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Abstract Shape transformations of epithelial tissues in three dimensions, which are crucial for 
embryonic development or in vitro organoid growth, can result from active forces generated within 
the cytoskeleton of the epithelial cells. How the interplay of local differential tensions with tissue 
geometry and with external forces results in tissue-scale morphogenesis remains an open ques-
tion. Here, we describe epithelial sheets as active viscoelastic surfaces and study their deformation 
under patterned internal tensions and bending moments. In addition to isotropic effects, we take 
into account nematic alignment in the plane of the tissue, which gives rise to shape-dependent, 
anisotropic active tensions and bending moments. We present phase diagrams of the mechanical 
equilibrium shapes of pre-patterned closed shells and explore their dynamical deformations. Our 
results show that a combination of nematic alignment and gradients in internal tensions and bending 
moments is sufficient to reproduce basic building blocks of epithelial morphogenesis, including fold 
formation, budding, neck formation, flattening, and tubulation.

Editor's evaluation
The article provides a physical description of shape transformations of epithelial tissues in three 
dimensions, subject to active forces generated within the cytoskeleton of the epithelial cells. The 
work is motivated by organoids and more generally by morphogenesis during development. There-
fore, this study is useful not only for developmental biology but also for a general understanding of 
cellular properties, including membrane mechanics and cell shapes.

Introduction
Morphogenesis of embryos and the establishment of body shape rely on the three-dimensional defor-
mation of epithelial sheets which undergo repeated events of expansion, contraction, convergence-
extension, invagination, evagination, tubulation, and branching (Gilbert and Barresi, 2020). Tissue 
folding, for instance, is involved at different steps of embryogenesis (Kominami and Takata, 2004; Sui 
et al., 2018), organ (Sumigray et al., 2018), or entire organism development (Livshits et al., 2017; 
Braun and Keren, 2018). Recently, the growth of in vitro organoids, organ-like structures derived 
from stem cells capable of self-renewal and self-organisation, has revealed the intrinsic ability of 
biological systems to self-organise into complex structures from simple building blocks (Huch et al., 
2017; Kamm et al., 2018; Rossi et al., 2018). Early steps in organoid self-organisation often start 
through the formation of a hollow, fluid-filled unpatterned sphere, undergoing spontaneous symmetry 
breaking (Ishihara and Tanaka, 2018) for example, in neural tube (Meinhardt et al., 2014) or intes-
tinal (Serra et al., 2019; Yang et al., 2021) organoids. How this repertoire of shape changes and 
complex organisation emerges physically is a fundamental question.

Continuum theories of active materials, treating the epithelium as an active liquid crystal, have 
proven highly successful to achieve an understanding of the mechanics and flows of cellular collective 
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motion. Epithelia cultured in vitro exhibit patterns of orientational order and spontaneous flows 
which are consistent with predictions from hydrodynamic theories of active matter (Duclos et  al., 
2017; Duclos et al., 2018; Blanch-Mercader et al., 2021a). Constitutive equations involving a shear 
decomposition of tissue area and anisotropic elongation into cell shape changes, cell division, and 
cellular topological transitions can reproduce basic features of the developing Drosophila pupal wing 
(Etournay et al., 2015; Popović et al., 2017). Recently, several studies established a link between 
topological defects in tissue order, provided by cell elongation or internal anisotropic cellular struc-
ture, and morphogenetic events (Kawaguchi et al., 2017; Saw et al., 2017; Mueller et al., 2019; 
Maroudas-Sacks et al., 2021).

Here, we propose a description of three-dimensional deformations of a patterned epithelial 
spheroid, considered as a shell of active liquid crystal. We consider an active elastic shell theory which 
takes into account in-plane tensions and internal bending moments (Lomholt, 2006; Maitra et al., 
2014; Sahu et al., 2017; Salbreux and Jülicher, 2017). Internal bending moments arise from an inho-
mogeneous distribution of stress across the tissue. Such inhomogeneities can arise from, for example, 
changes in cytoskeletal organisation along the epithelium apico-basal axis, or from apposed epithelial 
tissues with different mechanical properties (Braun and Keren, 2018; Maroudas-Sacks et al., 2021). 
Apico-basal gradients of contractility, for instance, play a key role in morphogenetic processes (Martin 
and Goldstein, 2014; Sui et al., 2018) and are effectively taken into account here by active bending 
moments.

We consider an initially spherically symmetric tissue subjected to spatially modulated internal 
forces. Our rationale is to consider a situation where chemical and mechanical processes are uncou-
pled, such that cell–cell communication mechanisms ensure symmetry-breaking of the sphere, which 
is then converted into a pattern of mechanical forces (Ishihara and Tanaka, 2018). We consider a 
particularly simple pattern where the spherical tissue is decomposed into two regions, subjected 
to different active forces, and explore shape changes that result from this pattern (Figure 1a). We 
compare the situation where internal tensions and bending moments are isotropic to a situation where 
a nematic field, provided by cellular anisotropic structures, orients the internal tensions and bending 
moments.

Model
Viscoelastic nematic active surface model for epithelial mechanics
We first discuss our mechanical description of the deforming tissue. We represent an epithelium as 
an active surface flowing with velocity ‍v‍ (Salbreux and Jülicher, 2017). The surface is taken to be 
elastic with respect to area changes, and fluid with respect to pure shear in the plane of the surface. 
Indeed, cellular rearrangements can fluidify in-plane epithelial flows by allowing cell elongation and 
cellular elastic stresses to relax on long time scales (Popović et al., 2017). Here, we consider such long 
enough time scales of hours to days which are relevant to organoid and developmental morphogen-
esis (Gilbert and Barresi, 2020). We also assume here that cell division and apoptosis or delamination 
are not occurring, such that elastic isotropic stresses do not relax (Ranft et al., 2010). Implicitly, we 
assume that cells have a preferred cell area.

Epithelia typically have a non-negligible thickness compared to characteristic transverse dimen-
sions, and the apical and basal surfaces have different structures and are regulated differently. Notably, 
the basal surface is in contact with the basal lamina, a layer of extracellular matrix (Khalilgharibi and 
Mao, 2021). Therefore, a purely two-dimensional representation of epithelial stresses would miss 
essential aspects of their mechanics. We therefore introduce here the tension tensor ‍tij‍, but also the 
bending moment tensor ‍mij‍ which captures internal torques arising from differential stresses acting 
along the surface cross section (Figure 1b and c). We assume that the surface possesses a bending 
rigidity, captured by a bending modulus ‍κ‍. When the curvature deviates from a flat layer, a bending 
moment results from the surface curvature (Equation 6). In addition, active bending moments can 
arise in the surface (Salbreux and Jülicher, 2017), for instance, due to actomyosin-generated differ-
ential active stresses along the apicobasal axis (Messal et al., 2019; Fouchard et al., 2020).

Cellular force generating elements are not necessarily isotropic; for instance, because cytoskeletal 
structures exhibit a preferred orientation (Martin, 2020) or inhomogeneous distribution across cellular 
interfaces (Bertet et al., 2004), or because the epithelial cells themselves exhibit an elongation axis 

https://doi.org/10.7554/eLife.75878
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Figure 1. A two-dimensional surface with nematic order represents an epithelial sheet undergoing active deformations. (a) Schematic of an epithelial 
tissue with a cellular state pattern. (b) Parametrisation of the axially symmetric shell and its deformation with the flow ‍v‍, and components of the tension 
and torque tensors. We note that ‍mϕs = m̄ϕϕx‍ and ‍msϕ = −m̄ss/x‍. (c) Stresses integrated across the thickness of the sheet result in tensions ‍tij‍ and 
bending moments ‍mij‍ acting on the midsurface. Anisotropic and possibly different tensions (dark-blue arrow crosses) on the apical and basal sides of 
the epithelium result in anisotropies in ‍tij‍ and ‍̄mij‍, which can be captured by a nematic order parameter ‍Qij‍ (e.g. blue rods on the top surface).

The online version of this article includes the following video for figure 1:

Figure 1—video 1. Deformation of an epithelial shell with free volume, ‍la/L0 = 0.85‍, ‍δζc = 15κ/R0‍, with active torque colour coded.

https://elifesciences.org/articles/75878/figures#fig1video1

Figure 1—video 2. Deformation of an epithelial shell with free volume, ‍la/L0 = 0.85‍, ‍δζc = 15κ/R0‍, with tangential velocity shown as white arrows and 
colour coded.

https://elifesciences.org/articles/75878/figures#fig1video2

Figure 1—video 3. Deformation of an epithelial shell with free volume, ‍la/L0 = 0.35‍, ‍δζc = 12.5κ/R0‍, with active torque colour coded.

https://elifesciences.org/articles/75878/figures#fig1video3

Figure 1—video 4. Deformation of an epithelial shell with free volume, ‍la/L0 = 0.35‍, ‍δζc = 12.5κ/R0‍, with tangential velocity shown as white arrows 
and colour coded.

https://elifesciences.org/articles/75878/figures#fig1video4

Figure 1—video 5. Deformation of an epithelial shell with conserved volume, ‍la/L0 = 0.1‍, ‍δζc = 40κ/R0‍, with active torque colour coded.

https://elifesciences.org/articles/75878/figures#fig1video5

Figure 1—video 6. Deformation of an epithelial shell with conserved volume, ‍la/L0 = 0.1‍, ‍δζc = 40κ/R0‍, with tangential velocity shown as white arrows 
and colour coded.

https://elifesciences.org/articles/75878/figures#fig1video6

Figure 1—video 7. Deformation of an epithelial shell with conserved volume, ‍la/L0 = 0.7‍, ‍δζc = 110κ/R0‍, with active torque colour coded.

https://elifesciences.org/articles/75878/figures#fig1video7

Figure 1—video 8. Deformation of an epithelial shell with conserved volume, ‍la/L0 = 0.7‍, ‍δζc = 110κ/R0‍, with tangential velocity shown as white 
arrows and colour coded.

https://elifesciences.org/articles/75878/figures#fig1video8
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(Duclos et al., 2017). Therefore, we introduce a coarse-grained surface nematic order parameter ‍Q‍ 
which quantifies the average level of orientational order in the tissue. We assume that the nematic 
order parameter is tangent to the active surface.

Force balance
On a curved surface we define the rotated bending moment tensor ‍̄mij = −mikϵk

j
‍, which we adopt 

for convenience. The local force balance projected on the tangential and normal directions reads 
(Salbreux and Jülicher, 2017)

	﻿‍ ∇itij + C j
i tin = −f ext,j

‍� (1)

	﻿‍ ∇itin − Cijtij = −f ext
n − P,‍� (2)

where notations of differential geometry are introduced in Appendix 1; briefly ‍Cij‍ is the curvature 
tensor, ‍gij‍ denotes the metric tensor, and ‍ϵij‍ the antisymmetric Levi-Civita tensor, ‍n‍ the vector normal 
to the surface, ‍tij‍ is the tangential contribution of the tension tensor and ‍tin‍ its normal contribution, and 

‍∇i‍ denotes the covariant derivative on the surface. The tangential and normal torque balance provide 
the transverse tension and antisymmetric part of the tangent tension tensor:

	﻿‍ tin = ∇km̄ki,‍� (3)

	﻿‍ ϵijtij = Cijmij.‍� (4)

We assume an external force density ‍f
ext = f ext

n n + f ext,jej‍ acting on the surface in addition to a differ-
ence of hydrostatic (uniform) pressure ‍P = Pin − Pout‍, but no external torques (Figure 1). Here, we 
consider situations at low Reynolds number, where inertial forces may be neglected, and where addi-
tional external forces are negligible, such that the surface as a whole is force-free, ‍

¸
S dS f ext = 0‍. Dissi-

pative couplings to the external fluid are ignored here as the characteristic viscosity of a biological 
tissue (‍∼ 105‍ Pa s; Marmottant et al., 2009; Guevorkian et al., 2010) is several orders of magnitude 
larger than that of water (‍10−3‍ Pa s).

Constitutive equations
In line with our hypothesis describing the material properties of an epithelium, we use the following 
constitutive equations:

	﻿‍ tijs = (2Ku + ζ + (ηb − η)vk
k)gij + 2ηvij + ζnQij,‍� (5)

	﻿‍
m̄ij =

(
2κC k

k + ζc + ηcb
D
Dt

C k
k

)
gij + ζcnQij.

‍�
(6)

where ‍t
ij
s ‍ is the symmetric part of the tension tensor and, on a curved surface, the strain rate tensor ‍vij‍ 

and the corotational time derivative of the curvature tensor ‍
D
Dt C

ij
‍ are given by (Salbreux and Jülicher, 

2017)

	﻿‍
vij = 1

2
(∇iv j + ∇jvi) + C ijvn,

‍�
(7)

	﻿‍
D
Dt

C ij = −∇i(∂ jvn) − vnC i
kC kj + vk∇kC ij + ωn

(
ϵikCk

j + ϵjkCk
i
)

,
‍�

(8)

with ‍ωn = 1
2 ϵ

ij∇ivj‍ the normal component of the vorticity. ‍u‍ is the area strain, measuring local changes 
of area relative to a reference value; a precise definition is introduced in Equation 14. ‍Qij

‍ is a traceless, 
symmetric tensor characterising nematic orientational order on the surface.

We now discuss these constitutive equations. The surface elastic response is determined by the 
area elastic modulus ‍K ‍ and the bending modulus ‍κ‍. The dynamical deformations of the surface are 
characterised by the two-dimensional shear and bulk viscosities ‍η‍ and ‍ηb‍ and the bulk bending viscosity 

‍ηcb‍. While the shear and bulk viscosities penalise in-plane isotropic and anisotropic deformation rates, 
the bending viscosity penalises the rate of change of total surface curvature ‍C

k
k ‍. The bending viscosity 

dampens normal deformations and prevents bending modes, which would otherwise have no dissipa-
tive cost and could result in numerical instabilities.

https://doi.org/10.7554/eLife.75878
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The remaining contributions to Equations 5; 6 proportional to ‍ζ‍, ‍ζn‍, ‍ζc‍, ‍ζcn‍ correspond to active 
tensions and bending moments. ‍ζ‍ is an isotropic active surface tension, ‍ζn‍ is the in-plane nematic 
active stress, with ‍ζn > 0‍ usually referred to as the ‘contractile’ active stress and ‍ζn < 0‍ as the ‘exten-
sile’ active stress (Marchetti et al., 2013). ‍ζc‍ is the isotropic bending moment, which locally favours 
a spontaneous curvature ‍C

k
k = −ζc/(2κ)‍. If the active surface corresponds simply to two parallel layers 

under surface tension ‍γa‍, ‍γb‍ (such as an epithelium with apical surface tension ‍γa‍ and basal surface 
tension ‍γb‍), and separated by a distance ‍h‍, an active isotropic bending moment ‍ζc ∼ h(γa − γb)/2‍ 
emerges in the surface to lowest order in the curvature tensor. The term in ‍ζcn‍ corresponds to an 
anisotropic active bending moment. In the bilayer picture, where the active surface corresponds to 
two layers ‍a‍ and ‍b‍, it could generally arise from differences between the two layers in the level of 
order ‍Q

a
ij ‍ and ‍Q

b
ij ‍ or in the level of nematic active stress ‍ζ

a
n ‍ and ‍ζ

b
n ‍. For example, such differences could 

stem from two contractile (respectively extensile) layers with perpendicular nematic orientations ‍+Qij‍ 
and ‍−Qij‍ (Figure 1c), or from two layers with parallel nematic order, but one subjected to contractile 
active stresses and the other to extensile active stresses.

In the absence of external forces, deformations of the epithelial shell are driven by distributions 
of active tensions and bending moments, which are prescribed on it through the isotropic profiles 

‍ζ(s)‍ and ‍ζc(s)‍, the anisotropic components proportional to ‍ζn(s)‍ and ‍ζcn(s)‍, and the shape-dependent 
nematic order parameter.

We note that Equations 5 and 6 can be seen as generic constitutive equations for a nematic 
active surface with broken up-down symmetry but no broken chiral or planar-chiral symmetry, arising 
from an expansion in the curvature tensor and in the nematic order parameter ‍Qij‍ of the tensor ‍t

ij
s ‍ 

and ‍̄mij‍ (Salbreux and Jülicher, 2017; Salbreux et al., 2022). For simplicity some allowed additional 
couplings entering the generic constitutive equations have not been taken into account here, notably 
active contributions to the tension tensor (Equation 5) and bending moment tensor (Equation 6) 
proportional to the curvature tensor ‍Cij‍. Salbreux et al., 2022 provide a more general list of possible 
couplings for active fluid nematic surfaces.

