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Invariant neural subspaces
maintained by feedback modulation
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Abstract Sensory systems reliably process incoming stimuli in spite of changes in context.
Most recent models accredit this context invariance to an extraction of increasingly complex
sensory features in hierarchical feedforward networks. Here, we study how context-invariant
representations can be established by feedback rather than feedforward processing. We show
that feedforward neural networks modulated by feedback can dynamically generate invariant
sensory representations. The required feedback can be implemented as a slow and spatially
diffuse gain modulation. The invariance is not present on the level of individual neurons, but
emerges only on the population level. Mechanistically, the feedback modulation dynamically
reorients the manifold of neural activity and thereby maintains an invariant neural subspace in
spite of contextual variations. Our results highlight the importance of population-level analyses
for understanding the role of feedback in flexible sensory processing.

Introduction

In natural environments our senses are exposed to a colourful mix of sensory impressions. Be-
haviourally relevant stimuli can appear in varying contexts, such as variations in lighting, acous-
tics, stimulus position or the presence of other stimuli. Different contexts may require different
responses to the same stimulus, for example when the behavioural task changes (context depen-
dence). Alternatively, the same response may be required for different stimuli, for example when
the sensory context changes (context invariance). Recent advances have elucidated how context-
dependent processing can be performed by recurrent feedback in neural circuits (Mante et al.,
2013; Wang et al., 2018b; Dubreuil et al., 2020). In contrast, the role of feedback mechanisms in
context-invariant processing is not well understood.

In the classical view, stimuli are hierarchically processed towards a behaviourally relevant per-
cept that is invariant to contextual variations. This is achieved by extracting increasingly complex
features in a feedforward network (Kriegeskorte, 2015; Zhuang et al., 2021; Yamins and DiCarlo,
2016). Models of such feedforward networks have been remarkably successful at learning com-
plex perceptual tasks (LeCun et al., 2015), and they account for various features of cortical sensory
representations (DiCarlo and Cox, 2007; Kriegeskorte et al., 2008; DiCarlo et al., 2012; Hong et al.,
2016; Cichy et al., 2016). Yet, these models neglect feedback pathways, which are abundant in sen-
sory cortex (Felleman and Van Essen, 1991; Markov et al., 2014) and shape sensory processing in
critical ways (Gilbert and Li, 2013). Incorporating these feedback loops into models of sensory pro-
cessing increases their flexibility and robustness (Spoerer et al., 2017; Alamia et al., 2021; Nayebi
et al., 20217) and improves their fit to neural data (Kar et al., 2019; Kietzmann et al., 2019; Nayebi
et al., 2021). At the neuronal level, feedback is thought to modulate rather than drive local re-
sponses (Sherman and Guillery, 1998), for instance depending on behavioral context (Niell and
Stryker, 2010; Vinck et al., 2015; Kuchibhotla et al., 2017; Dipoppa et al., 2018).
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Here, we investigate the hypothesis that feedback modulation provides a neural mechanism
for context-invariant perception. To this end, we trained a feedback-modulated network model
to perform a context-invariant perceptual task and studied the resulting neural mechanisms. We
show that the feedback modulation does not need to be temporally or spatially precise and can be
realised by feedback-driven gain modulation in rate-based networks of excitatory and inhibitory
neurons. To solve the task, the feedback loop dynamically maintains an invariant subspace in the
population representation (Hong et al., 2016). This invariance is not present at the single neuron
level. Finally, we find that the feedback conveys a nonlinear representation of the context itself,
which can be hard to discern by linear decoding methods.

These findings corroborate that feedback-driven gain modulation of feedforward networks en-
ables context-invariant sensory processing. The underlying mechanism links single neuron mod-
ulation with its function at the population level, highlighting the importance of population-level
analyses.

Results

As a simple instance of a context-invariant task, we considered a dynamic version of the blind
source separation problem. The task is to recover unknown sensory sources, such as voices at a
cocktail party (McDermott, 2009), from sensory stimuli that are an unknown mixture of the sources.
In contrast to the classical blind source separation problem, the mixture can change in time, for
example, when the speakers move around, thus providing a time-varying sensory context. Because
the task requires a dynamic inference of the context, it cannot be solved by feedforward networks
(Figure 1-Figure Supplement 1) or standard blind source separation algorithms (e.g., independent
component analysis; Bell and Sejnowski, 1995; Hyvirinen and Oja, 2000). We hypothesised that
this dynamic task can be solved by a feedforward network that is subject to modulation from a
feedback signal. In our model the feedback signal is provided by a modulatory system that receives
both the sensory stimuli and the network output (Figure 1a).

Dynamic blind source separation by modulation of feedforward weights

Before we gradually take this to the neural level, we illustrate the proposed mechanism in a simple
example, in which the modulatory system provides a time-varying multiplicative modulation of a
linear two-layer network (see Methods and Models). For illustration, we used compositions of sines
with different frequencies as source signals (s, Figure 1b, top). These sources were linearly mixed to
generate the sensory stimuli (x) that the network received as input; x = A, s (Figure 71a,b). The linear
mixture (4,) changed over time, akin to varying the location of sound sources in a room (Figure 1a).
These locations provided a time-varying sensory context that changed on a slower timescale than
the sources themselves. The feedforward network had to recover the sources from the mixed
sensory stimuli. To achieve this, we trained the modulator to dynamically adjust the weights of the
feedforward network (W) such that the network output (y) matches the sources:

y=W,x=(M,0W,)x
M, = modulator(history of x, y) .

Because the modulation requires a dynamic inference of the context, the modulator is a recurrent
neural network. The modulator was trained using supervised learning. Afterwards, its weights
were fixed and it no longer had access to the target sources (see Methods and Models, Figure 8).
The modulator therefore had to use its recurrent dynamics to determine the appropriate modula-
tory feedback for the time-varying context, based on the sensory stimuli and the network output.
Put differently, the modulator had to learn an internal model of the sensory data and the contexts,
and use it to establish the desired context invariance in the output.

After learning, the modulated network disentangled the sources, even when the context changed
(Figure 1b, Figure 1-Figure Supplement 1a,b). Context changes produced a transient error in the
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7e network’s output, but it quickly resumed matching the sources (Figure 1b, bottom). The transient
79 errors occur, because the modulator needs time to infer the new context from the time-varying
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Figure 1. Dynamic blind source separation by modulation of feedforward connections.

a. Schematic of the feedforward network model receiving feedback modulation from a modulator (a
recurrent network). b. Top: Sources (s »), sensory stimuli (x; ,) and network output (y; ,) for two different
source locations (contexts). Bottom: Deviation of output from the sources. c. Top: Modulated readout
weights across 6 contexts (source locations); dotted lines indicate the true weights of the inverted mixing
matrix. Bottom: Deviation of readout from target weights. d. Correlation between the sources and the
sensory stimuli (left), the network outputs (center), and calculation of the signal clarity (right). Errorbars
indicate standard deviation across 20 contexts. e. Violin plot of the signal clarity for different noise levels in
the sensory stimuli across 20 different contexts.

Figure 1-Figure supplement 1. The dynamic blind source separation task cannot be solved with a
feedforward network.

Figure 1-Figure supplement 2. Robustness of the feedback-driven modulation mechanism.

Figure 1-Figure supplement 3. Model performance for two different sets of source signals.

Figure 1-Figure supplement 4. Model performance for three source signals.

Figure 1-Figure supplement 5. The modulated network model generalises across frequencies.

Figure 1-Figure supplement 6. The modulator learns a model of the sources and contexts, and infers the
current context from the stimuli.
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inputs, before it can provide the appropriate feedback signal to the feedforward network (Figure 1-
Figure Supplement 6a, cf. Figure 1-Figure Supplement 1g-i). The modulated feedforward weights
inverted the linear mixture of sources by switching on the same timescale (Figure 1c).

To quantify how well the sources were separated, we measured the correlation coefficient of
the outputs with each source over several contexts. Consistent with a clean separation, we found
that each of the two outputs strongly correlated with only one of the sources. In contrast, the sen-
sory stimuli showed a positive average correlation for both sources, as expected given the positive
linear mixture (Figure 1d, left). We determined the signal clarity as the absolute difference between
the correlation with the first compared to the second source, averaged over the two outputs, nor-
malised by the sum of the correlations (Figure 1d, right; see Methods and Models). The signal
clarity thus determines the degree of signal separation, where a value close to 1 indicates a clean
separation as in Figure 1d. Note that the signal clarity of the sensory stimuli is around 0.5 and can
be used as a reference.

