero in all ROIs (‍ts > 6.2‍, 

‍ps < 0.0001, corrected‍) except V1 (‍t(18) = 0.66‍ , ‍p = 0.97, corrected‍). Because the same stimuli were 
presented in both conditions but the attentional target changed from one category to the other, this 
change in response could only be related to the shift in attention and the stimulus preference of the 
voxels.

We then calculated the response change predicted by the three models to investigate model 
results in more detail. As illustrated in the bottom panel of Figure 4a, the orange bars depicting the 
predictions of the normalization model were very close to the navy bars depicting the observations in 
all ROIs, while the predictions of the weighted sum and the weighted average models (light blue and 
gray bars, respectively) were significantly different from the data in most regions.

To quantify this observation and to compare how closely the predictions of the three models 
followed the response change in the data, we calculated the difference between the response 
change observed in the data and the response change predicted by each model. Then, we ran a ‍3 × 5‍ 
repeated measures ANOVA with within-subject factors of the model and ROI on the obtained differ-
ence values. The results demonstrated a significant effect of model (‍F(2, 36) = 105.59, p < 0.0001‍), 
a significant effect of ROI (‍F(4, 72) = 13.88, p < 0.0001‍), and a significant model by ROI interaction 
(‍F(8, 144) = 28.63, p < 0.0001‍). Post-hoc t-tests showed that the predictions of the normalization model 
were closer to the response change observed in the data in all ROIs (‍ps < 0.0001, corrected‍) except in 
V1, where the predictions of the weighted sum and the weighted average models were closer to the 
data (‍ps < 0.0001, corrected‍).

https://doi.org/10.7554/eLife.75726
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Asymmetry in attentional modulation is explained by the normalization 
model
The second feature we observed was that the effect of the unattended stimulus on the response 
depended on voxel selectivity for that stimulus, with the unattended preferred stimulus having larger 
effects on the response than the unattended null stimulus. Attending to the preferred stimulus in the 
presence of the null stimulus caused the response to approach the response elicited when attending 
to the isolated preferred stimulus. Therefore, attention effectively removed the effect of the null stim-
ulus. However, attending to the null stimulus in the presence of the preferred stimulus did not elimi-
nate the effect of the preferred stimulus and yielded a response well above the response elicited by 
attending to the isolated null stimulus. While this is the first time such asymmetry has been reported in 
human fMRI studies, these results are in agreement with previous monkey electrophysiology studies, 
showing the existence of an asymmetry in attentional modulation for attention to the preferred versus 
the null stimulus (Lee and Maunsell, 2010; Ni et al., 2012).

To quantify the observed asymmetry, we calculated an asymmetry index for each voxel by 

‍(PNat − Nat) − (Pat − PatN)‍, which is illustrated in the top panel of Figure 4b. This index was signifi-
cantly greater than zero in all regions (‍ts > 7.6, ps < 0.0001, corrected‍).
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Figure 4. Normalization accounts for the observed effects of attention. (a) Top: Change in BOLD response when attention shifts from the preferred 
to the null stimulus in the presence of two stimuli, illustrated here for extrastriate body area (EBA). Bottom: The observed response change and the 
corresponding amount predicted by different models in different regions, calculated as illustrated in plot A. Error bars represent the standard errors of 
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Here, too, the normalization model was better at predicting the observed asymmetry in the 
data. The bottom panel of Figure 4b illustrates the asymmetry indices for the data and the three 
models in all regions. We calculated the difference between the asymmetry index observed in the 
data and the predicted index by each model and performed a ‍3 × 5‍ repeated measures ANOVA 
to compare the three models in how closely they predicted the asymmetry effect across ROIs using 
these difference values. We observed a significant effect of model (‍F(2, 36) = 185.3, p < 0.0001‍), 
a significant effect of ROI (‍F(4, 72) = 64.97, p < 0.0001‍), and a significant model by ROI interaction 
(‍F(8, 144) = 45.60, p < 0.0001‍). The prediction of the normalization model was closer to the data in 
all regions (‍ps < 0.0001, corrected‍) except for PPA, where the prediction of the weighted sum model 
was closer to the asymmetry observed in the data than the prediction of the normalization model 
(‍p < 0.0001, corrected‍).

Other variants of the weighted average model
The weighted average model we used in previous sections had equal weights for the preferred and 
null stimuli, with attention biasing the attended preferred or null stimulus with the same amount 
(the weighted average EW model). However, different stimuli might have different weights in the 
paired response depending on the neurons’ preference toward the stimuli. Besides, attention may 
bias preferred and null stimuli differently. Therefore, to examine the effect of unequal weights and 
attention parameters on the fits of the weighted average model, we tested two additional variants of 
this model.

To examine how unequal weights affect the fit of the weighted average model, we tested 
the weighted average UW model. Comparison of the fit of this model with the weighted 
average EW model showed that the UW variant was a significantly better fit than the EW model 
in all regions (‍ts > 3.9, ps < 0.01, corrected‍) except in LO, where it was a marginally better fit 
(‍t(18) = 2.83, p = 0.054, corrected‍). In the next step, to examine the effect of unequal weights and 
attention parameters on the fit of the weighted sum and the weighted average models, we tested 
the weighted average UWUB variant. This model had unequal weights and unequal attention param-
eters for the P and N stimuli. In this variant, no constraint was put on the sum of the weights. Thus, 
this model was effectively a generalization of the weighted sum and the weighted average models 
with four parameters. This model was a better fit than the weighted average EW model in all regions 
(‍ts > 3.78, ps < 0.01, corrected‍) except in EBA (‍t(18) = 2.65, p = 0.08, corrected‍).