Nematic order parameter
For simplicity here we assume that the nematic order parameter minimises an effective free energy, 
thus ignoring potential active effects on the ordering (Salbreux et  al., 2022). We consider the 
following effective free energy of the nematic on a curved surface (De Gennes and Prost, 1995; 
Jiang et al., 2007; Kralj et al., 2011; Pearce et al., 2019):

	﻿‍
F =
ˆ

dS
(

k
2

(
∇iQ jk

)(
∇iQ jk

)
− a

4
QijQ ij + a

16

(
QijQ ij

)2
)

,
‍�

(9)

with the Frank elastic constant ‍k‍, which is assumed to be equal for all distortions. The Landau–de 
Gennes contribution is chosen such that for ‍k = 0‍ the aligned state with ‍QijQ ij = 2‍ is a minimiser for 
‍a > 0‍. Additional coupling terms between the nematic and curvature tensor are not considered here 
for simplicity (Napoli and Vergori, 2012).

Deformations of a polarised active sphere
We now turn to describe axisymmetric deformations of a closed nematic active surface.

Geometric setup
The epithelium is represented by a thin spherical shell undergoing axisymmetric deformations 
(Figure 1b). Its two-dimensional midsurface ‍X(ϕ, s) ∈ R3

‍ is parametrised by the arc length coordinate 

‍s ∈ [0, L]‍ and the angle of rotation ‍ϕ ∈ [0, 2π]‍ as

	﻿‍ X(ϕ, s) =
(
x(s) cosϕ, x(s) sinϕ, z(s)

)
.‍� (10)

The local tangent basis is given by ‍{eϕ, es}‍, and ‍n‍ is the outward-pointing surface normal. The geom-
etry of axisymmetric surfaces is described further in Appendix 1. We require that the metric compo-
nent ‍gss = 1‍, which implies relations between the tangent angle ‍ψ(s) ∈ [0,π]‍ and the shape functions 

‍x(s)‍ and ‍z(s)‍

https://doi.org/10.7554/eLife.75878
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	﻿‍ ∂sx = cosψ,‍� (11)

	﻿‍ ∂sz = sinψ,‍ � (12)

which, together with the meridional principal curvature

	﻿‍ C s
s = ∂sψ,‍� (13)

are sufficient to reconstruct the surface shape from the curvature ‍C s
s ‍. In this axisymmetric setup, the 

velocity field reads ‍v = vses + vnn‍, with ‍vs‍ the tangential and ‍vn‍ the normal velocities.
The undeformed initial surface is a sphere ‍S0‍ with radius ‍R0‍, and all quantities defined on it are 

denoted with a subscript ‘0’. We define the area strain on a point of the surface as

	﻿‍
u = dS − dS0

dS0
,
‍�

(14)

where ‍dS‍ is the surface area element at the point considered on the surface, and ‍dS0‍ is the surface 
area element of the same material point on the sphere. With this definition, ‍u = 0‍ on the initial sphere. 
We denote ‍s0(s)‍ the arc length position on the undeformed sphere ‍S0‍ of a material point at arc length 
position ‍s‍ on the deformed sphere. One then has ‍u = fϕfs − 1‍ with ‍fs = ds

ds0 ‍ the meridional stretch and 

‍fϕ = x
x0 ‍ the circumferential stretch. Integrating ‍f

−1
s = fϕ/(u + 1)‍ yields the arc length reparametrisation 

‍s0(s)‍ between the initial and the deformed surface. The Lagrangian time derivative of the area strain 
(Equation 14) is related to the flow through

	﻿‍
D
Dt

u = (1 + u)vk
k.

‍�
(15)

Nematic order
Here, with axial symmetry, the nematic tensor ‍Qij‍ has the non-zero component ‍q = Qϕ

ϕ = −Qs
s‍. On 

the closed shell, the nematic director (Appendix 3), which represents the alignment, will have two +1 
topological defects at the poles (Figure 3a) as a consequence of the Poincaré–Hopf theorem (Hopf, 
1927). The order parameter ‍q‍ vanishes there, creating defect cores of size ‍lc =

√
k/a‍, which is the 

characteristic nematic length. In this geometry the Euler–Lagrange equation resulting from the free 
energy (Equation 9) is

	﻿‍
∂2

s q = 1
2l2c

q(q2 − 1) + cosψ
x

(
4 cosψ

x
q − ∂sq

)
.
‍�

(16)

An example solution of Equation 16 on the sphere is shown in Figure 3b. From the two possible states 
with ‍q = ±1‍ in the bulk, respectively, we choose ‍q = 1‍ for reference. This corresponds to circumferen-
tial alignment of the nematic order (Figure 3a, right). The sign of the tensions and bending moments 
is then only controlled by the ‍ζ‍-prefactors. For example, a nematic tension with ‍ζn > 0‍ corresponds to 
circumferential active contraction, resulting in an elongated shape. For nematic bending moments, if 
one chooses ‍Qij‍ to represent the order parameter on the outer side of the shell, the sign convention 
is such that ‍ζcn > 0‍, ‍q > 0‍ results in circumferential contraction on the outer side and contraction along 
the meridians on the inner side of the shell. We note that the shape is only influenced by the order 
parameter via the active tension ‍ζnQij

‍ and the active moment ‍ζcnQij
‍, but is otherwise insensitive to the 

nematic elastic energy (Equation 9). Minimisation of the Frank free energy by deformations of passive 
nematic surfaces has been previously discussed (Jiang et al., 2007).

Active profiles
We consider initially spherical epithelial shells containing an active region that drives the deformation. 
For the steady-state analysis, this region is a circular patch of size ‍la ≤ L0‍ (Figure 1b), such that the 
active terms are given on ‍S0‍ by step-like profiles, for example

	﻿‍

ζc(s0) =




ζ0

c + δζc, if s0 ∈ [0, la]

ζ0
c , otherwise

‍� (17)

https://doi.org/10.7554/eLife.75878
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and similarly for ‍ζ(s0)‍, ‍ζn(s0)‍, and ‍ζcn(s0)‍. The circular patch deforms with the material points, which 
reflects that the active properties are associated with a predefined group of cells. If not stated other-
wise, the values outside the active region are ‍ζ

0 = ζ0
c = ζ0

n = ζ0
cn = 0‍. This passive part of the surface is 

governed by the constitutive equations 5 and 6, but with vanishing active terms.
In dynamical simulations, active tension and bending moment profiles are defined on the spherical 

surface at time ‍t = 0‍ using sigmoid functions ‍f(x,µ,σ)‍ of the form

	﻿‍
f(x,µ,σ) = 1 −

(
1 + e−

x−µ
σ

)−1
,
‍�

(18)

for their space and time dependence. For instance, the active bending moment profile is defined on 

‍S0‍ as

	﻿‍ ζc(s0, t = 0) = (1 − f(t = 0,µt,σt))(ζ0
c + δζcf(s0, la,σs))‍� (19)

as a smooth version of the step-profile Equation 17, and ‍ζ‍, ‍ζn‍, and ‍ζcn‍ are defined analogously. The 
profile is then advected with the material points (Figure 1b), while its intensity increases through the 
time-dependent sigmoid (e.g. Figure 2d).

Volume
We consider two possibilities for the volume enclosed by the epithelium. In one limit the tissue is 
assumed to be impermeable and the enclosed volume is treated as an incompressible fluid exerting 
hydrostatic pressure on the tissue. The volume is conserved when the shell deforms:

	﻿‍ V = V0,‍� (20)

with the pressure ‍P‍ acting as the Lagrange multiplier.
In the other limit the tissue is fully permeable. At steady state, in this limit the volume can change 

freely and no pressure acts on the tissue, ‍P = 0‍. In dynamical simulations, we introduce a volume 
viscosity ‍ηV ‍ such that the pressure is coupled to the volume change via

	﻿‍ P = −ηV∂tV ‍� (21)

where ‍ηV ‍ is a parameter chosen to be small enough that the internal pressure is small compared to 
other forces.

Stationary shapes
For given profiles of active tensions and bending moments, steady-state shapes are obtained as solu-
tions of the mechanical equilibrium equations. Those are a system of non-linear ode’s containing the 
force and torque balances Equations 1–4, the geometric Equations 11–13, the constitutive relations 
Equations 5–8 and Equation 14 with vanishing velocities ‍vs = vn = 0‍, and, if applicable, the nematic 
equilibrium Equation 16.

Dynamical deformations
In the dynamical version of the model a given active profile generates a velocity ‍v(ϕ, s, t)‍, whose 
normal part deforms the surface (Figure 1b). The components ‍{vs, vn}‍ of this instantaneous velocity 
are obtained by solving the force and torque balance Equations 1–4 (derived for the axisymmetric 
surface in Equations 63–65), together with the constitutive Equations 5–8, on the shape ‍X(ϕ, s, t)‍. 
Since ‍u(s, t)‍ and ‍Qij(s, t)‍ are also given, these constitute a linear system of ode’s. The shape is evolved 
in time in a Lagrangian approach, in which material points move according to the full-velocity vector ‍v‍,

	﻿‍ ∂tX = v.‍� (22)

Surface quantities, such as the active profiles and the area strain, are advected accordingly. The 
nematic order parameter evolves in time quasi-statically, where we assume that it relaxes instanta-
neously to the solution of Equation 16 written on the deformed surface at time ‍t‍.

https://doi.org/10.7554/eLife.75878
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Figure 2. Deformations of epithelial shells due to active bending moments, with free (a–d) and conserved (e–i) volume. (a, e) Shape diagram. 
(b, f) Details of shape diagram illustrating different behaviours of solution branches. The ideal neck line (green) represents the bending moment 
difference required to create budded shapes consisting of two spheres with ‍u = 0‍, as given by Equation 24. (c) Examples of solution branches in the 

‍(δζc, V)‍-plane corresponding to four different regions in (b). (g) Examples of solution branches in the ‍(δζc, P)‍-plane chosen from three different regions 

Figure 2 continued on next page
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Dimensionless variables
The equations are made dimensionless (marked by tilde) by rescaling tensions by ‍κ/R2

0‍, bending 
moment densities by ‍κ/R0‍, lengths by ‍R0‍, force densities by ‍κ/R3

0‍, viscosities by the two-dimensional 
shear viscosity ‍η‍ of the epithelium, times by the characteristic time scale ‍τa = ηR2

0/κ‍ , and velocities 
by ‍R0/τa‍. This leaves the dimensionless parameters ‍K̃ = KR2

0/κ‍, ‍̃lc = lc/R0‍, ‍̃ηb = ηb/η‍, ‍̃ηcb = ηcbR2
0/η‍ and 

‍̃ηV = ηVR4
0/η‍ to be fixed. We choose to set ‍̃η = η̃b = 1‍, ‍̃ηV = 10−4

‍ for fast relaxation of the volume, 
and the nematic length scale is set to ‍̃lc = 0.1‍. Working under the assumptions of linear shell theory 
for a homogeneous thin shell (Reddy, 2006), one can relate the elastic moduli to each other via the 
thickness ‍h‍ of the cell layer, and express ‍̃K = 12(R0/h)2

‍. In simulations we use ‍̃K = 1000‍, corresponding 
to ‍h/R0 ≈ 0.1‍, which covers a range of systems from gastrulating embryos (e.g. sea urchin Davidson 
et  al., 1995) to organoids (Serra et  al., 2019). Similarly, for the bulk bending viscosity we have 

‍̃ηcb ∼ (h/R0)2 = 10−2
‍.

Numerical methods
For both the steady-state computation and the dynamics, the resulting sets of ode’s are integrated 
numerically with the boundary-value-problem solver bvp4c of MATLAB, which implements a fourth-
order collocation method on an adaptive spatial grid (Kierzenka and Shampine, 2001). The equations 
are solved on the full interval ‍[0, L]‍, and geometrical singularities at the poles are handled using analyt-
ical limits at ‍s = 0, L‍ (Appendix 6). Any integral constraint, such as volume conservation, is rewritten as 
a boundary value problem and added to the system of ode’s to be solved.

in (e). (d, h) Dynamic simulations of shape changes, for parameter values indicated in the shape diagrams (a, e). (i) Neck radius and curvatures at the 
neck as functions of ‍δζc‍ for the example ‍la/L0 = 0.04‍ in (g). Other parameters: ‍̃K = 103, η̃cb = 10−2

‍, ‍̃ηV = 10−4
‍.

The online version of this article includes the following video and figure supplement(s) for figure 2:

Figure 2—video 1. Deformation of an epithelial shell with free volume, ‍la/L0 = 1‍, ‍ζn = 1.5κ/R2
0‍, with nematic director shown with black lines and active 

nematic tension colour coded.

https://elifesciences.org/articles/75878/figures#fig2video1

Figure 2—video 2. Deformation of an epithelial shell with free volume, ‍la/L0 = 1‍, ‍ζn = 1.5κ/R2
0‍, with tangential velocity shown as white arrows and 

colour coded.

https://elifesciences.org/articles/75878/figures#fig2video2

Figure 2—video 3. Deformation of an epithelial shell with free volume, ‍la/L0 = 1‍, ‍ζn = 3κ/R2
0‍, with nematic director shown with black lines and active 

nematic tension colour coded.

https://elifesciences.org/articles/75878/figures#fig2video3

Figure 2—video 4. Deformation of an epithelial shell with free volume, ‍la/L0 = 1‍, ‍ζn = 3κ/R2
0‍, with tangential velocity shown as white arrows and 

colour coded.

https://elifesciences.org/articles/75878/figures#fig2video4

Figure 2—video 5. Deformation of an epithelial shell with conserved volume, ‍la/L0 = 0.3‍, ‍δζn = 40κ/R2
0‍, with nematic director shown with black lines 

(where ‍δζn ̸= 0‍) and active nematic tension colour coded.

https://elifesciences.org/articles/75878/figures#fig2video5

Figure 2—video 6. Deformation of an epithelial shell with conserved volume, ‍la/L0 = 0.3‍, ‍ζn = 40κ/R2
0‍, with tangential velocity shown as white arrows 

and colour coded.

https://elifesciences.org/articles/75878/figures#fig2video6

Figure 2—video 7. Deformation of an epithelial shell with conserved volume, ‍la/L0 = 0.7‍, ‍δζn = 60κ/R2
0‍, with nematic director shown with black lines 

(where ‍δζn ̸= 0‍) and active nematic tension colour coded.

https://elifesciences.org/articles/75878/figures#fig2video7

Figure 2—video 8. Deformation of an epithelial shell with conserved volume, ‍la/L0 = 0.7‍, ‍ζn = 60κ/R2
0‍, with tangential velocity shown as white arrows 

and colour coded.

https://elifesciences.org/articles/75878/figures#fig2video8

Figure supplement 1. Details of the steady-state solutions with nearly closed necks formed by isotropic bending moments for free volume (a) and 
conserved volume (b), and ‍la/L0 = 0.9‍.

Figure supplement 2. Maximal relative surface area of the steady-state shapes measured along a solution branch for each ‍la/L0‍ in the case of 
conserved volume, corresponding to shapes shown in Figure 2e–g.

Figure 2 continued

https://doi.org/10.7554/eLife.75878
https://elifesciences.org/articles/75878/figures#fig2video1
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The dynamics simulations start with a sphere at time ‍̃t = 0‍. We study each of the four active effects 
separately. The corresponding active profile is switched on smoothly via a sigmoid function in time, 
such that it reaches its target intensity at ‍̃t ≈ 0.02‍. The time integration according to Equation 22 is 
done with an explicit Euler method with adaptive step size via

	﻿‍ X′(ϕ, s, t + δt) = X(ϕ, s, t) + δtv(ϕ, s, t).‍� (23)

In order to keep the force and torque balance equations in the form given by Equations 63–65, the 
updated surface is reparametrised as ‍X′(ϕ, s′, t + δt)‍ in a new arc length ‍s′(s)‍ which is calculated from 
the condition ‍gs′s′ = 1‍. The profiles and surface quantities are passed between time steps as spline 
interpolants.

To produce the diagrams of steady-state shapes, ‍la‍ is fixed and the control parameter is the differ-
ence of the active profile value between the passive and the active regions of the shell, for example, 
for the profile given in Equation 17 it is ‍δζc‍. A solution branch is found by starting from the spher-
ical solution at zero difference of active profile, and calculating a sequence of steady-state shapes, 
progressively increasing the magnitude of the difference in activity. Two different methods are used 
to construct the solution branch for a sequence of control parameter values. For small values, starting 
from zero, the solution branch is obtained by making small increments in the control parameter. For 
larger values we switch to an implicit stepping method, which we developed based on a parametric 
representation of the solution branch (see Appendix 6 section ‘Construction of solution branches’). 
This second method allows us to continue the solution branches into regions where the steady-state 
shapes become non-unique in the control parameter.

Details of the numerical methods can be found in Appendices 6 and 7 for the steady state and the 
dynamics simulations, respectively.