We next probed the network’s robustness by adding noise to the sensory stimuli. We found that
the signal clarity gradually decreased with increasing noise levels, but only degraded to chance per-
formance when the signal-to-noise ratio was close to 1 (1.1 dB, Figure Te, Figure 1-Figure Supple-
ment 2e). The network performance did not depend on the specific source signals (Figure 1-Figure
Supplement 3) or the number of sources (Figure 1-Figure Supplement 4), as long as it had seen
them during training. Yet, because the network had to learn an internal model of the task, we
expected a limited degree of generalisation to new situations. Indeed, the network was able to
interpolate between source frequencies seen during training (Figure 1-Figure Supplement 5), but
failed on sources and contexts that were qualitatively different (Figure 1-Figure Supplement 6b-d).
The specific computations performed by the modulator are therefore idiosyncratic to the prob-
lem at hand. Hence, we did not investigate the internal dynamics of the modulator in detail, but
concentrated on its effect on the feedforward network.

Since feedback-driven modulation enables flexible context-invariant processing in a simple ab-
stract model, we wondered how this mechanism might be implemented at the neural level. For
example, how does feedback-driven modulation function when feedback signals are slow and im-
precise? And how does the modulation affect population activity? In the following, we will gradually
increase the model complexity to account for biological constraints and pinpoint the population-
level mechanisms of feedback-mediated invariance.

Invariance can be established by slow feedback modulation
Among the many modulatory mechanisms, even the faster ones are believed to operate on timescales
of hundreds of milliseconds (Bang et al., 2020; Molyneaux and Hasselmo, 2002), raising the ques-
tion if feedback-driven modulation is sufficiently fast to compensate for dynamic changes in envi-
ronmental context.

To investigate how the timescale of modulation affects the performance in the dynamic blind
source separation task, we trained network models, in which the modulatory feedback had an
intrinsic timescale that forced it to be slow. We found that the signal clarity degraded only when this
timescale was on the same order of magnitude as the timescale of contextual changes (Figure 2a).
Note that timescales in this model are relative, and could be arbitrarily rescaled. While slower
feedback modulation produced a larger initial error (Figure 2b,c), it also reduced the fluctuations
in the readout weights such that they more closely follow the optimal weights (Figure 2b). This
speed-accuracy trade-off explains the lower and more variable signal clarity for slow modulation
(Figure 2a), because the signal clarity was measured over the whole duration of a context and the
transient onset error dominated over the reduced fluctuations.

To determine architectural constraints on the modulatory system, we asked how these results
depended on the input it received. So far, the modulatory system received the feedforward net-
work’s inputs (the sensory stimuli) and its outputs (the inferred sources, see Figure 1a), but are
both of these necessary to solve the task? We found that when the modulatory system only re-
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ceived the sensory stimuli, the model could still learn the task, though it was more sensitive to
slow modulation (Figure 2d, Supp. Figure 2-Figure Supplement 1). When the modulatory system
had to rely on the network output alone, task performance was impaired even for fast modulation
(Figure 2e, Figure 2-Figure Supplement 1). Thus, while the modulatory system is more robust to
slow modulation when it receives the network output, the output is not sufficient to solve the task.

Taken together, these results show that the biological timescale of modulatory mechanisms
does not pose a problem for flexible feedback-driven processing, as long as the feedback modu-
lation changes on a faster timescale than variations in the context. In fact, slow modulation can
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Figure 2. The network model is not sensitive to slow feedback modulation.

a. Signal clarity in the network output for varying timescales of modulation relative to the intervals at which
the source locations change. b. Modulated readout weights across 4 source locations (contexts) for fast (top)
and slow (center) feedback modulation; dotted lines indicate the optimal weights (the inverse of the mixing
matrix). Bottom: deviation of the readout weights from the optimal weights for fast and slow modulation.
Colours correspond to the relative timescales in (a). Fast and slow timescales are 0.001 and 1, respectively.

c. Mean deviation of readout from optimal weights within contexts; averaged over 20 contexts. Colours code
for timescale of modulation (see (a)). d. & e. Same as (a) but for models in which the modulatory system only
received the sensory stimuli x or the network output y, respectively.

Figure 2-Figure supplement 1. Robustness to slow feedback modulation depends on the inputs to the
modulatory system.
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increase processing accuracy by averaging out fluctuations in the feedback signal. Nevertheless,
slow modulation likely requires the modulatory system to receive both the input and output of the
sensory system it modulates.

Invariance can be established by spatially diffuse feedback modulation
Neuromodulators are classically believed to diffusely affect large areas of the brain. Furthermore,
signals in the brain are processed by populations of neurons. We wondered if the proposed mod-
ulation mechanism is consistent with such biological constraints. We therefore extended the net-
work model such that the sensory stimuli are projected to a population of 100 neurons. A fixed
linear readout of this population determined the network output. The neurons in the population
received spatially diffuse modulatory feedback (Figure 3a) such that the feedback modulation af-
fected neighbouring neurons similarly. We here assume that all synaptic weights to a neuron re-
ceive the same modulation, such that the feedback performs a gain modulation of neural activ-
ity (Ferguson and Cardin, 2020). The spatial specificity of the modulation was determined by the
number of distinct feedback signals and their spatial spread (Figure 3b, Figure 3-Figure Supple-
ment 1a).

This population-based model with less specific feedback modulation could still solve the dy-
namic blind source separation task. The diffuse feedback modulation switched when the context
changed, but was roughly constant within contexts (Figure 3c), as in the simple model. The effec-
tive weight from the stimuli to the network output also inverted the linear mixture of the sources
(Figure 3-Figure Supplement 1d, cf. Figure 1c).

We found that only a few distinct feedback signals were needed for a clean separation of the
sources across contexts (Figure 3d). Moreover, the feedback could have a spatially broad effect on
the modulated population without degrading the signal clarity (Figure 3e, Figure 3-Figure Supple-
ment 1), consistent with the low dimensionality of the context.

We conclude that, in our model, neuromodulation does not need to be spatially precise to en-
able flexible processing. Given that the suggested feedback-driven modulation mechanism works
for slow and diffuse feedback signals, it could in principle be realised by neuromodulatory path-
ways present in the brain.

Invariance emerges at the population level

Having established that slow and spatially diffuse feedback modulation enables context-invariant
processing, we next investigated the underlying mechanisms at the single neuron and population
level. Given that the readout of the population activity was fixed, it is not clear how the context-
dependent modulation of single neurons could give rise to a context-independent network output.
One possible explanation is that some of the neurons neurons are context-invariant and are ex-
ploited by the readout. However, a first inspection of neural activity indicated that single neurons
are strongly modulated by context (Figure 4a). To quantify this, we determined the signal clarity for
each neuron at each stage of the feedforward network, averaged across contexts (Figure 4b). As
expected, the signal clarity was low for the sensory stimuli. Intriguingly, the same was true for all
neurons of the modulated neural population, indicating no clean separation of the sources at the
level of single neurons. Although most neurons had a high signal clarity in some of the contexts,
there was no group of neurons that consistently represented one or the other source (Figure 4c).
Furthermore, the average signal clarity of the neurons did not correlate with their contribution to
the readout (Figure 4d). Since single neuron responses were not invariant, context invariance must
arise at the population level.

To confirm this, we asked how well the sources could be decoded at different stages of the
feedforward network. We trained a single linear decoder of the sources on one set of contexts
and tested its generalisation to novel contexts. We found that the decoding performance was
poor for the sensory stimuli (Figure 4e), indicating that these did not contain a context-invariant
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representation. In contrast, the sources could be decoded with high accuracy from the modulated
population.

This demonstrates that while individual neurons were not invariant, the population activity con-
tained a context-invariant subspace. In fact, the population had to contain an invariant subspace,
because the fixed linear readout of the population was able to extract the sources across contexts.
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Figure 3. Feedback modulation in the model can be spatially diffuse.

a. Schematic of the feedforward network with a population that receives diffuse feedback-driven modulation.
b. Spatial spread of the modulation mediated by 4 modulatory feedback signals with a width of 0.2. c. Top:
Per neuron modulation during 8 different contexts. Bottom: Corresponding deviation of the network output
from sources. d. Mean signal clarity across 20 contexts for different numbers of feedback signals; modulation
width is 0.2. Error bars indicate standard deviation. Purple triangle indicates default parameters used in (c). e.
Same as (d) but for different modulation widths; number of feedback signals is 4. The modulation width "co"
corresponds to uniform modulation across the population.