We next compared the goodness of fit of all weighted average variants with the normalization 
model using a ‍4 × 5‍ ANOVA, as illustrated in Figure  5a. There was a significant effect of model 
(‍F(3, 54) = 89.75, p < 0.0001‍), a significant effect of ROI (‍F(4, 72) = 34.97, p < 0.0001‍), and a significant 
model by ROI interaction (‍F(12, 216) = 7.55, p < 0.0001‍). Post-hoc t-tests showed that these weighted 
average variants were still significantly worse fits to the data than the normalization model in all 
regions (‍ps < 0.001, corrected‍) except for EBA, where the normalization model was marginally better 
than the weighted average UWUB (‍p = 0.065, corrected‍).

Next, to examine whether the observed asymmetry was caused by response saturation, we tested 
a nonlinear variant of the weighted average model with saturation (the weighted average UWUB 
saturation model). This model’s goodness of fit, as well as its predictions of asymmetry, are illustrated 
in Figure  5b and c. As illustrated in the figure, the saturation model’s predicted asymmetry was 
closer to the data than normalization’s prediction only in EBA (‍p = 0.043, corrected‍). In other regions, 
the normalization model’s prediction of asymmetry was either significantly closer to the data (in V1, 
LO, and pFs, ‍ps < 0.0001, corrected‍) or not significantly different from the saturation model (in PPA, 

‍p = 0.63, corrected‍). After running a ‍2 × 5‍ ANOVA to compare the fits of the normalization model and 
the weighted average UWUB saturation model across ROIs, we observed a significant effect of model 
(‍F(1, 18) = 91.16, p < 0.0001‍), a significant effect of ROI (‍F(4, 72) = 19.46, p < 0.0001‍), and a significant 
model by ROI interaction (‍F(4, 72) = 4.82, p < 0.01‍). Post-hoc t-tests showed that the normalization 
model was a significantly better fit than the saturation model in all ROIs (‍ps < 0.01, corrected‍).

Discussion
Here, using single-voxel modeling, we examined the validity of the normalization model and demon-
strated its superiority to the weighted sum and the weighted average models in predicting cortical 
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responses to isolated and cluttered object stimuli. We also showed the success of the normalization 
model in predicting the observed effects of object-based attention, further suggesting it as a funda-
mental operation in the human brain.

While several electrophysiology studies have examined normalization in the monkey brain (Bao 
and Tsao, 2018; Ni et al., 2012; Ni and Maunsell, 2017; Ni and Maunsell, 2019), and although 
normalization has also been proposed to operate in the human brain (Bloem and Ling, 2019; Kay 
et al., 2013a), evidence for its validity in the human brain, particularly in the presence of attention, 
is still scarce. Expanding on the results of previous studies, showing the role of normalization in the 
human visual cortex for simple stimuli (Kay et al., 2013a; Kay et al., 2013b; Aqil et al., 2021), our 
work offers evidence for the role of normalization in multiple-object representation and object-based 
attention.

After comparing model predictions with the data, we investigated the effect of attention on 
multiple-object representation. Defining preferred and null stimuli for each voxel, we showed that 
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Figure 5. Comparison between the weighted average model variants and the normalization model predictions. (a) Comparison of the goodness of 
fit for weighted average variants and the normalization model. (b) The goodness of fit of the normalization model compared to the weighted average 
unequal weights and unequal betas (UWUB) saturation variant. (c) The asymmetry index was calculated for the data, compared to the predictions of the 
normalization model and the weighted average UWUB saturation model. Error bars represent the standard errors of the mean, calculated across N = 19 
human participants.
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when attention shifted from the preferred to the null stimulus, there was a significant reduction in 
response in multiple regions of interest in the occipito-temporal cortex but not in the primary visual 
area. Furthermore, this response reduction increased as we moved to higher regions across the hier-
archy, consistent with speculations of greater effects of top-down attention on higher regions of the 
visual cortex (Cook and Maunsell, 2002). Although this response reduction has also been predicted 
by the biased competition model (Desimone and Duncan, 1995), our results showed that the predic-
tions of the weighted average model were significantly lower than the response reduction observed 
in the data in all ROIs except in V1. In contrast, the normalization model predicted the response 
reduction more accurately in all regions except in V1, where no significant response reduction was 
observed. Previous reports of the effects of attention in V1 have also been controversial, with some 
reporting attentional effects in this region (Somers et al., 1999; Gandhi et al., 1999) while others 
report little (McAdams and Maunsell, 1999) to no observed effects of attention (Luck et al., 1997). 
As suggested by Heeger and Ress, 2002, this might be due to the difference in task design and the 
experimental method used.