Results
Epithelia as active membranes: Isotropic active tensions
We first consider deformations of an epithelial shell due to patterns of isotropic active tensions and 
bending moments. A spatially varying isotropic tension represents a change in the preferred area 
of the epithelium due to either changes in sheet thickness or cell number (Popović et al., 2017). 
However, one can show that a step-profile of positive (contractile) tension ‍ζ > 0‍ does not lead, at 
steady state, to a three-dimensional deformation of the shell away from a spherical shape, which is 
a consequence of the absence of shear elasticity in our model (Appendix 8). Instead, the epithelium 
remains spherical and regions with higher tension contract. This leads to a rescaling of the relative 
active region size ‍la/L0‍ and, if the volume is free to change, also to a decrease in shell radius (Appendix 
8). If the tension becomes negative, a buckling of the surface may occur (Salbreux and Jülicher, 
2017). Here, we focus on positive tensions; therefore, if only isotropic active effects are considered, 
active internal bending moments are required to drive deformations away from the spherical shape.

Epithelia as active shells: Isotropic active bending moments
We now turn to deformations induced by an increasing active bending moment in a spherical cap. 
In Figure 2a and e, we plot a phase diagram of steady-state shapes as a function of the increased 
active bending moment ‍δζc‍ and the size of the active region ‍la‍. The steady-state deformed shapes are 
plotted with the active region shown in red and the ‘passive’ region, where ‍ζc = 0‍, shown in blue. We 
can contrast the situation where fluid is free to exchange across the surface and at steady state the 
difference of pressure across the surface vanishes, ‍P = 0‍ (Figure 2a–d), to the case where the volume 
enclosed by the surface is constrained to a fixed value (Figure 2e–i).

An isotropic active bending moment (term in ‍ζc‍ in Equation 6) induces a preferred curvature 

‍(C
0)k

k = − ζc
2κ‍, such that regions of a spherical shell with ‍ζc > 0‍ can be expected to flatten or bend 

inwards. Specifically, a difference of ‍δζc‍ applied at the boundary of the active cap induces a jump in 
meridional curvature ‍Cs

s‍ and a local folding of the sheet. Due to the spherical topology, the shape 
of the whole shell is affected by this fold, as can be seen from the sequences of stationary shapes 
obtained by increasing ‍δζc‍ for intermediate values of ‍la/L0‍ (Figure 2a). In particular, for the same value 
of ‍δζc‍ the active region may bend inward or keep a positive curvature, depending on its size.

https://doi.org/10.7554/eLife.75878
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When ‍la/L0‍ is small or close to 1, the resulting shape is characterised by the formation of a bud which 
form either inwards (‍la ≪ L0‍) or outwards ‍(L0 − la ≪ L0)‍. In these cases, for sufficiently large values 
of ‍δζc‍ the steady-state solution is lost through the formation of a constricting neck. In our simulations 
the constricting neck is numerically resolved up to values of ‍∼ 10−3R0‍; extrapolation indicates full 
constriction at a finite ‍δζc‍ (Figure 2i). As the neck radius decreases the principal curvatures at the neck 
diverge as ‍C

s
s , Cϕ

ϕ → ±∞‍, such that ‍C
k
k ‍ remains finite (Figure 2i) and therefore the limiting, budded 

shape is a true steady-state solution. Such a transition is reminiscent of models of lipid membrane 
vesicles, which can be induced to form a budded shape consisting of two spheres connected by 
an infinitesimal region called the ideal neck (Seifert et  al., 1991; Jülicher and Lipowsky, 1993; 
Fourcade et al., 1994; Jülicher and Lipowsky, 1996; Seifert, 1997). For lipid membranes the ideal 
neck condition gives the difference in spontaneous curvature between the two domains at which a 
vesicle will form two spheres, ‍1/R1 + 1/R2 = C0‍ with ‍R1‍ and ‍R2‍ the radius of the two spheres and ‍C0‍ the 
spontaneous curvature (Seifert, 1997). Here the choice of constitutive Equations 5 and 6 does not 
correspond to the Helfrich model, and we find alternative matching conditions for the two regions 
connected by the infinitesimal neck: we find that ‍tss‍ changes sign across the neck, while ‍̄ms

s‍ is contin-
uous. This result can be derived by a scaling analysis around the neck (Appendix 2). In the free volume 
case, these conditions are satisfied when the active and passive regions are separated by the neck, 
and have the shapes of spheres with vanishing strain (‍u = 0‍) and radii ‍Ra‍, ‍Rp‍, related by the condition:

	﻿‍

1
Ra

− 1
Rp

= −δζc
4κ

,

− 1
Ra

− 1
Rp

= −δζc
4κ

,
‍�

(24)

where the change of sign in the second line arises because the active region deforms inward and 
form a sphere with a negative mean curvature. The additional condition of vanishing strain ‍u = 0‍ gives 
an additional relation for ‍R1‍ and ‍R2‍ as a function of ‍la/L0‍. Combining these conditions determine a 
curve in the parameter space ‍δζcR0/κ‍, ‍la/L0‍, which matches with the numerically determined curve 
of neck constriction (Figure 2b). In the fixed volume case, the matching conditions do not result in 
such a simple shape solution; however, using the same condition as for the free volume case appears 
to still provide a good approximation of the constriction point for small (‍la ≪ L0‍) and close to ‍L0‍ 

‍(L0 − la ≪ L0)‍ values of ‍la‍ (Figure 2f). We conclude that infinitesimal neck formation can arise outside 
of the Helfrich model and that the ideal neck condition which is satisfied there does not generally 
extend to other models of surface mechanics.

At sufficiently large increase in the active bending moment difference ‍δζc‍ and for intermediate 
values of ‍la/L0‍, a fold in the solution branch in the ‍(δζc, V)‍-plane appears (Figure 2c). For most values 
of ‍la/L0‍, this fold is associated to the loss of a continuously attainable solution with increasing ‍δζc‍, and 
a shape transition (Figure 2b and c). We expect shapes obtained by following the continuous branch 
of shapes beyond the fold to be unstable (Appendix 9). The (potentially unstable) physical branch 
eventually stops either through a self-intersection of the sheet at the poles (Figure 2c, ‍la/L0 = 0.35‍) 
or through the constriction of a small neck that develops near the boundary of the passive and active 
regions and separates the shell into two smaller, approximately spherical compartments (Figure 2c, 

‍la/L0 = 0.31, 0.7‍). Alternatively the solution branch continues in a sequence of loops and the active 
region elongates (Figure 2c, ‍la/L0 = 0.5‍), forming an increasing number of bubble-like compartments.

Since we follow continuous trajectories of steady-state shapes in parameter space, we cannot 
directly obtain alternative steady-state solution branches after the shape transition. Therefore, we turn 
to dynamic simulations where we explicitly calculate flow fields, starting from the reference spherical 
shape, and evolve the surface shape (Figure 2d) with parameters chosen to be away from the transi-
tion in parameter space (Figure 2a). This also allows to resolve the sequence of shapes and velocity 
fields leading to a given steady-state deformed shape (Figure 2h, ‍la/L0 = 0.1, δζc = 40κ/R0‍). For param-
eters beyond the shape transition, we find that a small neck can form, separating roughly the active 
and passive regions, whose radius decreases to 0 over time (Figure 2d). Alternatively, the surface 
ends up self-intersecting (Figure 2d, ‍la/L0 = 0.35, δζc = 12.5κ/R0‍). We do not find therefore alternative 
solution branches beyond the shape instability. Since intersection of the surface with itself is described 
by different physical interactions than considered here, our framework does not answer what would 
happen beyond the self-intersection line. However, assuming that self-intersection results in fusion 

https://doi.org/10.7554/eLife.75878
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and rupture of the apposed two surfaces, active 
isotropic bending moment difference could in 
principle drive a change in tissue topology, from 
one sphere to two (‍la/L0 = 0.85, δζc = 15κ/R0‍), 
or from a sphere to a torus via self-intersection 
(‍la/L0 = 0.35, δζc = 12.5κ/R0‍).

When volume is conserved, deformations are 
broadly similar but tend to be more localised to 
the fold at the active boundary (Figure 2e–i). For 
intermediate values of ‍la/L0‍, the shell deforms 
into locally folded shapes, which eventually self-
intersect at large bending moment difference 
(Figure 2g, ‍la/L0 = 0.3, 0.7‍, Figure 2h).

Nematic active tensions
We now introduce the nematic order param-
eter ‍Qij‍ and consider shape changes driven by 
contractile or extensile active stress in the active 
region (Figure  3). As expected, solving for the 
nematic order parameter profile on the unde-
formed sphere results in maximal order at the 
equator and two defects at the poles where 
the nematic order parameter vanishes, ‍q = 0‍ 
(Figure  3). Two solutions with ‍q < 0‍ and ‍q > 0‍ 
can exist; in the following we take the convention 
that ‍Q

ϕ
ϕ = q > 0‍, ‍Q s

s = −q < 0‍, corresponding to 
circumferential alignment of the order parameter, 
such that a contractile active stress ‍(ζn > 0)‍ results 
in a positive circumferential tension, ‍t

ϕ
ϕ > 0‍. Due 

to invariance of the constitutive equation by 
exchange ‍Qij → −Qij‍, ‍ζn → −ζn‍, the same shape 
deformations occur when considering meridi-
onal alignment of the order parameter (‍q < 0‍) 
and exchanging contractile ‍(ζn > 0)‍ and extensile 

‍(ζn < 0)‍ active stresses.
As before, we study the cases of vanishing pres-

sure difference across the shell (Figure 4a–e) and 
constrained volume inside the shell (Figure 4f–i). 
With a nematic tension profile on the surface, a 

deformation away from the spherical shape occurs even for homogeneous active nematic tension, 

‍la/L0 = 1‍ (Figure 4a–e).
In the extensile case ‍ζn < 0‍ (or in the contractile case ‍ζn > 0‍ if ‍q < 0‍), and no pressure difference 

across the shell, the surface progressively flattens into a flat, double-layered disc (Figure 4b, ‍la/L0 = 1‍, 

‍ζn < 0‍). There is no shape transition occurring; instead, we find that the shape converges to a limit 
shape as ‍|ζn| → ∞‍ (Appendix 4). The limit shape corresponds to two parallel flat discs of radius ‍Rd‍, 
separated by a distance ‍2h‍, connected by a narrow curved region. An asymptotic analysis (Appendix 
4) shows that the radius of the disc and the separating distance obey the scaling relations, in the limit 

‍κ ≪ Kl2c‍:

	﻿‍
Rd ∼ lc, h ∼

(
κlc
K

) 1
3

‍�
(25)

The first relation shows that the limit shape has the size of the characteristic nematic length ‍lc‍. Phys-
ically, for ‍lc ≪ L0‍, the nematic active tension results in a contraction of the shape, until the shape is 
sufficiently close to the defect core for the nematic order to ‘dissolve,’ thus limiting further increase 
in the active tension.

0 3
-2
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0

1

2

a)

21

b)

Figure 3. Nematic order on a sphere. (a) Two possible 
configurations for the nematic order parameter 

‍Qij‍ on a sphere with a + 1 topological defect at 
each pole: meridional (left) or circumferential 
(right) alignment. The order parameter minimises 
an effective energy (Equation 9 with ‍lc = 0.1R0‍). 

(b) Order parameter ‍q(s) = Qϕ
ϕ(s)‍ as a solution of 

the Euler–Lagrange Equation 16 on a sphere with 

‍R0 = 1‍ and ‍lc = 0.1R0; q = 1‍ at the equator and ‍q = 0‍ 
at the locations of the defects (poles). For uniform 

‍ζn‍, ‍ζn∇iQis
‍ is the active nematic contribution to 

the tangential force balance (Equation 63) and, 
close to the equator, results in the elongation of the 
surface along the axis of symmetry for ‍ζn > 0‍, and its 
contraction for ‍ζn < 0‍.

https://doi.org/10.7554/eLife.75878
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Figure 4. Deformations of epithelial shells due to nematic tensions, with free (a–e) and conserved (f–i) volume. (a, e) Shape diagrams. (b, g) Details of 
shape diagram illustrating the behaviour of solution branches. (d) Curvature at the south pole for extensile stress. (c, e, h, i) Dynamic simulations of shell 
shape changes, for parameter values indicated in the phase diagrams (a, f). Other parameters: ‍̃K = 103, η̃cb = 10−2

‍, ‍̃ηV = 10−4
‍, ‍̃lc = 0.1‍.

Figure 4 continued on next page
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In the contractile case (‍ζn > 0‍), the shape elongates until a shape transition is reached, character-
ised by a fold in the solution branch (Figure 4b, ‍la/L0 = 1‍, ‍ζn > 0‍). Following the solution branch after 
the fold eventually gives rise to a sequence of presumably unstable shapes with the formation of a 
central constricting neck. Intrigued by this result, we performed dynamical simulations for contrac-
tile active tensions above the shape transition (Figure 4c and e; Figure 4—figure supplement 1). 
Dynamic simulations show separation of the shape into two or more compartments via dynamical neck 
constrictions, with the neck radius vanishing over time (Figure 4—figure supplement 1a). Within the 
neck, ‍q → 0‍ as a result of the diverging principal curvatures (as can be seen from the presence of a 
term ‍(

cos(ψ)
x q)2

‍ term in the nematic free energy, Equation 102). In particular, for values close to the 
branch fold (Figure 4c) the dynamics is reminiscent of cell division; however, in contrast to existing 
models of cell division (Salbreux et al., 2009; Turlier et al., 2014), the constriction appearing here 
does not require a narrow peak of active stress around the equator to occur. At larger contractile 
stress (Figure 4e), a narrow, elongated tube forms around the equator. This tube thins out over time, 

The online version of this article includes the following video and figure supplement(s) for figure 4:

Figure 4—video 1. Deformation of an epithelial shell with free volume, ‍la/L0 = 1‍, ‍ζcn = −5κ/R0‍, with nematic director (black lines, as described in 
figure caption) and active nematic torque colour coded.

https://elifesciences.org/articles/75878/figures#fig4video1

Figure 4—video 2. Deformation of an epithelial shell with free volume, ‍la/L0 = 1‍, ‍ζcn = −5κ/R0‍, with tangential velocity shown as white arrows and 
colour coded.

https://elifesciences.org/articles/75878/figures#fig4video2

Figure 4—video 3. Deformation of an epithelial shell with free volume, ‍la/L0 = 0.3‍, ‍δζcn = −20κ/R0‍, with nematic director (black lines, as described in 
figure caption) and active nematic torque colour coded.

https://elifesciences.org/articles/75878/figures#fig4video3

Figure 4—video 4. Deformation of an epithelial shell with free volume, ‍la/L0 = 0.3‍, ‍δζcn = −20κ/R0‍, with tangential velocity shown as white arrows 
and colour coded.

https://elifesciences.org/articles/75878/figures#fig4video4

Figure 4—video 5. Deformation of an epithelial shell with free volume, ‍la/L0 = 1‍, ‍ζcn = 4κ/R0‍, with nematic director (black lines, as described in figure 
caption) and active nematic torque colour coded.

https://elifesciences.org/articles/75878/figures#fig4video5

Figure 4—video 6. Deformation of an epithelial shell with free volume, ‍la/L0 = 1‍, ‍ζcn = 4κ/R0‍, with tangential velocity shown as white arrows and 
colour coded.

https://elifesciences.org/articles/75878/figures#fig4video6

Figure 4—video 7. Deformation of an epithelial shell with free volume, ‍la/L0 = 0.3‍, ‍δζcn = 15κ/R0‍, with nematic director (black lines, as described in 
figure caption) and active nematic torque colour coded.

https://elifesciences.org/articles/75878/figures#fig4video7

Figure 4—video 8. Deformation of an epithelial shell with free volume, ‍la/L0 = 0.3‍, ‍δζcn = 15κ/R0‍, with tangential velocity shown as white arrows and 
colour coded.

https://elifesciences.org/articles/75878/figures#fig4video8

Figure 4—video 9. Deformation of an epithelial shell with conserved volume, ‍la/L0 = 0.3‍, ‍δζcn = −150κ/R0‍, with nematic director (black lines, as 
described in figure caption) and active nematic torque colour coded.

https://elifesciences.org/articles/75878/figures#fig4video9

Figure 4—video 10. Deformation of an epithelial shell with conserved volume, ‍la/L0 = 0.3‍, ‍δζcn = −150κ/R0‍, with tangential velocity shown as white 
arrows and colour coded.

https://elifesciences.org/articles/75878/figures#fig4video10

Figure 4—video 11. Deformation of an epithelial shell with conserved volume, ‍la/L0 = 0.5‍, ‍δζcn = 50κ/R0‍, with nematic director (black lines, as 
described in figure caption) and active nematic torque colour coded.

https://elifesciences.org/articles/75878/figures#fig4video11

Figure 4—video 12. Deformation of an epithelial shell with conserved volume, ‍la/L0 = 0.5‍, ‍δζcn = 50κ/R0‍, with tangential velocity shown as white 
arrows and colour coded.

https://elifesciences.org/articles/75878/figures#fig4video12

Figure supplement 1. Details of dynamics simulations for shells with (a, b) homogeneous and (c) patterned nematic tension, which result in one or two 
constricting necks.

