Unique structure and positive selection promote the rapid divergence of Drosophila Y chromosomes

Ching-Ho Chang¹#, Lauren E. Gregory¹, Kathleen E. Gordon²*, Colin D. Meiklejohn² and Amanda M. Larracuente¹*

Affiliations:
¹Department of Biology, University of Rochester, Rochester, NY 14627
²School of Biological Sciences, University of Nebraska-Lincoln, NE 68502
#Current address: Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
^Current address: Department of Molecular Biology and Genetics, Field of Genetics, Genomics and Development, Cornell University, Ithaca, NY, 14853

*correspondence to cchang2@fredhutch.org, alarracu@ur.rochester.edu
Abstract

Y chromosomes across diverse species convergently evolve a gene-poor, heterochromatic organization enriched for duplicated genes, LTR retrotransposons, and satellite DNA. Sexual antagonism and a loss of recombination play major roles in the degeneration of young Y chromosomes. However, the processes shaping the evolution of mature, already degenerated Y chromosomes are less well-understood. Because Y chromosomes evolve rapidly, comparisons between closely related species are particularly useful. We generated de novo long read assemblies complemented with cytological validation to reveal Y chromosome organization in three closely related species of the *Drosophila simulans* complex, which diverged only 250,000 years ago and share >98% sequence identity. We find these Y chromosomes are divergent in their organization and repetitive DNA composition and discover new Y-linked gene families whose evolution is driven by both positive selection and gene conversion. These Y chromosomes are also enriched for large deletions, suggesting that the repair of double-strand breaks on Y chromosomes may be biased toward microhomology-mediated end joining over canonical non-homologous end-joining. We propose that this repair mechanism contributes to the convergent evolution of Y chromosome organization across organisms.
Introduction

Most sex chromosomes evolved from a pair of homologous gene-rich autosomes that acquired sex-determining factors and subsequently differentiated. Y chromosomes gradually lose most of their genes, while their X chromosome counterparts tend to retain the original autosomal complement of genes. This Y chromosome degeneration follows a suppression of recombination [1], which limits the efficacy of natural selection, and causes the accumulation of deleterious mutations through Muller’s ratchet, background selection, and hitchhiking effects [2-6]. As a consequence, many Y chromosomes present a seemingly hostile environment for genes, with their mutational burden, high repeat content, and abundant silent chromatin.

Genomic studies of Y chromosome evolution focus primarily on young sex chromosomes, addressing how the suppression of recombination promotes Y chromosome degeneration at both the epigenetic and genetic levels [2, 7]. Although sexually antagonistic selection is traditionally cited as the cause of recombination suppression on the Y chromosome, direct evidence for its role is still lacking [8] and new models propose that regulatory evolution is the initial trigger for recombination suppression [9]. Regardless of its role in initiating recombination suppression, on degenerating Y chromosomes, sexually antagonistic selection may accelerate Y-linked gene evolution to optimize male-specific functions. Indeed, Y-linked genes tend to have slightly higher rates of protein evolution than their orthologs on other chromosomes [10, 11]. Higher rates of Y-linked gene evolution are driven by positive selection, relaxed
selective constraints and male-biased mutation patterns, with most Y-linked genes evolving under at least some functional constraint [11]. Although there is evidence suggesting that some Y chromosomes have experienced recent selective sweeps [12, 13], the relative importance of positive selection in shaping Y chromosome evolution remains unclear.

Y chromosomes harbor extensive structural divergence between species, in part through the acquisition of genes from other genomic regions [14-21]. However, the functions of most Y-linked genes are unknown [18, 21-23]. Some Y-linked genes are duplicated and, in extreme cases, amplified into so-called ampliconic genes—gene families with tens to hundreds of highly similar sequences. Y chromosomes of both Drosophila and mammals have independently acquired and amplified gene families, which turnover rapidly between closely related species [14, 17, 20, 24-26]. Following Y-linked gene amplification, gene conversion between gene copies may enhance the efficacy of selection on Y-linked genes in the absence of crossing over [15, 27].

Detailed analyses of old Y chromosomes have been restricted to a few species with reference-quality assemblies, e.g., mouse and human. The challenges of cloning and assembling repeat-rich regions of the genome have stymied progress towards a complete understanding of Y chromosome evolution [28-30]. Recent advances in long-read sequencing make it feasible to assemble large parts of Y chromosomes [19, 21, 22, 31] enabling comparative studies of a majority of Y-linked sequences in closely related species.
Drosophila melanogaster and three related species in the *D. simulans* clade are ideally suited to study Y chromosome evolution. These Y chromosomes are functionally divergent, contribute to hybrid sterility [32-35], and at least four X-linked meiotic drive systems likely shape Y chromosome evolution in these species [36-43]. Previous genetic and transcriptomic studies suggest that Y chromosome variation can impact male fitness and gene regulation [44-51]. Since there is minimal nucleotide variation and divergence in Y-linked protein-coding sequences within and between these *Drosophila* species [11, 12, 40], structural variation may be responsible for the majority of these effects. For example, 20-40% of *D. melanogaster* Y-linked regulatory variation (YRV) comes from differences in ribosomal DNA (rDNA) copy numbers [52]. The chromatin on *Drosophila* Y chromosomes has genome-wide effects on expression level and chromatin states [53], but aside from the rDNA, the molecular basis of Y chromosome divergence and variation in these species remains elusive.

To study the factors and forces shaping the evolution of Y chromosome structure, we assembled the Y chromosomes of the three species in the *D. simulans* clade to reveal their structure and evolution and compared them to *D. melanogaster*. We find that the Y chromosomes of the *D. simulans* clade species have high duplication and gene conversion rates that, along with strong positive selection, shaped the evolution of two new ampliconic protein-coding gene families. We propose that, in addition to positive selection, sexual antagonism, and genetic conflict, differences in the usage of DNA repair pathways may give rise to the unique patterns of Y-linked mutations. Together
these effects may drive the convergent evolution of Y chromosome structure across taxa.

Results

Improving Y chromosome assemblies using long-read assembly and fluorescence in situ hybridization (FISH)

Long reads have enabled the assembly of many repetitive genome regions but have had limited success in assembling Y chromosomes [17, 19, 21, 22]. To improve Y chromosome assemblies for comparative genomic analyses, we applied our heterochromatin-sensitive assembly pipeline [22] with long reads that we previously generated [54] to de novo reassemble the Y chromosome from the three species in the Drosophila simulans clade. We also resequenced male genomes using PCR-free Illumina libraries to polish these assemblies. Our heterochromatin-enriched methods improve contiguity compared to previous D. simulans clade assemblies. We recovered all known exons of the 11 canonical Y-linked genes conserved across the melanogaster group, including 58 exons missed in previous assemblies (Supplementary file 1; [55, 56]). Based on the median male-to-female coverage [22], we assigned 13.7 to 18.9 Mb of Y-linked sequences per species with N50 ranging from 0.6 to 1.2 Mb. The quality of these new D. simulans clade Y assemblies is comparable to D. melanogaster (Table 1; [22]). We evaluated our methods by comparing our assignments for every 10-kb window of assembled sequence to its known chromosomal location. Our assignments have 96, 98, and 99% sensitivity and 5, 0, and 3% false-positive rates in D. mauritiana, D. simulans, and D. sechellia, respectively (Supplementary file 2). We have lower
confidence in our *D. mauritiana* assignments, because the male and female Illumina reads are from different library construction methods. Therefore, we applied an additional criterion only in *D. mauritiana* based on the female-to-male total mapped reads ratio (<0.1), which reduces the false-positive rate from 13 to 5% in regions with known chromosomal location (Supplementary file 2; Figure 1–figure supplement 1). We can detect potential misassemblies by looking for discordant assignments between 10-kb windows on the same contigs. Because we do not find any obviously discordant F/M ratios for any contigs, we make chromosome assignments based on median male-to-female coverage and the ratio of female-to-male total mapped reads across whole contigs. Based on these chromosome assignments, we find 40–44% lower PacBio coverage on Y than X chromosomes in all three species (Figure 1–figure supplement 2; see Appendix 1).

