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Abstract The acquisition of movable jaws was a major event during vertebrate evolution. The 
role of NK3 homeobox 2 (Nkx3.2) transcription factor in patterning the primary jaw joint of gnatho-
stomes (jawed vertebrates) is well known, however knowledge about its regulatory mechanism is 
lacking. In this study, we report a proximal enhancer element of Nkx3.2 that is deeply conserved in 
most gnathostomes but undetectable in the jawless hagfish and lamprey. This enhancer is active in 
the developing jaw joint region of the zebrafish Danio rerio, and was thus designated as jaw joint 
regulatory sequence 1 (JRS1). We further show that JRS1 enhancer sequences from a range of 
gnathostome species, including a chondrichthyan and mammals, have the same activity in the jaw 
joint as the native zebrafish enhancer, indicating a high degree of functional conservation despite 
the divergence of cartilaginous and bony fish lineages or the transition of the primary jaw joint into 
the middle ear of mammals. Finally, we show that deletion of JRS1 from the zebrafish genome using 
CRISPR/Cas9 results in a significant reduction of early gene expression of nkx3.2 and leads to a tran-
sient jaw joint deformation and partial fusion. Emergence of this Nkx3.2 enhancer in early gnatho-
stomes may have contributed to the origin and shaping of the articulating surfaces of vertebrate 
jaws.

Editor's evaluation
In this elegant and important study, Leyhr et al. identify the first potent nkx3.2 jaw joint enhancer, 
which they show to be deeply conserved across gnathostomes and absent from jawless fishes. 
The data are convincing and beautifully presented, supporting the hypothesis that this enhancer 
arose with the origin of hinged jaws during vertebrate evolution and is required for some aspects 
of early joint development in zebrafish. The work has important implications both for our basic 
understanding of enhancer function and evolution as well as potential genetic causes of craniofacial 
defects in humans.

Introduction
The establishment of jaw joints was one of the major events that enabled the evolutionary transition 
from jawless to jawed vertebrates. The earliest known articulated jaws are found in fossil placoderms 
from the late Silurian period 423 MYA (million years ago) (Zhu et al., 2013) The primary jaw joint of 
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non-mammalian gnathostomes, including actinopterygians, amphibians, reptiles, and birds is located 
within the first pharyngeal arch and articulates Meckel’s cartilage and the palatoquadrate. These carti-
lages are derived from cranial neural crest cells that migrate into the first pharyngeal arch and later 
ossify into anguloarticular and quadrate bones, respectively (Schilling and Kimmel, 1994; Tucker 
et al., 2004).

The transition from jawless to jawed vertebrates and the underlying gene regulatory network 
changes are not yet fully understood. However, the transcription factor Nkx3.2 (Bapx1), which acts 
as a chondrocyte maturation inhibitor (Provot et al., 2006), is thought to have played a major role 
in the evolution of the primary jaw joint (Cerny et al., 2010). Nkx3.2 displays focal expression in the 
first pharyngeal arch, between Meckel’s cartilage/anguloarticular and the palatoquadrate/quadrate 
in non-mammalian vertebrates, as shown in zebrafish (Miller et al., 2003), Xenopus (Square et al., 
2015), and python and chicken (Anthwal et al., 2013). In the lamprey, a jawless vertebrate, Nkx3.2 is 
expressed in the ectomesenchyme surrounding the pharyngeal arches (Miyashita, 2018).

The importance of Nkx3.2 for the development of the primary jaw joint has been shown in knock-
down and knockout experiments carried out in zebrafish and Xenopus. Reduction or loss of nkx3.2 
expression led to absence of the joint and fusion of Meckel’s cartilage and the palatoquadrate (Lukas 
and Olsson, 2018b; Miller et al., 2003; Miyashita et al., 2020; Waldmann et al., 2021). Overex-
pression of nkx3.2 in Xenopus resulted in extra ectopic joints forming in the jaw cartilage (Lukas and 
Olsson, 2018a).

During the course of mammal evolution, the first pharyngeal arch elements and parts of the second 
arch underwent a morphological transition to form the middle ear ossicles in mammals (Anthwal et al., 
2013; Luo, 2007). This transition was accompanied by the development of a secondary jaw joint artic-
ulating the squamosal and dentary. The middle ear consists of three major bones: the malleus, incus, 
and stapes, and the middle ear-associated bones: the gonium and tympanic ring which attach the ossi-
cles to the skull. The incus and malleus are articulated by the incudomalleolar joint, homologous to the 
primary jaw joint of non-mammalian gnathostomes. Nkx3.2 expression has been shown to be present 
in this joint, the tympanic ring, and the gonium, and mice homozygous for Nkx3.2 knockouts display 
loss of the gonium and hypoplasia of the tympanic ring but minimal disruption to the incudomalleolar 
joint (Tucker et al., 2004). To what degree the gene regulatory network for these homologous joints 
is conserved is not fully understood.

In this study, we identified a novel gnathostome-specific cis-regulatory element, jaw joint regu-
latory sequence 1 (JRS1), proximal to the Nkx3.2 gene. We show that JRS1 has a highly conserved 
sequence and demonstrate that JRS1 sequences from multiple gnathostomes drive fluorescent 
reporter expression in the primary jaw joint of zebrafish, implying functional conservation between 
diverse clades. To test if JRS1 is essential for the jaw joint development, we generated a CRISPR/
Cas9-induced enhancer deletion zebrafish line and show that homozygous mutants display transient 
dysmorphology and partial fusion of the jaw joint-articulating cartilages.

Results
Nkx3.2 is located in a conserved syntenic region in vertebrates
In order to search for proximal conserved non-coding elements (CNEs), we first performed an anal-
ysis of the gene synteny around Nkx3.2, reasoning that if we find homologous genes upstream and 
downstream of Nkx3.2 in different vertebrate species, the locus is unlikely to have undergone major 
rearrangements that would have disrupted the intergenic non-coding sequences. Our synteny anal-
ysis showed that in almost all examined jawed vertebrate genomes, Nkx3.2 is located in a highly 
conserved syntenic region between Bod1l1 (Biorientation of chromosomes in cell division protein 
1-like 1) and Rab28 (Ras-related protein Rab-28) genes (Figure 1). The upstream gene Bod1l1 and 
downstream gene Rab28 have the same orientation (located on the same DNA strand) as Nkx3.2. 
However, we could not identify Bod1l1 in the coelacanth genome or Rab28 in the zebrafish genome. 
On sea lamprey chromosome 11, Nkx3.2 (LOC116941470, annotated as fushi tarazu-like) is located 
upstream from Rab28 and next to Nkx2.6 (LOC116941469), which is located on the opposite strand. 
Bod1l1 (LOC116941243) is located more than 8.5 Mb upstream on chromosome 11 (Figure 1). BLAST 
searches identified an additional Nkx3.2-like sequence (LOC116940711) located on sea lamprey chro-
mosome 9. However, this region did not share synteny with the Nkx3.2-containing genomic region. In 
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Figure 1. Gene synteny around Nkx3.2 is well conserved in vertebrate genomes. Phylogenetic tree of vertebrates based on commonly accepted 
topology. Pointed boxes represent gene orientation with gene names indicated on top. Red hexagons mark the position of conserved non-coding 
element (CNE) (jaw joint regulatory sequence 1, JRS1) downstream of Nkx3.2, where filled hexagons mark CNEs selected for in vivo functional 
characterization in this study. The corresponding chromosome/contig number of each locus is indicated below the gene order schematic of each 
species. Daggers indicate extinct species.

https://doi.org/10.7554/eLife.75749
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the hagfish genome, Nkx3.2 (ENSEBUG00000015739) is located on the contig FYBX02009947.1 next 
to Nkx2.5 (ENSEBUG00000006582), but on the opposite DNA strand. Rab28 (ENSEBUG00000007671) 
is located downstream from Nkx3.2, but there is an additional gene, annotated as Spondin 2 (Spon2, 
ENSEBUG00000016900) between them (Figure  1). BLAST searches also identified an Nkx3.2-like 
sequence on the genomic contig FYBX02010045.1 of hagfish, which was located in the first intron 
of Sez6l (ENSEBUG00000002694) but on the opposite strand. This region, however, also did not 
share synteny with the Nkx3.2-containing genomic region. These results indicated that the intergenic 
sequences flanking Nkx3.2 were likely to be homologous in examined vertebrates, and therefore 
were appropriate to align in search of CNEs. In jawless sea lamprey and hagfish we searched for CNEs 
around both Nkx3.2 and Nkx3.2-like sequences.

A CNE is identified proximal to Nkx3.2
mVISTA analysis identified a conservation peak in the non-coding region downstream of Nkx3.2, 
between Nkx3.2 and Rab28, for all examined gnathostome species: human, mouse, koala, painted 
turtle, chicken, frog, coelacanth, zebrafish, spotted gar, bichir, and elephant shark (Figure 1, Figure 2A). 
We could not identify the same conserved peak downstream of Nkx3.2 in hagfish, either upstream 
or downstream of Spon2, in lamprey, or around the Nkx3.2-like sequences in these jawless species. 