Figure 3-Figure supplement 1. Robustness to the spatial scale of feedback modulation.
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Figure 4. Invariance emerges at the population level.

a. Population activity in two contexts. b. Violin plot of the signal clarity in the sensory stimuli (x), neural
population (z), and network output (y), computed across 20 different contexts. c. Signal clarity of single
neurons in the modulated population for different contexts. d. Correlation between average signal clarity
over contexts and magnitude of neurons’ readout weight. Corresponding Pearson r and p-value are indicated
in the panel. e. Violin plot of the linear decoding performance of the sources from different stages of the
feedforward network, computed across 20 contexts. The decoder was trained on a different set of 20
contexts.

However, the linear decoding approach shows that this subspace can be revealed from the popu-
lation activity itself with only a few contexts and no knowledge of how the neural representation
is used downstream. The same approach could therefore be used to reveal context-invariant sub-
spaces in neural data from population recordings. Note, that the learned readout and the decoder
obtained from population activity are not necessarily identical, due to the high dimensionality of
the population activity compared to the sources.

Feedback re-orients the population representation

The question remains how exactly the context-invariant subspace is maintained by feedback mod-
ulation. In contrast to a pure feedforward model of invariant perception (Kriegeskorte, 2015;
Yamins and DiCarlo, 2016), feedback-mediated invariance requires time to establish after contex-
tual changes. Experimentally, hallmarks of this adaptive process should be visible when comparing
the population representations immediately after a change and at a later point in time. Our model
allows to cleanly separate the early and the late representation by freezing the feedback signals
in the initial period after a contextual change (Figure 5a), thereby disentangling the effects of feed-
back and context on population activity.

The simulated experiment consisted of three stages: First, the feedback was intact for a particu-
lar context and the network outputs closely tracked the sources. Second, the context was changed
but the feedback modulation was frozen at the same value as before. As expected, this produced
deviations of the output from the sources. Third, for the same context the feedback modulation
was turned back on, which reinstated the source signals in the output. In this experiment, we used
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Figure 5. Feedback re-orients the population representation.

a. Network output (top) and feedback modulation (bottom) for two contexts. The feedback modulation is
frozen for the initial period after the context changes. b. Population activity in the space of the two readout
axes and the first principal component. Projection onto the readout is indicated in the bottom (see (c)). The
signal representation is shown for different phases of the experiment. Left: context 1 with intact feedback,
center: context 2 with frozen feedback, right: context 2 with intact feedback. The blue plane spans the
population activity subspace in context 1 (left). c. Same as (b), but projected onto the readout space (dotted
lines in (b)). The light blue trace corresponds to the sources. d. Left: Change in subspace orientation across
40 repetitions of the experiment, measured by the angle between the original subspace and the subspace for
context changes (ctx change), feedback modulation (FB mod) and feedback modulation for similar contexts
(ctx close) or dissimilar contexts (ctx far). Right: two-dimensional context space, defined by the coefficients in
the mixing matrix. Arrows indicate similar (light blue) and dissimilar contexts (purple). e. Distance between
pairs of contexts versus the angle between population activity subspaces for these contexts. Circles indicate
similar contexts (from the same side of the diagonal, see (d)) and triangles dissimilar contexts (from different
sides of the diagonal). Pearson r and p-value indicated in the panel.

Figure 5-Figure supplement 1. Principal component analysis captures the low-dimensional population
subspaces and the subspace re-orientation with feedback.

9 of 28



pure sines as signals for visualisation purposes (Figure 5a,c). To visualise the population activity
in the three stages of the experiment, we considered the space of the two readout dimensions
and the first principal component (Figure 5b). We chose this space rather than, e.g., the first three
principal components (Figure 5-Figure Supplement 1), because it provides an intuitive illustration
of the invariant subspace.

Because the sources were two-dimensional, the population activity followed a pattern within
a two-dimensional subspace (Figure 5b, left; Figure 5-Figure Supplement 1a). For intact feedback,
this population activity matched the sources when projected onto the readout (Figure 5c, left).
Changing the context while freezing the feedback rotated and stretched this representation within
the same subspace, such that the readout did not match the sources (Figure 5b & c, center). Would
turning the feedback modulation back on simply reverse this transformation to re-establish an in-
variant subspace? We found that this was not the case. Instead, the feedback rotated the represen-
tation out of the old subspace (Figure 5b, right), thereby re-orienting it into the invariant readout
(Figure 5c¢, right).

To quantify the transformation of the population representation, we repeated this experiment
multiple times and determined the angle between the neural subspaces. Consistent with the il-
lustration in Figure 5b, changing the context did not change the subspace orientation, whereas
unfreezing the feedback caused a consistent re-orientation (Figure 5d). The magnitude of this sub-
space re-orientation depended on the similarity of the old and new context. Similar contexts gen-
erally evoked population activity with similar subspace orientations (Figure 5d,e). This highlights
that there is a consistent mapping between contexts and the resulting low-dimensional population
activity.

In summary, the role of feedback-driven modulation in our model is to re-orient the population
representation in response to changing contexts such that an invariant subspace is preserved.

The mechanism generalises to a hierarchical Dalean network

So far, we considered a linear network, in which neural activity could be positive and negative.
Moreover, feedback modulation could switch the sign of the neurons’ downstream influence, which
is inconsistent with Dale’s principle. We wondered if the same population-level mechanisms would
operate in a Dalean network, in which feedback is implemented as a positive gain modulation. Al-
though gain modulation is a broadly observed phenomenon that is attributed to a range of cellular
mechanisms (Ferguson and Cardin, 2020; Salinas and Thier, 2000), its effect at the population level
is less clear (Shine et al., 2021).

We extended the feedforward model as follows (Figure 6a): First, all neurons had positive firing
rates. Second, we split the neural population (z in the previous model) into a "lower-level" (z*) and
"higher-level" population (z"). The lower-level population served as a neural representation of the
sensory stimuli, whereas the higher-level population was modulated by feedback. This allowed a
direct comparison between a modulated and an unmodulated neural population. It also allowed
us to include Dalean weights between the two populations. Direct projections from the lower-level
to the higher-level population were excitatory. In addition, a small population of local inhibitory
neurons provided feedforward inhibition to the higher-level population. Third, the modulation of
the higher-level population was implemented as a local gain modulation that scaled the neural
responses. As a specific realisation of gain modulation, we assumed that feedback targeted in-
hibitory interneurons (e.g., in layer 1; Abs et al., 2018; Ferguson and Cardin, 2020; Malina et al.,
2021) that mediate the modulation in the higher-level population (e.g., via presynaptic inhibition;
Pardi et al., 2020; Naumann and Sprekeler, 2020). This means that stronger feedback decreased
the gain of neurons (Figure 4b). We will refer to these modulatory interneurons as modulation
units m (green units in Figure 4a).

We found that this biologically more constrained model could still learn the context-invariant
processing task (Figure 6-Figure Supplement 1a,b). Notably, the network’s performance did not
depend on specifics of the model architecture, such as the target of the modulation or the number
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of inhibitory neurons (Figure 6-Figure Supplement 1c-e). In analogy to the previous model, the
gain modulation of individual neurons changed with the context and thus enabled the flexible
processing required to account for varying context (Figure 4c). The average gain over contexts was
similar across neurons, whereas within a context the gains were broadly distributed (Figure 4d).
To verify if the task is solved by the same population-level mechanism, we repeated our pre-
vious analyses on the single neuron and population level. Indeed, all results generalised to the
Dalean network with feedback-driven gain modulation (cf. Figure 4, Figure 5 & Figure 6). Single
neurons in the higher- and lower-level population were not context-invariant (Figure 6e), but the
higher-level population contained a context-invariant subspace (Figure 6f). This was not the case
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Figure 6. Feedback-driven gain modulation in a hierarchical rate network.

a. Schematic of the Dalean network comprising a lower- and higher-level population (& and z4), a population
of local inhibitory neurons (blue) and diffuse gain modulation mediated by modulatory interneurons (green).
b. Decrease in gain (i.e. release probability) with stronger modulatory feedback. c. Top: Modulation of
neurons in the higher-level population for 10 different contexts. Bottom: Corresponding deviation of outputs
y from sources s. d. Histogram of neuron-specific release probabilities averaged across 20 contexts (filled,
light green) and during two different contexts (yellow & dark green, see (c)). e. Violin plot of signal clarity at
different stages of the Dalean model: sensory stimuli (x), lower-level (z&) and higher-level population (z1),
modulatory units (m) and network output (y), computed across 20 contexts (cf. Figure 4a). f. Violin plot of
linear decoding performance of the sources from the same stages as in (e) (cf. Figure 4d). g. Feedback
modulation re-orients the population activity (cf. Figure 5d).