Figure 4 continued
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and two symmetric necks emerge and constrict, suggesting that the shape would eventually separate 
into three topologically separated surfaces (Figure 4—figure supplement 1b).

For ‍0 < la/L0 < 1‍ and extensile stress in the active region ‍δζn < 0‍, the active region tends to flatten 
more and more strongly as ‍|δζn|‍ is increased, and the total curvature vanishes at the south pole 
(‍C

k
k → 0‍, Figure  4d). For ‍0 < la/L0 < 1‍ and contractile stress ‍δζn > 0‍, a fold in the solution branch 

appears at large value of ‍δζn‍ (Figure 4b and d). Following the solution branch beyond the fold results 
in a complex trajectory in parameter space, corresponding to successive additions of new bubbles 
to a linear chain of bubbles within the active region. This bubble chain is observed both with free or 
constrained volume (Figure 4b and g). Here, we cannot conclude however whether these shapes 
are unstable. Instead, we consider the shape dynamics for ‍δζn‍ values larger than the shape transi-
tion, here at fixed internal volume (Figure 4h and i). Here, a neck forms within the active region and 
its constriction leads to the separation of a smaller bubble. For small enough ‍la‍ the smaller bubble 
appears nematic-free and spherical (Figure 4h, Figure 4—figure supplement 1b). This is consistent 
with restoration of isotropic state stability which can occur on a sphere whose size becomes smaller or 
comparable to ‍lc‍ (Appendix 3 section ‘Stability of the isotropic state on a sphere’).

Active nematic bending moments
We now turn to shape deformations resulting from active bending moments oriented along the 
nematic order ‍Qij‍. As for nematic tension, we adopt the convention of nematic alignment along the 
circumference, ‍Q

ϕ
ϕ = q > 0‍; alignment along the meridians can be studied simply by changing the sign 

of the active coefficient ‍ζcn‍.
We first discuss the case where the nematic active bending moment is homogeneous (‍la/L0 = 1‍), 

where there is no difference of pressure across the surface, and where ‍ζcn = δζcn < 0‍ (Figure 5a–c and 
g). We find that the sphere deforms into a shape with a central cylindrical part (Figure 5a and b). The 
length of the cylindrical part increases with increasing value of ‍|ζcn|‍. To characterise this, we note that 
the corresponding steady-state shape solutions have vanishing tensions ‍tss = 0‍ and ‍tsn = 0‍ everywhere 
(Figure 5—figure supplement 1) and the force balances Equations 63 and 64 are trivially satisfied. 
The torque balance Equation 65 reads

	﻿‍
2κ∂sC k

k − ζcn∂sq = 2ζcn
cosψ

x
q.

‍�
(26)

Combining Equations 26 and 48 one obtains that ‍L[C s
s − Cϕ

ϕ − ζcnq/(2κ)] = 0‍, with the operator 

‍L = ∂s + 2 cos ψ
x ‍. Solutions to ‍L[f] = 0‍ have the form ‍f = A/x2

‍ with A a constant. The boundary condition 
that the function ‍f ‍ should be finite at the poles requires ‍A = 0‍, such that

	﻿‍
C s

s − Cϕ
ϕ = qζcn

2κ
.
‍�

(27)

As a result, if the shape has a cylindrical part, in which ‍C s
s = 0‍ and ‍q = 1‍, then the cylinder radius ‍Rc‍ is 

given by

	﻿‍
1

Rc
= −ζcn

2κ
,
‍�

(28)

and since such solutions are area-preserving, with ‍u = 0‍, the length of the cylindrical part scales as 
‍Lc ∼ 1/Rc‍. These relations are in excellent agreement with simulation results for large enough ‍|ζcn|‍ 
(Figure 5g).
When ‍la < L0‍, the active region forms an outward cylindrical protrusion (Figure 5a, b and g) whose 
radius is still well described by Equation 28, replacing ‍ζcn‍ by ‍δζcn‍, the value of the active nematic 
bending moment in the active region (Figure 5g). Using that within the cylindrical protrusion ‍u = 0‍ 
so that the cylindrical protrusion has the same area as the original active domain and the relation 
Equation 85 for the size of the active domain, we find that the length of the active protrusion is now 
given by

	﻿‍
Lc ≃ R2

0
Rc

(
1 − cos la

R0

)
= − δζcnR2

0
2κ

(
1 − cos la

R0

)
,
‍� (29)

https://doi.org/10.7554/eLife.75878
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Figure 5. Deformations of epithelial shells due to nematic bending moments, with free (a–c) and conserved (d, e) volume. (a, d) Shape diagrams. (b, 
e) Details of shape diagram illustrating the behaviour of solution branches. (c, f) Dynamic simulations of shell shape changes, for parameter values 
indicated in the phase diagrams (a, d). In both cases in (f) the dynamics results in self-intersection. (g) Comparison of curvature and length of the 
cylindrical tubes for ‍la/L0 = 1, 0.7, 0.3‍, ‍δζcn < 0‍ with analytical predictions. The tube length is measured on the steady-state shape as the arc length of 

Figure 5 continued on next page
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which is again in excellent agreement with numerical simulation for large ‍|δζcn|‍ and for different values 
of ‍la/L0‍ (Figure 5g).

For ‍ζcn > 0‍ and ‍la/L0 = 1‍ we find erythrocyte-like shapes, where the indentations at the poles 
become stronger with ‍ζcn‍ until the two poles touch (Figure 5b). This behaviour remains for ‍la < L0‍, 
resulting in a self-intersection line in the phase diagram (Figure 5a). Here, the shape can take the 
form of an inner tube entering the spherical shell (Figure 5b), reminiscent of epithelial shape changes 
observed during sea urchin gastrulation (Ettensohn, 1984).

Interestingly, when ‍la/L0 < 1‍ and the volume is free to change, both signs of ‍δζcn‍ result in a cylin-
drical appendage forming from the active region. The sign of ‍δζcn‍ determines whether the cylinder 
forms outside or inside of the remaining, roughly spherical shape. Dynamics simulations confirm that 
the shapes described above are stable solutions (Figure 5c). At the tip of the emerging cylinder lies 
the +1 topological defect. For ‍δζcn < 0‍, when the protrusion grows towards the outside, such a situa-
tion is reminiscent of the observation of nematic defects in Hydra, where a set of topological defects, 
with +1 defects at the tip, have been observed in growing tentacles (Maroudas-Sacks et al., 2021). 
There, actin layers are perpendicular to each other, with circumferential alignment in the inner cell 
layer and longitudinal in the outer layer, which would indeed result in ‍δζcn < 0‍ with our sign convention 
if the layers are contractile.

We now describe surfaces with fixed volume (Figure 5d–f). Here, we do not observe cylindrical 
shapes or protrusions as in the case of free volume. When ‍ζcn < 0‍ and ‍la = L0‍ the surface becomes 
spindle-like, narrowing at the poles with increasing ‍|ζcn|‍. As in the free volume case, when ‍ζcn > 0‍ the 
two opposite poles come in contact with each other (Figure 5e); such that subsequent fusion of the 
poles would lead to an overall toroidal shape of the shell. The shapes become more complex for 

‍la < L0‍. Shape transitions occur at large ‍|δζcn|‍, for both ‍δζcn < 0‍ and ‍δζcn > 0‍ (Figure 5e). In the case 

‍δζcn < 0‍, for increasing magnitude of the active bending moment, the shape becomes increasingly 

Figure 6. Summary of shape changes obtained through patterning of isotropic and anisotropic active tensions and 
bending moments. Active tensions and bending moments are present only in the red region of the surface. For 

‍ζcn < 0‍ the director field orientation (black lines) is set by ‍−Qij‍.

the deformed active region, ‍stube = s(s0 = la)‍, and the tube curvature as ‍C
ϕ
ϕ (stube/2)‍. Other parameters: ‍̃K = 1000, η̃cb = 10−2

‍, ‍̃ηV = 10−4
‍, ‍̃lc = 0.1‍. In 

(c), (f), for ‍δζcn, ζcn < 0‍ the orientation of the director field drawn on the surface (black lines) is set by ‍−Qij‍.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Details of steady-state shapes resulting from nematic bending moments with ‍ζcn < 0‍ and free volume.

Figure 5 continued
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curved at the boundary between the passive and active regions, until the solution is lost. In the case 

‍δζcn > 0‍, the shell indents within the active region and the solution branch has a fold. To the right of 
the fold line in the shape diagram, the steady-state solutions are eventually lost through the forma-
tion of a small neck that separates off a smaller, internalised compartment. In contrast to the case of 
isotropic bending moments, here the sign of ‍δζcn‍ determines whether the active region folds inwards 
or outwards, independent of the initial size ‍la/L0‍. As before, we use dynamics simulations to study the 
deformations for large ‍|δζcn|‍ (Figure 5f). For both signs of ‍δζcn‍, these result in shapes that are self-
intersecting either along a circle (‍la/L0 = 0.3, δζcn = −150κ/R0‍) or at the poles (‍la/L0 = 0.5, δζcn = 50κ/R0‍).

Discussion
In this study of deformations of patterned nematic active surfaces, we have found a diverse zoology 
of possible shape changes (Figure 6), characterised by budding and neck constrictions, transition 
of sphere to cylinder, tubulation, and flattening. We find that introduction of a nematic field on the 
surface greatly increases the space of possible shapes. Overall our work contributes to the character-
isation of the ‘morphospace’ which biological systems can explore.

Some of our findings recapitulate epithelial deformations observed in biological systems. The flat-
tening observed for an extensile homogeneous nematic surface (Figure 4b, ‍la/L0 = 1‍) could in prin-
ciple lead to merging of the two apposed surfaces into a double-layer for large ‍|ζn|‍. Such a process 
of tissue planarisation appears to occur as an intermediate step in skin organoid formation, where 
epithelial cysts fuse and merge to form transient bilaterally symmetric structures (Lei et al., 2017). The 
formation of tubular appendages from nematic bending moments appears to recapitulate growth/
regeneration of elongated bodies and tentacles in Hydra (Maroudas-Sacks et al., 2021) and, with 
an opposite sign, of epithelial invagination during sea urchin embryo gastrulation (Ettensohn, 1984).

The axisymmetric structure we have considered here naturally gives rise to two +1 nematic defects 
at the poles (Figure 3a). These defects then structure the nematic field and, as a result, the shape 
changes driven by nematic active tension or bending moments. Such an interplay between topolog-
ical defect and shape changes is a recurring theme that may play a key role in morphogenesis (Frank 
and Kardar, 2008; Metselaar et al., 2019; Hoffmann et al., 2021; Blanch-Mercader et al., 2021a; 
Blanch-Mercader et al., 2021b). In practice +1 nematic defects are unstable to separation into two 
+1/2 defects; however, it is conceivable that a polar or additional weakly polar field stabilises the +1 
defects (Amiri et al., 2022). Extension of the present work beyond axisymmetric structures will allow 
to distinguish more clearly the purely nematic and polar cases.

Continuum theories for curved surfaces, such as the Helfrich theory, have been extremely successful 
to describe shape transformations of passive vesicles, including homogeneous or phase-separated 
vesicles with coexisting domains (Seifert et al., 1991; MacKintosh and Lubensky, 1991; Jülicher 
and Lipowsky, 1993; Seifert, 1997; Allain et al., 2004; Sens and Turner, 2004; Bassereau et al., 
2014). The effect of broken symmetry variables on passive surfaces, arising, for instance, from molec-
ular tilt giving rise to polar order on a lipid membrane, has been considered theoretically (MacKin-
tosh and Lubensky, 1991; Lubensky and Prost, 1992; Park et al., 1992). Continuum theories of 
active surfaces can similarly allow to study epithelial deformations (Salbreux and Jülicher, 2017; 
Morris and Rao, 2019; Messal et al., 2019). We note some important differences between the active 
surface model described here and passive membranes. (i) Our constitutive equations for tensions 
and bending moments Equations 5 and 6 do not in general derive from a free energy (Salbreux 
and Jülicher, 2017) and describe a system out-of-equilibrium; (ii) while lipid membranes are nearly 
incompressible and are usually treated as surfaces with constant area, cells within epithelial tissues 
can change their area significantly (Latorre et al., 2018), which prompted us to consider a finite area 
modulus ‍K ‍: for example, simulations with constant volume have relative area changes of up to 20% 
(Figure 2—figure supplement 2); (iii) patterns of active tensions and bending moments imposed 
here also do not derive from an energy and are thought to respond to spatiotemporal chemical cues: 
in contrast, phase-separated domains in passive lipid vesicles obey equilibrium thermodynamics and 
their size is controlled, for instance, by line tension at the domain boundary (Jülicher and Lipowsky, 
1993). In some cases, however, a similarity appears between shape transformations obtained in the 
active model we study here and the passive Helfrich model. For instance, budding occurring in lipid 
membranes due to phase separation of domains with different spontaneous curvature (Jülicher and 

https://doi.org/10.7554/eLife.75878
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Lipowsky, 1993) is similar to the budding we observe here for different regions with different active 
isotropic bending moments.

We find here that nematically oriented active bending moments can give rise to spontaneous 
cylindrical tubes, without external force application (Figure 5). Spontaneous formation of hollow cylin-
drical vesicles with polar order due to molecular tilt has been discussed Lubensky and Prost, 1992; 
there the cylindrical shapes are considered to be open and the gain in defect energy allows the 
open cylinder to be more stable than the spherical shape. In contrast, we find here active surfaces 
which spontaneously form tubes, but stay closed and keep their topological charge. It has also been 
reported that a supported bilayer membrane under compression can spontaneously form tubes 
under negative tension (Staykova et al., 2013). In this work we have chosen to consider only positive 
isotropic tension; negative isotropic tension could give rise to further buckling instabilities. Models 
for chiral lipid bilayers in a tilted fluid phase have also predicted tubular shapes (Helfrich and Prost, 
1988; Selinger and Schnur, 1993; Selinger et al., 1996; Tu and Seifert, 2007). Here, we have not 
considered chiral effects. These effects could be introduced by generalising the constitutive Equa-
tions 5 and 6, including terms which appear for surfaces with broken planar-chiral or chiral symmetry 
(Salbreux and Jülicher, 2017).

In contrast to purely elastic models of morphogenesis (Höhn et al., 2015; Haas et al., 2018), we 
have considered here morphogenetic events occurring on time scales long enough for shear elastic 
stresses to be relaxed by cell topological rearrangements, such that the tissue exhibits fluid behaviour 
(Popović et al., 2017). Whether a tissue behaves as an elastic or fluid material on time scales relevant 
to morphogenesis can in principle be probed experimentally (Mongera et al., 2018).

While we have focused the interpretation of our results to epithelial mechanics, the constitu-
tive Equations 5 and 6 we have considered here are generic and may also describe the large-scale 
behaviour of active nematics formed with cytoskeletal filaments and motors on a deformable surface 
(Keber et al., 2014). We considered here, however, a situation where the two-dimensional fluid has 
area elasticity, whereas cytoskeletal networks can in principle be fluid with respect to both shear and 
bulk shear due to the turnover of components.

In this study, we have considered chemical and mechanical processes to be uncoupled, except 
for the profile of active tension or torque being advected with the surface flow. Introducing addi-
tional couplings explicitly in this framework will extend the repertoire of shapes considered here. A 
natural choice is to consider the effect of a chemical undergoing reaction-diffusion on the surface 
and advected by the fluid, regulating active forces on the surface (Mietke et  al., 2019a; Mietke 
et al., 2019b). Here, we assumed that orientational order relaxes quickly compared to other dynam-
ical processes; in future work, this assumption could be lifted and one could study in particular how 
chemical regulation could influence the dynamics of orientational order in the tissue. Cells could also 
be sensing their own curvature and actively adapt their behaviour accordingly (Chen et al., 2019), 
which could lead to a dependency of the active coupling coefficients ‍ζ‍, ‍ζn‍, ‍ζc‍ or ‍ζcn‍ on the trace or 
determinant of the curvature tensor ‍Cij‍. It would be interesting to explore shapes arising from such 
a feedback. Volume conservation at cellular level could also be included explicitly, for instance, by 
introducing a tissue height field (Morris and Rao, 2019). Finally, we have considered here a tissue 
with a fixed preferred area, implicitly assuming that the epithelium is not growing. Tissue growth is a 
key aspect of biological development (Gokhale and Shingleton, 2015; Eder et al., 2017), and cell 
division and death can fluidify elastic stresses in an epithelium (Ranft et al., 2010); adding regulated 
growth in the model will be a step forward in our understanding of active morphogenesis of biological 
tissues.
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Appendix 1
Differential geometry of axisymmetric surfaces
General relations of differential geometry
Fundamental tensors
A general framework for the mechanics of active curved surfaces is given in Salbreux and Jülicher, 
2017; Salbreux et al., 2022, and we follow the differential geometry notation introduced there. Let 
‍X = X(s1, s2)‍ be a curved surface embedded in ‍R3‍ and parametrised by the generalised coordinates 
‍s1, s2‍. A local covariant basis in the tangent plane is given by the vectors ‍ei = ∂iX = ∂X/∂si

‍ and 
the unit normal vector is constructed as ‍n = (e1 × e2)/|e1 × e2|‍ and chosen to point outwards for a 
closed surface in our convention. These define the metric tensor ‍gij = ei · ej‍ and the curvature tensor 

‍Cij = −(∂iej) · n = ei · ∂jn‍. The infinitesimal surface and line elements are given by ‍dS = √gds1ds2
‍ and 

‍dl2 = gijds ids j
‍, where ‍g‍ is the determinant of the metric tensor. The antisymmetric Levi–Civita tensor 

is defined as ‍ϵij = n · (ei × ej)‍.