Table 1. Contiguity statistics for heterochromatin-enriched assemblies

<table>
<thead>
<tr>
<th>Y chromosome assembly</th>
<th># of contigs</th>
<th>Total length</th>
<th>Contigs N50</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. melanogaster<sup>a</sup></td>
<td>80</td>
<td>14,578,684</td>
<td>416,887</td>
</tr>
<tr>
<td>D. mauritiana<sup>b</sup></td>
<td>55</td>
<td>17,880,069</td>
<td>1,628,994</td>
</tr>
<tr>
<td>D. simulans<sup>b</sup></td>
<td>38</td>
<td>13,717,056</td>
<td>1,031,383</td>
</tr>
<tr>
<td>D. sechellia<sup>b</sup></td>
<td>63</td>
<td>14,899,148</td>
<td>555,130</td>
</tr>
</tbody>
</table>

^aChang and Larracuente 2019
^bThis paper

The cytological organization of the *D. simulans* clade Y chromosomes is not well-described [57-59]. Therefore, we generated new physical maps of the Y chromosomes by combining our assemblies with cytological data. We performed FISH on mitotic
chromosomes using probes for 12 Y-linked sequences (Figure 1 and Figure 1–Figure supplement 3–4; Supplementary file 3) to determine Y chromosome organization at the cytological level. We also determined the location of the centromeres using immunostaining with a Cenp-C antibody (Figure 1–Figure supplement 4; [60]). These cytological data permit us to 1) validate our assemblies, and 2) infer the overall organization of the Y chromosome by orienting our scaffolds on cytological maps. Of the 11 Y-linked genes, we successfully ordered 10, 11, and 7 genes on the cytological bands of *D. simulans*, *D. mauritiana* and *D. sechellia*, respectively (Figure 1 and Figure 1–Figure supplement 3). Although we cannot examine the detailed organization as a complete contiguous Y-linked sequence, we did not find any discordance between our scaffolds and cytological data. We find evidence for extensive Y chromosomal structural rearrangements, including changes in satellite distribution, gene order, and centromere position. These rearrangements are dramatic even among the *D. simulans* clade species, which diverged less than 250 KYA (Figure 1 and Figure 1–Figure supplement 3). The Y chromosome centromere position appears to be the same as determined by Berloco et al. for different strains of *D. simulans* and *D. mauritiana*, but not for *D. sechellia* [59]. One explanation for this discrepancy could be between-strain variation in *D. sechellia* Y chromosome centromere location. Together, our new physical maps and assemblies provide both large and fine-scale resolution on Y chromosome organization in the *D. simulans* clade.

Y-linked sequence and copy number divergence across three species

Although the *D. simulans* clade species diverged only recently, Y chromosome introgression between pairs of species disrupts male fertility and influences patterns of
One candidate locus that may contribute to functional divergence and possibly hybrid lethality is the Y-linked rDNA [52, 61]. Y-linked rDNA, specifically 28S rDNA, have been lost in *D. simulans* and *D. sechellia*, but not in *D. mauritiana* [58, 62, 63]. However, the intergenic spacer (IGS) repeats between rDNA genes, which are responsible for X-Y pairing in *D. melanogaster* males [64], are retained on both sex chromosomes in all three species [58, 62, 63]. Consistent with previous cytological studies [58, 62, 63], we find that *D. simulans* and *D. sechellia* lost most Y-linked 18S and 28S rDNA sequences (Figure 1–figure supplement 5). Our assemblies indicate that, despite this loss of the rRNA coding sequences, all three species still retain IGS repeats. However, we and others do not detect Y-linked IGS repeats at the cytological level in *D. sechellia* (Figure 1–figure supplement 3–4; [58, 62, 63]), suggesting that their abundance is below the level of detection by FISH in this species.

Structural variation at Y-linked genes may also contribute to functional variation and divergence in the *D. simulans* clade. Previous studies reported many duplications of canonical Y-linked genes in *D. simulans* [40, 54, 65]. We find that all three species have at least one intact copy of the 11 canonical Y-linked genes, but there is also extensive copy number variation in Y-linked exons across these species (Figure 2 and Figure 2–figure supplement 1–2, Supplementary file 1; [66]). Using Illumina reads, we confirm the copy number variation in our assemblies and reveal some duplicated Y-linked exons, particularly in *kl-3*, *wdy* and *Ppr-Y*, that are not assembled in *D. sechellia* (Figure 2–figure supplement 1). Some duplicates may be functional because they are expressed and have complete open reading frames, (*e.g.*, *ARY, Ppr-Y1* and *Ppr-Y2*). The *D.*
simulans Y chromosome has four complete copies of ARY, all of which show similar expression levels from RNA-seq data (Figure 2B and Supplementary file 4), but two copies have inverted exons 1 and 2. D. sechellia also contains at least five duplicated copies of ARY, some of which also have the inverted exons 1 and 2, but the absence of RNA-seq data from testes of this species prevents inferences regarding whether all copies of ARY are expressed. However, most duplications include only a subset of exons, and in many cases, the duplicated exons are located on the periphery of the presumed functional gene copy (Figure 2B and Figure 2-figure supplement 2, Supplementary file 4). For example, both D. simulans and D. mauritiana have multiple copies of exons 8-12 located at the 3’ end of kl-2 (Figure 2B). In D. simulans, most of these extra exons have low to no expression, while in D. mauritiana, there appears to be a substantial expression from many of the duplicated terminal exons, as well as an internal duplication of exon 5. Although the duplications of Y-linked genes can influence their expression, especially for genes with short introns (e.g., ARY, Ppr-Y1 and Ppr-Y2), it is unclear what effects these duplicated exons have on the protein sequences of these fertility-essential genes.

All exon-intron junctions are conserved within full-length copies of the canonical Y-linked genes, but intron lengths vary between these species (Figure 3). The length of longer introns (>100 bp in any species) is more dynamic than that of short introns (Figure 3; Supplementary file 5). The dramatic size differences in most introns cannot be attributed to a single deletion or duplication (see ORY example in Figure 2-figure supplement 3). Some Y-linked genes contain mega-base sized introns (i.e., mega-introns) whose transcription manifests as cytologically visible lampbrush-like loops (Y-
loops) in primary spermatocytes [67, 68]. While Y-loops are found across the Drosophila genus [69, 70], their potential functions are unknown [71-75] and the genes/introns that produce Y-loops differs among species [76] (Appendix 1). D. melanogaster has three Y-loops transcribed from introns of ORY (ks-1 in previous literature), kl-3, and kl-5 [67]. Based on cytological evidence, D. simulans has three Y-loops, whereas D. mauritiana and D. sechellia only have two [70]. Of all potential loop-producing introns, we find that only the kl-3 mega-intron is conserved in all four species and has the same intron structure and sequences (i.e., (AATAT)$_n$ repeats). While both kl-5 and ORY produce Y-loops with (AAGAC)$_n$ repeats in D. melanogaster, (AAGAC)$_n$ is missing from the genomes of the D. simulans clade species. This observation is supported by our assemblies, the Illumina raw reads (Supplementary file 6), and published FISH results [77]. In the D. simulans clade, the ORY introns do not carry any long tandem repeats. However, kl-5 has introns with (AATAT)$_n$ repeats that may form a Y-loop in the D. simulans clade species. These data suggest that, while mega-introns and Y-loops may be conserved features of spermatogenesis in Drosophila, they turn over at both the sequence and gene levels over short periods of evolutionary time (i.e., ~2 My between D. melanogaster and the D. simulans clade).