Figure 6-Figure supplement 1. The Dalean network can learn the dynamic blind source separation task, and
the performance does not depend on specifics of the model architecture.
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for the lower-level population, underscoring that invariant representations do not just arise from
projecting the sensory stimuli into a higher dimensional space. Instead, the invariant subspace in
the higher-level population was again maintained by the feedback modulation, which re-oriented
the population activity in response to context changes (Figure 6g).

Feedback conveys a non-linear representation of the context
Since single neurons in the higher-level population were not invariant to context, the population
representation must also contain contextual information. Indeed, contextual variables could be
linearly decoded from the higher-level population activity (Figure 7a). In contrast, decoding the
context from the lower-level population gave much lower accuracy. This shows that the contextual
information is not just inherited from the sensory stimuli but conveyed by the feedback via the
modulatory units. We therefore expected that the modulatory units themselves would contain a
representation of the context. To our surprise, decoding accuracy on the modulatory units was
low. This seems counter-intuitive, especially since the modulatory units clearly co-varied with the
contextual variables (Figure 7b). To understand these seemingly conflicting results, we examined
how the context was represented in the activity of the modulation units.

We found that the modulation unit activity did encode the contextual variables, albeit in a non-
linear way (Figure 7c). The underlying reason is that the feedback modulation needs to remove
contextual variations, which requires nonlinear computations. Specifically, the blind source sepa-
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Figure 7. Feedback conveys a non-linear representation of the context.

a. Linear decoding performance of the context (i.e. mixing) from the network. b. Context variables (e.g.
source locations, top) and activity of modulatory interneurons (bottom) over contexts; one of the modulatory
interneurons is silent in all contexts. c. Left: Activity of the three active modulatory interneurons (see b) for
different contexts. The context variables are colour-coded as indicated on the right. d. Performance of
different decoders trained to predict the context from the modulatory interneuron activity. Decoder types are
a linear decoder, a decoder on a quadratic expansion and a linear decoder trained to predict the inverse of
the mixing matrix.
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ration task requires an inversion of the linear mixture of sources. Consistent with this idea, non-
linear decoding approaches performed better (Figure 7d). In fact, the modulatory units contained
a linear representation of the "inverse context" (i.e., the inverse mixing matrix, see Methods and
Models).

In summary, the higher-level population provides a linear representation not only of the stimuli,
but also of the context. In contrast, the modulatory units contained a nonlinear representation of
the context, which could not be extracted by linear decoding approaches. We speculate that if
contextual feedback modulation is mediated by interneurons in layer 1, they should represent the
context in a nonlinear way.

Discussion

Accumulating evidence suggests that sensory processing is strongly modulated by top-down feed-
back projections (Gilbert and Li, 2013; Keller and Mrsic-Flogel, 2018). Here, we demonstrate that
feedback-driven gain modulation of a feedforward network could underlie stable perception in
varying contexts. The feedback can be slow, spatially diffuse and low-dimensional. To elucidate
how the context invariance is achieved, we performed single neuron and population analyses. We
found that invariance was not evident at the single neuron level, but only emerged in a subspace of
the population representation. The feedback modulation dynamically transformed the manifold
of neural activity patterns such that this subspace was maintained across contexts. Our results pro-
vide further support that gain modulation at the single cell level enables non-trivial computations
at the population level (Failor et al., 2021; Shine et al., 20217).

Invariance in sensory processing

As an example of context-invariant sensory processing, we chose a dynamic variant of the blind
source separation task. This task is commonly illustrated by a mixture of voices at a cocktail party
(Cherry, 1953; McDermott, 2009). For auditory signals, bottom-up mechanisms of frequency segre-
gation can provide a first processing step for the separation of multiple sound sources (Bronkhorst,
2015; Mcbermott, 2009). However, separating more complex sounds requires additional active top-
down processes (Parthasarathy et al., 2020; Oberfeld and Kloeckner-Nowotny, 2016). In our model
top-down feedback guides the source separation itself, while the selection of a source would occur
at a later processing stage - consistent with recent evidence for "late selection" (Brodbeck et al.,
2020; Yahav and Golumbic, 2021).

Although blind source separation is commonly illustrated with auditory signals, the suggested
mechanism of context-invariant perception is not limited to a given sensory modality. The key
nature of the task is that it contains stimulus dimensions that need to be encoded (the sources)
and dimensions that need to be ignored (the context). In visual object recognition, for example,
the identity of visual objects needs to be encoded, while contextual variables such as size, location,
orientation, or surround need to be ignored. Neural hallmarks of invariant object recognition are
present at the population level (DiCarlo and Cox, 2007; DiCarlo et al., 2012; Hong et al., 2016), and
to some extent also on the level of single neurons (Quiroga et al., 2005). Classically, the emergence
of invariance has been attributed to the extraction of invariant features in feedforward networks
(Riesenhuber and Poggio, 1999; Wiskott and Sejnowski, 2002; DiCarlo and Cox, 2007; Kriegeskorte,
2015), but recent work also highlights the role of recurrence and feedback (Gilbert and Li, 2013;
Kar et al., 2019; Kietzmann et al., 2019; Thorat et al., 2021). Here, we focused on the role of
feedback, but clearly, feedforward and feedback processes are not mutually exclusive and likely
work in concert to create invariance. Their relative contribution to invariant perception requires
further studies and may depend on the invariance in question.

Similarly, how invariance can be learned will depend on the underlying mechanism. The feedback-
driven mechanism we propose is reminiscent of meta-learning consisting of an inner and an outer
loop (Hochreiter et al., 2001; Wang et al., 2018a). In the inner loop, the modulatory system infers
the context to modulate the feedforward network accordingly. This process is unsupervised. In the
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outer loop, the modulatory system is trained to generalise across contexts. Here, we performed
this training using supervised learning, which requires the modulatory system to experience the
sources in isolation (or at least obtain an error signal). Such an identification of the individual
sources could, e.g., be aided by other sensory modalities (McDermott, 2009). However, the op-
timisation of the modulatory system does not necessarily require supervised learning. It could
also be guided by task demands via reinforcement learning, or by unsupervised priors such as a
non-Gaussianity of the outputs.

Mechanisms of feedback-driven gain modulation

There are different ways in which feedback can affect local processing. Here, we focused on gain
modulation (McAdams and Maunsell, 1999; Reynolds and Heeger, 2009; Vinck et al., 2015). Neu-
ronal gains can be modulated by a range of mechanisms (Ferguson and Cardin, 2020; Shine et al.,
20217). In our model, the mechanism needs to satisfy a few key requirements: i) the modulation
is not uniform across the population, ii) it operates on a timescale similar to that of changes in
context, and iii) it is driven by a brain region that has access to the information needed to infer the
context.

Classical neuromodulators such as acetylcholine (Disney et al., 2007; Kawai et al., 2007), dopamine
(Thurley et al., 2008) or serotonin (Azimi et al., 2020) are signalled through specialised neuromod-
ulatory pathways from subcortical nuclei (van den Brink et al., 2019). These neuromodulators can
control the neural gain depending on behavioural states such as arousal, attention or expectation
of rewards (Ferguson and Cardin, 2020; Hasselmo and McGaughy, 2004, Bayer and Glimcher, 2005;
Polack et al., 2013; Kuchibhotla et al., 2017). Their effect is typically thought to be brain-wide and
long-lasting, but recent advances in measurement techniques (Sabatini and Tian, 2020; Lohani
et al., 2020) indicate that it could be area- or even layer-specific, and vary on sub-second time
scales (Lohani et al., 2020; Bang et al., 2020; Poorthuis et al., 2013; Pinto et al., 2013).