Covariant derivatives
The Christoffel symbols of the second kind are obtained from derivatives of the metric as

	﻿‍
Γk

ij = 1
2

gkm (
∂jgim + ∂igjm − ∂mgij

)
,
‍�

(30)

and Christoffel symbols of the first kind are defined as ‍Γkij = 1
2
(
∂jgki + ∂igkj − ∂kgij

)
‍. The covariant 

derivatives of a tangent vector field ‍f i
‍ and a tangent tensor field ‍T ij‍, respectively, are given by

	﻿‍ ∇if j = ∂if j + Γ
j
ikf k,‍� (31)

	﻿‍ ∇iT jk = ∂iT jk + Γ
j
ilT

lk + Γ k
il T

jl
‍� (32)

In the following, we also use the divergence theorem on curved surfaces for a tangent vector field 
‍f ‍(Salbreux and Jülicher, 2017),

	﻿‍

ˆ

S
dS∇if i =

ˆ

C
dlνif i.

‍�
(33)

Infinitesimal variation of surface quantities
For a small deformation of the surface

	﻿‍ δX = δXiei + δXnn ,‍� (34)

the variations of the basis vectors, the normal vector, the metric, and the mixed curvature tensor 
components are given by (Salbreux and Jülicher, 2017)

	﻿‍
δei =

(
∇iδXj + Ci

jδXn
)

ej +
(
∂iδXn − CijδXj

)
n,

‍� (35)

	﻿‍
δn =

(
−∂iδXn + CijδXj

)
ei,

‍� (36)

	﻿‍ δgij = ∇iδXj + ∇jδXi + 2CijδXn,‍� (37)

	﻿‍

δ
√g
√g

= 1
2

gijδgij = ∇kδXk + Ck
kδXn,

‍�
(38)

	﻿‍
δC j

i = −∇i

(
∂ jδXn

)
+
(
∇iδXk

)
C j

k −
(
∇kδXj

)
Cik +

(
∇kC j

i

)
δXk − δXnCikC kj.

‍� (39)

These relations can be used to obtain time derivatives of surface quantities using ‍δX = δtv‍ (Lagrangian 
surface update) or ‍δX = δtvnn‍ (where the surface shape is updated with the normal flow only).

https://doi.org/10.7554/eLife.75878
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Since according to the definition Equation 14 the area strain ‍u‍ can be written as, using the 
coordinates ‍(s0,ϕ)‍ on the undeformed and deformed surfaces and denoting ‍g0‍ the determinant of 
the metric of the undeformed surface,

	﻿‍
u =

√g −√g0√g0
,
‍�

(40)

we obtain from Equation 38 the variation:

	﻿‍
δu = (1 + u)

(
∇kδXk + C k

k δXn
)

,
‍� (41)

which yields the Lagrangian time derivative (Equation 15) in the main text, using ‍δX = δtv‍.

Axisymmetric surfaces
Fundamental tensors
On a surface with axial symmetry about the ‍z‍-axis, as defined in the main text, the basis vectors and 
the outward normal are

	﻿‍

eϕ =



−x sinϕ

x cosϕ

0


 ,

‍�

(42)

	﻿‍

es =




cosϕ cosψ

sinϕ cosψ

sinψ


 ,

‍�

(43)

	﻿‍

n =




cosϕ sinψ

sinϕ sinψ

− cosψ


 ,

‍�

(44)

where we have used ‍∂sx = cosψ‍ and ‍∂sz = sinψ‍, which can be defined through the requirement that 
‍s‍ is an arc length parameter, such that ‍|es|2 = (∂sx)2 + (∂sz)2 = 1‍. The metric and curvature tensors and 
the surface element are given by

	﻿‍

gij =


x2 0

0 1


 , C j

i =




sin ψ
x 0

0 ∂sψ


 , dS = x ds dϕ .

‍�
(45)

In the following, because the metric is diagonal, we will not distinguish between the order of indices 
for diagonal elements of second-order tensors in mixed coordinates, that is, for a tensor ‍T‍ we use 

‍T s
s = T s

s = T s
s ‍ and ‍T

ϕ
ϕ = Tϕ

ϕ = Tϕ
ϕ ‍. The circumferential and meridional principal curvatures ‍C

ϕ
ϕ ‍ and ‍C s

s ‍, 
and the mean and Gaussian curvatures ‍H ‍ and ‍K ‍ are given by:

	﻿‍
Cϕ
ϕ = sinψ

x
, C s

s = ∂sψ,
‍�

(46)

	﻿‍
H = 1

2
C k

k , K = det C j
i = Cϕ

ϕ C s
s .

‍�
(47)

Some useful relationships involving the two principal curvatures follow from Equation 46 and from 
the definitions Equations 11 and 12,

	﻿‍
∂sCϕ

ϕ = cosψ
x

(
C s

s − Cϕ
ϕ

)
,
‍� (48)
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	﻿‍
∂s

(
cosψ

x

)
= −Cϕ

ϕ C s
s −

(
cosψ

x

)2
.
‍�

(49)

The partial area and partial volume are given by

	﻿‍
a(s) = 2π

ˆ s

0
ds′ x(s′),

‍�
(50)

	﻿‍
v(s) = π

ˆ s

0
ds′ x(s′)2 sinψ(s′) .

‍�
(51)

The corotational time derivative of the curvature tensor, as defined in Equation 8, has trace

	﻿‍
DC k

k
Dt

= −∂2
s vn −

cosψ
x

∂svn − vn((C s
s )2 + (Cϕ

ϕ )2) + vs∂sC k
k .

‍�
(52)

Covariant derivatives
Axial symmetry implies that all functions on the surface should be ‍ϕ‍-independent, and we also 
consider here vector and tensor fields ‍f ‍, ‍T‍ such that ‍fϕ = 0‍ and ‍T sϕ = Tϕs = 0‍. The only non-
vanishing component of ‍∂igjk‍ is ‍∂sgϕϕ = 2x cosψ‍; therefore, the non-zero Christoffel symbols of the 
first kind are

	﻿‍
Γϕsϕ = Γϕϕs = −Γsϕϕ = 1

2
∂sgϕϕ = x cosψ,

‍�
(53)

and the non-zero Christoffel symbols of the second kind are

	﻿‍
Γs
ϕϕ = −x cosψ, Γϕ

sϕ = Γϕ
ϕs = cosψ

x
.
‍�

(54)

The non-zero components of ‍∇if j
‍ are

	﻿‍ ∇sf s = ∂sf s,‍� (55)

	﻿‍
∇ϕfϕ = cosψ

x
f s,

‍�
(56)

resulting in the components of the strain rate tensor defined in Equation 7:

	﻿‍ v s
s = ∂svs + C s

s vn,‍� (57)

	﻿‍
vϕ
ϕ = cosψ

x
vs + Cϕ

ϕ vn,
‍�

(58)

with trace

	﻿‍
v k

k = ∂svs + cosψ
x

vs + C k
k vn.

‍�
(59)

The non-zero components of ‍∇iT jk
‍ are

	﻿‍ ∇sT ss = ∂sT ss,‍� (60)

	﻿‍
∇sTϕϕ = ∂sTϕϕ + 2 cosψ

x
Tϕϕ,

‍� (61)

	﻿‍

∇ϕT sϕ = −x cosψTϕϕ + cosψ
x

T ss

= cosψ
x

(
T s

s − Tϕ
ϕ

)

= ∇ϕTϕs , ‍� (62)

https://doi.org/10.7554/eLife.75878
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where ‍T
ϕϕ = gϕϕTϕ

ϕ = 1
x2 Tϕ

ϕ ‍ was used in the last expression.

Force and torque balance
Axial symmetry implies that the tangential and the normal force balances, Equations 1; 2, and the 
torque balance Equation 3 can be rewritten as

	﻿‍
∂st s

s = cosψ
x

(tϕϕ − t s
s ) − C s

s t s
n − f ext

s ,
‍�

(63)

	﻿‍
∂st s

n = Cϕ
ϕ (tϕϕ − t s

s ) + C k
k t s

s − cosψ
x

t s
n − f ext

n − P,
‍�

(64)

	﻿‍
∂sm̄ s

s = cosψ
x

(m̄ϕ
ϕ − m̄ s

s ) + t s
n .

‍�
(65)

The geometric singularities appearing in Equations 63–65 are removed by an appropriate choice of 
boundary conditions for the tensions and moments at the poles of the surface. The normal torque 
balance Equation 4 gives the antisymmetric part of the tension tensor. With the constitutive Equation 
6 for the bending moment tensor, ‍ϵijtij = Cijmij = ζcnQikϵk

jCij‍ which vanishes for an axisymmetric 
surface where ‍Qsϕ = Qϕs = 0‍. Therefore, here ‍tij = tijs ‍ which is given by the constitutive Equation 5.

Direct expression for the transverse tension on an axisymmetric surface
In Capovilla and Guven, 2002 and Knoche and Kierfeld, 2011, it is shown that on axially symmetric 
surfaces the normal force balance in Equation 64 can be integrated in a closed form in the presence 
of a uniform pressure. Here, we generalise this to an arbitrary axially symmetric external force. In 
analogy to Capovilla and Guven, 2002, consider a piece of surface ‍S1‍ bounded by the south pole 
and a circle ‍C‍ perpendicular to the axis of symmetry, given by ‍s = s1‍ (Appendix 1—figure 1). The 
bounding circle ‍C‍ has the line element ‍dl = xdϕ‍ and the unit normal ‍ν = es‍, tangent to the surface 
and pointing outward with respect to ‍S1‍. The balance of forces acting on ‍S1‍ reads

	﻿‍

˛

C
dlνiti +

ˆ

S1

dS
(
f ext + Pn

)
= 0.

‍�
(66)

The contributions to the integral Equation 66 are

	﻿‍

˛

C
dlνiti =

ˆ 2π

0
dϕ xts

=
ˆ 2π

0
dϕ x

(
tsses + tsnn

)

= 2πx
(
tss sinψ − tsn cosψ

)
ez,‍�

(67)

	﻿‍

P
ˆ

S1

dS n =
(
−2πP

ˆ s1

0
ds x cosψ

)
ez

=

(
−2πP

ˆ x(s1)

0
dx x

)
ez

= −πPx2ez, ‍�

(68)

	﻿‍

ˆ

S1

dS f ext = 2π
(ˆ s1

0
ds xf ext

z

)
ez

= 2πI(s1)ez, ‍�

(69)

where we have introduced the integrated external force

	﻿‍
I(s) =

ˆ s

0
ds′ xf ext

z ,
‍� (70)

and used the shape Equation 11 in Equation 68. As Equations 67–69 only contribute to the 
‍z‍-component, Equation 66 can be rewritten as

https://doi.org/10.7554/eLife.75878
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	﻿‍ 2πx
(
tss sinψ − tsn cosψ

)
− πPx2 + 2πI = 0.‍� (71)

From Equation 71 one obtains an expression for the transverse tension for ‍ψ ̸= π
2 ‍:

	﻿‍
tsn = tss tanψ − 1

2
x

cosψ
P + 1

x cosψ
I,

‍�
(72)

and it is easy to confirm, using Equation 63, that this is indeed a solution of the normal force balance 
given by Equation 64.

Appendix 1—figure 1. Schematic of the surface ‍S1‍ used to derive the integral of the normal force balance.

Behaviour at the poles
The poles of the axisymmetric surface are at ‍s = 0‍ (south pole) and ‍s = L‍ (north pole) and satisfy 
‍x(0) = x(L) = 0‍. Besides, we assumed that the shape has a finite curvature, requiring ‍ψ = 0‍ and ‍ψ = π‍ 
at the south and north poles. The asymptotic behaviour of the shape is then:

	﻿‍

x(s) = x(0) + cosψ|s=0s − 1
2

((sinψ)∂sψ)|s=0s2 + O(s3)

= s + O(s3), ‍�
(73)

	﻿‍

x(L − s) = x(0) + cosψ|s=L(L − s) − 1
2

((sinψ)∂sψ)|s=L(L − s)2 + O((L − s)3)

= s − L + O((L − s)3). ‍�
(74)

The limits of geometric singularities of the form ‍f(s)/x(s)‍, for some function ‍f(s)‍ which vanishes at the 
pole, follow from L’Hôpital’s rule

	﻿‍
lim

s→0,L

f(s)
x(s)

= lim
s→0,L

∂sf|s=0,L
cosψ(s)|s=0,L

= ±∂sf|s=0,L.
‍�

(75)

where the + sign applies to ‍s = 0‍ and the - sign to ‍s = L‍. For example, applying Equation 75 to 

‍C
ϕ
ϕ = sinψ/x‍ yields that

	﻿‍
lim

s→0,L
Cϕ
ϕ = C s

s |s=0,L.
‍� (76)

Any smooth tangent vector field on the closed axisymmetric surface has to vanish at the poles. For 
example, since ‍C

k
k ‍ is a scalar field, for its derivative we have

	﻿‍ ∂sC k
k |s=0,L = 0.‍� (77)

From Equation 48 we find that at the poles ‍2∂sCϕ
ϕ = ∂sC s

s ‍, which, together with Equation 77 yields

https://doi.org/10.7554/eLife.75878
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	﻿‍ ∂sCϕ
ϕ |s=0,L = ∂sC s

s |s=0,L = 0.‍� (78)

This relation, together with Equation 76, implies that at the poles, the surface is locally spherical.

Spherical surface
We give here some of the geometrical quantities defined above for the undeformed initial surface, 
a sphere with radius ‍R0‍ and south pole at the origin, ‍X(ϕ, 0) = 0‍:

	﻿‍ L0 = πR0, 0 ≤ s ≤ πR0,‍� (79)

	﻿‍
x(s0) = R0 sin s0

R0
,
‍�

(80)

	﻿‍
z(s0) = R0

(
1 − cos s0

R0

)
,
‍�

(81)

	﻿‍
ψ(s0) = s0

R0
,
‍�

(82)

	﻿‍
C s

s = Cϕ
ϕ = H = 1

R0
,
‍�

(83)

	﻿‍

cosψ
x

= 1
R0 tan s0

R0

,
‍�

(84)

	﻿‍
a(s0) = A0

2

(
1 − cos s0

R0

)
,
‍�

(85)

	﻿‍
v(s0) = V0

(
2 + cos s0

R0

)
sin4 s0

2R0
,
‍�

(86)

where the arc length is denoted ‍s0‍, and ‍A0 = 4πR2
0‍, ‍V0 = (4/3)πR3

0‍ are the area and volume of the 
sphere.

https://doi.org/10.7554/eLife.75878
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Appendix 2
Infinitesimal neck
We discuss here the infinitesimal neck appearing in steady-state shapes subjected to isotropic active 
bending moments (‍ζ = ζn = ζcn = 0‍). In that case, the tensors ‍tij‍ and ‍̄mij‍ are isotropic and the force 
and torque balance Equations 63–65 can be written, in the absence of external force other than the 
pressure ‍P‍ and for ‍ψ ̸= π

2 ‍:

	﻿‍
∂s

(
tss

cosψ

)
= x∂sψ

2 cos2 ψ
P,

‍�
(87)

	﻿‍
∂sm̄s

s = tss tanψ − 1
2

x
cosψ

P,
‍�

(88)

where we have used the transverse tension solution (Equation 72).

Scaling analysis
To analyse the behaviour of these equations near an infinitesimal neck, we now perform a scaling 
analysis following Fourcade et al., 1994. We consider a region around a nearly closed neck with 
minimal radius ‍a‍. At the point of the surface closest to the axis of symmetry, ‍x = a‍ and ‍ψ = π

2 ‍. We 
then scale the arc length coordinate ‍s‍, the distance of the surface to the axis of symmetry ‍x‍, and the 
curvature tensor with ‍a‍, and introduce ‍̄s = s/a‍, ‍̄x = x/a‍ and ‍C̄

k
k = aC k

k ‍. The force balance equations 
then become for ‍ψ ̸= π

2 ‍:

	﻿‍
∂s̄

(
tss

cosψ

)
= ax̄∂s̄ψ

2 cos2 ψ
P ,

‍�
(89)

	﻿‍
∂s̄(2κC̄ k

k ) = −a∂s̄ζc + a2tss tanψ − a3

2
x̄

cosψ
P .