Consistent with previous studies [18, 54], we identify high rates of gene duplication to the D. simulans clade Y chromosome from other chromosomes. We find 49 independent duplications to the Y chromosome in our heterochromatin-enriched assemblies (Figure 4; Supplementary file 7), including eight newly discovered duplications [18, 54]. Twenty-eight duplications are DNA-based, 13 are RNA-based, and the rest are unknown due to limited sequence information (Supplementary file 7). The
rate of transposition to the Y chromosome is about 3–4 times higher in the *D. simulans* clade compared to *D. melanogaster* [22]. We also infer that 17 duplicated genes were independently deleted from *D. simulans* clade Y chromosomes. Some of these Y-linked duplications, including *Fdy*, *Mst77Y* and *pirate*, are known to be functional and/or under purifying selection [18, 78-80]. However, based on transcriptomes from *D. simulans* and *D. mauritiana* testes, we suspect that more than half of the duplicated genes are likely pseudogenes that either show no expression in testes (< 3 TPM) or lack open reading frames (< 100 amino acids; Supplementary file 7). We also detect intrachromosomal duplications of these Y-linked pseudogenes (Supplementary file 7), suggesting a high duplication rate within these Y chromosomes.

Most new Y-linked duplications in *D. melanogaster* and the *D. simulans* clade are from genes with presumed functions in chromatin modification, cell division, and sexual reproduction (Supplementary file 8), consistent with other *Drosophila* species [17, 81]. While Y-linked duplicates of genes with these functions may be selectively beneficial, a duplication bias could also contribute to this enrichment, as genes expressed in the testes may be more likely to duplicate to the Y chromosome due to its open chromatin structure and transcriptional activity during spermatogenesis [82-84].

The evolution of new Y-linked gene families

Ampliconic gene families are found on Y chromosomes in multiple *Drosophila* species [24]. We discovered two new gene families that have undergone extensive amplification on *D. simulans* clade Y chromosomes (Figure 5). Both families appear to encode functional protein-coding genes with complete open reading frames and high expression in mRNA-seq data (Supplementary file 9) and have 36–146 copies in each species’ Y
chromosome. We also confirm that >90% of the variants in our assembled Y-linked gene families are represented in Illumina DNA-seq data (Appendix 1).

The first amplified Y-linked gene family, *SR Protein Kinase (SRPK)*, is derived from an autosome-to-Y duplication of the sequence encoding the testis-specific isoform of the gene *SR Protein Kinase (SRPK)*. After the duplication of *SRPK* to the Y chromosome, the ancestral autosomal copy subsequently lost its testis-specific exon via a deletion (Figure 5A). The movement of the male-specific isoform inspired us to name the Y-linked *SRPK* gene family *Lo-han-kha (Lhk)*, which is the Taiwanese term for the male vagabonds that moved from mainland China to Taiwan during the Qing dynasty. In *D. melanogaster*, *SRPK* is essential for both male and female reproduction [85]. We therefore hypothesize that the relocation of the testis-specific isoform to the *D. simulans* clade Y chromosomes may have resolved intralocus sexual antagonism over these two functions. Our phylogenetic analysis identified two subfamilies of *Lhk* that we designate *Lhk*-1 and *Lhk*-2 (Figure 6A). Both subfamilies are shared by all *D. simulans* clade species and show a 5.5% protein divergence between species. The two subfamilies are found in different locations in our Y chromosome assemblies; consistent with this observation, we detect two to three *Lhk* foci on Y chromosomes in the *D. simulans* clade using FISH (Figure 6A and 6C and Figure 1-figure supplement 3–4).

The second amplified gene family comprises both X-linked and Y-linked duplicates of the *Ssl* gene located on chromosome 2R; it is unclear whether the X- or Y-linked copies originated first (Figure 5B). The X-linked copies are known as *CK2ßtes-like* in *D. simulans* [86]. The Y-linked copies are also found in *D. melanogaster* but are degenerated and have little or no expression [22, 87], leading to their designation as
pseudogenes. In the *D. simulans* clade species, however, the Y-linked paralogs have high levels of expression (> 50 TPM in testes, Supplementary file 9) and complete open reading frames, so we refer to this gene family as *CK2βtes-Y*. Both *CK2βtes-like* (4–9 copies) and *CK2βtes-Y* (36–123 copies based on the assemblies) are amplified on the X and Y chromosome in the *D. simulans* clade relative to *D. melanogaster* (Supplementary file 9) [86]. The Y-linked copies in *D. melanogaster*, Su(Ste), are known to be a source of piRNAs [88]. We did not detect any testis piRNAs from either gene family in two small RNA-seq datasets (SRR7410589 and SRR7410590), however, we do find some short (< 23-nt) reads (0.003–0.005% of total mapped reads) mapped to these gene families (Supplementary file 10).

We inferred gene conversion rates and the strength of selection on these Y-linked gene families using phylogenetic analyses on coding sequences. We estimated the gene conversion rate in *D. simulans* clade Y-linked gene families based on four-gamete tests and gene similarity [15, 22, 89, 90]. In general, *D. simulans* clade species show similar gene conversion rates (on the order of 10^{-4} to 10^{-6}) in both of these families compared to our previous estimates in *D. melanogaster* (Supplementary file 11; [22]). These higher gene conversion rates compared to the other chromosomes might be a shared feature of Y chromosomes across taxa [15].

To estimate rates of molecular evolution, we conducted branch-model and branch-site-model tests on the reconstructed ancestral sequences of *Lhk-1*, *Lhk-2*, *CK2βtes-Y*, and two *CK2βtes-like* using PAML (Figure 6A and 6B; [91]). We used reconstructed ancestral sequences for our analyses to avoid sequencing errors in the assemblies, which appear as singletons. We infer that after the divergence of *D. simulans* clade
species, *Lhk-1* evolved under purifying selection, whereas *Lhk-2* evolved under positive selection (Figure 6A; Figure 6–figure supplement 1; Supplementary file 12). Using transcriptome data, we observe that highly expressed *Lhk-1* copies have fewer nonsynonymous mutations than lowly expressed copies in *D. simulans*, consistent with purifying selection (Chi-square test's P=0.01; Figure 6–figure supplement 2 and Supplementary file 13). Both *Lhk* gene families are expressed 2 to 7-fold higher than the ancestral copy on 2R in the same species, and 1.9 to 64-fold higher than their ortholog, *SRPK-RC*, in *D. melanogaster*, suggesting that gene amplification may confer increased expression. In both *D. simulans* and *D. mauritiana*, *Lhk-1* is shorter due to deletions following its origin and has a higher expression level than *Lhk-2*. Both *Lhk* gene families have higher copy numbers in *D. simulans* than *D. mauritiana*, which likely contributes to their higher expression level in *D. simulans* (Supplementary file 9). For both *Lhk-1* and *Lhk-2*, copies from the same species are more similar than copies from other species—a signal of concerted evolution [92].
Table 2. PAML analyses reveal positive selection on Y-linked ampliconic gene families

<table>
<thead>
<tr>
<th>Lhk</th>
<th>Branch test with CodonFreq=0</th>
<th>Branch-site test site class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ω0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>one ω</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>two ω<sup>a</sup></td>
<td>0.11 1.05</td>
<td>-3218.26</td>
</tr>
<tr>
<td>three ω<sup>c</sup></td>
<td>0.11 1.49 0.43</td>
<td>-3216.30</td>
</tr>
<tr>
<td>CK2ßtes</td>
<td></td>
<td>0.20 0.42 1.05</td>
</tr>
</tbody>
</table>

^aAutosomal and Y lineage have protein evolution of ω1 and ω2, respectively.