Figure 2. A conserved non-coding element, jaw joint regulatory sequence 1 (JRS1), identified using mVISTA and MEME. (A) mVISTA alignment of 
vertebrate Nkx3.2 loci, using the spotted gar locus as reference. Peaks indicate conserved sequences >50% identity, coloured peaks indicate >70% 
identity. Dark blue peaks indicate conserved exon sequences, pink indicates conserved non-coding sequences. (B) Shared sequence motifs (1–4) in the 
core ~245 bp sequence of JRS1 in different species identified with MEME analysis. p values indicated per species (horizontal) and per motif (vertical). (C) 
Relevant transcription factor-binding sites predicted by Tomtom at motifs 1–4 with associated p values for each match.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure supplement 1. Multiple sequence alignment, genome coordinates, and percent identity matrix of the jaw joint regulatory sequence 1 (JRS1) 
conserved core.

Figure supplement 2. Jaw joint regulatory sequence 1 (JRS1) is differentially bound by transcription factors in the first and second embryonic mouse 
branchial arches.

Figure supplement 2—source data 1. Genomic coordinates of transcription factor-binding enrichment at jaw joint regulatory sequence 1 (JRS1) in 
E11.5 mouse branchial arch (BA) 1 and 2 determined by ChIP-seq assays.

https://doi.org/10.7554/eLife.75749
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The peak sequences from several key gnathostome species (human, mouse, frog, zebrafish, bichir, 
and elephant shark) were extracted and a search for conserved motifs within these peak sequences 
was performed with MEME, identifying a core ~245 bp sequence (Figure 2—figure supplement 1) 
containing four conserved motifs, two of which (1 and 4) were absent in the elephant shark, and one 
of which (4) was absent in zebrafish (Figure 2B).

JRS1 contains predicted transcription factor-binding sites for 
pharyngeal arch patterning
Comparison of each 49–50 bp motif within the JRS1 core sequence with known transcription factor-
binding motifs revealed significant matches to several transcription factors known to be involved in 
pharyngeal arch patterning, skeletogenesis, and joint formation, consistent with a predicted regula-
tory role for JRS1 in the jaw joint expression of Nkx3.2. The predicted binding motifs are shown in 
Figure 2C; Runx3 and Esrrb in motif 1, Nkx3.2 and Meis2 in motif 2, Hey1, Twist1, and Six1 in motif 3, 
and Tbx1, Runx1, and Twist2 in motif 4.

Among these, the predicted Meis2-binding site in motif 2 (Figure 2C) is particularly notable as we 
were also able identify strong Meis enrichment precisely at the JRS1 locus in E11.5 mouse embryonic 
branchial arches (BAs) 1 (95.67-fold) and 2 (42.14-fold) in ChIP-seq datasets previously generated 
by Donaldson et al., 2012 and Amin et al., 2015 (Figure 2—figure supplement 2). In addition, in 
BA2 but not BA1, Meis binding is accompanied by Pbx (30.36-fold) and Hoxa2 (27.34) enrichment 
(Figure 2—figure supplement 2), indicating how differential activation of JRS1 may influence differ-
ential expression of Nkx3.2 in the mandibular versus non-mandibular arches.

Loss or divergence of JRS1 in most acanthopterygian fish
In addition to the broad sampling of gnathostome species, we performed a more detailed analysis of 
teleost fish species beyond just the zebrafish. These additional teleost species included the arowana 
(Sclerophages formosus), electric eel (Electrophorus electricus), Atlantic salmon (Salmo salar), Atlantic 
cod (Gadus morhua), slimehead (Gephyroberyx darwinii), pineconefsh (Monocentris japonica), soldier-
fish (Myripristis murdjan), alfonsino (Beryx splendens), cusk-eel (Lucifuga dentata), toadfish (Thalasso-
phryne amazonica), mudskipper (Periophthalmus magnuspinnatus), seahorse (Hippocampus comes), 
tilapia (Oreochromis niloticus), amazon molly (Poecilia formosa), stickleback (Gasterosteus aculeatus), 
and pufferfish (Tetraodon nigroviridis).

Using a combination of mVISTA alignments and genome-wide BLASTN searches using the 
spotted gar and bichir as query sequences, we were able to identify JRS1 in all teleost species 
with the exception of most members of the clade Percomorpha: toadfish, mudskipper, soldierfish, 
seahorse, tilapia, amazon molly, stickleback, and pufferfish (Figure 3). The only percomorph species 
in which we could identify an element with both sequence and syntenic homology to JRS1 was the 
cusk-eel, a member of the earliest branching order of percomorphs: Ophidiiformes (Ghezelayagh 
et al., 2022; Figure 3). The sister order to the Percomorpha is Beryciformes, which includes the 
alfonsino and soldierfish. In both of these species, in addition to the Ophidiiform cusk-eel, BLASTN 
hits for JRS1 were much poorer than in other non-percomorph actinopterygians (Figure 3), but still 
identified a sequence fragment matching JRS1 in the intergenic region between nkx3.2 and rab28. 
We classify these three species as possessing a ‘JRS1 fragment’. Meanwhile, JRS1 in the pine-
conefish and slimehead (order Trachichthyiformes), and all non-acanthopterygian actinopterygians 
appears to be well conserved.

Generation of nkx3.2(JRS1):mCherry transgenic lines
To test JRS1 for enhancer activity in vivo, we generated Tol2 reporter constructs with species-
specific JRS1 sequences from human, mouse, frog, zebrafish, bichir, and elephant shark upstream 
of a membrane-tagged mCherry coding sequence. Embryos injected with JRS1 reporter constructs 
displayed mosaic reporter gene expression within the first pharyngeal arch elements Meckel’s carti-
lage and palatoquadrate. At least two positive founders were identified for each injected construct 
and used for generation of stable nkx3.2(JRS1):mCherry transgenic lines, which allowed further char-
acterization of enhancer activity.

https://doi.org/10.7554/eLife.75749
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Figure 3. Jaw joint regulatory sequence 1 (JRS1) is absent in most acanthopterygian fish. Phylogenetic tree based on Hughes et al., 2018 and 
Ghezelayagh et al., 2022. Pointed boxes represent gene orientation with gene names indicated on top. The slimehead nkx3.2 box is displayed as 
slightly grayed out as only the 3’ UTR was present in the contig. Red hexagons mark the presence and position of JRS1, where filled hexagons mark 
enhancers selected for in vivo functional characterization in this study. Small red rectangles mark the position of JRS1 fragments. Below the gene order 
schematic of each species is marked the chromosome or contig containing this region. The plot of BLASTN E-Values represents the E-Values of the top 
hits to bichir (circles) and spotted gar (triangles) JRS1 query sequences in the genomes of each species. Shapes filled with white or black indicate that 
the top BLASTN hit using the bichir or spotted gar JRS1 query sequence, respectively, was found between the nkx3.2 and rab28 genes, while grey-filled 
shapes indicate the top hit was found in a different locus. The x-axis is truncated on the right side to a minimum of 1e−30 for ease of comparison, and 
the red dotted line indicates an E-Value of 1e−04. Taxonomic orders and higher clade classifications are shown on the far right.

The online version of this article includes the following source data for figure 3:

Figure 3 continued on next page

https://doi.org/10.7554/eLife.75749
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Zebrafish JRS1 enhancer drives fluorescent reporter gene expression 
corresponding to endogenous nkx3.2 expression
For analysing zebrafish JRS1 activity in the transgenic fluorescent reporter line, we performed live 
confocal imaging at different developmental time points. From 40 hours post fertilization (hpf) we 
detected persistent mCherry expression driven by the nkx3.2 enhancer within the jaw joint-forming 
region of the first pharyngeal arch (Figure  4, Video  1). At 30  hpf the nkx3.2(JRS1):mCherry line 

Figure 4. Zebrafish jaw joint regulatory sequence 1 (JRS1) enhancer drives mCherry reporter gene expression in jaw joint-forming chondroprogenitor 
cells and partly overlaps with sox10:egfp expressing cells. (A, A’) At 2 dpf jaw joint progenitor cells express both GFP and mCherry. (B, B’) By 3 dpf 
cells start to differentiate and nkx3.2(JRS1):mCherry activity is restricted to jaw joint-forming interzone, overlapping with sox10:egfp. Single-labelled 
mCherry-expressing cells are surrounding the joint-forming region. (C, C’) At 5 dpf mCherry-expressing cells are restricted to the articulation forming 
area between Meckel’s cartilage (m) and the palatoquadrate (pq). Double mCherry/GFP-expressing cells are restricted to posterior Meckel’s cartilage 
and anterior palatoquadrate. (D, D’) At 14 dpf a clear joint cavity is visible. nkx3.2(JRS1):mCherry activity is restricted to the joint cavity and to both 
lateral and medial palatoquadrate. Dashed box in (A–D) is magnified in (A’–D’). (A–D) Represents maximum projection of confocal Z-stack, and (A’–D’) 
represents a single confocal image. In nkx3.2−/− mutants nkx3.2(JRS1):mCherry marks the cells outside of the fused jaw joint at 3 dpf (E, E’) and 5 dpf 
(F, F’). Dashed boxes in (E, F) are magnified in (E’, F’). (E, F) and (E’, F’) represent maximum projection of confocal Z-stack. Asterisks indicate the 
approximate location of the fusion site. Scale bars: 100 μm (A–F) and 25 μm (A’–F’).