Moreover, our results indicated an asymmetry in attentional modulation when attending to the 
preferred versus the null stimulus. We demonstrated that while attention to a preferred stimulus almost 
eliminates the effect of the ignored null stimulus, attention to the null stimulus does not remove the 
effect of the preferred stimulus. Unlike response change with the shift of attention, which increases 
across the hierarchy, the asymmetry measured by our defined index remains approximately the same 
in all regions, indicating its dependence not on the top-down attentional signal but on the normal-
ization computation performed in each region. This feature was also predicted by the normalization 
model but not by the weighted sum and the weighted average models.

Normalization has been reported to cause neural populations to operate in the averaging or 
winner-take-all regimes based on stimulus contrast (Busse et al., 2009). Here, we showed that in the 
presence of attention, responses can deviate from the averaging regime even without a change in 
contrast. We observed a winner-take-all behavior when the preferred stimulus was attended since 
its higher response along with its increase in gain due to attention, made it a much stronger input 
compared to the ignored null stimulus. On the other hand, when the null stimulus was attended, the 
response was closer to an average than a max-pooling response. This result explains why several 
previous studies in the object-selective regions indicated averaging as the rule for multiple-stimulus 
representation (Zoccolan et al., 2005; Macevoy and Epstein, 2009), while studies in regions with 
strong preferences for a particular category reported a winner-take-all mechanism (Bao and Tsao, 
2018). We, therefore, extend previous reports of multiple-stimulus representation showing that 
the response is related to stimulus contrast (Busse et  al., 2009) and neural selectivity (Bao and 
Tsao, 2018) by demonstrating that a combination of bottom-up and top-down signals act to yield 
a response that can be the average of the isolated responses, or a winner-take-all response, or 
somewhere between the two. We also demonstrate for the first time that the normalization model 
is superior to the weighted average model, which has often been used in lieu of the normalization 
model (Zoccolan et al., 2005; Macevoy and Epstein, 2009; Kliger and Yovel, 2020), in its ability 
to account for fMRI responses in the presence of attention. Testing other variants of the weighted 
average model with unequal weights and unequal attention parameters for the preferred and null 
stimuli, we demonstrate that the normalization model is a better fit compared to all these variants of 
the weighted average model.

Stimulus contrast has also been shown to have a crucial role in how single-stimulus responses are 
added to obtain the multiple-stimulus response. While responses to strong high-contrast stimuli are 
added sublinearly to yield the multiple-stimulus response, as predicted by the normalization model 
and the weighted average model, the sublinearity decreases for lower contrasts and even changes to 
linearity and supralinearity for weak stimuli (Heuer and Britten, 2002; Rubin et al., 2015). Here, since 
the stimuli we used were not in full contrast, we tested the weighted sum model as well to examine 
whether responses approach linearity in any region. Our results demonstrate that while the weighted 
average model generally performs better than the weighted sum model in the higher-level occipito-
temporal cortex, the weighted sum model provides better predictions in V1. These results suggest 
stronger sublinearity in higher regions of the visual cortex compared to V1, which is in agreement 
with previous reports (Kay et al., 2013b). This observation might be related to the higher sensitivity 
of V1 neurons to contrast (Goodyear and Menon, 1998), causing a more significant decrease in V1 
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responses to low-contrast stimuli. This, in turn, might make the low-contrast stimulus weaker for V1 
neurons, causing a move toward a lower level of sublinearity (Sceniak et al., 1999).

Attention to a stimulus has been suggested in the literature to be similar to an increase in the 
contrast of the attended stimulus (Ni et al., 2012), which is manifested in the similar effects of atten-
tion and contrast in the normalization equation. In this study, we presented the stimuli with a constant 
contrast but changed the number of stimuli and their attentional state to determine whether the 
normalization model could explain the effects of object-based attention in the human visual cortex, 
which has not been previously studied. We acknowledge that to fully ascertain the role of normal-
ization in the human brain, we have to measure the contrast response function in each voxel to truly 
constrain the models and have conditions with varying levels of contrasts across attentional manip-
ulations. Note that including variations of both attentional state and contrast is not trivial and is not 
possible with a single-session fMRI experiment. Our results remain suggestive of the role of normal-
ization until these conditions are tested in future multi-session experiments.

Here, we compared the nonlinear normalization model with two linear models with fewer free 
parameters. To ensure that the difference in the number of free parameters did not affect the results, 
we used cross-validation and the AIC measure to compare model predictions with the data. If the 
success of the normalization model was due to its higher number of free parameters, it would affect 
its predictions for left-out data. We observed that the normalization model was also successful in 
predicting the left-out part of the data. In addition, we tested a nonlinear model variant with five free 
parameters. This model was still a worse fit than the normalization model. Finally, we used simulations 
of three different neural populations, with neurons in each population following either a summing, 
averaging, or normalization rule in their response to multiple stimuli and attended stimuli. Simulation 
results demonstrated that the normalization model was a better fit only for the normalizing popu-
lation, confirming that the success of the normalization model is not due to its nonlinearity or the 
higher number of parameters but rather as a result of it being a closer estimation of the computation 
performed at the neural level for object representation.