More specific feedback projections arrive in layer 1 of the cortex, where they target the distal
dendrites of pyramidal cells and inhibitory interneurons (Douglas and Martin, 2004; Roth et al.,
2016; Marques et al., 2018). Dendritic input can change the gain of the neural transfer function on
fast timescales (Larkum et al., 2004; Jarvis et al., 2018). The spatial scale of the modulation will
depend on the spatial spread of the feedback projections and the dendritic arbourisation. Feed-
back to layer 1 interneurons provides an alternative mechanism of local gain control. In particular,
neuron-derived neurotrophic factor-expressing interneurons (NDNF) in layer 1 receive a variety
of top-down feedback projections and produce GABAergic volume transmission (Abs et al., 2018),
thereby down-regulating synaptic transmission (Miller, 1998; Laviv et al., 2010). This gain modu-
lation can act on a timescale of hundreds of milliseconds (Branco and Staras, 2009; Urban-Ciecko
et al., 2015; Malina et al., 2021; Molyneaux and Hasselmo, 2002), and, although generally consid-
ered diffuse, can also be synapse type-specific (Chittajallu et al., 2013).

The question remains where in the brain the feedback signals originate. Our model requires the
responsible network to receive feedforward sensory input to infer the context. In addition, feed-
back inputs from higher-level sensory areas to the modulatory system allow a better control of the
modulated network state. Higher-order thalamic nuclei are ideally situated to integrate different
sources of sensory inputs and top-down feedback (Sampathkumar et al., 2027) and mediate the
resulting modulation by targeting layer 1 of lower-level sensory areas (Purushothaman et al., 2012;
Roth et al., 2016; Sherman, 2016). In our task setting, the inference of the context requires the in-
tegration of sensory signals over time and therefore recurrent neural processing. For this kind of
task, thalamus may not be the site of contextual inference, because it lacks the required recur-
rent connectivity (Halassa and Sherman, 2019). However, contextual inference may be performed
by higher-order cortical areas, and could either be relayed back via the thalamus or transmitted
directly, for example, via cortico-cortical feedback connections.
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Testable predictions

Our model makes several predictions that could be tested in animals performing invariant sensory
perception. Firstly, our model indicates that invariance across contexts may only be evident at the
neural population level, but not on the single cell level. Probing context invariance at different
hierarchical stages of sensory processing may therefore require population recordings and corre-
sponding statistical analyses such as neural decoding (Glaser et al., 2020). Secondly, we assumed
that this context invariance is mediated by feedback modulation. The extent to which context in-
variance is enabled by feedback on a particular level of the sensory hierarchy could be studied
by manipulating feedback connections. Since layer 1 receives a broad range of feedback inputs
from different sources, this may require targeted manipulations. If no effect of feedback on con-
text invariance is found, this may either indicate that feedforward mechanisms dominate or that
the invariance in question is inherited from an earlier stage, in which it may well be the result of
feedback modulation. Given that feedback is more pronounced in higher cortical areas (McAdams
and Maunsell, 1999; Pardi et al., 2020), we expect that the contribution of feedback may play a
larger role for the more complex forms of invariance further up in the sensory processing hierar-
chy. Thirdly, for feedback to mediate context invariance, the feedback projections need to contain
a representation of the contextual variables. Our findings suggest, however, that the detection
of this representation may require a non-linear decoding method. Finally, a distinguishing fea-
ture of feedback and feedforward mechanisms is that feedback mechanisms take more time. We
found thatimmediately following a sudden contextual change, the neuronal representation initially
changes within the manifold associated with the previous context. Later, the feedback reorients
the manifold to reestablish the invariance on the population level. Whether these dynamics are
a signature of feedback processing or also present in feedforward networks will be an interesting
question for future work.

Comparison to prior work
Computational models have implicated neuronal gain modulation for a variety of functions (Sali-
nas and Sejnowski, 2001; Reynolds and Heeger, 2009). Even homogeneous changes in neuronal
gain can achieve interesting population effects (Shine et al., 2021), such as orthogonalisation of
sensory responses (Failor et al., 2027). More heterogeneous gain modulation provides additional
degrees of freedom that enables, for example, attentional modulation (Reynolds and Heeger, 2009;
Carandini and Heeger, 2012), coordinate transformations (Salinas and Thier, 2000) and - when am-
plified by recurrent dynamics - a rich repertoire of neural trajectories (Stroud et al., 2018). Gain
modulation has also been suggested as a means to establish invariant processing (Salinas and Ab-
bott, 1997), as a biological implementation of dynamic routing (Olshausen et al., 1993). While the
modulation in these models of invariance can be interpreted as an abstract form of feedback, the
resulting effects on the population level were not studied.

An interesting question is by which mechanisms the appropriate gain modulation is computed.
In previous work, gain factors were often learned individually for each context, for example by gra-
dient descent or Hebbian plasticity (Olshausen et al., 1993; Salinas and Abbott, 1997; Stroud et al.,
2018), mechanisms that may be too slow to achieve invariance on a perceptual timescale (Wiskott,
2006). In our model, by contrast, the modulation is dynamically controlled by a recurrent network.
Once it has been trained, such a recurrent modulatory system can rapidly infer the current con-
text, and provide an appropriate feedback signal on a timescale only limited by the modulatory
mechanism.

Limitations and future work

In our model, we simplified many aspects of sensory processing. Using simplistic sensory stimuli
- compositions of sines - allowed us to focus on the mechanisms at the population level, while
avoiding the complexities of natural sensory stimuli and deep sensory hierarchies. Although we
do not expect conceptual problems in generalising our results to more complex stimuli, such as
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speech or visual stimuli, the associated computational challenges are substantial. For example,
the feedback in our model was provided by a recurrent network, whose parameters were trained
by back-propagating errors through the network and through time. This training process can get
very challenging for large networks and long temporal dependencies (Bengio et al., 1994; Pascanu
et al., 2013).

In our simulations we trained the whole model - the modulatory system, the sensory represen-
tation and the readout. For the simplistic stimuli we used, we observed that the training process
mostly concentrated on optimising the modulatory system and readout, while a random mapping
of sensory stimuli to neural representations seemed largely sufficient to solve the task. For more
demanding stimuli, we expect that the sensory representation the modulatory system acts upon
may become more important. A well-suited representation could minimise the need for modula-
tory interventions (Finn et al., 2017), in a coordinated interaction of feedforward and feedback.

To understand the effects of feedback modulation on population representations, we included
biological constraints in the feedforward network and the structure of the modulatory feedback.
However, we did not strive to provide a biologically plausible implementation for the computation
of the appropriate feedback signals, and instead used an off-the-shelf recurrent neural network
(Hochreiter and Schmidhuber, 1997). The question how these signals could be computed in a
biologically plausible way remains for future studies. The same applies to the question how the
appropriate feedback signals can be learned by local learning rules (Lillicrap et al., 2020) and how
neural representations and modulatory systems learn to act in concert.

Methods and Models

To study how feedback-driven modulation can enable flexible sensory processing, we built models
of feedforward networks that are modulated by feedback. The feedback was dynamically gener-
ated by a modulatory system, which we implemented as a recurrent network. The weights of the
recurrent network were trained such that the feedback modulation allowed the feedforward net-
work to solve a flexible invariant processing task.

The dynamic blind source separation task
As an instance of flexible sensory processing we used a dynamic variant of blind source separation.
In classical blind source separation, two or more unknown time-varying sources s(¢) need to be
recovered from a set of observations (i.e. sensory stimuli) X(¢). The sensory stimuli are composed
of an unknown linear mixture of the sources such that X(r) = As(¢) with a fixed mixing matrix A.
Recovering the sources requires to find weights W such that Wx(r) ~ 5(r). Ideally, W is equal to the
pseudo-inverse of the unknown mixing matrix A, up to permutations.

In our dynamic blind source separation task, we model variations in the stimulus context by
changing the linear mixture over time - albeit on a slower timescale than the time-varying signals.
Thus, the sensory stimuli are constructed as

X(1) = A1) + 0,E(1) ©)

where A(r) is a time-dependent mixing matrix and ¢, is the amplitude of additive white noise ).
The time-dependent mixing matrix determines the current context and was varied in discrete time
intervals n,, meaning that the mixing matrix A(z) (i.e. the context) was constant for n, samples before
it changed. The goal of the dynamic blind source separation task is to recover the original signal
sources s from the sensory stimuli X across varying contexts. Thus, the network model output
needs to be invariant to the specific context of the sources. Note that while the context was varied,
the sources themselves were the same throughout the task, unless stated otherwise. Furthermore,
in the majority of experiments the number of source signals and sensory stimuli was n, = 2. A list
of default parameters for the dynamic blind source separation task can be found in Table 1.
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Source signals
As default source signals we used two compositions of two sines each ("chords") with a sampling
rate of f; = 8000Hz that can be written as

s,(t) = sin(2x f1,1/ f,) + sin(2x f 1,1/ f,) )
s,(t) = sin(2x f,,1/ f,) + sin (27 51/ f,) (3)
with frequencies f,, = 100 Hz, f,, = 125 Hz, f,, = 150 Hz and f,, = 210 Hz. Note that in our model

we measure time as the number of samples from the source signals, meaning that timescales are
relative and could be arbitrarily rescaled.