Source data 1. The E-values of the top BLASTN hits using the bichir and spotted gar jaw joint regulatory sequence 1 (JRS1) query sequences in the 
genomes of each species.

Figure 3 continued

https://doi.org/10.7554/eLife.75749
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furthermore displayed mCherry-expressing cells 
in the notochord, which could be detected up to 
3 days post fertilization (dpf) (Video 1).

nkx3.2(JRS1):mCherry/sox10:egfp double 
transgenic fish were used for the character-
ization of joint progenitor cells from 2 dpf. The 
sox10:egfp line labels neural crest cell-derived 
populations comprising pharyngeal arch carti-
lages (Carney et al., 2006). At the onset of chon-
drogenesis (2 dpf), confocal live imaging revealed 
overlapping expression of nkx3.2(JRS1):mCherry 
and sox10:egfp in condensed mesenchyme cells 
in the jaw joint-establishing zone (Figure 4A, A’). 
Single sox10:egfp expressing cells were located 
adjacent to this area, labelling first pharyngeal 
arch forming elements Meckel’s cartilage and 
palatoquadrate (Figure  4A’). All labelled cells 
displayed rounded pentagonal morphology at 
this stage.

By 3 dpf nkx3.2(JRS1):mCherry-expressing 
cells were densely packed in the joint-forming 
region, overlapping with sox10:egfp expressing 
cells (Figure  4B, B') and displayed a more 
elongated morphology. In Meckel’s cartilage 
and the palatoquadrate, the majority of GFP-
labelled chondrocytes underwent differentiation 
and maturation as indicated by the ‘coin stack’ 
arrangement (Figure  4B, B'). Double-labelled 
mCherry/GFP cells were furthermore present in 

the developing retroarticular process (RAP) (Figure 4B, B'). At both medial and lateral surfaces of the 
joint, single nkx3.2(JRS1):mCherry-expressing cells were lined up from the posterior Meckel’s carti-
lage up to the anterior palatoquadrate.

mCherry expression became increasingly scattered in the membrane of labelled cells by 5 dpf. 
We observed a consistent presence of mCherry-positive cells on the lateral edge of the pala-
toquadrate and posterior Meckel’s cartilage, partly overlapping with GFP-positive cells (Figure 4C, 
C'). The morphology of double-labelled cells in and surrounding the jaw joint-forming region was 
distinct from chondrogenic cells forming the main cartilage elements, by displaying smaller size and 
more rounded morphology (Figure 4C, C'). By 14 dpf, the joint cavity was evident and contained 
nkx3.2(JRS1):mCherry-expressing cells (Figure  4D, D'). mCherry-positive cells were maintained in 
the posterior part of Meckel’s cartilage and we observed a line of mCherry-positive cells on both the 
lateral and medial sides of the palatoquadrate, reminiscent of the perichondrium, extending posteri-
orly towards the hyosymplectic of the second pharyngeal arch (Figure 4D, D').

In order to characterize the nkx3.2(JRS1):mCherry-expressing cells in nkx3.2 gene mutants we 
crossed previously reported nkx3.2+/uu2803 mutant alleles (Waldmann et al., 2021) with nkx3.2(JRS1):m-
Cherry/sox10:egfp fish and incrossed these heterozygotes to generate homozygous nkx3.2uu2803/uu2803 
mutants (abbreviated to nkx3.2−/−). Notably, nkx3.2(JRS1):mCherry-expressing cells were detected 
lining the outside of the cartilage in the fused jaw joint region of nkx3.2−/− mutants at 3–5 dpf 
(Figure  4E, F and E’, F’). The presence of double-labelled cells was not as apparent as in wild-
type fish, however the scattering of the membranous mCherry signal was also noticeable in nkx3.2−/− 
mutants from 5 dpf (Figure 4F, F').

JRS1 activity is conserved in a range of gnathostome species
Generated transgenic lines containing JRS1 enhancer sequences from human, Homo sapiens 
(Figure 5A); mouse, Mus musculus (Figure 5B); frog, Xenopus tropicalis (Figure 5C); bichir, Polypterus 
senegalus (Figure 5H); and elephant shark, Callorhinchus milii (Figure 5I) displayed mCherry reporter 

Video 1. Jaw joint regulatory sequence 1 (JRS1) 
enhancer drives reporter expression in the 
early notochord and jaw joints. Lateral view of 
nkx3.2(JRS1):mCherry/sox10:egfp zebrafish embryo 
developing from 44 to 71 hpf. Inset in situ hybridization 
image of nkx3.2 expression in a wild-type 56 hpf 
zebrafish embryo. White arrowhead indicates jaw joint 
expression domain while black arrowheads indicate 
expression in the notochord.

https://elifesciences.org/articles/75749/figures#video1

https://doi.org/10.7554/eLife.75749
https://elifesciences.org/articles/75749/figures#video1
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Figure 5. Functional conservation of the jaw joint regulatory sequence 1 (JRS1) enhancer within tested 
gnathostome species. (A–C, G–I) Maximum projection images of 3 dpf transgenic zebrafish embryos (ventral view) 
driving mCherry expression in jaw joint and mandibular arch elements under the control of the JRS1 sequence 
of (A) human Homo sapiens, (B) mouse Mus musculus, (C) frog Xenopus tropicalis, (G) zebrafish Danio rerio, (H) 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.75749
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activity in the developing jaw joint (Figure 5), consistent with the zebrafish JRS1 activity (Figure 5G). 
In contrast to zebrafish JRS1 however, early (~30 hpf) mCherry expression in the notochord could 
not be detected in these lines. fli1a:egfp was used as background marker in order to investigate the 
potential JRS1 activity in the perichondrium. mCherry expression in perichondrium cells surrounding 
the developing jaw joint and palatoquadrate was present in all tested nkx3.2(JRS1):mCherry lines 
(Figure 5D–F’ and J–L').

JRS1 deletion results in transient jaw joint dysmorphology and partial 
fusion
As JRS1 appears functionally conserved and active specifically in the jaw joint, we next investigated 
its function more closely by using CRISPR/Cas9 genome editing to generate a zebrafish line with the 
entire JRS1 enhancer sequence deleted from the genome. Two sgRNAs were targeted to sequences 
either side of JRS1 resulting in a 445 bp deletion spanning the conserved core of the JRS1 and ~100 
bp flanking sequences (Figure 6A, Figure 6—figure supplement 1). The resulting enhancer deletion 
allele is termed nkx3.2ΔJRS1. We generated homozygous mutant zebrafish (nkx3.2ΔJRS1/ΔJRS1) and used 
Alcian blue and alizarin red staining to characterize the craniofacial morphology in comparison to 
heterozygotes and wild-type siblings at 5, 9, 14, and 30 dpf.

At all examined ages, the jaw joint morphology of wild-type and heterozygous mutants appeared 
indistinguishable (Figure 6B, C, E, F, H, I). At 5 dpf, homozygous nkx3.2ΔJRS1/ΔJRS1 mutants tended to 
display a reduced RAP on Meckel’s cartilage and the cartilage of the palatoquadrate often failed to 
form a pronounced convex joint process (Figure 6D). The result of this was a lack of a clearly defined 
concave–convex articulation in the jaw joint. Additionally, while no mutants displayed a complete 
fusion between the Meckel’s and palatoquadrate cartilages, there was often a small number of chon-
drocytes (white arrowhead, Figure  6D) connecting the two elements. Mouth gape angle did not 
appear to be affected, suggesting that the joint was at least partially flexible at this stage.

At 14 dpf, the RAP of homozygous mutants became more pronounced and comparable to wild-
type and heterozygous siblings (Figure  6G). Meckel’s cartilage and the palatoquadrate appeared 
to be fully separated, and the palatoquadrate joint process was more convex, resulting in a more 
concave–convex shape to the joint articulation. The RAP began to ossify as normal in all genotypes. By 
30 dpf, the jaw joint of homozygous mutants was indistinguishable from wild-type and heterozygote 
siblings, with ossification of Meckel’s cartilage, the RAP, and the palatoquadrate progressing normally 
(Figure 6J).