‍�
(90)

For ‍a → 0‍, the leading order solution has ‍tss/ cosψ‍ and ‍C̄
k
k ‍ both constant. Using the relation

	﻿‍
C̄ k

k = ∂s̄ψ + sinψ
x̄

= 1
x̄
∂x̄

(
x̄2C̄ϕ

ϕ

)
,
‍�

(91)

with ‍C̄
ϕ
ϕ = aCϕ

ϕ ‍, and the conditions ‍C̄
ϕ
ϕ (x̄ = 1) = 1‍ and that ‍sinψ‍ does not diverge for ‍|̄x| → ∞‍, the 

curvatures have solution ‍C̄
k
k = 0‍ and

	﻿‍
Cϕ
ϕ = −C s

s = a
x2 , cosψ = ±

√
1 − a2

x2 ,
‍�

(92)

where the sign of ‍cosψ‍ changes in the regions towards and away from the neck. Therefore, ‍cosψ‍ 
converges to +1 or -1 away from the neck for ‍x → ±∞‍. Since ‍tss/ cosψ‍ is constant across the 
infinitesimal neck, ‍tss‍ also changes sign asymptotically away from the neck.

The next order in ‍a‍ of Equation 90 gives ‍∂s̄(2κC k
k + ζc) = 0‍ which corresponds to ‍̄ms

s‍ constant 
across the neck (Figure 2—figure supplement 1).

Analytical solution for the free volume case
In the free volume case, ‍P = 0‍ and the force balance equations admits the solution ‍tss = u = 0‍ and 
constant ‍̄ms

s‍ (Figure 2—figure supplement 1a). Considering a shape with the active and passive 
regions forming spheres with radii ‍Ra‍ and ‍Rp‍ separated by an infinitesimal neck, the condition of 
constant ‍̄ms

s‍ results in

	﻿‍ 2κ[C k
k ]a + δζc = 2κ[C k

k ]p,‍� (93)

with ‍[C
k
k ]a‍ and ‍[C

k
k ]p‍ the trace of the curvature tensor in the active and passive regions, and ‍δζc‍ the 

difference in isotropic active bending moment between the passive and active regions. This results 
in Equation 24, taking into account that ‍[C

k
k ]a = ±2/Ra‍ depending on whether the active region is 
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curved towards the outside or the inside part of the surface. In addition, the condition ‍u = 0‍ results 
in conservation of area of the active and passive regions compared to the undeformed sphere:

	﻿‍

4πR2
a = 2πR2

0(1 − cos la
R0

),

4πR2
p = 2πR2

0(1 + cos la
R0

),
‍�

(94)

where we have used Equation 85. When ‍[C
k
k ]a = 2/Ra‍ corresponding to the active region towards 

the outside, and ‍δζc > 0‍, Equation 24 implies that ‍Rp < Ra‍ which further requires ‍la/L0 > 1/2‍ to 
satisfy Equation 94.

Combining Equations 93 and 94 gives a condition defining a curve in the parameter space ‍la/L0‍, 

‍δζcR0/κ‍:

	﻿‍

δζcR0
4κ

=

���� 2

1 + cos
(
πla
L0

) ∓
���� 2

1 − cos
(
πla
L0

) ,

‍�
(95)

which agrees well with the line of neck constriction determined numerically (Figure 2b).
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Appendix 3
Nematic order parameter on an axisymmetric surface
Equilibrium equation
A nematic director on a curved surface is given by a unit tangent vector, for which ‍̂n = −n̂‍. In an 
orthonormal frame ‍{êϕ, ês}‍, where ‍̂eϕ = eϕ/x‍ and ‍̂es = es‍, it is characterised by an angle ‍α ∈ [0,π]‍ as

	﻿‍ n̂ = cosαêϕ + sinαês.‍� (96)

The director components in the basis ‍{eϕ, es}‍ are then

	﻿‍
n̂ϕ = cosα

x
, n̂s = sinα.

‍� (97)

The traceless and symmetric nematic order parameter ‍Qij
‍ can be constructed from the director ‍ni‍ 

and a magnitude ‍S‍ as

	﻿‍
Q ij = S(n̂in̂j − 1

2
gij).

‍�
(98)

Its components read

	﻿‍

Qϕϕ = S
2

cos 2α
x2 ,

Q ss = −S
2

cos 2α,

Q sϕ = Qϕs = S
2

sin 2α
x

.
‍�

(99)

We assume here that there is no azimuthal flow on the surface, ‍vϕ = 0‍. The ‍ϕ‍-component of the 
tangential force balance then reads for constant ‍ζn ̸= 0‍, ‍ζcn ̸= 0‍:

	﻿‍
∇itiϕ =

(
ζn + ζcn

sinψ
x

)(
∂sQ sϕ + 3 cosψ

x
Q sϕ

)
= 0,

‍�
(100)

which requires ‍Q sϕ = Qϕs = 0‍ excluding divergence of ‍Q sϕ
‍ at the poles; therefore, the only possible 

orientations for the director, compatible with our assumption of vanishing azimuthal flows, are 
‍α = 0,π/2‍. Therefore, in the axisymmetric setup we consider only one non-zero component

	﻿‍
q = S

2
cos 2α = Qϕ

ϕ = −Q s
s ,

‍�
(101)

which can take the values ‍q = ±S/2‍, corresponding to azimuthal or longitudinal orientation of the 
director ‍̂n‍, respectively.

The total free energy of the nematic Equation 9 reads in terms of ‍q‍

	﻿‍
F =
ˆ

dS f =
ˆ

dS

(
k

((
∂sq

)2 + 4
(

cosψ
x

q
)2

)
−a

2
q2 + a

4
q4
)

.
‍�

(102)

We minimise this energy with respect to ‍q‍ on a given surface. The resulting Euler–Lagrange Equation 
16 is obtained from

	﻿‍
0 = δF

δq
= h −∇iΠ

i,
‍�

(103)

where

	﻿‍
h = ∂f

∂q
, Πi = ∂f

∂(∂iq)
.
‍� (104)

Here, we have used the definition from the functional derivative, ‍dF ≃
´

dS δF
δq dq‍. Equation 16 can 

be written as two first-order equations

https://doi.org/10.7554/eLife.75878
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	﻿‍ ∂sq = w,‍� (105)

	﻿‍
∂sw = 1

2l2c
q(q2 − 1) + cosψ

x

(
4 cosψ

x
q − w

)
.
‍�

(106)

The requirement that Equation 106 should be regular at the poles of the surface results in the two 
boundary conditions

	﻿‍ q(0) = q(L) = 0,‍� (107)

and also implies

	﻿‍ w(0) = w(L) = 0.‍� (108)

The limit of Equation 106 at ‍s = 0‍ is given by

	﻿‍

∂sw(0) = 1
2l2c

q(0)(q(0)2 − 1) + lims→0

[
cos(ψ)

x

(
4 cos(ψ)

x q − w
)]

= 1
2l2c

q(0)(q(0)2 − 1) + lims→0

[
1
s

(
4 1

s

(
q(0) + w(0)s + 1

2∂sw(0)s2
)

−
(
w(0) + ∂sw(0)s

))]

= lims→0

[
1
s
(
3w(0) + ∂sw(0)s

)]

= ∂sw(0), ‍�

(109)

and equivalently at ‍s = L‍. Therefore, Equation 106 does not provide a limit value for ‍∂sw‍ at the 
poles. When solving Equations 105 and 106 numerically, we use the analytical limits at the poles

	﻿‍
(
∂sq, ∂sw

)
s=0 =

(
0, W0

)
,‍� (110)

	﻿‍
(
∂sq, ∂sw

)
s=L =

(
0, WL

)
,‍� (111)

with two free parameters ‍W0‍ and ‍WL‍, which are introduced in order to ensure all four boundary 
conditions 107 and 108, of which the second two have to be imposed explicitly for numerical 
reasons.

 

Stability of the isotropic state on a sphere
We discuss here the stability of the isotropic state ‍q = 0‍ on a sphere of radius ‍R0‍ to axisymmetric 
perturbations; a more general analysis can be found in Napoli and Vergori, 2012. We note that for 
a spherical shape, with ‍θ = s/R0‍ and at first order in ‍q‍:

	﻿‍

δF
δq

≃ − 2k
R2

0

[
∂2
θ + cot θ∂θ − 4 cot2 θ +

R2
0

2l2c

]
q,

‍�
(112)

where we have used Equation 103 and the geometrical relations for a sphere given in 
Appendix 1 section ‘Spherical surface’. A set of eigenfunctions of the differential operator 

‍L = ∂2
θ + cot θ∂θ − 4 cot2 θ‍ is provided by taking derivatives of axisymmetric spherical harmonics, 

‍qn(θ) = qnfn(θ)‍ with ‍fn(θ) = [∂2
θ − cot θ∂θ]Pn(cos θ)‍ with ‍Pn‍ the Legendre polynomial of degree ‍n‍, for 

‍n ≥ 2‍. One then finds

	﻿‍

δF
δq

[qn] ≃ 2k
R2

0

[
n(n + 1) − 4 − R2

0
2l2c

]
qnfn(θ)

‍�
(113)

The isotropic state is stable if 
‍
n(n + 1) − 4 − R2

0
2l2c

≥ 0
‍
 for  ‍n ≥ 2‍, or for

	﻿‍
lc
Ro

> 1
2

.
‍� (114)
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Appendix 4
Active nematic tension and bilayered disc: Asymptotic analysis
We discuss here an asymptotic analysis for the flat bilayers disc steady-state shapes found for surfaces 
subjected to vanishing internal pressure, uniform nematic active tension, and for ‍ζn < 0‍ (Figure 4b). 
We consider here the limit where ‍ζ = ζc = ζcn = 0‍.

We postulate that the limit shape reached as ‍|ζn| → ∞‍ consists of two parallel flat central discs 
of radius ‍Rd‍, separated by a distance ‍2h‍, and connected by a narrow curved region (Appendix 4—
figure 1). One denotes ‍st‍ the arclength of the extreme position of the shape where ‍x = xt‍ is maximal, 
and ‍sc = s − st‍ the arclength from this point (Appendix 4—figure 2). The shape is assumed to be 
symmetric about a plane going through the equator, which imposes ‍∂sq(s = st) = 0‍. One looks for an 
asymptotic shape which satisfies ‍h ≪ Rd‍; we show later that this condition requires ‍κ ≪ Kl2c‍.

The force and torque balance Equations 63–65 can then be rewritten

	﻿‍
∂s

[
tss

cos ψ

]
= 2ζnq

x ,
‍� (115)

	﻿‍
2κ∂s

[
∂sψ + sin ψ

x

]
= tss tanψ.

‍� (116)

with ‍tss = 2Ku − ζnq‍. The last equation implies that at ‍ψ = π/2‍ (i.e. at the point of the surface with 
the extremal value of ‍x‍), ‍tss = 0‍ and therefore at this point ‍u = ζnq/(2K)‍. However, our definition of 
deformation implies that ‍u > −1‍. Therefore, as ‍|ζn| → ∞‍, one must have ‍q → 0‍ (Appendix 4—figure 
2), and the equilibrium equation for the nematic order parameter ‍q‍, Equations 105 and 106 can be 
linearised.

Introducing a renormalised order parameter ‍̃q = −ζn/(2K)q‍ and renormalised tension 

‍̃tss = tss/(2K) = u + q̃‍, the force and torque balance equation and the linearised equilibrium equation 
for the order parameter read

	﻿‍
∂s

[
t̃ss

cosψ

]
= −2q̃

x
,
‍�

(117)

	﻿‍

κ

K
∂s

[
∂sψ + sinψ

x

]
= t̃ss tanψ,

‍�
(118)

	﻿‍
∂2

s q̃ + cosψ
x

∂sq̃ − 4 cos2 ψ

x2 q̃ = − 1
2l2c

q̃,
‍�

(119)

to which one can add the boundary conditions ‍̃q(0) = q̃(L) = 0‍, ‍ψ(0) = 0‍, ‍ψ(L) = π‍ and a condition on 
‍u‍ which follows from Equation 143:

	﻿‍
2R2

0 =
ˆ L

0

dsx
1 + u

.
‍�

(120)

In the asymptotic regime where ‍h ≪ Rd‍, we consider separately the flat central discs and the narrow 
curved connecting region.

Flat central disc
In the lower, flat part of the deformed shape, one has ‍ψ = 0‍, ‍x = s‍ and Equation 119 becomes

	﻿‍
∂2

s q̃ + 1
s
∂sq̃ − 4

s2 q̃ = − 1
2l2c

q̃,
‍�

(121)

with solution, using ‍̃q(s = 0) = 0‍, ‍
q̃(x) = CqJ2

(
x√
2lc

)
‍
, with ‍Cq‍ a constant to determine, and ‍Jn(x)‍ are 

the Bessel functions of the first kind. The condition ‍0 = ∂sq(s = st) ≃ ∂sq(s = Rd)‍ then yields the 
expression for the radius of the disc:

	﻿‍ Rd =
√

2lcβ0,‍� (122)

with ‍β0‍ the smallest positive solution of ‍J
′
2(β0) = 0‍ (‍β0 ≃ 3‍).
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With this solution at hand, solving Equation 117 gives

	﻿‍
t̃ss(s) = 2Cq

(√
2lc
s

J1

(
s√
2lc

)
− 1

β0
J1

(
β0

))
,
‍�

(123)

	﻿‍
u(s) = Cq

[
2
(√

2lc
s

J1

(
s√
2lc

)
− 1

β0
J1

(
β0

))
− J2

(
s√
2lc

)]
,
‍�

(124)

using that ‍0 = t̃ss(s = st) ≃ t̃ss(s = Rd)‍. The constant ‍Cq‍ can be determined from Equation 120:

	﻿‍
R2

0 ≃
ˆ Rd

0

dss
1 + u(s)

,
‍
 
�

(125)

which can be rewritten:

	﻿‍

R2
0

l2c
≃ 2
ˆ β0

0

dℓℓ
1 + Cqũ(ℓ)‍�

(126)

where one has used 
‍
u = Cqũ( s√

2lc
)
‍
 in the last line, following Equation 124. ‍̃u(ℓ)‍ is a decreasing 

function from ‍ℓ = 0‍ to ‍ℓ = β0‍ and ‍̃u(β0) < 0‍. In the limit ‍lc/R0 → 0‍, Equation 126 is satisfied provided 
that ‍Cqũ(β0) → −1‍, which sets the constant ‍Cq‍ in that limit. Because ‍̃u(β0) < 0‍, this implies ‍Cq > 0‍.

In the following, we denote ‍ut = u(st)‍ the deformation reached at the end of the circular plate. 
Because of the arguments given above, when ‍lc/R0 → 0‍, ‍ut → −1‍. In general, ‍Cq > 0‍ implies that 
‍ut < 0‍: we assume this is the case in the following.

Narrow curved connecting region
In the narrow curved region, at leading order in small ‍h/Rd‍, ‍̃q ≃ −ut = |ut|‍ and ‍x = xt ≃ Rd‍ are 
homogeneous, and ‍|(sinψ)/x| ≪ |∂sψ|‍. The force and torque balance Equations 117 and 118 now 
give

	﻿‍
∂s

(
t̃ss

cosψ

)
= −2|ut|

xt
,
‍�

(127)

	﻿‍
κ

K
∂2

s ψ = t̃ss tanψ,
‍� (128)

which can be combined to obtain, using ‍∂s̃tss(st) = 0‍ because of the symmetry of the shape:

	﻿‍
κxt

2|ut|K
∂2

s ψ = −sc sinψ.
‍� (129)

We look for a solution of this equation ‍ψ(sc)‍, with the boundary conditions ‍ψ(sc = 0) = π
2 ‍, 

‍ψ(sc → ∞) = π‍ and, using ‍∂sz = sinψ‍,

	﻿‍

ˆ ∞

0
dsc sinψ(sc) = h.

‍�
(130)

It is then helpful to introduce the following differential equation:

	﻿‍

∂2
ℓ ψ̃ = −ℓ sin ψ̃,

ψ̃(ℓ = 0) = π
2 ,

ψ̃(ℓ → ∞) = π, ‍�

(131)

which admits a solution which can be found numerically. The solution of Equation 129 can then be 
written

	﻿‍
ψ(sc) = ψ̃

(
sc

(
2|ut|K
κxt

)1/3
)

,
‍� (132)

and the constraint Equation 130 gives

https://doi.org/10.7554/eLife.75878


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Khoromskaia and Salbreux. eLife 2023;11:e75878. DOI: https://doi.org/10.7554/eLife.75878 � 36 of 49

	﻿‍
h ≃ β2

[
κRd

2|ut|K

] 1
3

,
‍�

(133)

where we have introduced ‍β2 =
´∞

0 dℓ sin ψ̃(ℓ)‍, with the approximate numerical value ‍β2 ≃ 1.27‍. 
Together with Equation 122, this analysis indicates that the distance ‍h‍ converges to a constant value 
as ‍|ζn| → ∞‍ (Appendix 4—figure 2). Overall, this analysis predicts the limit value:

	﻿‍

2h
Rd

≃ β2

[
2κ

|ut|β2
0Kl2c

] 1
3

,
‍�

(134)

such that the condition ‍h/Rd ≪ 1‍ implies that the analysis is self-consistent for ‍κ ≪ Kl2c‍.