It is noteworthy that here, we are looking at the BOLD responses. We are aware of the limitations of 
the fMRI technique as the BOLD response is an indirect measure of the activity of neural populations. 
While an increase in the BOLD signal could be related to an increase in the neuronal firing rates of the 
local population (Logothetis et al., 2001), it could also be related to subthreshold activity resulting 
from feedback from the downstream regions of the visual cortex (Heeger and Ress, 2002). The 
observed effects, therefore, may be related to local population responses or may be influenced by 
feedback from downstream regions. Also, since the measured BOLD signal is related to the average 
activity of the local population, and we do not have access to single-unit responses, some effects 
may change in the averaging process. Nevertheless, our simulation results show that the effects of 
the normalization computation are preserved even after averaging. We should keep in mind, though, 
that these are only simulations and are not based on data directly measured from neurons. Future 
experiments with intracranial recordings from neurons in the human visual cortex would be invaluable 
in validating our results.

Another limitation in interpreting the results is related to a possible stronger saturation of the 
BOLD response, which can potentially explain the observed asymmetry in attentional modulation. 
Since the asymmetry in attentional modulation has also been previously reported at the neural level 
(Ni et al., 2012), this effect is unlikely to be exclusively caused by the saturation in the BOLD signal. It 
is noteworthy, however, that saturation is a characteristic of cortical responses even at the neural level. 
Whether this effect at the neural level is caused by response saturation or as a result of the normal-
ization computation cannot be distinguished from our current knowledge. Nevertheless, we tested 
a variant of the weighted average model with an extra saturation parameter. Although this model 
could partially predict the observed asymmetry, the predictions were worse than the normalization 
model’s predictions. Also, this model was an overall worse fit to the data compared to the normal-
ization model. The normalization model, therefore, provides a more parsimonious account of the 
data. Nevertheless, we have only tested a saturation model. The exact nonlinearities that affect the 
transformation of neural population responses to the BOLD response are not fully mapped out yet, 
especially in cases where multiple overlapping stimuli are presented in the visual scene. It is possible 
that the advantage of the normalization model could be at least partly related to these nonlinearities. 
Modeling such nonlinearities requires experiments that simultaneously record fMRI and neural data. 

https://doi.org/10.7554/eLife.75726


 Research article﻿﻿﻿﻿﻿﻿ Neuroscience

Doostani et al. eLife 2023;12:e75726. DOI: https://doi.org/10.7554/eLife.75726 � 14 of 23

The validity of our conclusions about the superiority of the normalization model should be reevaluated 
after such data becomes available.

In sum, our results indicate that the normalization model predicts responses at the voxel level 
beyond the primary visual cortex and across the visual hierarchy, especially in higher-level regions of 
the human occipito-temporal cortex, with and without attention and in conditions with isolated or 
cluttered stimuli. We, therefore, provide evidence suggesting divisive normalization as a canonical 
computation operating in the human brain during object-based attention.

Methods
Participants
A total of 21 healthy right-handed participants (10 females, 20–40, all with normal or corrected-to-
normal vision) participated in the experiment. All participants gave written consent prior to their 
participation and received payment for their participation in the experiment. Imaging was performed 
according to safety guidelines approved by the ethics committee of the Institute for Research in 
Fundamental Sciences (IPM). Data from two participants were removed from the analysis because of 
excessive head motion (more than 3 mm throughout the session). This exclusion criteria was estab-
lished before running the experiment. Based on previous studies with sample sizes of 5–10 (Bloem 
and Ling, 2019; Reddy et al., 2009; Kay et al., 2013a; Kay et al., 2013b), we are confident that with 
this sample size, we have enough power for comparing different model predictions of fMRI responses.

Stimuli and experimental procedure
Stimuli were from the two categories of human bodies and houses similar to the ones used in previous 
studies (Vaziri-Pashkam and Xu, 2017; Vaziri-Pashkam and Xu, 2019; Xu and Vaziri-Pashkam, 
2019). Each category consisted of ten unique exemplars in gray-scale format (Figure  1a). These 
exemplars differed in identity, pose (for bodies), and viewing angle (for houses). Stimuli were fitted 
into a transparent square subtending 10.2° of visual angle and placed on a gray background. A central 
red fixation point subtending 0.45° of visual angle was present throughout the run. Stimuli from each 
category were presented in semi-transparent form, in isolation, or paired with stimuli from the other 
category.

In a blocked-design paradigm, participants were instructed by a word cue to attend to bodies, 
houses, or the color of the fixation point at the beginning of each block. Therefore, the stimuli from 
each category were either attended (when the category was cued), or ignored (when the fixation point 
color was cued), in isolation or cluttered by stimuli from the other category. The main experiment thus 
consisted of seven blocks with all possible combinations of stimulus categories and attention: Attend 
isolated bodies, Attend cluttered bodies, Attend isolated houses, Attend cluttered houses, Ignore 
isolated bodies, Ignore isolated houses, Ignore cluttered bodies and houses (Figure 1c). In blocks 
with attention to bodies or houses, participants performed a one-back repetition detection task on 
the attended stimuli by pressing a button when the exact same stimulus appeared in two consecutive 
trials. In blocks with attention directed toward the fixation point color, participants responded when 
the color of the fixation point changed from red to orange. These blocks served as conditions in which 
the visual stimuli (bodies and houses) were ignored. Target repetition and fixation point color change 
occurred 2–3 times at random in each block. There was also an additional fixation color block in each 
run, with a red fixation point presented in the middle of the gray screen and in the absence of stimuli 
from either category. The participants’ task in this block was to detect a fixation point color change. 
The fixation point color changed to orange two or three times during the block. We used a contrast 
between the BH condition (with the same task but with the presence of both body and house stimuli) 
and this fixation condition to select the voxels in each ROI that were responsive to the presented 
stimuli. This was especially important for V1 voxels, since the stimuli presented in the early visual area 
localizer were larger than the stimuli presented in the main experiment.