In situ hybridization analysis revealed a 44% (p = 0.0038) and 47% (p = 0.0002) reduction in nkx3.2 
expression in the jaw joints of nkx3.2ΔJRS1/ΔJRS1 zebrafish mutants at 48 and 56 hpf, respectively, based 
on pixel intensity measurements (Figure 6K–O). The relative whole-body expression levels of nkx3.2 
quantified in JRS1 deletion mutants using qPCR detected no significant differences between the 
genotypes at 6 dpf (Figure 6P).

To quantify the subtle differences in posterior Meckel’s cartilage shape in JRS1 mutant larvae, the 
heads of 9 dpf nkx3.2+/+ (N = 12), nkx3.2+/ΔJRS1 (N = 10), and nkx3.2ΔJRS1/ΔJRS1 (N = 8), were imaged 
using optical projection tomography (OPT), and the whole heads (Figure 7—figure supplement 1) 
and both jaw joints were rendered as maximum projections for a total of 60 jaw joints. The shape of 
Meckel’s cartilage at the joint interface was analysed using 2D geometric morphometrics (Figure 7A), 
confirming the previously described observations that there was no significant difference between 
wild-type and heterozygous mutants (p = 0.20) while homozygous mutants differed significantly 
compared to them both (p = 0.0015). Analysis of morphospace also confirmed the tendency for 
homozygous mutants to display a reduced RAP resulting in a less concave surface interfacing with the 
palatoquadrate (Figure 7A). This phenotype is not fully penetrant, as there is some overlap between 

bichir Polypterus senegalus and (I) elephant shark Callorhinchus milii. Asterisks mark a jaw joint. (D–F and J–L) 
Maximum projection images of 3 dpf nkx3.2(JRS1):mCherry transgenic zebrafish driving mCherry expression under 
the control of species-specific enhancer sequences with fli1a:egfp background reveals mCherry expression in GFP-
labelled perichondrium cells. Dashed boxes are magnified in (D’–F’) and (J’–L’) as single confocal images. White 
arrowheads mark mCherry expression in the perichondrium. m: Meckel’s cartilage; pq: palatoquadrate. Scale bars: 
75 μm (A–L), 25 μm (D’–F’ and J’–L’).

Figure 5 continued

https://doi.org/10.7554/eLife.75749
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Figure 6. Homozygous jaw joint regulatory sequence 1 (JRS1) enhancer deletion results in early jaw joint 
dysmorphology. (A) Schematic of the JRS1 deletion allele generation. (B–J) Alcian blue and alizarin red-stained 
jaw joints of representative wild-type, nkx3.2+/ΔJRS1, and nkx3.2ΔJRS1/ΔJRS1 zebrafish at 5, 14, and 30 dpf. Phenotypes 
are quantified in the top right of each panel. Standard lengths (mm) are given for 14 and 30 dpf juveniles. White 

Figure 6 continued on next page

https://doi.org/10.7554/eLife.75749
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the range of wild-type and mutant shapes, consistent with the variable severity of mutant joint pheno-
types seen at 5 dpf. Averaged 3D renderings of the jaw joint at 9 dpf also displayed the partial fusion 
between Meckel’s cartilage and the palatoquadrate previously described at 5 dpf (Figure 7D, G).

Discussion
Previous studies have highlighted the importance of Nkx3.2 during primary jaw joint development 
and an overall role during chondrocyte maturation in various gnathostome species (Miller et  al., 
2003; Provot et al., 2006). In this study, we identified an Nkx3.2 cis-regulatory element, JRS1, that is 
conserved in gnathostomes but absent from the homologous loci of jawless fishes, and investigated 
its activity in the jaw joint by generating transgenic reporter zebrafish lines and its function by gener-
ating a CRISPR/Cas9 deletion allele (Figure 8).

JRS1 activity in the jaw joints
We combined gene synteny analysis and non-coding sequence conservation analysis using mVISTA 
and detected a conserved putative nkx3.2 regulatory sequence (JRS1) in a number of gnathostome 
species. Next, we applied Tol2-mediated transgenesis to test JRS1 sequences from human, mouse, 
frog, zebrafish, bichir, and elephant shark for enhancer activity in zebrafish. The zebrafish nkx3.2(-
JRS1):mCherry line labelled areas corresponding to the endogenous expression of nkx3.2 in both 
the first pharyngeal arch and the early notochord (Miller et  al., 2003; Thisse and Thisse, 2005). 
We detected mCherry-labelled cells in the developing jaw joint region, including the perichondrium 
proximal to the joint. nkx3.2(JRS1):mCherry expression overlapped with sox10:egfp-positive neural 
crest derived cells at early stages, consistent with the neural crest origin of jaw joint-establishing cells 
(Carney et al., 2006).

Notably, there was no apparent overlap of nkx3.2(JRS1):mCherry- and sox10:egfp-positive cells 
in nkx3.2−/− mutants that displayed the fused jaw cartilages as early as 3 dpf, in accordance with 
previous report by Waldmann et al., 2021. The majority of the nkx3.2(JRS1):mCherry-expressing cells 
lined the outside of the fused jaw joint cartilages, indicating that some joint or intermediate domain 
markers may still be present in the fusion region. This is reminiscent of the jaw joint fusion caused 
by the dlx3b;4b;5a-MO injection described by Talbot et al., 2010, where trps1, normally expressed 
in the articular cartilage of the wild-type jaw joint, was detected in cells surrounding the fusion in 
the morphants. Despite these cell patterning changes, nkx3.2(JRS1):mCherry-positive cells at 5 dpf 
displayed a similar accumulation of fluorescence reporter protein in the cell membrane of nkx3.2−/− 
mutants as in wild types, indicating the absence of cell identity changes.

The zebrafish jaw joint has previously been shown to display characteristics of synovial joints 
(Askary et  al., 2016). Synovial joint development involves interzone formation after mesenchyme 
condensation. In contrast to adjacent, cartilage element-forming cells, interzone cells do not undergo 
chondrogenesis but become flattened and densely packed non-chondrogenic cells (Craig et  al., 

arrowhead marks the partial fusion between Meckel’s cartilage (m) and the palatoquadrate (pq). Grey arrowheads 
indicate the rounded, non-bulbous anteroposterior process of Meckel’s cartilage. Black arrowheads mark the 
reduced retroarticular process (ra). Asterisks mark the ossifying retroarticular bone. Scale bars: 25 µm. (K–N) 
Representative embryos following in situ hybridization staining for nkx3.2 in the ventral craniofacial region at 
48 and 56 hpf. Arrows indicate the reduced expression in the jaw joint domains in nkx3.2ΔJRS1/ΔJRS1 embryos. (O) 
nkx3.2 expression levels at 48 and 56 hpf in wild-type and nkx3.2+/ΔJRS1 versus nkx3.2ΔJRS1/ΔJRS1 zebrafish embryos, 
measured as pixel intensity of individual jaw joint expression domains in in situ stained embryos (N = 16, 18, 18, 
17, respectively). (P) Relative whole-body nkx3.2 expression levels at 6 dpf in wild-type, nkx3.2+/ΔJRS1, and nkx3.2ΔJRS1/

ΔJRS1 zebrafish, determined by qPCR. NS. denotes p > 0.05, ** p < 0.01, *** p < 0.001. Error bars represent mean ± 
standard error of the mean (SEM).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Relative pixel intensity values obtained from in situ images of nkx3.2 expression in zebrafish at 48 
and 56 hpf, and statistical analyses.

Source data 2. qPCR raw values.

Figure supplement 1. Alignment of wild-type and uu3731 jaw joint regulatory sequence 1 (JRS1) deletion alleles 
with annotated MEME motifs, primers, and CRISPR gRNA targets.

Figure 6 continued
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Figure 7. Geometric morphometric analysis of jaw joint regulatory sequence 1 (JRS1) deletion phenotypes at 9 dpf. (A) Principal components analysis 
of geometric morphometric comparison of posterior Meckel’s cartilage shape in wild-type, nkx3.2+/ΔJRS1, and nkx3.2ΔJRS1/ΔJRS1 zebrafish at 9 dpf. Thin-plate 
splines display the extremes of shape along PC1 and PC2. Inset is a histogram showing the percentage of variance explained by PCs 1–5. (B–G) Lateral 
and dorsal 3D renderings of the left jaw joint from averaged optical projection tomography (OPT) models of wild-type (N = 12), nkx3.2+/ΔJRS1 (N = 10), 

Figure 7 continued on next page

https://doi.org/10.7554/eLife.75749
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1987). nkx3.2(JRS1):mCherry expression at 3 dpf was found in cells displaying this characteristic inter-
zone cell morphology. nkx3.2(JRS1):mCherry expression in the mandibular arch was consistent over 
time, displaying a strong fluorescence signal even at 14 dpf. The scattered membranous mCherry 
expression we could observe from 5 dpf onwards could be a consequence of the increasing extra-
cellular matrix production by the interzone cells, necessary to facilitate the joint cavitation process 
(Dowthwaite et al., 1998; Edwards et al., 1994).