In Figure 5, we used pure sine signals with frequency f for visualisation purposes: s, = sin(2z f1/ f,).

We also validated the model on signals that are not made of sine waves, as a sawtooth and a square
wave signal (Figure 1-Figure Supplement 4). Unless stated otherwise, the same signals were used
for training and testing the model.

Time-varying contexts

We generated the mixing matrix A for each context by drawing random weights from a uniform
distribution between 0 and 1, allowing only positive mixtures of the sources. Unless specified
otherwise, we sampled new contexts for each training batch and for the test data, such that the
training and test data followed the same distribution without necessarily being the same. The
dimension of the mixing matrices was determined by number of signals n, such that A was of shape
n, X n,. To keep the overall amplitude of the sensory stimuli in a similar range across different
mixtures, we normalised the row sums of each mixing matrix to one. In the case of n, = 2, this
implies that the contexts (i.e. the mixing matrices) are drawn from a 2-dimensional manifold (see
Figure 8, bottom left). In addition, we only used the randomly generated mixing matrices whose
determinant was larger than some threshold value. We did this to ensure that each signal mixture
was invertible and that the weights needed to invert the mixing matrix were not too extreme. A
threshold value of 0.2 was chosen based on visual inspection of the weights from the inverted
mixing matrix.

Modulated feedforward network models

Throughout this work, we modelled feedforward networks of increasing complexity. Commonto all
networks was that they received the sensory stimuli X and should provide an output y that matches
the source signals 5. In the following, we first introduce the simplest model variant and how it is
affected by feedback from the modulatory system, and subsequently describe the different model
extensions.

Modulation of feedforward weights by a recurrent network
In the simplest feedforward network the network output y(r) is simply a linear readout the sensory
stimuli X(¢), with readout weights that are dynamically changed by the modulatory system:

(1) = (M) © W) X(1) (4)

Table 1. Default parameters of the dynamic blind source separation task.

parameter symbol | value
number of signals ng 2

number of samples in context n, 1000
additive noise o, 0.001
sampling frequency 5 8 kHz

17 of 28



516

517

518

where W, are the baseline weights and M (r) the modulation provided by the modulatory system.
M) is of the same shape as W, and determines the element-wise multiplicative modulation of the
baseline weights. Because the task requires the modulatory system to dynamically infer the con-
text, we modelled it as a recurrent network - more specifically a long-short term memory network
(LSTMs; Hochreiter and Schmidhuber, 1997) - with N, = 100 hidden units. In particular, we used
LSTMs with forget gates (Gers et al., 2000) but no peephole connections (for an overview of LSTM
variants see Greff et al. (2016)).

In this work we treated the LSTM as a black-box modulatory system that receives the sensory
stimuli and the feedforward network’s output and provides the feedback signal in return (Figure 71a).
Alinear readout of the LSTM's output determines the modulation M (¢) in Equation 4. In brief, this
means that

M (1) = LSTM(X(1), (1)) , (5)

where LSTM(+) is a function that returns the LSTM readout. For two-dimensional sources and sen-
sory stimuli, for instance, LSTM(:) receives a concatenation of the two-dimensional vectors X(r)
and () as input and returns a two-by-two feedback modulation matrix - one multiplicative factor
for each weight in W},. The baseline weights W, were randomly drawn from the Gaussian distribu-
tion W'(1,0.001) and fixed throughout the task. The LSTM parameters and readout were learned
during training of the model.

Extension 1: Reducing the temporal specificity of feedback modulation
To probe our model’s sensitivity to the timescale of the modulatory feedback (Figure 2), we added
a temporal filter to Equation 5. In that case the modulation M () followed the dynamics

dM (¢ o -
T dt( ) _ —M (1) + LSTMG(), (1)) (6)
stimuli
sources
AW modulator invert
S —e— | N —— context
| WYY P (unmixing)
) feedback )
__________ f output
contexts ™\ { feedforward | AdinAiinend)
(mixings) | network | y
context space
a 1-q L =dist (s, y)

B 1-B
training

Figure 8. Schematic of the dynamic blind source separation task, the context space and the modulated
feedforward network. Information flow is indicated by black arrows and the flow of the error during training
with backpropagation through time (BPTT) is shown in yellow.
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with = being the time constant of modulation. For small 7, the feedback rapidly affects the feed-
forward network, whereas larger = imply a slowly changing modulatory feedback signal. The unit
of this timescale is the number of samples from the source signals. Note that the timescale of the
modulation should be considered relative to the timescale of the context changes n,. As a default
time constant we used = = 100 < n, (see Table 2).

Extension 2: Reducing the spatial specificity of feedback modulation

To allow for spatially diffuse feedback modulation (Figure 3), we added an intermediate layer be-
tween the sensory stimuli and the network output. This intermediate layer consisted of a pop-
ulation of N, = 100 units that were modulated by the feedback, where neighbouring units were
modulated similarly. More specifically, the units were arranged on a ring to allow for a spatially con-
strained modulation without boundary effects. The population’s activity vector Z(¢) is described by

Z(t) = m(1) © (W*X(1), (7)

with the sensory stimuli X(z), a weight matrix W* of size N, x n, and the vector of unit-specific
multiplicative modulations m(r). Note that the activity of the units was not constrained to be positive
here. The output of the network was then determined by a linear readout of the population activity
vector according to

W) = W) (8)

with a fixed readout matrix W,
The modulation to a single unit i was given by

Nrp

dm (t) = om0+ Z L (9a)

with 1, = LSTM(x(1), y(1)), - (9b)

Here, 7 is the modulation time constant, K a kernel that determines the spatial specificity of mod-
ulation, LSTM(-); the j-th feedback signal from the LSTM and Ny the total number of feedback
signals. As in the simple model, the N feedback signals were determined by a linear readout
from LSTM.

The modulation kernel K was defined as a set of von Mises functions:

K, —exp<6icos< loc l}"“)), (10)

where zl* = € [0,2x[ represents the location of the modulated unit i on the ring and ll"C the
"preferred location" of modulatory unit j, i.e., the location on the ring that it modulates most ef-
fectively. These "preferred locations" l}"c of the feedback units were evenly distributed on the ring.
The variance parameter ¢2 determines the spatial spread of the modulatory effect of the feedback
units, i.e., the spatial specificity of the modulation. Overall, the spatial distribution of the modu-
lation was therefore determined by the number of distinct feedback signals N, and their spatial
spread afn (see Table 2 for a list of network parameters).

N,

Extension 3: Hierarchical rate-based network

We further extended the model with spatial modulation (Equation 7-Equation 10) to include a
two-stage hierarchy, positive rates and synaptic weights that obey Dale's law. Furthermore, we
implemented the feedback modulation as a gain modulation that scales neural rates but keeps
them positive. To this end, we modelled the feedforward network as a hierarchy of a lower-level
and a higher-level population. Only the higher-level population received feedback modulation.
Splitting the neural populations in this way allowed us to model the connections between them with
weights that follow Dale’s law. Furthermore, the unmodulated lower-level population could serve
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as a control for the emergence of context-invariant representations. The lower-level population
consisted of N; = 40 rate-based neurons and the population activity vector was given by

M = [WYR)], (1)

where W is a fixed weight matrix, X(r) the sensory stimuli and the rectification [-], = max(0, )
ensures that rates are positive. The lower-level population thus provides a neural representation
of the sensory stimuli. The higher-level population consisted of N = 100 rate-based neurons that
received feedforward input from the lower-level population. The feedforward input consisted of
direct excitatory projections as well as feedforward inhibition through a population of N; = 20 local
inhibitory neurons. The activity vector of the higher-level population zH(r) was thus given by

) = [pn) o W ZH ) - WwHE 1), (12)
2= W), . (13)

Here WL, WH and W are positive weight matrices, Z!(¢) the inhibitory neuron activities and p(r)
the neuron-specific gain modulation factors. As for the spatially modulated network of Extension
2, the network output y(r) was determined by a fixed linear readout W™ (see Equation 8). The
distributions used to randomly initialise the weight matrices are provided in Table 3.