Each run started with an 8 s fixation. Each block lasted for 10 s, starting with a 1 s cue and a 1 s 
fixation. 10 exemplars from one or both categories were presented during the block, each for 400 
ms, followed by 400 ms of fixation. There was an 8 s fixation between blocks, and a final 8 s fixation 
at the end of the last block. The presentation order of the blocks was random, and counterbalanced 
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across the experimental runs. Each run lasted 2 min 32 s. For the main experiment, 14 participants 
completed 16 runs, two participants completed 14 runs, and three participants completed 12 runs.

Localizer experiments
In this study we examined the primary visual cortex V1 along with the object-selective areas LO and 
pFs, the body-selective EBA, and the scene-selective PPA. All participants completed four localizer 
runs which were used to define the primary visual and the category-selective ROIs. We used previously 
established protocols for the localizer experiments, but the details are repeated here for clarification 
and convenience.

Early visual area localizer
We used meridian mapping to localize the primary visual cortex V1. Participants viewed a black-and-
white checkerboard pattern with a diameter of 27.1° of visual angle through a 60 degree polar angle 
wedge aperture. The wedge was presented either horizontally or vertically. Participants were asked 
to detect a luminance change in the wedge in a blocked-design paradigm. Each run consisted of 
four horizontal and four vertical blocks, each lasting 16 s, with 16 s of fixation in between. A final 16 s 
fixation followed the last block. Each run lasted 272 s. The order of the blocks was counterbalanced 
within each run. Each participant completed two runs of this localizer.

Category localizer
A category localizer was used to localize the cortical regions selective to scenes, bodies, and objects. 
In a blocked-design paradigm, participants viewed stimuli from the five categories of faces, scenes, 
objects, bodies, and scrambled images, with each stimulus subtending 14.3° of visual angle. Each 
localizer run contained two 16 s blocks of each category, with the presentation order counterbalanced 
within each run. An 8 s fixation period was presented at the beginning, middle, and end of the run. 
In each block, 20 stimuli from the same category were presented. Each trial lasted 750 ms with 50 ms 
fixation in between. Participants were asked to maintain their fixation on a red circle at the center of 
the screen and press a key when they detected a slight jitter in the stimuli. Participants completed 
two runs of this localizer, each lasting 344 s. LO (Malach et al., 1995), pFs (Grill-Spector et al., 1998), 
EBA (Downing et al., 2001), and PPA (Epstein et al., 1999) were then defined using this category 
localizer.

Data acquisition
Data were collected on a Siemens Prisma MRI system using a 64-channel head coil at the National 
Brain-mapping Laboratory (NBML). For each participant, we performed a whole-brain anatomical scan 
using a T1-weighted MP-RAGE sequence at the beginning of data acquisition. For the functional 
scans, including the main experiment and the localizer experiments, 33 slices parallel to the AC-PC 
line were acquired using T2*-weighted gradient-echo echo-planar sequences covering the whole brain 
(TR = 2 s, TE = 30 ms, flip angle = 90°, voxel size = 3 × 3 × 3 mm3, matrix size = 64 × 64). The stimuli 
were back-projected onto a screen using an LCD projector with the refresh rate of 60 Hz and the 
spatial resolution of 768 × 1024 positioned at the rear of the magnet, and participants observed the 
screen through a mirror attached to the head coil. MATLAB and Psychtoolbox were used to create all 
stimuli.

Preprocessing
fMRI data analysis was performed using FreeSurfer (https://surfer.nmr.mgh.harvard.edu) and in-house 
MATLAB codes. fMRI data preprocessing steps included 3D motion correction, slice timing correc-
tion, and linear and quadratic trend removal. The data in each run were motion-corrected per-run and 
aligned to the anatomical data using the middle time point of that run. The fMRI data from the local-
izer was smoothed using a 5 mm FWHM Gaussian kernel, but no spatial smoothing was performed 
on the data from the main experiment to optimize the voxel-wise analyses. A double gamma function 
was used to model the hemodynamic response function. We eliminated the first four volumes of each 
run to allow the signal to reach a steady state.

https://doi.org/10.7554/eLife.75726
https://surfer.nmr.mgh.harvard.edu
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ROI definition
Using freesurfer’s tksurfer module, we determined the primary visual cortex V1 using a contrast of 
horizontal versus vertical polar angle wedges to reveal the topographic maps in the occipital cortex 
(Sereno et al., 1995; Tootell et al., 1998). To define the object-selective areas LO in the lateral occip-
ital cortex and pFs in the posterior fusiform gyrus (Malach et al., 1995; Grill-Spector et al., 1998), 
we used a contrast of objects versus scrambled images. Active voxels in the lateral occipital and 
ventral occipitotemporal cortex were selected as LO and pFS, respectively, following the procedure 
described by Kourtzi and Kanwisher, 2000. We used a contrast of scenes versus objects for defining 
the scene-selective area PPA in the parahippocampal gyrus (Epstein et al., 1999), and a contrast 
of bodies versus objects for defining the body-selective area EBA in the lateral occipitotemporal 
cortex (Downing et al., 2001). The activation maps for both localizers were thresholded at ‍p < 0.001‍, 
uncorrected.