Perichondrium cell-derived signalling inhibits both chondrocyte proliferation and differentiation in 
mouse long bone development (Alvarez et al., 2001). Our finding of JRS1 activity in the perichon-
drium cells lining Meckel’s cartilage and the palatoquadrate suggests the expression of nkx3.2 in 
perichondrium cells during chondrocyte maturation inhibition may be important for correct shaping 
and sizing of the cartilaginous elements. Whether and to what extent nkx3.2 expression in the peri-
chondrium regulates the shape of the mandibular arch and cartilage elements more broadly requires 
further investigation. With the JRS1 deletion experiments discussed below, we have started to provide 
some insight into this function.

Transcription factor-binding motifs in JRS1
Functional testing of homologous JRS1 enhancer sequences from human, mouse, frog, bichir, and 
elephant shark resulted in species-specific mCherry expression almost identical to what was observed 
in the zebrafish nkx3.2(JRS1):mCherry transgenic line. These data suggest that the general land-
scape of transcription factors binding to JRS1 is most probably conserved between gnathostomes, 
suggesting a highly conserved role for this cis-regulatory element. This is also supported by our 
prediction of transcription factor-binding motifs broadly shared between species that are associated 
with functions in the pharyngeal arch patterning and skeletogenesis (Figure 2C). This list of putative 
transcription factor-binding sites provides many candidates for validation and further research into the 
regulatory control of Nkx3.2 in the pharyngeal arches.

Meis2 is known to function in the development of neural crest derivative tissues including cranial 
cartilage and bone (Machon et  al., 2015), and fusions between Meckel’s cartilage and the pala-
toquadrate have been observed in meis2-knockdown zebrafish (Melvin et  al., 2013). In addition, 
Meis proteins have been identified as cofactors for Hox transcription factor binding (Mann et al., 
2009), along with Pbx proteins. Hox expression is absent from the mandibular arch but is important 
in establishing the identity of all the other pharyngeal arches. For example, Hoxa2 expression estab-
lishes the identity of second pharyngeal arch, as its absence results in the homeotic transformation 
of the second arch skeletal elements to a first arch identity (Hunter and Prince, 2002; Trainor et al., 
2002), and the converse upon ectopic Hoxa2 expression in the first or third arches: transformation 
into a second arch identity (Grammatopoulos et al., 2000; Hunter and Prince, 2002). The homeotic 
transformation of the second arch to a first arch identity in the absence of Hoxa2 in zebrafish includes 
the persistent expression of nkx3.2 in the second arch (Miller et al., 2004), raising the possibility that 
Hoxa2 may act as a repressor of nkx3.2 expression. The presence of a Meis2-binding site in motif 
2, closely flanked by TAAT motifs favoured as Hoxa2-binding sites (Berger et al., 2008; Donaldson 
et al., 2012), are suggestive that such repressive activity may be mediated through JRS1. Indeed, an 
examination of E11.5 mouse branchial arch ChIP-seq datasets generated by Donaldson et al., 2012 
and Amin et al., 2015 revealed that JRS1 is highly enriched in Meis binding sites in BA1 and highly 
enriched in overlapping Meis, Pbx, and Hoxa2 binding sites in BA2. This finding not only validates 
the presence of a Meis-binding site in JRS1 predicted using Tomtom, but also strongly suggests the 
presence of a Meis–Hoxa2–Pbx complex that may contribute to the repression of nkx3.2 expression 

and nkx3.2ΔJRS1/ΔJRS1 (N = 8) zebrafish at 9 dpf. White arrowheads mark the partial fusion between Meckel’s cartilage (m) and the palatoquadrate (pq). 
Black arrowhead marks the reduced retroarticular process (ra). Scale bars: 25 µm.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Jaw joint landmarks TPS.

Source data 2. Jaw joint landmarks classifiers.

Figure supplement 1. Optical projection tomography of 9 dpf jaw joint regulatory sequence 1 (JRS1) deletion zebrafish.

Figure 7 continued
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in the second arch skeleton, either by causing JRS1 to act as a repressor of nkx3.2 or by blocking 
activator activity.

Runx3 regulates target genes involved in chondrocyte development (Wigner et al., 2013), while 
Runx1 has been implicated in suppressing chondrocyte maturation by upregulating Nkx3.2 expression 
(Yano et al., 2019). Hey1 is a transcriptional repressor expressed in the dorsal domain of the developing 

Figure 8. Graphical summary of this study. The conserved jaw joint regulatory sequence 1 (JRS1) enhancer was first identified as a conserved non-
coding element (CNE) in silico, then confirmed with transgenesis experiments of a range of species-specific JRS1 sequences driving fluorescent reporter 
expression in the jaw joint. Finally, the JRS1 enhancer was deleted from the zebrafish genome to reveal a transient jaw joint dysmorphology and partial 
fusion. m: Meckel’s cartilage; pq: palatoquadrate; ra: retroarticular process.

https://doi.org/10.7554/eLife.75749
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pharyngeal arches downstream of Jagged-Notch signalling (Zuniga et al., 2010). The presence of a 
binding motif in JRS1 suggests that Hey1 may function downstream of Notch in repressing dorsal 
expression of Nkx3.2, as a dorsal expansion of Nkx3.2 expression was observed when Hey1 expres-
sion is reduced in response to defects in Jagged-Notch signalling (Zuniga et al., 2010). Hey1 has also 
been found to be upregulated in osteoarthritis (OA) joint cartilage (Chang et al., 2021).

Tbx1 interacts with Hand2 and Edn1, key regulators of pharyngeal arch development, such that 
zebrafish tbx1 mutants show drastic reductions in pharyngeal cartilage (Piotrowski et al., 2003). 
In addition to Tbx1, the same binding region matches many other Tbx factors as they all possess 
highly similar binding motifs, and some of these Tbx factors are also known to function in cranio-
facial development (Papaioannou, 2014). For example, tbx22 expression mirrors that of nkx3.2 in 
the developing zebrafish jaw joint (Jezewski et al., 2009; Swartz et al., 2011), and although the 
Tbx22-binding motif is absent from the JASPAR database, the conservation of Tbx factor-binding 
motifs suggests that Tbx22 can likely bind at this motif in JRS1, implying a possible role for Tbx22 
in jaw joint formation upstream of Nkx3.2. Twist1 and Twist2 have been shown to function in both 
promoting and inhibiting chondrogenesis in different contexts (Cleary et al., 2017; Reinhold et al., 
2006; Takai et al., 2019), and are expressed in the zebrafish craniofacial skeleton (Germanguz and 
Gitelman, 2012). TWIST1 is upregulated in OA (Hasei et  al., 2017) while NKX3.2 is downregu-
lated (Caron et al., 2015; Oh et al., 2021), suggesting that repression of NKX3.2 expression by 
TWIST1 may contribute to OA articular cartilage pathology. SIX1 has been found to have expression 
restricted to articular cartilage in porcine knee joints (Hissnauer et  al., 2010), and has a role in 
craniofacial skeletogenesis promoting Jagged-Notch signalling and repressing Edn1 expression in 
the dorsal pharyngeal arches (Tavares et al., 2017). It is also upregulated by the aforementioned 
Tbx1 (Guo et al., 2011).

A potential function of Esrrb in skeletogenesis has not been described, but closely related members 
of the estrogen-related receptor family with similar binding motifs, ESRRA and ESRRG, are known to 
function in promoting chondrogenesis and cartilage degradation in OA (Kim et al., 2015; Son et al., 
2017; Tang et al., 2021). Finally, the presence of an Nkx3.2-binding motif in JRS1 suggests a potential 
for autoregulation of nkx3.2 expression, establishing a steady expression level at a reduced metabolic 
cost (McAdams and Arkin, 1997). However, the significance of this potential autoregulation may be 
minor or restricted in time, as we did not observe noticeable reductions in JRS1 reporter activity in 
nkx3.2−/− gene mutants (Figure 4E, F).

Evolution of JRS1 in vertebrates
The localization of Nkx3.2 to the intermediate domain of the first pharyngeal arch has been suggested 
as one of the key drivers of the evolution of vertebrate jaws (Cerny et al., 2010). As such, the iden-
tification of JRS1 as a jaw joint-specific enhancer of Nkx3.2 that is conserved in gnathostomes but 
absent from the jawless hagfish and lamprey suggests that JRS1 evolved in the gnathostome stem 
group after the split with Agnatha, and may have played a key role in the early evolution of jaws. It 
is also noteworthy that JRS1 appears to be functionally conserved in mammals as the primary jaw 
joint region, along with its Nkx3.2 expression domain, has moved to the middle ear to form the joint 
between the malleus and incus (Anthwal et al., 2013; Luo, 2007). This suggests that JRS1 may have 
continued to function in driving Nkx3.2 expression in the mammalian incudomalleolar joint despite 
the significant morphological changes relative to the ancestral jaw joint.