Again, the modulation was driven by feedback from the LSTM, but in this model variant we as-
sumed inhibitory feedback, i.e., stronger feedback signals monotonically decreased the gain. More
specifically, we assumed that the feedback signal targets a population of modulation units m, which
in turn modulate the gain in the higher-level population. The gain modulation of neuron i was con-
strained between 0 and 1 and determined by

1

—_— (14)
1+ exp(m,.(t))

pi(t) =
with m,(r) being the activity of a modulation unit i, which follows the same dynamics as in Equa-
tion 9a (see Figure 6a).

Training the model
We used gradient descent to find the model parameters that minimise the difference between the
source signal s(r) and the feedforward network’s output y(z):

L= 2 dist(3(r), (1)) (15)
=1

with a distance measure dist(-). We used the machine learning framework PyTorch (Paszke et al.,
2019) to simulate the network model, obtain the gradients of the objective £ by automatic differen-
tiation and update the parameters of the LSTM using the Adam optimiser (Kingma and Ba, 2014)
with a learning rate of n = 10~%. As distance measure in the objective we used a smooth variant

Table 2. Default parameters of the network models.

parameter symbol | value
number of hidden units in LSTM N, 100
number of units in middle layer z N, 100
number of distinct feedback signals Neg 4
number of neurons in lower-level population N, 40
number of neurons in higher-level population Ny 100
number of inhibitory neurons N, 20
timescale of modulation T 100
spatial spread of modulation o 0.2
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Table 3. Distributions used for randomly initialised weight parameters

weights | distribution
W, N(1,0.001)
wx N(0,0.5)
wix N(0,0.5)
wre N(0,0.5)
WwHL N(1,0.5) - 20/ Ny,
wi N(1,0.5)/N,
wH N(1,1)-20/ Ny,
LSTM parameters | U'(=+/1/Ny, v/1/Ny)
LSTM readout | U'(=/1/ Ny, V/1/Ngp)

of the L1 norm (PyTorch’s smooth L1 loss variant), because it is less sensitive to outliers than the
mean squared error (Huber, 1964).

During training, we simulated the network dynamics over batches of 32 trials using forward Eu-
ler with a timestep of Az = 1. Each trial consisted of n, time steps (i.e. samples) and the context (i.e.
mixing matrix) differed between trials. Since the model contains feedback and recurrent connec-
tions, we trained it using backpropagation through time (Werbos, 71990). This means that for each
trial, we simulated the model and computed the loss for every time step. At the end of the trial
we propagated the error through the n, steps of the model to obtain the gradients and updated
the parameters accordingly (Figure 8). Although the source signals were the same in every trial,
we varied their phase independently across trials to prevent the LSTM from learning the exact sig-
nal sequence. To this end, we generated 16,000 samples of the source signals and in every batch
randomly selected chunks of n, samples independently from each source. Model parameters were
initialised according to the distributions listed in Table 3.

In all model variants we optimised the parameters of the modulator (input, recurrent and read-
out weights as well as the biases of the LSTM; see Equation 5 & Equation 9b). The parameters
were initialised with the defaults from the corresponding PyTorch modules, as listed in Table 3.
To facilitate the training in the hierarchical rate-based network despite additional constraints, we
also optimised the feedforward weights WHt, wH Wit wlx and w. In principle, this allows to
adapt the representation in the two intermediate layers such that the modulation is most effective.
However, although we did not quantify it, we observed that optimising the network readout W™
facilitated the training the most, suggesting that a specific format of the sensory representations
was not required for an effective modulation.

To prevent the gain modulation factor from saturating at 0 or 1, we added a regularisation term
R to the loss function Equation 15 that keeps the LSTM's output small:

;. Npg

R=dp D ‘LSTM(x(z), o), (16)
=1 j=1
with A, = 1075.

Gradient values were clipped between -1 and 1 before each update to avoid large updates. For
weights that were constrained to be positive, we used their absolute value in the model. Each
network was trained for 10,000 to 12,000 batches and for 5 random initialisations (Figure 1-Figure
Supplement 2).

Testing and manipulating the model
We tested the network model performance on an independent random set of contexts (i.e. mixing
matrices), but with the same source signals as during training. During testing, we also changed

21 of 28



590

591

592

the context every n, steps, but the length of this interval was not crucial for performance (Figure 1-
Figure Supplement 1d).

To manipulate the feedback modulation in the hierarchical rate-based network (Figure 4), we
provided an additional input to the modulation units m in Equation 9a. We used an input of 3 or -3
depending on whether the modulation units were activated or inactivated, respectively. To freeze
the feedback modulation (Figure 6), we discarded the feedback signal and held the local modula-
tion pin Equation 14 at a constant value determined by the feedback before the manipulation.The
dynamics of the LSTM were continued, but remained hidden to the feedforward network until the
freezing was stopped.

Unmodulated feedforward network models

Linear regression.

As a control, we trained feedforward networks with weights that were not changed by a modulatory
system. First, we used the simplest possible network architecture, in which the sensory stimuli are
linearly mapped to the outputs (Figure 1-Figure Supplement 1a):

(0 = WxQ@). (17)

Itis intuitive that a fixed set of weights W cannot invert two different contexts (i.e. different mixing
matrices A, and A,). As an illustration we trained this simple feedforward network on one context
and tested it on different contexts. To find the weights W, we used linear regression to minimise
the mean squared error between the source signal s(r) and the network’s output y(¢). The training
data consisted of 1024 consecutive time steps of the sensory stimuli for a fixed context, and the
test data consisted of different 1024 time steps generated under a potentially different mixing.
We repeated this procedure by training and testing a network for all combinations of 20 random
contexts.

Multi-layer nonlinear network.

Since solving the task was not possible with a single set of readout weights, we extended the feed-
forward model to include 3 hidden layers consisting of 32, 16 and 8 rectified linear units (Figure 1-
Figure Supplement 1d). The input to this network was one time point from the sensory stimuli and
the target output the corresponding time point of the sources. We trained the multi-layer network
on 5000 batches of 32 contexts using Adam (learning rate 0.001) to minimise the mean squared
error between the network output and the sources.

Multi-layer network with sequences as input.

Solving the task requires the network to map the same sensory stimulus to different outputs de-
pending on the context. However, inferring the context takes more than one time point. To test
if a feedforward network with access to multiple time points at once could in principle solve the
task, we changed the architecture of the multi-layer network, such that it receives a sequence of
the sensory stimuli (Figure 1-Figure Supplement 1g). The output of the network was a sequence
of equal length. We again trained this network on 5000 batches of 32 contexts to minimise the
error between its output and the target sources, where both the network input and output were
sequences. The length of these sequences was varied between 1 and 150.

Data analysis
Signal clarity
To determine task performance, we measured how clear the representation of the source signals
is in the network output. We first computed the correlation coefficient of each signal s, with each
output y;

_ 250 = 5)(; (1) = 7))

ij ’
05,0y,

(18)
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where 5, and y, are the respective temporal mean and ¢, and ¢, ; the respective temporal standard
deviations. The signal clarity in output y, is then given by the absolute difference between the
absolute correlation with one compared to the other signal:

¢ =1lryl=lryl 1. (19)

By averaging over outputs we determined the overall signal clarity within the output. Note that
the same measure can be computed on other processing stages of the feedforward network. For
instance, we used the signal clarity of sources in the sensory stimuli as a baseline control.

Signal-to-noise ratio

The signal-to-noise ratio in the sensory stimuli was determined as the variability in the signal com-
pared to the noise. Since the mean of both the stimuli and the noise were zero, the signal-to-noise
ratio could be computed by

o2
SNR=—=
02

where ¢, was the standard deviation of the additive white noise and ¢, the measured standard
deviation in the noise-free sensory stimuli, which was around 0.32. As a scale of the signal-to-noise
ratio we used decibels (dB), i.e., we used dB = 10log,,(SNR).

Linear decoding analysis

Signal decoding.

We investigated the population-level invariance by using a linear decoding approach. If there was
aninvariant population subspace, the source signals could be decoded by the same decoder across
different contexts. We therefore performed linear regression between the activity in a particular
population and the source signals. This linear decoder was trained on n, = 10 different contexts
with n, = 1,000 time points each, such that the total number of samples was 10,000. The linear
decoding was then tested on 10 new contexts and the performance determined using the R?> mea-
sure.