^bAutosomal and sex chromosomal (X and Y) have protein evolution of ω1 and ω2, respectively.

^cSee Supplementary file 12, Supplementary file 14, Figure 6–figure supplement 1 and Figure 6–figure supplement 3 for the assignment of lineages.

^dSee Supplementary file 12 and Supplementary file 14 for all the sites.
The ancestral Ssl gene experienced a slightly increased rate of protein evolution after it duplicated to the X and Y chromosomes (\(\omega = 0.41\) vs. \(0.23; P = 0.03\); Figure 6B; Figure 6–figure supplement 3; Supplementary file 14). We find that both CK2βtes-like and CK2βtes-Y share strong signals of positive selection, based on branch-model and branch-site-model tests (\(P = 8.8E-9\); Figure 6B; Figure 6–figure supplement 3; Supplementary file 14). In *D. melanogaster*, the overexpression of the CK2βtes-like X-linked homolog, *Stellate*, can drive in the male germline by killing Y-bearing sperm and generating female-biased offspring [93-95]. We suspect that CK2βtes-like and CK2βtes-Y might have similar functions and may also have a history of conflict. Therefore, the co-amplification of sex-linked genes and positive selection on their coding sequences may be a consequence of an arms race between sex chromosome drivers.

Y chromosome evolution driven by specific mutation patterns

The specific DNA-repair mechanisms used on Y chromosomes might contribute to their high rates of intrachromosomal duplication and structural rearrangements. Because Y chromosomes lack a homolog, they must repair double-strand breaks (DSBs) by non-homologous end joining (NHEJ) or microhomology-mediated end joining (MMEJ), which relies on short homology (usually \(> 2\) bp) to repair DSBs [96]. Compared to NHEJ, MMEJ is more error-prone and can result in translocations and duplications [97]. Preferential use of MMEJ instead of NHEJ could contribute to the high duplication rate and extensive genome rearrangements that we observe on Y chromosomes. To infer the mechanisms of DSB repair on Y chromosomes, we counted indels between Y-linked duplicates and their parent genes for a set of 17 putative pseudogenes. Both NHEJ and MMEJ can generate indels, but NHEJ usually produces smaller indels (1–3 bp).
compared to MMEJ (> 3 bp) [97, 98]. We also cataloged short stretches of homology between each duplicate and its parent. To compare Y-linked patterns of DSB repair to other regions of the genome, we measured the size of polymorphic indels in intergenic regions and pseudogenes on the autosomes and X chromosomes from population data in *D. melanogaster* (DGRP [99]) and *D. simulans* [100]. To the extent that these indels do not experience selection, their sizes should reflect the mutation patterns on each chromosome. We observe proportionally more large deletions on Y chromosomes (25.1% of Y-linked indels are ≥10-bp deletions; Supplementary file 15) compared to other chromosomes in both *D. melanogaster* (12.8% and 15.2% of indels are ≥10-bp deletions in intergenic regions and pseudogenes) and *D. simulans* (7.3% of indels are ≥10-bp deletions in intergenic regions; all pairwise chi-square’s P < 1e-6; Figure 4A; Supplementary file 15). The pattern of excess large deletions is shared in the three *D. simulans* clade species Y chromosomes but is not obvious in *D. melanogaster* (Figure 7B). However, because most (36/41) *D. melanogaster* Y-linked indels in our analyses are from copies of a single pseudogene (*CR43975*), it is difficult to compare to the larger samples in the *simulans* clade species (duplicates from 17 genes). The differences in deletion sizes between the Y and other chromosomes are unlikely to be driven by heterochromatin or the lack of recombination. The non-recombining and heterochromatic dot chromosome has a deletion size profile more similar to the other autosomes in *D. simulans* (10.9% of indels are ≥10-bp deletions), consistent with a previous study using TE sequences across different chromatin domains [101]. We also found fewer large deletions (2/149 indels are ≥10-bp in 400-kb alignments; Figure 7A) in heterochromatic pseudogenes using 19 long-read (Pacbio or nanopore) assemblies.
The enrichment of 1-bp indels (101/149; Figure 7A) in heterochromatic pseudogenes might represent sequencing errors in long-read assemblies [102]. These results suggest that Y chromosomes may use MMEJ over NHEJ compared to other chromosomes, particularly in the simulans clade species. We also find that across the genome larger deletions (>7bp) share a similar length of microhomologies for repairing DSBs (39.5–57% deletions have ≥ 2 bp microhomology; Chi-square test for microhomology length between Y and other chromosomes, P > 0.24; Supplementary file 15–16), consistent with most being a consequence of MMEJ-mediated repair.

The satellite sequence composition of Y chromosomes differs between species [77, 103, 104]. A high duplication rate may accelerate the birth and turnover of Y-linked satellite sequences. We discovered five new Y-linked satellites in our assemblies and validated their location using FISH (Figure 1-figure supplement 3–4 and Supplementary file 6). These satellites only span a few kilobases of sequences (5,515 to 26,119 bp) and are homogenized. According to its flanking sequence, one new satellite, (AAACAT)$_n$, originated from a DM412B transposable element, which has three tandem copies of AAACAT in its long terminal repeats. The AAACAT repeats expanded to 764 copies on the Y chromosome specifically in D. mauritiana. This is consistent with other reports of novel satellites arising from TEs [105]. The other four novel satellites are flanked by transposons (< 50 bp) and may derive from non-repetitive sequences. The MMEJ pathway may contribute to the birth of new repeats, as this mechanism is known to generate tandem duplications via template-switching during repair [97]. Short tandem repeats can be further amplified via saltatory replication or unequal crossing-over between sister chromatids.
Consistent with findings in other species [19, 22], we find an enrichment of LTR retrotransposons on the *D. simulans* clade Y chromosomes relative to the rest of the genome (Supplementary file 17). Interestingly, we find that the Y-linked LTR retrotransposons also turn over between species (Figure 7-figure supplement 1 and Supplementary file 18). We find a positive correlation between the difference in Y-linked TE abundance between *D. melanogaster* and each of the *D. simulans* clade species versus the rest of the genome (*rho* = 0.45–0.50; Figure 7-figure supplement 2 and Supplementary file 18). This suggests that global changes in transposon activity could explain the differences in Y-linked TEs abundance between species. However, the correlations between species within the *D. simulans* clade are weaker (*rho* < 0.23; Figure 7-figure supplement 2 and Supplementary file 18), consistent with the possibility that some TEs may shift their insertion preference between chromosomes. To test this hypothesis, we estimated the ages of LTR retrotransposons by their length. We find that the recent insertions of LTR transposons are differently distributed across chromosomes between species (Figure 7-figure supplement 3), suggesting that insertion preferences towards genomic regions may differ for some TEs. For example, we detect many recent DIVER element insertions on the Y chromosome in *D. simulans*, but not in *D. sechellia* (Figure 7-figure supplement 3).