Data analysis
We performed a general linear model (GLM) analysis for each participant to estimate voxel-wise 
regression coefficients for each of the 8 task conditions. The onset and duration of each block were 
convolved with a hemodynamic response function and were entered to the GLM as regressors. Move-
ment parameters and linear and quadratic nuisance regressors were also included in the GLM. We 
then used these obtained coefficients to compare the BOLD response in different conditions in each 
ROI. In order to compensate for the difference in size between the localizer stimuli and the stimuli 
presented in the main experiment, we selected active voxels in each ROI using a contrast between the 
BH condition (with ignored body and house stimuli) and the fixation block (with no stimuli presented). 
We selected the voxels that were significantly active during the BH condition compared to the fixation 
block (with ‍p < 0.01‍) across all runs for any further analyses. Preferred and null categories for each 
voxel were determined using voxel responses in conditions with isolated stimuli with the participant 
performing the task on the fixation point (color blocks). We then determined the activity in seven 
conditions for each voxel: Pat, PatN, PNat, Nat, P, PN, N, with P and N denoting the presence of the 
preferred and null stimuli and the superscript ‍at‍ denoting the attended category. For instance, P refers 
to the condition in which the unattended preferred stimulus was presented in isolation, and PatN refers 
to the paired condition with the attended preferred and unattended null stimuli.

Model details
We used three models to predict the results: the weighted sum, the weighted average, and the 
normalization models. The weighted sum model is a simple linear model suggesting that the response 
to multiple stimuli is the sum of responses to individual stimuli, and attention to a stimulus increases 
the response to that stimulus by the attention-related parameter, ‍β‍:

	﻿‍ RP,N = RP + RN ‍� (1a)

	﻿‍ RPat,N = βRP + RN ‍� (1b)

	﻿‍ RP,Nat = RP + βRN ‍� (1c)

, with ‍RP,N ‍ denoting the response elicited with the preferred and null stimuli present in the receptive 
field, and ‍RP‍ and ‍RN ‍ denoting the response to isolated preferred and null stimuli, respectively. The 
superscript ‍at‍ specifies the attended stimulus, and the stimulus is ignored otherwise.

The weighted average model (Zoccolan et al., 2005; Macevoy and Epstein, 2009; Baeck et al., 
2013) is also a linear model that posits the response to multiple stimuli as the average of individual 
responses. Similar to the weighted sum model, the response of an attended stimulus is enhanced by 
the parameter related to attention, ‍β‍:

	﻿‍
RP,N = RP + RN

2 ‍�
(2a)

	﻿‍
RPat,N = βRP + RN

2 ‍�
(2b)

	﻿‍
RP,Nat = RP + βRN

2 ‍� (2c)

https://doi.org/10.7554/eLife.75726
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The normalization model of attention (Heeger, 1992; Carandini et al., 1997; Reynolds and Heeger, 
2009; Ni et al., 2012) can be described using divisive normalization with a saturation term in the 
denominator:

	﻿‍
RP,N = cPLP + cNLN

cP + cN + σ ‍�
(3)

Here, ‍LP‍ and ‍LN ‍ denote the excitatory drive induced by the preferred or the null stimulus, respectively 
and ‍σ‍ represents the semi-saturation constant. ‍cP‍ and ‍cN ‍ are the respective contrasts of the stimuli. 
Zero contrast denotes that the respective stimulus is not present in the visual field. In our experiment, 
we set contrast values to one when a stimulus was presented and to zero when the stimulus was not 
presented. When attention is directed towards one of the stimuli, we can rewrite the Equation 3 as:

	﻿‍
RP,N = cPLP + cNLN

cP + cN + σ ‍�
(3a)

	﻿‍
RPat,N = βcPLP + cNLN

βcP + cN + σ ‍�
(3b)

	﻿‍
RP,Nat = cPLP + βcNLN

cP + βcN + σ ‍�
(3c)

It is noteworthy that the normalization model is different in nature from the two linear models and 
takes into account the suppression caused by the neighboring pool even in the presence of a single 
stimulus. We cannot, therefore, use the measured response in isolated conditions as the excitatory 
drive in paired conditions. Rather, we need extra parameters to estimate the excitation caused by 
each stimulus. We then use this excitation to predict the response to attended and ignored stimuli 
in isolated and paired conditions (Ni et al., 2012; Ni and Maunsell, 2019). On the other hand, the 
weighted sum and the weighted average models are not concerned with the underlying excitation 
and suppression. The assumption of these models is based on the resulting response that we actu-
ally measure in the paired condition, considering it to be respectively the sum or the average of the 
measured response in the isolated conditions. In order to take the difference in the number of model 
parameters into account, we have used both cross-validated r-squared on independent data and AIC 
measures (see the section on model comparison).