Appendix 4—figure 1. Schematic of notations used for the asymptotic analysis of a bilayered disc.
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Appendix 4—figure 2. Details of shape and nematic profiles for flattened steady-state shapes resulting from a 
homogeneous nematic tension. (a) Profile of nematic order parameter q, which decreases for increasing ‍|ζn|‍. (b) 
Distance between the poles of the steady-state solution for different values of ‍|ζn|‍ and ‍̃K ‍, and corresponding 
prediction of Equation 134 (dotted lines). (c) Profile of ‍ψ(s)‍ for different values of ‍ζn‍. The profile is invariant with 
respect to ‍ζn‍, for large values of ‍|ζn|‍.
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Appendix 5
Numerical method for global force balance
In steady-state and dynamical solving, an overall degree of freedom of solid translation of the 
surface along its axis of symmetry has to be fixed. In steady-state shape calculations, we impose that 
the south pole is fixed (‍z(s = 0) = 0‍). In dynamical simulations, we impose that the centroid of the 
shape does not move (Equation 189). In both cases, these constraints are imposed by introducing 
a constant dummy force

	﻿‍ f ext = f cez,‍� (135)

which is adjusted to constrain the position of the centre of mass of the shape. The corresponding 
integrated external force, as defined in Equation 70, is

	﻿‍
I(s) =

ˆ s

0
ds′ xf c.

‍�
(136)

Because at low Reynolds number the total force acting on the surface must vanish, the value of ‍f c
‍ 

should be set to zero by the numerical solver. Indeed, inspection of Equation 72 shows that the 
conditions ‍tsn|s=0 = tsn|s=L = 0‍ also imply ‍I(0) = I(L) = 0‍, and since ‍f c

‍ is constant, ‍f c = 0‍. In practice, ‍f c
‍ 

deviates slightly from zero due to numerical errors.
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Appendix 6
Numerical methods to determine steady-state shapes
Stationary shape equations and boundary conditions
The system of stationary shape equations comprises, using the force and torque balance Equations 
63–65, the equilibrium Equations 105 and 106 for the nematic order parameter, the definition of 
the strain Equation 14 and geometrical relations introduced in Appendix 1:

	﻿‍
∂stss = 2 cosψ

x
ζnq − C s

s tsn − f c sinψ
‍�

(137)

	﻿‍
∂stsn = 2Cϕ

ϕ ζnq + C s
s tss −

P
2
− I

x2 + f c cosψ
‍�

(138)

	﻿‍
∂sC k

k = 1
2κ

(
tsn − ∂sζc + (∂sζcn)q + ζcn

(
∂sq + 2 cosψ

x
q
))

‍�
(139)

	﻿‍ ∂sψ = C s
s ,‍� (140)

	﻿‍ ∂sx = cosψ,‍� (141)

	﻿‍ ∂sz = sinψ,‍� (142)

	﻿‍
∂ss0 = x

x0(u + 1)
,
‍�

(143)

	﻿‍ ∂sq = w,‍� (144)

	﻿‍
∂sw = 1

2l2c
q(q2 − 1) + cosψ

x

(
4 cosψ

x
q − w

)
,
‍�

(145)

	﻿‍ ∂sI = xfc,‍� (146)

where ‍C
ϕ
ϕ = sin ψ

x ‍, ‍C
s
s = C k

k − Cϕ
ϕ ‍, ‍x0 = x0(s0(s)) = R0 sin(s0(s)/R0)‍, ‍u = (tss + ζnq − ζ)/2K ‍. Here, Equation 

138 has been obtained by using Equation 72 to rewrite the normal force balance (Equation 64) as

	﻿‍
∂stsn = Cϕ

ϕ (tϕϕ − tss) + C s
s tss −

P
2
− I

x2 + fc cosψ,
‍�

(147)

with the integral of the force ‍I ‍ defined in Equation 136. The term ‍I/x2‍ in Equation 147 is regular at 
the poles by construction since it has the Taylor expansions ‍I(s) = f c

2 s2 + O(s3)‍ at the south pole and 

‍I(L − s) = − f c

2 (L − s)2 + O((L − s)3)‍ at the north pole. Therefore, the limits are ‍lims→0 I/x2 = f c

2 ‍ and 

‍lims→L I/x2 = − f c

2 ‍.
The geometric boundary conditions for the shape are ‍ψ(0) = x(0) = x(L) = z(0) = 0‍, ‍ψ(L) = π‍. 

Further, we require ‍tsn(0) = 0‍, ‍I(0) = I(L) = 0‍, and ‍s0(0) = 0‍. The equations for the nematic require 

‍q(0) = q(L) = 0‍ and ‍w(0) = w(L) = 0‍, as discussed in Appendix 3. If ‍la = L0‍, the unknown length ‍L‍ 
is determined from the condition ‍s0(L) = L0‍. If ‍0 < la < L0‍, the domain of integration is split into 

‍s ∈ [0, L1]‍ and ‍s ∈ [L1, L]‍. The additional condition ‍s0(L1) = la‍ sets L1. All unknown functions are 
matched at the internal boundary ‍s = L1‍, except for the curvature and strain. These may acquire 
a jump, ‍C s

s (l+a ) − C s
s (l−a ) = (δζc − δζcnq(la))/2κ‍ and ‍u(l+a ) − u(l−a ) = (δζ − δζnq(la))/2K ‍, to ensure 

continuity in ‍̄ms
s‍ and ‍tss‍.

If applicable, it is convenient to formulate the volume constraint ‍V = V0‍ as a boundary value 
problem for the partial volume ‍v(s)‍ defined in Equation 51,

	﻿‍ ∂sv = πx2 sinψ, v(0) = 0, v(L) = V0.‍� (148)

Due to the geometric singularities appearing in several of the equations at the poles of the 
surface ‍s = 0‍ and ‍s = L‍, we derive the limits of these equations there. Denoting the solution vector 
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by 
‍
x(s) =

(
tss, tsn, C k

k ,ψ, x, z, s0, q, w, I, v
)

,
‍
 the limiting expressions of Equations 137–148 at the south 

and north poles, respectively, are

	﻿‍
lim
s→0

∂sx =

(
0, 1

2

(
C k

k (0)tss(0) − P + f c
)

, 0,
C k

k (0)
2

, 1, 0, 1√
1 + u(0)

, 0, W0, 0, 0

)
,
‍�

(149)

	﻿‍
lim
s→L

∂sx =

(
0,

1
2

(
C k

k (L)tss(L) − P − f c
)

, 0,
C k

k (L)
2

,−1, 0,
1

√
1 + u(L)

, 0, WL, 0, 0

)
.
‍�

(150)

In summary, when considering the full interval and conserved volume, the boundary conditions are

	﻿‍ at s = 0 : tsn = 0, x = z = ψ = 0, v = 0, s0 = 0, q = 0, w = 0, I = 0,‍� (151)

	﻿‍ at s = L : x = 0,ψ = π, v = V0, s0 = L0, q = 0, w = 0, I = 0,‍� (152)

and the free parameters are ‍L, P‍, ‍f c
‍, ‍W0‍, and ‍WL‍. Otherwise, if the volume is free to change, then 

‍P = 0‍ and the condition ‍v(L) = V0‍ is removed.
In the dimensionless equations, arc lengths are transformed to the unit interval by ‍̃s = s/L‍ if ‍la/L0 = 1‍, 

and to two unit intervals in the case of step-profiles. With ‍L1‍ and ‍L2 = L − L1‍, the dimensionless 
variables are ‍̃s ∈ [0, 1]‍ with ‍s = s̃L1‍ in the first interval and ‍̃s ∈ [1, 2]‍ with ‍s = L1 + L2(̃s − 1)‍ in the 
second. The boundary value problem given by Equations 137–148 and conditions Equations 151 
and 152 in their dimensionless form is solved with the bvp4c solver of MATLAB. The relative and 
absolute tolerances used in simulations are ‍tolrel = 10−4

‍ and ‍tolans = 10−6‍, leading to typical adaptive 
grid sizes of ‍ngrid = 100 − 500‍, depending on the shape of the surface. For efficiency, we provide the 
solver with the analytical Jacobians for the main equations, for the limits at the poles, and for the 
boundary conditions with respect to the unknowns and the free parameters.

Construction of solution branches
A solution of the mechanical equilibrium equations can be represented by a vector ‍p ∈ RN

‍, where ‍RN ‍ 
is the vector space spanned by all ‍N ‍ (or a subset of) parameters of the model, for example, ‍P‍ and ‍L‍, 
the boundary values of the curvature, tension, etc., and the control parameter. A gradual change of 
the control parameter corresponds to moving along a solution branch in this parameter space. For 
small increments in the control parameter, the new solution can be obtained numerically using the 
previous solution as the initial guess for the solver. However, in many cases the solution branch has 
a fold (e.g. see Figure 2b) and becomes multivalued as a function of the control parameter so that 
the above method cannot be used.

To continue a solution branch after a fold, we implement a parametric curve approach instead. 
We denote by ‍p(i)

‍ the current state and by ‍p(i−1)
‍ the previous state of the system and approximate 

by ‍̂t(i) = (p(i) − p(i−1))/|p(i) − p(i−1)|‍ the tangent vector at the current state. To find a new solution 

‍p(i+1)
‍ on the curve, a step of length ‍ls‍ in the direction of the tangent is taken and the new solution is 

constrained to lie in a (hyper-)plane perpendicular to the tangent, that is,

	﻿‍

((
p(i+1) − p(i)

)
− ls t̂(i)

)
· t̂(i) = 0,

‍� (153)

which allows us to eliminate one (e.g. the first) component of p(i+1) via

	﻿‍
p(i+1)

1 = p(i)
1 +

ls −
(

p(i+1)
2,··· ,N − p(i)

2,··· ,N

)
· t̂(i)

2,··· ,N

t̂(i)1
,
‍�

(154)

provided that ‍̂t
(i)
1 ̸= 0‍ and where ‍p

(i+1)
2,··· ,N ‍ denotes the vector ‍p(i+1)

‍ without the first component, etc. 
The remaining ‍N − 1‍ parameters are determined by the solver such that the new point ‍p(i+1)

‍ is a 
continuation of the solution branch, which can be achieved for small enough ‍ls‍. It suffices to include 
only a subset of the free parameters in this construction, for example, ‍p = (δζc, P, L1)‍ for a step-like 
profile of active moments with conserved volume. Since the elimination (Equation 154) introduces 
new dependencies of the differential equations and boundary conditions on the free parameters, the 
analytical Jacobians for the solver are adjusted accordingly.

https://doi.org/10.7554/eLife.75878


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Khoromskaia and Salbreux. eLife 2023;11:e75878. DOI: https://doi.org/10.7554/eLife.75878 � 41 of 49

Appendix 7
Numerical method for the dynamics of active shells
Force and torque balance equations and boundary conditions
The force and torque balance Equations 63–65, together with the constitutive Equations 5–8 and 
with ‍f ext = f cez‍, can be written as

	﻿‍

∂2
s vs = − cosψ

x

(
∂svs − cosψ

x
vs
)

−vn∂sC k
k − η − ηb

η + ηb
C s

s Cϕ
ϕ vs

− 1
η + ηb

(ηbC k
k + η(C s

s − Cϕ
ϕ ))∂svn

+ 1
η + ηb

(
−2K∂su − ∂sζ + (∂sζn)q + ζn(∂sq)

+2ζnq cosψ
x

− C s
s tsn − f c sinψ

)
,

‍�

(155)

	﻿‍
∂stsn = Cϕ

ϕ

(
tϕϕ − tss

)
+ C k

k tss −
cosψ

x
tsn − P + f c cosψ,

‍�
(156)

	﻿‍
∂sm̄s

s = 2ζcnq cosψ
x

+ tsn ,
‍�

(157)

	﻿‍

∂2
s vn = −cosψ

x
∂svn −

((
Cϕ
ϕ

)2
+
(
C s

s
)2
)

vn

+vs∂sC k
k − 1

ηcb

(
m̄s

s − 2κC k
k − ζc + ζcnq

)
,
‍�

(158)

where in Equation 156 one has to replace

	﻿‍

tss = 2Ku + ζ − ζnq

+
(
η + ηb

)
∂svs +

(
ηb − η

) cosψ
x

vs

+
(
ηbC k

k + η
(

C s
s − C ϕ

ϕ

))
vn, ‍�

(159)

	﻿‍
tϕϕ − tss = 2

(
ζnq + η

(
cosψ

x
vs − ∂svs +

(
Cϕ
ϕ − C s

s

)
vn

))
.
‍�

(160)

The solution vector

	﻿‍ x(s) =
(
vs, ∂svs, tsn, m̄s

s, vn, ∂svn
)
‍� (161)

is determined from

	﻿‍ ∂sx = L[x],‍� (162)

where the linear operator ‍L‍ is constructed from Equations 155–158 together with two trivial 
relations relating ‍∂svs‍ to ‍vs‍ and ‍∂svn‍ to ‍vn‍. The system of ode’s (Equation 162) is solved on the full 
interval ‍[0, L]‍ with the boundary conditions

	﻿‍ at s = 0 : vs = 0, tsn = 0, ∂svn = 0,‍� (163)

	﻿‍ at s = L : vs = 0, tsn = 0, ∂svn = 0.‍� (164)

They follow from the requirement that any tangent vector field on the closed axisymmetric surface 
has to vanish at the poles. Equivalently, these are the conditions required to remove the geometric 
singularities that appear at the poles in Equations 155–158. We can then derive the well-defined 
limits
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	﻿‍
lim
s→0

∂sx =

(
∂svs(0), 0, 1

2

(
C k

k (0)tss(0) − P + f c
)

, 0, 0,−1
4

C k
k (0)vn(0) −

m̄s
s(0) − 2κC k

k (0) − ζc(0)
2ηcb

)
,
‍

� (165)

	﻿‍
lim
s→L

∂sx =

(
∂svs(L), 0, 1

2

(
C k

k (L)tss(L) − P + f c
)

, 0, 0,−1
4

C k
k (L)vn(L) −

m̄s
s(L) − 2κC k

k (L) − ζc(L)
2ηcb

)
,
‍

� (166)

where

	﻿‍ tss(0) = 2Ku(0) + ζ(0) + (η + ηb)∂svs(0) + ηbC k
k (0)vn(0),‍� (167)

	﻿‍ tss(L) = 2Ku(L) + ζ(L) + (η + ηb)∂svs(L) + ηbC k
k (L)vn(L).‍� (168)

In Equations 165 and 166, we have used that ‍ζ‍ and ‍u‍, defined as continuous functions on the closed 
surface, satisfy

	﻿‍ ∂sζ(0) = ∂sζ(L) = 0, ∂su(0) = ∂su(L) = 0.‍� (169)

Prior to solving system Equation 162, at every time step the nematic profiles ‍q‍ and ‍∂sq = w‍ are 
determined on the shape ‍X(ϕ, s, t)‍ as solutions of the Euler–Lagrange Equation 16,

	﻿‍ ∂sq = w,‍� (170)

	﻿‍
∂sw = 1

2l2c
q(q2 − 1) cosψ

x

(
4 cosψ

x
q − w

)
,
‍�

(171)

with the boundary conditions ‍q(0) = q(L) = w(0) = w(L) = 0‍, as discussed in Appendix 3.

Constraints
Volume
The volume of a closed surface reads

	﻿‍
V = 1

3

˛
dS X · n.

‍�
(172)

According to Equations 34, 36, and 38, for a Lagrangian surface update with ‍∂tX = viei + vnn‍ we 
have

	﻿‍
∂t
√

g =
√

g
(
∇ivi + C i

i vn
)

,
‍� (173)

	﻿‍
∂tn =

(
−∂ivn + Cijv j

)
ei.

‍� (174)

This allows to calculate from Equation 172 the rate of change in volume

	﻿‍
∂tV = 1

3

˛
ds1ds2∂t

(√
gX · n

)
‍�

(175)

	﻿‍
= 1

3

˛
dS

(
vn +

(
∇ivi + C i

i vn
)

X · n +
(
−∂ivn + Cijv j

)(
X · ei

))
‍� (176)

	﻿‍
= 1

3

˛
dS

(
vn + C i

i vnX · n + Cijv j
(

X · ei
)
− vkC i

k
(
X · ei

)
+ vn

(
2 − C i

i X · n
))

‍� (177)

	﻿‍
=
˛

dS vn,
‍� (178)
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where we have used two integrations by part and the relations ‍∂k
(
X · n

)
= X · C i

kei‍, and 

‍
∂i
(√gX·ei)
√g = 2 − C i

i X · n
‍
.