Discussion

Despite their independent origins, the degenerated Y chromosomes of mammals, fish, and insects have convergently evolved structural features of gene acquisition and amplification, accumulation of repetitive sequences, and gene conversion. Here we
consider the mutational processes that contribute to this structure and its consequences for Y chromosome biology. Our assemblies revealed extensive Y chromosome rearrangements between three very closely related *Drosophila* species (Figure 1). These rearrangements may be the consequence of rejoining telomeres after DSBs, as telomere-specific sequences are embedded in non-telomeric regions of *Drosophila* Y chromosomes [59, 106, 107]. We propose that four pieces of evidence suggest DSBs on Y chromosomes may be preferentially repaired using the MMEJ pathway. First, Y-linked sequences are absent from the X chromosome, precluding repair of DSBs by homologous recombination in meiosis. Second, NHEJ on Y chromosomes may be limited because the Ku complex, which is required for NHEJ [98], is excluded from HP1a-rich regions of chromosomes [108]. The Ku complex also binds telomeres and might prevent telomere fusions [109, 110], suggesting that a low concentration of Ku on Y chromosomes could also cause high rates of telomere rejoining. Third, the highly repetitive nature of Y chromosomes may increase the rate of DSB formation, which may also contribute to a higher rate of MMEJ [97, 111]. Fourth, we show that Y chromosomes have high duplication and gene conversion rates, and larger deletion sizes than other genomic regions (Figure 7), consistent with a preference for MMEJ to repair Y-linked DSBs [97].

The exclusion of the Ku complex from heterochromatin could also contribute to an excess of Y-linked duplications we observe in the *D. simulans* clade relative to *D. melanogaster* (Figure 2A and 7). *D. simulans* clade Y chromosomes might harbor relatively more heterochromatin than the *D. melanogaster* Y due to the partial loss of their euchromatic rDNA repeats [58, 62, 63], and *D. simulans* also expresses more
heterochromatin-modifying factors, such as \(Su(var) \)s and \(E(var) \)s [112], compared to \(D. melanogaster \). To explore these hypotheses, the distribution of the Ku complex across chromosomes in the testes of these species should be studied.

If MMEJ is preferentially used to fix DSBs on the Y chromosome, we might expect that the mutations in the MMEJ pathway would disproportionately impact Y-bearing sperm. Consistent with this prediction, a previous study showed that male \(D. melanogaster \) with a deficient MMEJ pathway (\(DNApol \) mutants) sire female-biased offspring [113]. Moreover, sperm without sex chromosomes that result from X-Y non-disjunction events are not as strongly affected by an MMEJ deficiency as Y-bearing sperm [113], suggesting that sperm with Y chromosomes are more sensitive to defects in MMEJ.

\(Drosophila \) Y chromosomes can act as heterochromatin sinks, sequestering heterochromatin marks from pericentromeric regions and suppressing position-effect variegation [53, 114-116]. Therefore, retrotransposons located in heterochromatin might have higher activities in males due to the presence of Y-linked heterochromatin [53, 115], although the genomic distribution of heterochromatin during spermatogenesis is unknown. We find that, like \(D. melanogaster \) [22], \(D. simulans \) clade Y chromosomes are enriched in retrotransposons relative to the rest of the genome; however Y chromosomes from even the closely related \(D. simulans \) clade species harbor distinct retrotransposons (Figure 7-figure supplement 1 and Supplementary file 18), indicating that some TEs may have rapidly shifted their insertion preference. This preference might benefit the TEs because Y-linked TEs might be expressed during spermatogenesis [117]. On the other hand, Y chromosomes can be a significant source of small RNAs that silence repetitive elements during spermatogenesis—e.g., \(Su(Ste) \).
piRNAs in *D. melanogaster* [118, 119]—and thus may also contribute to TE suppression. If Y chromosomes contribute to piRNA or siRNA production (*e.g.*, have piRNA clusters [80, 119]), then the TE insertion preference for the Y chromosome may sometimes be beneficial for the host, as they could provide immunity against active TEs in males. In this sense, Y chromosomes may even act as “TE traps” that incidentally suppress TE activity in the male germline by producing small RNAs.

Genes may adapt to the Y chromosome after residing there for millions of years [120, 121]. While most genes that move to the Y chromosome quickly degenerate [18, 23], a subset of new Y-linked genes are retained, presumably due to important roles in male fertility or sex chromosome meiotic drive. New Y-linked genes may adapt to this unique genomic environment, evolving structures and regulatory mechanisms that enable optimal expression on the heterochromatic and non-recombining Y chromosome [122].

We identified many Y-linked duplicates in the ~15-Mb of Y chromosome that we surveyed in each species. Future improvements in genomic sequence data and assemblies may recover additional Y-linked duplicates among the unassembled satellite-rich sequences. Here, we describe two new Y-linked ampliconic genes specific to the *D. simulans* clade—*Lhk* and *CK2βtes-Y*—that show evidence of strong positive evolution and concerted evolution, suggesting that high copy numbers and Y-Y gene conversion are often important for the adaptation of new Y-linked genes.

Many ampliconic genes are taxonomically restricted and are not maintained at high copy numbers over long periods of evolutionary time [14, 17, 20, 24-26]. Some ampliconic gene families are found on both the X and Y chromosomes [24, 93, 123-125]. While we do not know the function of most such co-amplified gene families, the
murine example of *Slx/Slxl1* and *Sly* appears to be engaged in an ongoing arms race between the sex chromosomes [123]. We propose that Y-linked gene amplification in the *D. simulans* clade initially occurred due to an arms race and was preserved by gene conversion.

It is intriguing that the *CK2βtes-like/CK2βtes-Y* gene family is homologous to the *Ste/Su(Ste)* system in *D. melanogaster* [86], which is also hypothesized to play a role in sex-chromosome meiotic drive [126]. We speculate that in both the *D. melanogaster* and *D. simulans* clade lineages these gene amplifications have been driven by conflict between the sex chromosomes over transmission through meiosis, but that the conflict involves different molecular mechanisms. In the *CK2βtes-like/CK2βtes-Y* system, both X and Y-linked genes are protein-coding genes, which is reminiscent of *Slx/Slxl1* and *Sly* which compete for access to the nucleus where they regulate sex-linked gene expression[123, 124]. In contrast, the Y-linked *Su(Ste)* copies in *D. melanogaster* produce small RNAs that suppress the X-linked *Stellate* [88]. We propose that *CK2βtes-like/CK2βtes-Y* system in the *D. simulans* clade species may represent the ancestral state because the parental gene *Ssl* is a protein-coding gene. We speculate that systems arising from antagonisms between the sex chromosomes may shift from protein-coding to RNA-based over time because, with RNAi, suppression is maintained at a minimal translation cost.

Distinct Y-linked mutation patterns are described in many species [14-21]. Our analyses provide a link between Y-linked mutation patterns and Y chromosome evolution. While the lack of recombination and male-limited transmission of the Y chromosome reduces the efficacy of selection, the high gene duplication and gene conversion rates may
counter these effects and help acquire and maintain new Y-linked genes. The unique Y-linked mutation patterns might be the direct consequence of the heterochromatic environment on sex chromosomes. Therefore, we predict that W chromosomes and non-recombining sex-limited chromosomes (e.g., some B chromosomes), may share similar mutation patterns with Y chromosomes. Indeed, W chromosomes of birds have ampliconic genes and are rich in tandem repeats [90, 127]. However, there seem to be fewer ampliconic gene families on bird W chromosomes compared to Y chromosomes in other animals, suggesting that sexual selection and intragenomic conflict in spermatogenesis are important contributors to Y-linked gene family evolution [128, 129].