We fit model parameters for the three models. ‍β‍ was fit as a free parameter for all models. The 
normalization model had three additional free parameters, ‍LP‍, ‍LN ‍, and σ. σ and ‍β‍ were constrained 
to be greater than zero and one, respectively, and less than 10. ‍LP‍ and ‍LN ‍ were constrained to 
have an absolute value of less than 10. We estimated model parameters using constrained nonlinear 
optimizing, which minimized the sum-of-square errors. Values of the estimated parameters of the 
weighted sum, weighted average, and normalization models are provided in Supplementary files 
3–5, respectively, for the odd and even runs.

Weighted average model variants
In addition to the three main models, we tested three variants of the weighted average model. The 
main weighted average model had equal weights for the two stimuli (weighted average EW). For 
the first variant, we examined a weighted average model with unequal weights for the two stimuli 
(weighted average UW). According to this model, the response to two simultaneously-presented 
stimuli was a weighted average of the responses to isolated stimuli, but in contrast to the main 
weighted average model we used, the weights were not equal in this average. Instead, each stimulus 
had a different weight in the average, but the sum of the weights was set to 1:

	﻿‍ RP,N = αRP + (1 − α)RN ‍� (4a)

	﻿‍ RPat,N = βαRP + (1 − α)RN ‍� (4b)

	﻿‍ RP,Nat = αRP + β(1 − α)RN ‍� (4c)

Here, ‍RP,N ‍ denotes the response elicited with the preferred and null stimuli present in the receptive 
field, and ‍RP‍ and ‍RN ‍ denote the response to isolated preferred and null stimuli, respectively. The 
superscript ‍at‍ specifies the attended stimulus, and the stimulus is ignored otherwise. ‍α‍ denotes the 
weight of the preferred stimulus, and ‍β‍ is the attention-related parameter.

https://doi.org/10.7554/eLife.75726
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The second variant we tested was a weighted average variant with unequal weights and unequal 
betas (weighted average UWUB). Based on this model, the preferred and null stimuli had different 
weights and different attention-related parameters:

	﻿‍ RP,N = αPRP + αNRN ‍� (5a)

	﻿‍ RPat,N = βPαPRP + αNRN ‍� (5b)

	﻿‍ RP,Nat = αPRP + βNαNRN ‍� (5c)

, where ‍αP‍ and ‍αN ‍ respectively denote the weight of the preferred and null stimuli, and ‍βP‍ and ‍βN ‍ 
denote the attention-related parameter of the preferred and null stimuli, respectively. Here, there was 
no limitation on the sum of weights to equal 1, as was the case for the weighted average EW and 
weighted average UW models. Therefore, this model was a generalization of the weighted sum and 
weighted average models.

Lastly, we tested a nonlinear variant with unequal weights, unequal betas, and an extra satura-
tion parameter (weighted average UWUB saturation). Being similar to the weighted average UWUB 
model in theory, it also estimated a saturation value, s, for each voxel. After parameter estimation, the 
minimum value of the calculated response and the estimated saturation parameter, ‍s‍, was chosen as 
the response:

	﻿‍ RP,N = min((αPRP + αNRN), s)‍� (6a)

	﻿‍ RPat,N = min((βPαPRP + αNRN), s)‍� (6b)

	﻿‍ RP,Nat = min((αPRP + βNαNRN), s)‍� (6c)

Values of the estimated parameters of the weighted average UW, UWUB, and UWUB saturation model 
variants are provided in Supplementary files 6–8, respectively, for the odd and even runs.

Model-data comparison
We split the fMRI data into two halves of odd and even runs and estimated model parameters for the 
first half as described. Then, using the estimated parameters for the first half, we calculated model 
predictions for each voxel in each condition and compared the predictions with the left-out half of the 
data. All comparisons of data with models, including the calculation of the goodness of fit, were done 
using the left-out data. We repeated this procedure twice: once using the odd half of the data for 
parameter estimation and the even half for comparing model predictions with the data, and a second 
time using the even half of the data for parameter estimation and the odd half for comparison with the 
model predictions. All figures, including model results, illustrate the average of the two repetitions. 
Since the weighted sum and the weighted average models used the response in the P and N condi-
tions to predict responses in the remaining five conditions, we only used these five conditions and 
excluded the P and N conditions when calculating the goodness of fit for all models. The goodness 
of fit was calculated by taking the square of the correlation coefficient between the observed and 
predicted responses for each voxel across the five modeled conditions (Figure 3—figure supplement 
1). We also calculated the correlation between voxel responses of the two halves of the data across 
the same five conditions and calculated the noise ceiling in each ROI as the squared coefficient of 
this correlation. We determined the r-squared difference from the noise ceiling (NRD) in each ROI by 
calculating the difference between the noise ceiling and the model’s goodness of fit in that ROI:

	﻿‍ NRD = Noise ceiling − Goodness of fit‍� (7)

We compared the goodness of fit of the three models across all ROIs using a repeated measures ‍3 × 5‍ 
ANOVA (see the statistics section). We also compared the NRD of the normalization model across all 
ROIs using a one-way ANOVA. In order to compensate for the difference in the number of parameters 
for different models, we used the Akaike Information Criterion (AIC) (Burnham and Anderson, 2004; 
Denison et al., 2021). Under the assumption of a normal distribution of error, AIC is calculated by:

	﻿‍ AIC = n ln( RSS
n ) + 2k + C‍� (8)

, where n denotes the number of observations, RSS denotes the residual sum of squares, k is the 
number of free parameters of the model, and C is a constant with the same amount for all models. 

https://doi.org/10.7554/eLife.75726
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A smaller AIC value shows that the model fits the data better. We therefore calculated ΔAIC for all 
model pairs.