The elephant shark JRS1 sequence drove reporter expression in the joint of the zebrafish first 
(mandibular) pharyngeal arch, consistent with other gnathostomes. In the related elasmobranch chon-
drichthyans, gene expression of nkx3.2 has been reported in the intermediate domains of all pharyn-
geal arches, including the hyoid and gill arches (Compagnucci et  al., 2013; Hirschberger et  al., 
2021). If we assume elephant shark nkx3.2 gene expression mirrors that of elasmobranchs and that 
JRS1 drives nkx3.2 gene expression in all pharyngeal arches in chondrichthyans, our results would 
support the conclusion that much of the gene regulatory landscape of osteichthyan mandibular joints 
is found more broadly in the pharyngeal arches of chondrichthyans (Hirschberger et al., 2021). On 
the other hand, the presence of a conserved Meis-binding site and TAAT core Hox-binding motifs in 
elephant shark JRS1 may indicate that JRS1 could be differentially activated according to the nested 
Hox expression in different pharyngeal arches (Oulion et al., 2011). In this case, other enhancers 
would likely contribute to post-mandibular arch expression of nkx3.2 in chondrichthyans.

https://doi.org/10.7554/eLife.75749
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JRS1 appears to be absent in all analysed percomorph (PERC) teleost fish with the exception of 
the cusk-eel, and only a small conserved sequence fragment is present in the cusk-eel, alfonsino, 
and soldierfish – acanthopterygian fish from the orders Ophidiiformes (O) and Beryciformes (B) that 
narrowly post- and pre-date the phylogenetic origin of percomorph fish, respectively (Ghezelayagh 
et al., 2022). This suggests that while JRS1 may have been lost in the last common ancestor of all 
percomorphs with the exception of ophidiiforms (PERC-O), a process of loss or adaptive sequence 
divergence may have begun earlier, in a common ancestor of both beryciforms and percomorphs 
(PERC+B). The unambiguous presence of JRS1 in the pineconefish and slimehead (order Trachichthy-
iformes) rules out the possibility that JRS1 was lost in the common ancestor of all acanthopterygians. 
Nevertheless, it is tempting to speculate whether the apparent absence of JRS1 could be related to 
the evolution of the characteristic upper jaw protrusability found in many acanthopterygians (Lauder 
and Liem, 1969; Motta, 1984), as this altered functional morphology may have led to changes in 
selective pressures acting on the mandibular jaw joint.

Alternatively, JRS1 may have undergone rapid sequence evolution in PERC+B relative to other tele-
osts, and is simply too diverged to be detected based on sequence homology (Lee et al., 2011; Ravi 
and Venkatesh, 2018). However, when aligning only PERC+B species nkx3.2 loci, we were unable to 
find a JRS1-like conserved sequence within this clade, which is more consistent with a total deletion 
or degeneration of JRS1 in the last common ancestor of PERC+B. We cannot rule out the presence 
of novel or pre-existing shadow enhancers in this clade that may have taken over the role of JRS1 
in regulating nkx3.2, as our search for conserved sequences was limited to the bod1l1-nkx3.2-rab28 
locus while other enhancers may be present in more distant intergenic regions (Hong et al., 2008).

Jaw joint morphology and nkx3.2 expression levels associated with 
JRS1 deletion
Experimental JRS1 deletion did not phenocopy the striking jaw joint fusion seen in zebrafish nkx3.2 
gene knockout mutants (Miyashita et al., 2020; Waldmann et al., 2021), suggesting the deletion 
does not abolish nkx3.2 expression at the time points analysed. However, as subtle jaw joint pheno-
types were still evident in homozygous mutants, most notably the reduction of the RAP and the partial 
fusion observed at 5–9 dpf, the loss of JRS1 must have some local effect on nkx3.2 expression, consis-
tent with the specific jaw joint activity seen in transgenic reporter fish. Indeed, by quantifying the jaw 
joint expression of nkx3.2 in zebrafish embryos by measuring in situ hybridization staining intensity, we 
were able to measure a ~45% decrease at 48–56 hpf in homozygous JRS1 deletion mutants relative 
to wild types and heterozygous mutants. Castellanos and Quintana, 2021 reported mild jaw joint 
phenotypes reminiscent of those seen in our homozygous JRS1 mutants in 5 dpf hspg2 morphants 
that were associated with a ~30% reduction in nkx3.2 gene expression measured at 4 dpf. Their 
results and ours are consistent with earlier work indicating that a reduction in early nkx3.2 expression 
levels can result in more subtle jaw joint phenotypes, increasing in severity with increasing morpholino 
dosage (Miller et al., 2003).

The jaw joint phenotype in homozygous JRS1 mutants appears to be rescued by approximately 
14 dpf, suggesting that either nkx3.2 expression recovers after the initial decrease caused by the 
absence of JRS1, or that late nkx3.2 expression is less important for shaping the developing jaw 
joint and other factors take over instead. At 6 dpf, we could not detect any significant differences in 
whole-body nkx3.2 expression levels, supporting the former hypothesis. If this is the case, it suggests 
that it takes approximately 1 week for the phenotype to be rescued once normal nkx3.2 expression 
is restored. It also indicates that JRS1 function is most important to the early jaw joint expression of 
nkx3.2, prior to 6 dpf, and may contribute relatively less to later expression. Alternatively, it is possible 
that nkx3.2 expression levels in the jaw joint do not recover, and the absence of significant differences 
observed at 6 dpf is the result of the reduced jaw joint expression signal being masked by expression 
elsewhere in the body.

The results of single enhancer deletions in previous studies vary widely from no phenotypic effect 
at all (Cunningham et al., 2018; Osterwalder et al., 2018), to subtle effects (Dickel et al., 2018), to 
strong effects approaching or phenocopying gene knockouts (Dobrzycki et al., 2020a; Sagai et al., 
2005). More severe phenotypes relative to homozygous gene knockouts likely scale with greater 
reductions in gene expression (Osterwalder et al., 2018), although in some cases the phenotypic 
effects may instead rely on an expression threshold being breached (Lam et al., 2015). It is common 

https://doi.org/10.7554/eLife.75749
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for developmental genes to be regulated by multiple enhancers, contributing to expression in a range 
of tissues and conferring a degree of functional redundancy (Chen et al., 2016; Hobert, 2010; Oster-
walder et al., 2018; Wang and Goldstein, 2020). In this light, it is perhaps unsurprising that deletion 
of JRS1 does not completely abolish nkx3.2 gene expression in the jaw joint, as there are likely other 
as-yet undiscovered enhancers that also contribute to nkx3.2 regulation in this location in zebrafish and 
likely other gnathostome species as well. This work highlights the importance of screening enhancer 
deletion mutants for phenotypic effects at multiple developmental stages, as the dynamic nature of 
gene expression by temporally specific enhancers can mask or otherwise rescue phenotypes observed 
earlier in development. We encourage future studies to assess enhancer activity and gene expression 
to quantify these temporal dynamics, especially in known multi-enhancer systems.

Conclusion
We report the identification and functional characterization of a novel Nkx3.2 enhancer, JRS1, with 
activity specific to the developing primary jaw joint that contributes to early nkx3.2 gene expression. 
As this enhancer is conserved in sequence and activity in gnathostomes including both bony and carti-
laginous fish, we conclude that it arose early in gnathostome evolution and may have been one of the 
earliest novel cis-regulatory elements to facilitate the evolution of jaws from the ancestral jawless state 
by driving the localization of Nkx3.2 expression into the jaw joint and contributing to the early jaw 
joint morphology. Secondary loss of JRS1 in most acanthopterygians may be related to the evolution 
of novel jaw morphologies in this group. Further study of JRS1 and other as-yet undiscovered Nkx3.2 
enhancers will provide new insights into developmental regulatory network responsible for the evolu-
tion and diversification of gnathostome jaws.

Materials and methods
Conserved synteny analysis
The synteny analysis was performed on the genomic regions containing the Nkx3.2 gene (alternative 
names Nkx3-2 and Bapx1). Synteny data including upstream and downstream genes from Nkx3.2 
were extracted from the Ensembl and NCBI databases for several genomes: human, Homo sapiens 
(GRCh38.p12); mouse, Mus musculus (GRCm38.p6); koala, Phascolarctos cinereus (phaCin_unsw_
v4.1); painted turtle, Chrysemys picta (Chrysemys_picta_bellii-3.0.3); chicken, Gallus gallus (GRCg6a); 
tropical clawed frog, Xenopus tropicalis (Xenopus_tropicalis_v9.1); coelacanth, Latimeria chalumnae 
(LatCha1); zebrafish, Danio rerio (GRCz11); spotted gar, Lepisosteus oculatus (LepOcu1); elephant 
shark, Callorhinchus milii (Callorhinchus_milii-6.1.3); inshore hagfish, Eptatretus burgeri (Eburgeri_3.2); 
and sea lamprey, Petromyzon marinus (kPetMar1). Nkx3.2 sequences were identified in hagfish and 
lamprey genomes with TBLASTN searches using the protein sequence of the spotted gar Nkx3.2 
(ENSLOCG00000009892) as a query. A genomic scaffold containing the Nkx3.2 locus was obtained 
from genomic databases of the bichir, Polypterus senegalus (Mashima et al., 2016; Tatsumi et al., 
2016), now publicly available as ASM1683550v1.