Materials and Methods

Assembling Y chromosomes using Pacbio reads in D. simulans clade

We applied the heterochromatin-sensitive assembling pipeline from [22]. We first extracted 229,464 reads with 2.2-Gbp in D. mauritiana, 269,483 reads with 2.3-Gbp in D. simulans, and 257,722 reads with 2.6-Gbp in D. sechellia using assemblies from [54], respectively. We then assembled these reads using Canu v1.3 and FALCON v0.5.0 combined the parameter tuning method on 2 error rates, eM and eg, in bogart to optimize the assemblies. We first made the Canu assemblies using the parameters “genomeSize=30m stopOnReadQuality=false corMinCoverage=0 corOutCoverage=100 ovlMerSize=31” and “genomeSize=30m stopOnReadQuality=false”. For FALCON v0.5.0, we used the parameters “length_cutoff = -1; seed_coverage = 30 or 40; genome_size = 30000000; length_cutoff_pr = 1000”. We then picked the assemblies
with highest contiguity and completeness without detectable misassemblies from each
setting (two Canu settings and one Falcon setting).

After picking the three best assemblies for each species, we tentatively reconciled the
assemblies using Quickmerge [130]. We examined and manually curated the merged
assemblies. For the *D. mauritiana* assembly, we merged two Canu and one FALCON
assemblies, and for our *D. simulans* and *D. sechellia* assemblies, we merged one Canu
and one FALCON assemblies independently. We manually curated some conserved Y-
linked genes using raw reads and cDNA sequences from NCBI, including *kl*-3 of *D.
mauritiana, kl*-3, *kl*-5, and *PRY* of *D. simulans* and *CCY*, *PRY*, and *Ppr*-Y of *D.
sechellia*, due to their low coverage and importance for our phylogenetic analyses. We
then merged our heterochromatin restricted assemblies with contigs of the major
chromosome arms from [54]. We polished the resulting assemblies once with Quiver
using PacBio reads (SMRT Analysis v2.3.0; [131] and ten times with Pilon v1.22 [132]
using raw Illumina reads with parameters "--mindepth 3 --minmq 10 --fix bases".

We identified misassemblies and found parts of Y-linked sequences in the contigs from
major arms using our female/male coverage assays in *D. sechellia*. We also assembled
the total reads (assuming genome size of 180 Mb) and heterochromatin-extracted reads
(assuming genome size 40 Mb) using wtdbg v2.4 with parameters "-x rs -t24 -X 100 -e
2" [133] and Flye v2.4.2 [134] with default parameters separately. We polished the
resulting wtdbg assemblies with raw Pacbio reads using Flye v2.4.2. We then manually
assembled five introns and fixed two misassemblies using sequences from wtdbg
whole-genome assemblies (two introns), Flye whole-genome (two introns), and
heterochromatin-enriched assemblies (one intron) in *D. sechellia*. We assembled one
intron using sequences from wtdbg whole-genome assemblies in *D. simulans*.

We also extracted potential microbial reads (except for *Wolbachia*) that mapped to the
D. sechellia microbial contigs, and assembled these reads into a 4.5 Mb contig, which
represents the whole genome of a *Providencia* species, using Canu v 1.6 (r8426
14520f819a1e5dd21cc16553cf5b5269227b0a3) with parameters “genomeSize=5m
useGrid=false stopOnReadQuality=false corMinCoverage=0 corOutCoverage=100”. To
detect other symbiont-derived sequences in our assemblies, we used Blast v2.7.1+
[135] with blobtools (v1.0; [136]) to search the nt database (parameters “-task
megablast -max_target_seqs 1 -max_hsps 1 -evalue 1e-25”). We estimated the Illumina
coverage of each contig in males for *D. mauritiana*, *D. simulans* and *D. sechellia*,
respectively. We designated and removed contigs homologous to bacteria and fungi in
subsequent analyses (Supplementary file 19).

Generating DNA-seq from males in the *D. simulans* clade

We extracted DNA from 30 virgin 0-day males using DNeasy Blood & Tissue Kit and
diluted it in 100 µL ddH₂O. The DNA was then treated with 1 µL 10mg/mL RNaseA
(Invitrogen) at 37°C for 1-hr and was re-diluted in 100 µL ddH₂O after ethanol
precipitation. The size and concentration of DNA were analyzed by gel electrophoresis,
Nanodrop, Qubit and Genomic DNA ScreenTape. Finally, we constructed libraries using
PCR-free standard Illumina kit and sequenced 125-bp paired-end reads with a 550-bp
insert size from the libraries using Hiseq 2500 in UR Genomics Research Center. We deposited the reads in NCBI’s SRA under BioProject accession number PRJNA748438.

Identifying Y-linked contigs

To assign contigs to the Y chromosome, we used Illumina reads from male and female PCR-free genomic libraries (except females of *D. mauritiana*) as described in [22]. In short, we mapped the male and female reads separately using BWA (v0.7.15; [137]) and called the coverage of uniquely mapped reads per site with samtools (v1.7; -Q 10 [138]). We further assigned contigs with the median of male-to-female coverage across contigs equal to 0 as Y-linked. We examined the sensitivity and specificity of our methods using all 10-kb regions with known location. Based on our results for 10-kb regions with known location (Supplementary file 2) in *D. mauritiana*, we set up an additional criterion for this species—“the average of female-to-male coverage < 0.1”—to reduce the false discovery rate.

Gene and repeat annotations

We used the same pipeline and data to annotate genomes as a previous study [54]. We collected transcripts and translated sequences from *D. melanogaster* (r6.14) and transcript sequences from *D. simulans* [139] using IsoSeq3 [140]. We mapped these sequences to each assembly to generate annotations using maker2 (v2.31.9; [141]). We further mapped the transcriptomes using Star 2.7.3a 2-pass mapping with the maker2 annotation and parameters “-outFilterMultimapNmax 200 --alignSJoverhangMin 8 --alignSJDBoverhangMin 1 --outFilterMismatchNmax 999 --
outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 20 --alignIntronMax 5000000 --
alignMatesGapMax 5000000 --outSAMtype BAM SortedByCoordinate --
readFilesCommand zcat --peOverlapNbasesMin 12 --peOverlapMMp 0.1”. We then
generated the consensus annotations using Stringtie 2.0.3 from all transcriptomes [142].
We further improved the mitochondria annotation using MITOS2. We assigned
predicted transcripts to their homologs in D. melanogaster using BLAST v2.7.1+ (-
evalue 1e-10; [135]).
We used RepeatMasker v4.0.5 [143] with our custom library to annotate the assemblies
using parameter “-s.” Our custom library is modified from [54], by adding the consensus
sequence of Jockey-3 from D. melanogaster to replace its homologs (G2 in D.
melanogaster and Jockey-3 in D. simulans; [144]). We extracted the sequences and
copies of TEs and other repeats using scripts modified from [145]. To annotate tandem
repeats in assemblies, we used TRFinder (v4.09; [146] with parameters “2 7 7 80 10
100 2000 -ngs -h”. We also used kseek to search for tandem repeats in the male
Illumina reads.