Context decoding.

We took a similar approach to determine from which populations the context could be decoded.
For the dynamic blind source separation task the context is given by the source mixture, as de-
termined by the mixing matrix. Since we normalised the rows of each mixing matrix, the context
was determined by two context variables. We calculated the temporal average of the neuronal ac-
tivities within each context and performed a linear regression of the context variables onto these
averages. To exclude onset transients, we only considered the second half (500 samples) of every
context. Contexts were sampled from the two-dimensional grid of potential contexts. More specif-
ically, we sampled 20 points along each dimension and excluded contexts, in which the sensory
stimuli were too similar (analogously to the generation of mixing matrices), leaving 272 different
contexts (see Figure 7¢, right). The linear decoding performance was determined with a 5-fold
cross-validation and measured using R-squared. Since the modulatory feedback signals depend
non-linearly on the context (Figure 7c), we tested two non-linear versions of the decoding approach.
First, we performed a quadratic expansion of the averaged population activity before a linear de-
coding. Second, we tested a linear decoding of the inverse mixing matrix (four weights) instead of
the two variables determining the context.

Population subspace analysis

We visualised the invariant population subspaces by projecting the activity vector onto the two
readout dimensions and the first principal component. To measure how the orientation of the
subspaces changes when the context or feedback changes, we computed the angle between the
planes spanned by the respective subspaces. These planes were fitted on the three-dimensional
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data described above using the least squares method. Since we were only interested in the relative
orientation of the subspaces, we used a circular measure of the angles, such that a rotation of
180 degrees corresponded to 0 degrees. This means that angles could range between 0 and 90
degrees.

Code availability
The code for models and data analysis is publicly available under https://github.com/sprekelerlab/

feedback modulation  Naumann22.
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Figure 1-Figure supplement 1. The dynamic blind source separation task cannot be solved
with a feedforward network, unless the network receives a sequence of inputs at once. This
would require an additional mechanism to retain information over time. a. Schematic of a
feedforward network consisting of a linear readout only. b. Pairwise signal clarity of one context
when the network is trained on another context. c. Correlation between the distance between
two contexts and their pairwise signal clarity (see (b)). d. Schematic of a multi-layer feedforward
network with three hidden layers (32, 16 and 8 rectified linear units). e. Loss during training for
the network in (d), measure by the mean squared error between the output and the sources. f.
Network performance after training. Left: Correlation of the outputs with the sources over 20
contexts. Error bars indicate standard deviation. Right: Signal clarity across 20 contexts for the
trained network. g. Schematic of network architecture and training setup when using a sequence
of n, samples as input to the multi-layer network. h. Same as (e) but for different number of
samples. Color code corresponds to (i). i. Signal clarity for trained networks that receive different
numbers of samples as input.
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Figure 1-Figure supplement 2. Robustness of the feedback-driven modulation mechanism.
a. Loss over training for 5 different random initialisations of the model and b. signal clarity for
20 test contexts in the corresponding trained networks. The model performance is robust across
model instantiations. c. Samples from the two default signals are uncorrelated. d. Signal clarity
for different lengths of the context during testing. The length of the context interval is not crucial
for performance, indicating that the network did not learn the interval by heart. e. Example traces
of the sensory stimuli for different signal-to-noise ratios.
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Figure 1-Figure supplement 3. Model performance for two different sets of source signals.
Left: Compositions of sines with f,, = 120 Hz, f,, = 22 Hz, f,; = 100 Hz and f,, = 145 Hz. Right:
Sawtooth function with frequency 140 Hz and composed sine of 150 Hz and 210 Hz. a,,,. Loss over
training. b,,,. Signal clarity for 20 test contexts measured in the sensory stimuli and the network
output. ¢,,,. Example traces of the sources and the network output (top) and corresponding devi-
ation between them (bottom). The context changes at time 0. d,,,. Top: Readout weights across 6
contexts; dotted lines indicate the optimal weights. Bottom: Deviation of readout from the optimal
weights.
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Figure 1-Figure supplement 4. Model performance for three source signals. a. Loss over
training. b. Correlation of the sources with the mixed sensory stimuli (left) and with the network
outputs (right). c. Example traces of the three source signals and network outputs (top) and cor-
responding deviation between them (bottom). The context changes at time 0. The source signals
are a sawtooth of frequency 140 Hz, a sine wave of frequency 120 Hz and a square wave signal of
80 Hz. d. Top: Readout weights across 6 contexts. Bottom: Deviation of readout from the optimal
weights.
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Figure 1-Figure supplement 6. The modulator learns a model of the sources and contexts,
and infers the current context from the stimuli. Testing the network on sources and con-
texts with different statistics than during training thus impairs its performance. a. Devia-
tion of network output from sources within contexts. Average across contexts shown in dark red.
b. Signal clarity for different test cases: same sources and same context statistics as during train-
ing ("control"), new sources ("new src"), same sources but different context statistic (i.e. unnormed
mixing matrices, "new ctx"), and different context statistics but when training the network on them
("unnorm ctx"). c. Top: Sources (s,,) and network output (y,,) for a context when testing on new
sources. Bottom: Deviation of outputs from the sources. d. Top: Modulated readout weights
across 6 contexts when testing on new sources; dotted lines indicate the inverse of the current
mixing. Bottom: Deviation of readout from target weights.
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Figure 2-Figure supplement 1. Robustness to slow feedback modulation depends on the in-
puts to the modulatory system. a. lllustration of different input configurations: the modulatory
system receives only the sensory stimuli as feedforward input (left), only the network output as
feedback input (right) or both (right). b. Loss over training for different timescales. Colours corre-
spond to values shown in (d). c. Deviation of the readout weights from the optimal weights over the
duration of a context for different modulation timescales, averaged across 20 contexts. Colours
correspond to values shown in (d). d. Signal clarity for different timescales of the modulatory
feedback signal.
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Figure 3-Figure supplement 1. Robustness to the spatial scale of feedback modulation. a.
Examples of the spatial extent of feedback modulation for different numbers of feedback signals
(# FB) and spatial spread (¢2). b. Signal clarity and c. final log loss in network models with differ-
ent parameters determining the spatial scale of feedback modulation. Signal clarity was averaged
across 20 contexts. Final loss was averaged across the last 200 batches during training. The purple
star indicates default values used in the main results. Modulation width of "e" corresponds to a
homogeneous modulation over the whole population. d. Top: Effective weights from stimuli to
network output over 8 contexts. Effective weights are computed as the modulated weights from
stimuli to neural population, multiplied with the readout weights. Dotted lines indicate inverse of
mixing. Bottom: Deviation of effective weights from the inverse.
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Figure 5-Figure supplement 1. Principal component analysis captures the low-dimensional
population subspaces and the subspace re-orientation with feedback. a. Fraction of vari-
ance explained by principal component analyses on single contexts (coloured lines) and across all
contexts (black line). b. Population activity in the space of the first 3 PCs for 5 contexts. Colour
indicates the location of the contexts in context space as shown in (c). d. Violin plot of the angle
change between original subspace and the subspace for context changes (ctx change) and feed-
back modulation (FB mod). e. Population activity in the space of the first 3 PCs in different stages
of the experiment. Left: context 1 with intact feedback, center: context 2 with frozen feedback,
right: context 2 with intact feedback. Black lines indicate the readout vectors. f. Same as (e) but
from a different viewpoint to show the readout space.
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Figure 6-Figure supplement 1. The Dalean network can learn to solve the dynamic blind
source separation task, and the performance does not depend on specifics of the model
architecture. a. Loss over training. b. Violin plot of the signal clarity for 20 test contexts measured
in the sensory stimuli and the network output. c. Violin plot of signal clarity for models in which
excitatory, inhibitory or both types of synapses are modulated by feedback; measured over 20
contexts. d. Mean signal clarity across 20 contexts for different numbers of inhibitory neurons
N, (relative to the number of neurons in the higher-level population). Colours correspond to the
targets of modulation from (c). Error bars indicate standard deviation. The yellow arrow indicates
the default parameter used in the main results. The star indicates networks without feedforward
inhibition (see (e)). e. Top: Modulation of neurons in the higher-level population across 10 contexts
without feedforward inhibition. The modulation does not switch with the context but fluctuates on
a faster timescale. Bottom: Corresponding deviation of the network output from the sources.
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