If the volume is fixed then for all ‍t‍ the dynamics has to satisfy

	﻿‍ ∂tV = 0.‍� (179)

On the axisymmetric surface, this results in the integral constraint ‍∂tV = 2π
´

ds xvn‍. We define a 
partial rate of volume change ‍rv(s) = 2π

´ s
0 ds′ xvn‍, such that the constraint Equation 179 can be 

written as

	﻿‍ ∂srv = 2πxvn, rv(0) = rv(L) = 0.‍� (180)

This is solved simultaneously with the boundary value problem (Equations 162–168), where the 
pressure ‍P‍ is a free parameter which is required to satisfy both conditions in Equation 180.

On the other hand, if the volume is free to change then pressure is no longer a free parameter, 
but instead couples the normal force balance (Equation 156) to the rate of change of volume via 
Equation 21, which can be written:

	﻿‍ P = −ηVrv(L).‍� (181)

In this case ‍P → 0‍ as the dynamics simulation approaches a steady state, in agreement with the 
direct steady-state calculations in which ‍P = 0‍.

Rigid-body translation
We note that in the absence of external force, for any flow profile ‍v(s)‍ solution of the force and 
torque balance Equations 155–158, the flow

	﻿‍ v′ = v + aez‍� (182)

	﻿‍ = v + a sinψ(s)es − a cosψn‍� (183)

with an arbitrary constant ‍a‍, is again a solution. The addition of the uniform flow field ‍aez‍ corresponds 
to a rigid-body translation in the ‍z‍-direction which does not affect force balance and therefore makes 
the task of numerically determining ‍v‍ ill-posed.

To remove this degree of freedom we introduce in each time step a constraint on the translation 
speed of the centroid. The centroid is equivalent to the centre of mass for a surface with uniform 
density and is defined as

	﻿‍
Xc =

¸
dS X(ϕ, s)¸

dS
.
‍�

(184)

For a Lagrangian surface update one obtains

	﻿‍

∂t
(¸

dS X
)

=
˛

dS
(

X
∂t
√g
√g

+ ∂tX
)

=
˛

dS
(

vnCi
iX + vnn

)
,

‍�

(185)

	﻿‍
∂t

(˛
dS

)
=
˛

dS
∂t
√g
√g ‍�

(186)

	﻿‍
=
˛

dS vnCi
i,
‍�

(187)

where we have used Equation 174 to obtain ‍∂t(
√g)/√g‍, and the divergence theorem on curved 

surfaces (Equation 33). It follows that the velocity of the centroid is given by

	﻿‍

∂tXc = 1¸
dS

(
∂t

(˛
dS X

)
− Xc∂t

(˛
dS

))

= 1¸
dS

(˛
dS vn

(
Ci

i
(
X − Xc

)
+ n

))

‍� (188)
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and we want to fix

	﻿‍ ∂tXc = 0‍� (189)

for all ‍t‍. We note that tangential velocity components do not contribute to the centroid displacement.
On the axisymmetric surface ‍Xc = zcez‍ and the constraint Equation 189 becomes

	﻿‍
∂tzc = 1´

ds x

(ˆ
ds xvn

(
C i

i (z − zc) − cosψ
))

= 0.
‍�

(190)

Analogously to the volume constraint, we introduce a partial centroid velocity 

‍
rc(s) =

´ s
0 ds′ xvn

(
C i

i (z − zc) − cos(ψ)
)
‍
 and add the constraint Equation 190 to the boundary value 

problem (Equations 162–168) in the form of

	﻿‍
∂src = xvn

(
C i

i (z − zc) − cosψ
)

, rc(0) = rc(L) = 0.
‍� (191)

Note that due to the free parameter ‍f c
‍ the number of boundary conditions in the full problem, 

comprising Equations 162–168 and 191, is consistent.

Time update of the surface
The surface update in each time step ‍t → t + δt‍ consists of two sub-steps: first, the material points 
are advected using a Lagrangian coordinate ‍s‍ as given in Equation 23, then the surface ‍X′(s, t + δt)‍ 
is reparametrised in a new arc length coordinate ‍s′‍, for which ‍gs′s′ = 1‍.

From Equation 22 we find the time updates for the shape descriptors:

	﻿‍

x(s, t + δt) = x(s, t) + δt
(
vn sinψ + vs cosψ

)
,

z(s, t + δt) = z(s, t) + δt
(
vs sinψ − vn cosψ

)
,

ψ(s, t + δt) = ψ(s, t) + δt
(
−∂svn + vsCs

s) , ‍�

(192)

where the last equation can be shown by taking the time derivative of the normal vector ‍n‍ and using 
Equation 36. It is convenient to derive the time update for ‍C

k
k ‍ and its derivative from the constitutive 

Equation 6 and the torque balance (Equation 65),

	﻿‍
C k

k (s, t + δt) = C k
k (s, t) + δt 1

ηcb

(
m̄s

s − 2κC k
k − ζc + ζcnq

)
,
‍�

(193)

	﻿‍
∂sC k

k (s, t + δt) = ∂sC k
k (s, t) + δt 1

ηcb

(
tsn + 2ζcnq cosψ

x
+∂s(−2κC k

k − ζc + ζcnq)
)
‍�

(194)

because the trace of the corotational derivative (Equation 8) is the Lagrangian time evolution 
of ‍C

k
k ‍, as can be seen by using Equation 39 with ‍δX = δtv‍. From the variation (Equation 39) the 

circumferential curvature is updated as

	﻿‍
Cϕ
ϕ (s, t + δt) = Cϕ

ϕ (s, t) + δt
(
−∂svn

cosψ
x

− vn
(

Cϕ
ϕ

)2
+ vs∂sCϕ

ϕ

)

‍�
(195)

and its derivative is obtained from relation Equation 48. In this way only functions which are part of 
the solution vector (Equation 161) are required for the time updates and we avoid taking numerical 
gradients of the shape or the velocity fields. Finally, according to Equation 15 we update the area 
strain as

	﻿‍ u(s, t + δt) = u(s, t) + δt(1 + u)vk
k,‍� (196)

with the trace of the strain rate tensor given in Equation 59.
The displaced surface is reparametrised in a new arc length coordinate ‍s′‍,

	﻿‍ X′(s) = X′(s′),‍� (197)

such that ‍gs′s′ = 1‍, or equivalently ‍|∂s′X′(s′)| = 1‍. From

https://doi.org/10.7554/eLife.75878


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Khoromskaia and Salbreux. eLife 2023;11:e75878. DOI: https://doi.org/10.7554/eLife.75878 � 45 of 49

	﻿‍

∂s′X′ = ∂s
∂s′

∂sX′

= ∂s
∂s′

[
∂sX + δt∂s

(
vses + vnn

)]

= ∂s
∂s′

[
es
(
1 + δt

(
vnC s

s + ∂svs)) + nδt(∂svn − vsC s
s )
]
‍�

(198)

we obtain

	﻿‍

(
∂s′

∂s

)2
= 1 + 2δt

(
vnC s

s + ∂svs) ,
‍�

(199)

so the relationship between the two arc length parameters is given by the differential equation

	﻿‍ ∂ss′ = 1 + δt
(
vnC s

s + ∂svs) .‍� (200)

We rewrite this equation in terms of a rate of change of arc length ‍rs = ∂t
(
s′ − s

)
‍,

	﻿‍ ∂srs = vnC s
s + ∂svs, rs(0) = 0,‍� (201)

and it is added to the linear system (Equations 162–164). The new arc length is obtained as 
‍s′ = s + rsδt‍ and the perimeter length is updated as

	﻿‍ L(t + δt) = L(t) + rs(L(t))δt.‍� (202)

For the active profiles defined via sigmoid functions, as given in the main text in Equation 18, the 
parameters chosen for the simulations are ‍µt = 0.01τa‍, ‍σt = 0.002τa‍, ‍µs = la‍, and ‍σs = 0.005L0‍. In the 
time step ‍t → t + δt‍ the bending moment profile, as defined at time ‍t = 0‍ via Equation 19, is updated 
as

	﻿‍ ζc(s′, t + δt) = (1 − f(t + δt,µt,σt))(ζ0
c + δζcf(s0(s′), la,σs)),‍� (203)

and an analogous relation holds for ‍ζ‍, ‍ζn‍, and ‍ζcn‍. For the spatial dependence, we keep track of the 
arc length on the initial sphere ‍s0(s′)‍ as a function of the arc length on the deformed surface after 
reparametrisation.

Finally, all surface quantities are saved as spline interpolants on the new arc length ‍s′‍. For example,

	﻿‍ C k
k (s′, t + δt) = C k

k (s(s′), t + δt),‍� (204)

	﻿‍
∂s′C

k
k (s′, t + δt) = ∂s

∂s′
∂sC k

k (s(s′), t + δt),
‍�

(205)

where the Jacobian prefactor for the derivative is given by Equation 200.
The size of the adaptive time step ‍δt‍ is determined using a standard step doubling method (Press 

et al., 2007), where the shape after a full time step, denoted by ‍X(1)(t + δt)‍, is compared to that after 
two half steps, denoted by ‍X(2)(t + δt)‍. The relative error is calculated from the shape components 
and the curvature derivative as

	﻿‍
εt = max

{�����
x(1) − x(2)

x(1)

����� ,

�����
z(1) − z(2)

z(1)

����� ,

�����
∂s(C(1))k

k − ∂s(C(2))k
k

∂s(C(1))k
k

�����

}

‍�
(206)

on a uniform grid which is defined on ‍X(t)‍ and projected onto ‍X(1)‍ and ‍X(2)‍, whereby the poles and 
values of ‍z‍ and ‍∂sC k

k ‍, which are too close to zero (‍< 10−3‍), are excluded.

Numerical convergence to steady state
In order to validate our simulation method for the dynamics of active surfaces, we analyse the 
numerical convergence of the dynamics simulations to the steady states obtained from direct 
calculation (see Appendix 6) for the different active effects. A dynamics simulation is regarded 
as relaxed to steady state when ‍max{|̃vn|} < 10−4

‍, which defines ‍trelax‍. As an example we show in 
Appendix 7—figure 1 the convergence results for the active bending profile
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Appendix 7—figure 1. Convergence analysis of a dynamics simulation to a steady state obtained from direct 
calculation, for the example shape shown in the inset of (a). For different ‍tolt‍ (time step) the error in the shape in 
(a) and error in the external force integral in (b) are shown.

	﻿‍ ζc(s0) = δζcf(s0, la,σs)‍� (207)

with ‍δζc = 80.73κ/R0‍, ‍la = 0.3L0‍, and conserved volume. This profile results in the folded shape shown 
in the inset of Appendix 7—figure 1a. The error in the shape (in units of ‍R0‍) is calculated as

	﻿‍
∆shape = 1

N
∑

i

√(
x̃dyn

i − x̃steady
i

)2
+
(

z̃dyn
i − z̃steady

i

)2

‍� (208)

on a dimensionless, uniform grid ‍̃si ∈ [0, 1]‍, ‍i = 1, · · · , N ‍, with ‍N = 1000‍, which is obtained through 
division by ‍L‍ or ‍L(trelax)‍, respectively, from the corresponding simulation. As discussed in Appendix 
5, the deviation of the parameter ‍f c

‍ (see Equation 135) from zero characterises the numerical 
error in the global force balance. As a relative error we plot the value of the parameter ‍f c(trelax)‍ 
normalised by the pressure ‍P(trelax)‍. We find good convergence of the dynamics to the steady-state 
result with decreasing tolerance ‍tolt‍ on the time step. Based on these results, we take ‍tolt = 10−4‍ for 
the dynamics simulations shown in the main text. The relative and absolute tolerances for the bvp 
solver are chosen to be the same as for the direct steady-state calculations: ‍tolrel = 10−4

‍, ‍tolabs = 10−6
‍.

https://doi.org/10.7554/eLife.75878


 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Khoromskaia and Salbreux. eLife 2023;11:e75878. DOI: https://doi.org/10.7554/eLife.75878 � 47 of 49

Appendix 8
Isotropic active tension
Consider first a shell with vanishing internal hydrostatic pressure, ‍P = 0‍, and a step-like tension 
profile given on the reference surface by

	﻿‍

ζ(s0) =




ζ0 + δζ, if s0 ∈ [0, la]

ζ0, otherwise.
‍�

(209)

One can verify that the spherical shape, given by ‍x(s) = R sin(s/R)‍, with ‍tss = tsn = 0‍, is a solution of the 
Equations 137–142. The strain has a jump ‍δu = u(l+a ) − u(l−a ) = δζ/(2K)‍, such that

	﻿‍

u(s)=




−(ζ0 + δζ)/(2K), if s ∈ [0, la]

−ζ0/(2K), otherwise.
‍�

(210)

Using this to solve Equation 143 for ‍s ∈ [0, l′a]‍ with ‍s0(l′a) = la‍ yields

	﻿‍
cos la

R0
− 1 =

(
R
R0

)2 1
1 + u(0)

(
cos l′a

R
− 1

)
,
‍�

(211)

and similarly for ‍s ∈ [l
′
a, L]‍

	﻿‍
cos la

R0
+ 1 =

(
R
R0

)2 1
1 + u(L)

(
cos l′a

R
+ 1

)
.
‍�

(212)

These two equations determine the unknown radius ‍R‍ and the deformed active region size ‍l′a‍ as

	﻿‍
R = R0

√
1
2

cos la
R0

(
u(L) − u(0)

)
+ 1 + 1

2
(
u(0) + u(L)

)
,
‍�

(213)

	﻿‍
l′a = R arccos

(
1 +

(
1 + u(0)

)(R0
R

)2 (
cos la

R0
− 1

))
.
‍�

(214)

How the ratio ‍
l′a
L ‍ changes with the tension jump ‍δζ‍ is plotted in Appendix 8—figure 1 for ‍ζ

0 = 0‍. 
The above rescaling holds only for ‍δζ < 2K ‍ since the active region contracts to a point for ‍δζ → 2K ‍.

For conserved volume, the spherical shape with ‍R = R0‍, ‍tsn = ∂stss = 0‍, ‍P = 2tss/R‍ is a solution of 
Equations 137–142. Here, only the relative size of the active patch changes from ‍la‍ to ‍l′a‍. As before 
the strain is piecewise constant with a jump at ‍la‍, ‍δu = u(L) − u(0) = δζ/(2K)‍, and integrating Equation 
143 with ‍s0(s = l′a) = la‍, ‍s0(s = L0) = L0‍ gives the additional conditions

	﻿‍
cos la

R0
− 1 = 1

1 + u(0)

(
cos l′a

R0
− 1

)
,
‍�

(215)

	﻿‍
cos la

R0
+ 1 = 1

1 + u(L)

(
cos l′a

R0
+ 1

)
,
‍�

(216)

from which ‍u(0)‍, ‍u(L)‍, ‍l′a‍ can be determined.

https://doi.org/10.7554/eLife.75878
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Appendix 8—figure 1. Rescaling of the size of the active region with active tension difference. (a) Plot of ‍l′a/L‍ as 
given by Equations 213; 214. This illustrates the rescaling of the active region size as a function of the tension 
difference ‍δζ ‍, for initial values ‍la/L0 = 0.1, 0.3, 0.5, 0.7, 0.9‍ (blue to purple). (b) Shapes corresponding to two 
points on the ‍la/L0 = 0.5‍ curve.
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 Research article﻿﻿﻿﻿﻿﻿ Physics of Living Systems

Khoromskaia and Salbreux. eLife 2023;11:e75878. DOI: https://doi.org/10.7554/eLife.75878 � 49 of 49

Appendix 9
Change of stability at a fold in a solution branch
We discuss here change of stability at a fold in a solution branch (Maddocks, 1987). We consider a 
dynamical system of the form ‍∂tx = F(x,λ)‍, with one control parameter ‍λ‍. The line of steady state 
solutions is given by

	﻿‍ F(x∗(s),λ(s)) = 0‍� (217)

where solutions are parametrised by ‍s‍. Taking the derivative one obtains ‍
(
∂xF

)
|x∗∂sx∗ +

(
∂λF

)
|x∗∂sλ = 0‍. 

We consider a fold in the solution curve where ‍∂sλ = 0‍ and ‍|∂sx∗| ̸= 0‍. In that case:

	﻿‍
(
∂xF

)
|x∗∂sx∗ = 0 at the fold,‍� (218)

and the linear stability matrix at the fold ‍
(
∂xF

)
|x∗‍ thus has (at least) one eigenvalue that changes 

sign at the fold. Assuming that the solution branch is stable up to the fold, this indicates generically 
the appearance of an unstable mode; except in the special case where the 0 eigenvalue is a local 
maximum.

https://doi.org/10.7554/eLife.75878
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