Simulation
To further check whether the success of the normalization model was due to its higher number of 
parameters or as a result of it being a closer estimation of the performed neural computations, we 
used a simulation approach. We simulated neural responses for single and multiple stimuli in the 
absence and presence of attention. In a neural population composed of 104 neurons, neurons were 
body- or house-selective. Each neuron also responded to the category other than its preferred cate-
gory, but to a lesser degree and with variation. We had three kinds of neurons: (i) summing neurons, 
for which the response to multiple stimuli and attended stimuli was calculated based on the weighted 
sum model, (ii) averaging neurons, which behaved based on the weighted average model, and (iii) 
normalizing neurons, which behaved based on divisive normalization. We chose neural responses 
and the attention factor randomly from a range comparable with neural studies of attention and 
object recognition in the ventral visual cortex (Ni et al., 2012; Bao and Tsao, 2018). Using equations 
discussed for each of the models, we calculated the response of each neuron to the seven conditions 
of our main fMRI experiment. Then, we randomly chose 200 neurons from the population, with the 
ratio of body/house preference similar to each of the ROIs in the main experiment. We then averaged 
the selected neurons’ responses to make up a voxel and added Gaussian noise to the voxel, 16 times 
for each voxel with a different Gaussian noise every time to make up 16 measurements (16 runs, as 
in the fMRI experiment) for each condition. We had 30 voxels for each ROI. Then, dividing the runs 
into two halves, we performed the same modeling process as in the fMRI experiment. For the three 
models of weighted sum, weighted average, and normalization, we estimated model parameters for 
one-half of the data and predicted voxel responses for the second half of the data.

Quantifying attentional effects
We defined two indices to quantify the observed effects of attention. The first index was used to 
compare voxel activities in paired conditions in which attention was directed toward the objects. We 
defined the response change index as the difference in average voxel activity when attention shifted 
from the preferred to the null stimulus, ‍(PatN − PNat)‍. The second index was used to quantify the 
asymmetry in attentional modulation. The asymmetry index, ‍[(PNat − Nat) − (Pat − PatN)]‍, compared 
the effect of the unattended stimulus on the response in conditions with unattended preferred or null 
stimuli. The comparison of observed indices with indices calculated from model predictions was done 
using the left-out part of the data.

Statistics
We performed sets of repeated measures ANOVAs to test for the main effects of the model, ROI, and 
their interaction for model goodness of fit and the reported effects of attention. For all performed 
ANOVAs, we used the Mauchly’s test to check whether the assumption of sphericity had been met. 
For cases where the assumption of sphericity had been violated, we used the Greenhouse-Geisser 
estimate to correct the degrees of freedom. Where applicable, we corrected for multiple comparisons 
using the Dunn-Sidak procedure.

To compare the goodness of fit of the three models across ROIs, we performed a ‍3 × 5‍ repeated 
measures ANOVA with within-subject factors of the model (weighted sum, weighted average, and 
normalization), and ROI (V1, LO, pFs, EBA, and PPA) to test for the main effects of model and ROI 
and their interaction. Mauchly’s test indicated that the assumption of sphericity had been violated 
(‍p < 0.001‍). We thus corrected the degrees of freedom using the Greenhouse-Geisser estimate 
(‍ϵ = 0.22‍). We also ran a one-way ANOVA to test for the effect of ROI on the difference between the 
noise ceiling and the normalization model’s r-squared (Equation 7). Mauchly’s test indicated that the 
assumption of sphericity had been violated (‍p = 0.014‍). The degrees of freedom were corrected using 
the Greenhouse-Geisser estimate (‍ϵ = 0.69‍).

We then calculated the difference between the observed effects of attention in the data and the 
predictions of each model. To compare model predictions of the two attentional effects across ROIs, 
we ran two sets of 3 × 5 repeated measures ANOVAs with within-subject factors of model and ROI. 
Mauchly’s test indicated that the assumption of sphericity was met for both tests.

https://doi.org/10.7554/eLife.75726
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To compare the weighted average UW and UWUB model variants with the weighted average 
EW model and the normalization model, we ran a 4 × 5 repeated measures ANOVA with within-
subject factors of model and ROI. Mauchly’s test indicated that the assumption of sphericity had been 
violated (‍p < 0.001‍), so we used the Greenhouse-Geisser estimate to correct the degrees of freedom 
(‍ϵ = 0.19‍). Finally, to compare the fits of the normalization model and the weighted average UWUB 
saturation model across ROIs, we ran a 2 × 5 repeated measures ANOVA. Mauchly’s test showed a 
violation of the assumption of sphericity (‍p < 0.001‍), so the Greenhouse-Geisser estimate was used to 
correct the degrees of freedom (‍ϵ = 0.37‍).
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