Conserved non-coding sequence identification and motif analysis
The genomic region surrounding the Nkx3.2 gene, between the two immediately flanking genes 
(typically Bod1l1 and Rab28) were collected for a number of vertebrate species and submitted to 
mVISTA (Frazer et al., 2004) using the default settings to search for conserved non-coding sequences. 
Non-coding sequences representing peaks of conservation were collected for human, mouse, frog, 
zebrafish, bichir, and elephant shark and further analysed with the MEME Suite (Bailey et al., 2009) 
to distinguish the conserved core of the region identified with mVISTA. Additional sequence align-
ment was performed using Clustal Omega (Madeira et al., 2019) and manually curated. Conserved 
sequence motifs in the core sequences were discovered with MEME (Bailey and Elkan, 1994) using 
classic discovery mode and searching for four motifs with zero or one occurrence per sequence. 
Each of the discovered statistically significant motifs was matched against transcription factor-binding 
motifs in the JASPAR CORE vertebrates database using Tomtom (Gupta et al., 2007).

To search for JRS1 in a range of teleost species, additional sequences were extracted from the 
Ensembl and NCBI Genome databases, representing the nkx3.2 gene sequence and the down-
stream non-coding sequence until the start of the rab28 gene. These teleost species included the 

https://doi.org/10.7554/eLife.75749


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology | Evolutionary Biology

Leyhr, Waldmann et al. eLife 2022;11:e75749. DOI: https://​doi.​org/​10.​7554/​eLife.​75749 � 19 of 27

arowana, Scleropages formosus (fSclFor1.1); electric eel, Electrophorus electricus (Ee_SOAP_WITH_
SSPACE); Atlantic salmon, Salmo salar (ICSASG_v2); Atlantic cod, Gadus morhua (gadMor3.0); 
Darwin’s slimehead, Gephyroberyx darwinii (GCA_900660455.1); pineconefish, Monocentris 
japonica (ASM90032336v1); pinecone soldierfish, Myripristis murdjan (fMyrMur1.1); splendid alfon-
sino, Beryx splendens (ASM90031256v1); toothed Cuban cusk-eel, Lucifuga dentata (Ldentata1.0); 
Amazon toadfish, Thalassophryne amazonica (fThaAma1.1); Korean mudskipper, Periophthalmus 
magnuspinnatus (​fPerMag.​1.​pri); tiger-tail seahorse, Hippocampus comes (H_comes_QL1_v1); Nile 
tilapia, Oreochromis niloticus (O_niloticus_UMD_NMBU); Amazon molly, Poecilia formosa (Poecilia_
formosa-5.1.2); three-spined stickleback, Gasterosteus aculeatus (BROAD S1); and green spotted 
pufferfish, Tetraodon nigroviridis (TETRAODON 8.0). For Darwin’s slimehead, the nkx3.2 coding 
sequence was not included in the relevant contig, as it terminated at the 5′ boundary of the 3′ 
UTR. mVISTA analysis was performed as described above, and additional BLASTN searches were 
performed with the following parameters: match/mismatch scores: 1, −1; gap costs: 3, 2; seed word 
size: 11.

Construct cloning
Genomic DNA from human H. sapiens, mouse M. musculus, frog X. tropicalis, zebrafish D. rerio, bichir 
P. senegalus, and elephant shark C. milii was used to amplify identified JRS1 sequences. Forward 
primers contained four guanine residues at the 5′ end followed by attB4 (5′-​ACAA​​CTTT​​GTAT​​AGAA​​
AAGT​T-3​′) attachment sites and finally the species-specific template sequence: human 5′-​G​​TCAC​​
ACAG​​CTTG​​GAAT​​TGGT​G-3​′, mouse 5′-​A​​GTTT​​TACA​​GGTT​​CCTA​​GCCC​​ATAC​-3′​, frog 5′-​T​​CTGA​​ACTG​​
TTTT​​GCCC​​ACAT​T-3​′, zebrafish 5′-​A​​GACG​​TGAT​​GCTG​​TGAC​​ACGC​​TAAC​​TGCT​G-3​′, bichir 5′-​G​​AACC​​
GAGT​​GCTT​​TACA​​ATTA​​GGTA​-3′​, elephant shark 5′-​G​​AATG​​GAGT​​CACA​​CGAT​​AGTA​​ATCC​-3′​. Reverse 
primers contained four guanine residues at the 5′ end, attB1r (5′-​ACTG​​CTTT​​TTTG​​TACA​​AACT​​TG-​3′) 
attachment sites, and the adenovirus E1b minimal promoter sequence followed by species-specific 
template sequences: human 5′- ​​AAGT​​GGTT​​CAAA​​GGCT​​AAAG​​TT-​3′, mouse 5′-​C​​CTCA​​TTGC​​TCCA​​
CCTC​​TCT-​3′, frog 5′-​A​​CATT​​GGCA​​CTGA​​CAGG​​TAAA​C-3​′, zebrafish 5′-​G​​ATTT​​ACAT​​TTTG​​ACGT​​CAAT​
-3′​, bichir 5′- ​​TTTC​​GAAA​​TATT​​TGAT​​ACCG​​ACAG​T-3​′, elephant shark 5′-​A​​AAGT​​GCAT​​TGTG​​AACA​​AATA​​
GACA​-3′​. PCR products were subsequently recombined into pDONR P4-P1R donor vectors by the 
BP reaction according to the MultiSite Gateway cloning protocol (Kwan et al., 2007; Invitrogen). For 
generating expression clones, entry clones created by BP reaction were used as 5′ elements, pME-
mCherry-CAAX as the middle entry clone, p3E-polyA as the 3′ entry clone and pDestTol2pA2 as the 
destination vector (Kwan et al., 2007). The LR reaction was performed according to the MultiSite 
Gateway cloning protocol (Invitrogen).

Zebrafish transgenic lines
One-cell stage zebrafish (D. rerio) embryos were microinjected with freshly mixed injection solution 
containing the expression clone plasmid (175 ng/μl) and transposase mRNA (125 ng/μl) according 
to Fisher et al., 2006. Injected embryos were screened at 3 dpf for mosaic nkx3.2(JRS1):mCherry 
expression. F0 embryos displaying the strongest mosaic nkx3.2(JRS1):mCherry expression were 
selected and raised to sexual maturity (90 dpf). Mature adults were outcrossed with AB fish. Positive 
Tg(nkx3.2(JRS1):mCherry) F1 embryos were raised to establish stable transgenic lines. For generating 
double transgenic zebrafish, the Tg(nkx3.2(JRS1):mCherry) line was crossed with previously published 
zebrafish lines Tg(fli1a:egfp) (Lawson and Weinstein, 2002) or Tg(sox10:egfp) (Carney et al., 2006).

For comparison between wild-type and homozygous nkx3.2 gene mutant zebrafish, the previously 
reported uu2803 null allele (Waldmann et al., 2021) was crossed with double transgenic line nkx3.2(-
JRS1):mCherry/sox10:egfp and further incrossed to produce nkx3.2−/− fish.

Confocal live-imaging microscopy
Confocal microscopy was performed on an inverted Leica TCS SP5 microscope using Leica 
Microsystem LAS-AF software. Embryos were sedated with 0.16% MS-222 and embedded in 0.8% 
low-melting agarose on the glass bottom of the 35 mm dishes. To prevent drying, embedded embryos 
were covered with system water containing 0.16% MS-222. Images are presented as single images or 
maximum projections, as specified.
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 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology | Evolutionary Biology

Leyhr, Waldmann et al. eLife 2022;11:e75749. DOI: https://​doi.​org/​10.​7554/​eLife.​75749 � 20 of 27

Enhancer deletion using CRISPR/Cas9
Two gRNAs targeting flanking regions of the zebrafish nkx3.2 JRS1 enhancer were selected with the 
use of CRISPOR online design tool (Concordet and Haeussler, 2018): 5′-​T​​GACG​​AGAG​​GAGC​​GACA​​
CGC-​3′ and 5′-​G​​CGTG​​TCGC​​TCCT​​CTCG​​TCA-​3′. The gRNAs were prepared as previously described 
(Varshney et al., 2015). In short, annealing of the two oligos containing T7 promoter, target-specific 
sequence, where the first two nucleotides were modified for the T7 synthesis needs, and the guide 
core sequence was performed. Reaction products were used as a template for the in vitro transcription 
(HiScribe T7 High Yield RNA Synthesis Kit, England Biolabs) and purified. Cas9 mRNA was prepared 
from the p-T3Ts-nCAs9 plasmid (46757 Addgene) including the restriction enzyme digestion (XbaI, 
New England Biolabs), in vitro transcription (mMESSAGE mMACHINE T3 Transcription Kit, Life Tech-
nologies) and product purification. Fertilized eggs were obtained by natural spawning of AB zebrafish 
and injected at the one-cell stage with 150 pg of Cas9 mRNA and 50 pg of each sgRNA in RNase-free 
H2O. The efficiency of the targets was estimated by the CRISPR-STAT method (Carrington et  al., 
2015). Sequences of the primers used for activity testing and genotyping were 5′-​G​​TGAC​​ACGC​​TAAC​​
TGCT​​GGA-​3′ and 5′-​G​​AACA​​TCCT​​TCAT​​GGGC​​TTC-​3′. All primer and gRNA sequences are shown 
schematically in Figure 6—figure supplement 1.