Transcriptome analyses

We mapped the testes transcriptome to the reference genomes of D. melanogaster, D.
simulans and D. mauritiana (Supplementary file 20; no available transcriptome from D.
sechellia). We used Stringtie 2.0.3 [142] to estimate the expression level using the
annotation. However, we applied a different strategy for estimating expression levels of
the Y-linked gene families due to the difficulties in precisely annotating multi-copies
genes. We constructed a transcript reference using current gene annotation but
replaced all transcripts from Lhk-1, Lhk-2 and CK2βtes-Y with their species-specific
reconstructed ancestral copies. We then mapped the transcriptome reads to this
reference using Bowtie2 v 2.3.5.1 [147] with parameters “-very-sensitive -p 24 -k 200 -X
1000 --no-discardant --no-mixed”. We then estimated the expression level by salmon v
1.0.0 [148] with parameters “-l A -p 24.” We also mapped small RNA reads from D.
simulans testes to our custom repeat library and reconstructed ancestral Lhk-1, Lhk-2
and CK2βtes-Y sequences using Bowtie v 1.2.3 [149] with parameters “-v3 -q -a -m 50 -
best --strata.”

To assay the specific expression of different copies, we also mapped transcriptomic and
male genomic reads to the same reference using BWA (v0.7.15; [137]. We used ABRA
v2.22 [150] to improve the alignments around the indels of these two gene families. We
used samtools (v1.7; [138]) to pile up reads that mapped to reconstructed ancestral
copies and estimated the frequency of derived SNPs in the reads.

Estimating Y-linked exon copy numbers using Illumina reads

We mapped the Illumina reads from the male individuals of D. melanogaster and the D.
simulans clade species to a genome reference with transcripts of 11 conserved Y-linked
genes and the sequences of all non-Y chromosomes (r6.14) in D. melanogaster. We
called the depth using samtools depth (v1.7; [138]), and estimated the copy number of
each exon using the mapped depth. We assumed most Y-linked exons are single-copy,
so we divided the depth of each site by the majority of depth across all Y-linked
transcripts to estimate the copy number. For the comparison, we simulated the 50X Illumina reads from our assemblies using ART 2.5.8 with the parameter (art_illumina -ss HSXt -m 500 -s 200 -p -l 150 -f 50; [151]). We then mapped the simulated reads to the same reference, called the depth, and divided the depth of each site by 50.

Immunostaining and FISH of mitotic chromosomes

We conducted FISH in brain cells following the protocol from [152] and immunostaining with FISH (immune-FISH) in brain cells following the protocol from [153] and [144]. Briefly, we dissected brains from third instar larva in 1X PBS and treated them for 1-min in hypotonic solution (0.5% sodium citrate). Then, we fixed brain cells in 1.8% paraformaldehyde, 45% acetic acid for 6-min. We subsequently dehydrated in ethanol for the FISH experiments but not for the immune-FISH.

For immunostaining, we rehydrated the slide using PBS with 0.1% TritonX-100 after removing the coverslip using liquid nitrogen. The slides were blocked with 3% BSA and 1% goat serum/ PBS with 0.1% TritonX-100 for 30-min and hybridized with 1:500 anti-Cenp-C antibody (gift from Dr. Barbara Mellone) overnight at 4°C. We used 1:500 secondary antibodies (Life Technologies Alexa-488, 546, or 647 conjugated, 1:500) in blocking solution with 45-min room temperature incubation to detect the signals. We fixed the slides in 4% paraformaldehyde in 4XSSC for 6-min before doing FISH.

We added probes and denatured the fixed slides at 95°C for 5-min and then hybridized slides at 30°C overnight. For PCR amplified probes with DIG or biotin labels, we blocked the slides for 1-hr using 3% BSA/PBS with 0.1% Tween and incubated slides
with 1:200 secondary antibodies (Roche) in 3% BSA/4X SSC with 0.1% Tween and

BSA at room temperature for 1 hr. We made *Lhk* and *CK2ßtes*-Y probes using PCR

Nick Translation kits (Roche) and ordered oligo probes from IDT. We list probe

information in Supplementary file 3. We mounted slides in Diamond Antifade Mountant

with DAPI (Invitrogen) and visualized them on a Leica DM5500 upright fluorescence

microscope, imaged with a Hamamatsu Orca R2 CCD camera and analyzed using

Leica’s LAX software. We interpreted the binding patterns of Y chromosomes using the
density of DAPI staining solely.

Phylogenetic analyses of Y-linked genes

We used BLAST v2.7.1+ [135] to extract the sequences of Y-linked duplications and

conserved Y-linked genes from the genome. We only used high-quality sequences

polished by Pilon (--mindepth 3 --minmq 10) for our phylogenetic analyses. We aligned

and manually inspected sequences with reference transcripts from Flybase using

Geneious v8.1.6 [154]. For most Y-linked duplications, except for the genes

homologous to *Lhk* and *CK2ßtes*-Y, we constructed neighbor-joining trees using the

HKY model with 1,000 replicates using Geneious v8.1.6 [154] to infer their phylogenies.

We also measured the length and microhomology in 223 indels from 21 Y-linked
duplications using these alignments (Supplementary file 15). We also infer the potential

mechanisms causing the indels, including tandem duplications and polymerase slippage
during DNA replication. We measured the length and microhomology of polymorphic

indels in *D. melanogaster* (DGRP [99]) and *D. simulans* [100] populations from [54]. For
Lhk and CK2βtes-Y, we constructed phylogeny using iqtree 1.6.12 [155, 156] using parameters “-m MFP -nt AUTO -alrt 1000 -bb 1000 -bnni”. The node labels in Figure 5 correspond to SH-aLRT support (%) / ultrafast bootstrap support (%). The nodes with SH-aLRT >= 80% and ultrafast bootstrap support >= 95% are strongly supported. Protein evolutionary rates (with CodonFreq = 0/1/2 in PAML) of the bold branches were estimated using PAML with branch models on the reconstructed ancestor sequences (Figure 6-figure supplement 1 and Figure 6-figure supplement 3).

Estimating recombination and selection on Y-linked ampliconic genes

Using the phylogenetic trees from iqtree, we infer the most probable sequences for the internal nodes using MEGA 10.1.5 [157, 158] using the maximal likelihood method and G+I model with GTR model. We conducted branch and branch-site models tests in PAML 4.8 using the ancestral sequences of Y-linked and X-linked ampliconic gene families with their homologs on autosomes. We plotted the tree using R package ape 5.3 [159].

We used compute 0.8.4 [160] to calculate Rmin and population recombination rates based on linkage disequilibrium [161, 162] and gene similarity. We included sites with indel polymorphisms in these analyses to increase the sample size (558–1,544 bp alignments). We also reanalyzed data from Chang and Larracuente 2019 [22] to include variant information from these sites. The high similarity between Y-linked ampliconic gene copies may lead us to overestimate gene conversion based on gene similarity.
We therefore also reported the lower bound on the gene conversion rate using Rmin [162].

GO term analysis

We used PANTHER (Released 20190711; [163]) with GO Ontology database (Released 2019-10-08) to perform Biological GO term analysis of new Y-linked duplicated genes using Fisher’s exact tests with FDR correction. We input 70 duplicated genes with any known GO terms and used all genes (13767) in *D. melanogaster* as background.

Indel analyses

We downloaded the SNP calls (vcf files) from population genomic data in North Carolina of *D. melanogaster* (DGRP [99]) and California of *D. simulans* [100]. We then used vcftools [164] to remove the low-quality SNPs using parameters “--maf 0.1 --keep-only-indels --min-alleles 2 --max-alleles 2 --recode”. We additionally filtered out the potential mismapped regions with “--max-missing-count 20” in *D. melanogaster* or “--max-missing-count 17” in *D. simulans*. Lastly, we analyzed the SNPs in the specific regions using bedtools intersect [165] with gene annotation files (dmel-r5.57 or dsim annotation from maker2 v2.31.9; [141]). For the heterochromatic pseudogenes, we downloaded 18 long-read polished assemblies from NCBI (Supplementary file 20). We then used blastn to get sequences of pseudogenes from the population, aligned, and surveyed their indel lengths. All the alignments for our indel assignment are available in the GitHub repository (https://github.com/LarracuenteLab/simclade_Y).
Data availability

Genomic DNA sequence reads are in NCBI’s SRA under BioProject PRJNA748438. All scripts and pipelines are available in GitHub (https://github.com/LarracuenteLab/simclade_Y) and the Dryad digital repository (https://doi.org/10.5061/dryad.280gb5mr6).

Acknowledgements

This work was funded by the National Institutes of Health (NIH) (R35GM119515 to A.M.L. and R01GM123194 to C.D.M.), National Science Foundation (NSF MCB 1844693) to A.M.L. and funding from the University of Nebraska-Lincoln to C.D.M.. A.M.L. was supported by a Stephen Biggar and Elisabeth Asaro fellowship in Data Science. C.-H.C. was supported by the Messersmith Fellowship from the U of Rochester, the Government Scholarship to Study Abroad from Taiwan, and the Damon Runyon fellowship (DRG: 2438-21). We thank our collaborators, Drs. J.J. Emerson and Mahul Chakraborty, for generating PacBio reads in the D. simulans clade, Dr. Barbara Mellone for the antibodies, and Drs. Casey Bergman, Grace YC Lee, Kevin Wei and Anthony Geneva and Larracuente lab members for helpful discussion. We also thank the U of Rochester CIRC for access to computing cluster resources and UR Genomics Research Center for the library construction and sequencing.
References

41. Branco AT, Tao Y, Hartl DL, Lemos B. Natural variation of the Y chromosome suppresses sex ratio distortion and modulates testis-specific gene expression in Drosophila

Appendix 1

Low Pacbio coverage in heterochromatic regions

We find that PacBio coverage is lower than expected on Y chromosomes and in heterochromatic regions generally (Figure S2). We found a similar bias in the *D. melanogaster* genome [1], where the PacBio data were independently generated by a different group [2]. While a previous paper suggests that CsCl might contribute to this bias [3], we used Qiagen's Blood and Cell culture DNA Midi Kit for DNA extraction. Heterochromatin is underreplicated in the endoreplicated cells that undergo multiple rounds of S phase but with no cell division such as those in larval salivary glands cells [4]. Previous studies demonstrated that endoreplicated cells in the adult flies might contribute to lower coverage in Illumina sequencing data [5]. Therefore, these endoreplicated cells might also contribute to the bias in Pacbio coverage.

Validation of variants in Y-linked gene families

We mapped Illumina reads from male genomic DNA and testis RNAseq to the reconstructed ancestral transcript sequences of each gene cluster (*Lhk*-1, *Lhk*-2, *CK2βtes*-Y) to estimate the expression level of the different Y-linked copies. We first asked if the variants in these two gene families found in our assemblies can be consistently detected in Illumina reads from male genomes. We found that the abundance of derived variants in these two gene families in the DNA-seq data are highly correlated to the frequency of variants in our assemblies (R = 0.89 and 0.98 in *D. mauritiana* and *D. simulans*, respectively). For 559 variants in the *D. simulans* assembly, 33 of them (28 appear once and four appear twice) are missing from the
DNA-seq data. For 446 variants in the *D. mauritiana* assembly, 43 of them (32 appear once and six appear twice) are missing from the DNA-seq data. Additionally, nine and eight inconsistent variants are located near (< 100 bp) the start or end of transcripts in *D. simulans* and *D. mauritiana*, respectively. These regions at the edges of transcripts might have fewer Illumina reads coverage than more central regions.

We compared the proportion of synonymous and nonsynonymous changes between copies with high and low expression using transcriptome data to infer selection pressures on different mutations (Figure S10; Supplementary file 21).

To reduce the effect of sequencing errors and simplify the phylogenetic analyses on protein evolution rates, we first reconstructed the ancestral sequences of each gene cluster (*Lhk-1*, *Lhk-2*, *CK2β-ces-Y*, and 2 *CK2β-ces-like*; see Figure 6). The reconstructed ancestral sequences should eliminate misassembled bases, which are typically singletons. We conducted branch-model and branch-site-model tests on the reconstructed ancestral sequence using PAML and inferred that both gene families experienced strong positive selection following their duplication to the Y chromosome (from branch model; Tables S17 and S18, Figure 6). The high rate of protein evolution in the Y-linked ampliconic genes suggests that, in addition to subfunctionalization or degeneration, they may also acquire new functions and adapt to being Y-linked.
Appendix references

A

Species

D. melanogaster

D. mauritiana

D. simulans

D. sechellia

B

D. mauritiana

kl-2

D. simulans

ARY

D. sechellia

Y_Contig186

Y_scaffold5
D. mauritiana

D. simulans

D. sechellia

D. melanogaster

of Gained

of Lost

Time (Million years ago)

3 0.25 0

0 5

5

4

27

0

11

7

4

5

7

4 11

9

0 5

7
A

Ancestral state (D. melanogaster, 2R)

Ubiquitous SRPK

Testis-specific SRPK-RC

D. simulans clade

2R parental copy

Lhk (Y-linked)

Intermediate state

Subfunctionalization

Loss of testis-specific isoform

Amplified & overexpressed

B

Autosomal parent gene (2R)

Ssl (CKβtes)

Duplication

to X chromosome

to Y chromosome

CKβtes-like

amplification

CKβtes-Y

amplification

Dmel-sim clade ancestor & D. simulans clade

D. melanogaster

acquired β NASCtes promoter

TE insertion in promoter

Su(Ste)

Ste

amplification

pseudogenization

X chromosome: Ste

Y chromosome: Su(Ste), PCKR
A

Position
- Y
- Dsim population
- Autosomes
- X
- Dot
- Dmel population
- Autosomes
- X
- Pseudogenes (euchromatin)
- Pseudogenes (heterochromatin)

B

Y chromosome only

Species
- Dmel
- D. simulans clade
- Shared
- Dmau
- Dsim
- Dsech

C

GAGAAGACCTCCAGC\textcolor{red}{\text{CACCTGTTG}}CG\textcolor{red}{\text{ACCTGTTG}}GC\textcolor{red}{\text{CACCTG}}GACCAGGT

GAGAAGACCTCCAG\textcolor{red}{\text{CACCTGTTG}}C

\text{DSB}

GAGAAGACCTCCAG\textcolor{red}{\text{CACCTGTTG}}C

\text{MMEJ repairing}

GAGAAGACCTCCAG\textcolor{red}{\text{CACCTGTTG}}C

\text{6-bp microhomology}

GAGAAGACCTCCAG---\textcolor{red}{\text{CACCTG}}GACCAGGT
- Additional criterion (<0.1)
Drosophila melanogaster

kl–2

ARY

normalized copy #

kl–3

CCY

normalized copy #

kl–5

ORY

coverage

Pp1–y1

Pp1–y2

Ppr–Y

Normalized coverage

Illumina reads from males

Simulated Illumina reads from the assembly
Drosophila mauritiana

kl–2

ARY

PRY

Pp1–y1

Pp1–y2

ccy

ory

wdy

Normalized coverage

Normalized copy

Illumina reads from males
Simulated Illumina reads from the assembly
from the assembly
Drosophila sechellia

Normalized coverage

Illumina reads from males
Simulated Illumina reads from the assembly
Fold difference of TE abundance

Other chromosomes

Dmel
0.574
0.478
0.602

Dmau
0.096
0.247

Dsim
0.193

Dsech

Other chromosomes

Fold difference of TE abundance

Y chromosome

Fold difference of TE abundance

Y chromosome