Injected F0 fish were raised to adulthood and individually outcrossed with AB zebrafish. Clutches 
of 5 dpf larvae were genotyped to determine the presence of the enhancer deletion in the germline 
of F0 parents. Three batches of 8–12 randomly selected larvae were sacrificed and lysed in a solution 
of 150 µl 50 µM NaOH for 20 min at 95°C. The lysis solution was subsequently stabilized by adding 
100 µl 0.1 mM Tris. 1 µl of the resulting lysis solution was added into a 25 µl PCR reaction containing 
Platinum Taq DNA Polymerase and the two primers flanking the JRS1 deletion site, and was run for 35 
cycles. Resulting PCR products were run on 1% agarose gels to determine their size. The PCR product 
representing the JRS1 deletion allele was 352 bp in length, and easily distinguishable from 790 bp 
wild-type allele. Four deletion-positive F0 zebrafish were outcrossed with Tg(fli1a:GFP) fish (Lawson 
and Weinstein, 2002) to produce four F1 lines, which were raised to adulthood and genotyped by 
fin clip. One of the four heterozygous lines (deletion allele uu3731, designated ΔJRS1) was selected 
for further analysis. These F1 nkx3.2+/ΔJRS1 fish were incrossed to produce F2 nkx3.2ΔJRS1/ΔJRS1 fish for 
analysis. JRS1 deletion was confirmed by Sanger sequencing (Eurofins Genomics) using the same PCR 
primers.

Skeletal staining
Zebrafish larvae and juveniles were stained with Alcian blue and alizarin red following a protocol modi-
fied from Walker and Kimmel, 2007, previously described by Waldmann et al., 2021. Specimens 
were imaged using a Leica M205 FCA fluorescence stereomicroscope with attached Leica DFA 7000T 
camera.

Optical projection tomography
A custom-built OPT (Sharpe et al., 2002; Zhang et al., 2020) system was used for imaging of 9 dpf 
skeletal stained zebrafish larvae. The OPT system, reconstruction algorithms, and alignment workflow 
were based on the previously described method (Allalou et al., 2017). All larvae were kept in 99% 
glycerol before being loaded into the system for imaging. The rotational images were acquired using 
a ×3 telecentric objective with a pixel resolution of 1.15 μm/pixel. The tomographic 3D reconstruction 
was done using a filtered back projection algorithm in MATLAB (Release R2015b; MathWorks, Natick, 
MA) together with the ASTRA Toolbox (Palenstijn et al., 2013). For the data alignment, the regis-
tration toolbox elastix (Klein et al., 2010; Shamonin et al., 2013) was used. To reduce the computa-
tional time all 3D volumes in the registration were down-sampled to half the resolution.

The registration workflow was similar to the methods described by Allalou et al., 2017 where the 
wild-type fish were initially aligned and used to create an average reference fish using an Iterative 
Shape Averaging (ISA) algorithm (Rohlfing et al., 2001). All wild-type (N = 12), nkx3.2+/ΔJRS1 (N = 10), 
and nkx3.2ΔJRS1/ΔJRS1 (N = 8) zebrafish were then aligned to the reference.

Whole-mount in situ hybridization
Primers were designed for the zebrafish nkx3.2 gene sequence forward 5′-​C​​TTCA​​ACCA​​CCAG​​CGTT​​
ATCT​C-3​′ and reverse 5′-​A​​CATG​​TCTA​​GTAA​​ACGG​​GCGA​-3′​. Fragments were cloned from zebrafish 
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cDNA into the pCR II TOPO vector and antisense RNA probes were synthesized with either SP6 or T7 
RNA polymerase and digoxigenin labelling mix (Roche). In situ hybridization on zebrafish whole-mount 
48 and 56 hpf embryos was performed as previously described (Filipek-Górniok et al., 2013). Geno-
typing, imaging, and quantification of in situ stained zebrafish embryos were performed according to 
the previously published protocol by Dobrzycki et al., 2020b. Specimens were imaged using a Leica 
M205 FCA fluorescence stereomicroscope with attached Leica DFA 7000T camera. Normal distribu-
tion of obtained pixel intensity values (relative to the unstained tissue background) assigned to the 
genotypes was verified with a Kolmogorov–Smirnov test. The differences in wild-type and nkx3.2+/ΔJRS1 
(N = 16 at 48 hpf, N = 18 at 56 hpf) versus nkx3.2ΔJRS1/ΔJRS1 (N = 17 at 48 hpf, N = 18 at 56 hpf) groups 
was analysed with unpaired t-tests.

Quantitative PCR analysis of gene expression
6 dpf larvae produced from incrossing heterozygous parents were euthanized with an overdose of 
MS-222 (300 mg/l) and the tails were removed for genotyping while the head and remaining body 
were stored in RNALater (Invitrogen). Total RNA was extracted with Trizol reagent (Fisher) from a pool 
of seven larvae of each genotype, with three biological replicates per genotype. To prevent genomic 
DNA contamination, extractions were DNase-treated using the Turbo DNA-free kit (Ambion). cDNA 
was synthesized from 200 ng total RNA from each sample using the SuperScript IV First-Strand cDNA 
Synthesis kit (Invitrogen) with random hexamers in a 20  µl reaction. qPCR was performed on all 
samples in technical triplicates with PowerUp SYBR Green Master Mix using a 7500 Real Time PCR 
System (Applied Biosystems) and the following primers: rpl13a forward 5′-​T​​CTGG​​AGGA​​CTGT​​AAGA​​
GGTA​​TGC-​3′; rpl13a reverse 5′-​A​​GACG​​CACA​​ATCT​​TGAG​​AGCA​G-3​′; nkx3.2 forward 5′-​A​​CTGC​​GTGT​​
CCGA​​CTGT​​AACA​C-3​′; nkx3.2 reverse 5′-​G​​TCTC​​GGTG​​AGTT​​TGAG​​GGA-​3′. Amplicon sizes for these 
target genes were 148 and 187 bp, respectively. A dissociation step was performed at the end of the 
analysis to verify the specificity of the products, and standard curves were generated from pooled 
cDNA from all samples in triplicate for each target gene to verify the efficiency of the primers (R2 > 
0.99). nkx3.2 expression was normalized to rpl13a levels and relative quantification of gene expres-
sion was calculated using the Pfaffl, 2001 method, displaying the fold difference in heterozygous and 
homozygous mutants relative to wild type, which was set to 1.0. FDR-adjusted p values (Benjamini 
and Hochberg, 1995) are reported from pairwise Wilcoxon tests.

Geometric morphometric analysis
We employed 2D geometric morphometric analysis using 100 landmarks defined along the edge of 
Meckel’s cartilage at the jaw joint interface. From maximum projection images generated by OPT, 
standardized with a lateral orientation, the shapes of Meckel’s cartilage were traced in Adobe Illus-
trator 2020. These shapes were then aligned by orientation and the joint interfacing surface, but not 
resized, before most of the anterior portion of the shapes were cut away to a standardized extent, 
leaving shapes representing just the posterior head of Meckel’s cartilage. These shapes were digitized 
using 100 equidistant landmarks using tpsDig2 (v2.3) (Rohlf, 2017), and imported into R for analysis 
(R Development Core Team, 2021). The two landmarks at the ends of each curve were used as fixed 
landmarks, and the remaining 98 as semi-landmarks.

Generalized procrustes analysis was used to align coordinates of the landmarks for subsequent 
morphospace analysis using the geomorph package (v3.3.2) (Adams et al., 2021) and bivariate plots 
of the PC axis were generated using the borealis package (Angelini, 2021). FDR-adjusted p values 
(Benjamini and Hochberg, 1995) are reported from pairwise comparisons of group means after 
accounting for allometric differences.
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