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Abstract Sensory systems reliably process incoming stimuli in spite of changes in context.7

Most recent models accredit this context invariance to an extraction of increasingly complex8

sensory features in hierarchical feedforward networks. Here, we study how context-invariant9

representations can be established by feedback rather than feedforward processing. We show10

that feedforward neural networks modulated by feedback can dynamically generate invariant11

sensory representations. The required feedback can be implemented as a slow and spatially12

diffuse gain modulation. The invariance is not present on the level of individual neurons, but13

emerges only on the population level. Mechanistically, the feedback modulation dynamically14

reorients the manifold of neural activity and thereby maintains an invariant neural subspace in15

spite of contextual variations. Our results highlight the importance of population-level analyses16

for understanding the role of feedback in flexible sensory processing.17

18

Introduction19

In natural environments our senses are exposed to a colourful mix of sensory impressions. Be-20

haviourally relevant stimuli can appear in varying contexts, such as variations in lighting, acous-21

tics, stimulus position or the presence of other stimuli. Different contexts may require different22

responses to the same stimulus, for example when the behavioural task changes (context depen-23

dence). Alternatively, the same response may be required for different stimuli, for example when24

the sensory context changes (context invariance). Recent advances have elucidated how context-25

dependent processing can be performed by recurrent feedback in neural circuits (Mante et al.,26

2013; Wang et al., 2018b; Dubreuil et al., 2020). In contrast, the role of feedback mechanisms in27

context-invariant processing is not well understood.28

In the classical view, stimuli are hierarchically processed towards a behaviourally relevant per-29

cept that is invariant to contextual variations. This is achieved by extracting increasingly complex30

features in a feedforward network (Kriegeskorte, 2015; Zhuang et al., 2021; Yamins and DiCarlo,31

2016). Models of such feedforward networks have been remarkably successful at learning com-32

plex perceptual tasks (LeCun et al., 2015), and they account for various features of cortical sensory33

representations (DiCarlo and Cox, 2007; Kriegeskorte et al., 2008; DiCarlo et al., 2012; Hong et al.,34

2016; Cichy et al., 2016). Yet, these models neglect feedback pathways, which are abundant in sen-35

sory cortex (Felleman and Van Essen, 1991; Markov et al., 2014) and shape sensory processing in36

critical ways (Gilbert and Li, 2013). Incorporating these feedback loops into models of sensory pro-37

cessing increases their flexibility and robustness (Spoerer et al., 2017; Alamia et al., 2021; Nayebi38

et al., 2021) and improves their fit to neural data (Kar et al., 2019; Kietzmann et al., 2019; Nayebi39

et al., 2021). At the neuronal level, feedback is thought to modulate rather than drive local re-40

sponses (Sherman and Guillery, 1998), for instance depending on behavioral context (Niell and41

Stryker, 2010; Vinck et al., 2015; Kuchibhotla et al., 2017; Dipoppa et al., 2018).42
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Here, we investigate the hypothesis that feedback modulation provides a neural mechanism43

for context-invariant perception. To this end, we trained a feedback-modulated network model44

to perform a context-invariant perceptual task and studied the resulting neural mechanisms. We45

show that the feedback modulation does not need to be temporally or spatially precise and can be46

realised by feedback-driven gain modulation in rate-based networks of excitatory and inhibitory47

neurons. To solve the task, the feedback loop dynamically maintains an invariant subspace in the48

population representation (Hong et al., 2016). This invariance is not present at the single neuron49

level. Finally, we find that the feedback conveys a nonlinear representation of the context itself,50

which can be hard to discern by linear decoding methods.51

These findings corroborate that feedback-driven gain modulation of feedforward networks en-52

ables context-invariant sensory processing. The underlying mechanism links single neuron mod-53

ulation with its function at the population level, highlighting the importance of population-level54

analyses.55

Results56

As a simple instance of a context-invariant task, we considered a dynamic version of the blind57

source separation problem. The task is to recover unknown sensory sources, such as voices at a58

cocktail party (McDermott, 2009), from sensory stimuli that are an unknownmixture of the sources.59

In contrast to the classical blind source separation problem, the mixture can change in time, for60

example, when the speakersmove around, thus providing a time-varying sensory context. Because61

the task requires a dynamic inference of the context, it cannot be solved by feedforward networks62

(Figure 1–Figure Supplement 1) or standard blind source separation algorithms (e.g., independent63

component analysis; Bell and Sejnowski, 1995; Hyvärinen and Oja, 2000). We hypothesised that64

this dynamic task can be solved by a feedforward network that is subject to modulation from a65

feedback signal. In ourmodel the feedback signal is provided by amodulatory system that receives66

both the sensory stimuli and the network output (Figure 1a).67

Dynamic blind source separation by modulation of feedforward weights68

Before we gradually take this to the neural level, we illustrate the proposedmechanism in a simple
example, in which the modulatory system provides a time-varying multiplicative modulation of a
linear two-layer network (seeMethods andModels). For illustration, we used compositions of sines
with different frequencies as source signals (𝑠, Figure 1b, top). These sourceswere linearlymixed to
generate the sensory stimuli (𝑥) that the network received as input; 𝑥 = 𝐴𝑡 𝑠 (Figure 1a,b). The linear
mixture (𝐴𝑡) changed over time, akin to varying the location of sound sources in a room (Figure 1a).
These locations provided a time-varying sensory context that changed on a slower timescale than
the sources themselves. The feedforward network had to recover the sources from the mixed
sensory stimuli. To achieve this, we trained the modulator to dynamically adjust the weights of the
feedforward network (𝑊0) such that the network output (𝑦) matches the sources:

𝑦 = 𝑊𝑡 𝑥 = (𝑀𝑡 ⊙𝑊0) 𝑥

𝑀𝑡 = modulator(history of 𝑥, 𝑦) .

Because the modulation requires a dynamic inference of the context, the modulator is a recurrent69

neural network. The modulator was trained using supervised learning. Afterwards, its weights70

were fixed and it no longer had access to the target sources (see Methods and Models, Figure 8).71

The modulator therefore had to use its recurrent dynamics to determine the appropriate modula-72

tory feedback for the time-varying context, based on the sensory stimuli and the network output.73

Put differently, the modulator had to learn an internal model of the sensory data and the contexts,74

and use it to establish the desired context invariance in the output.75

After learning, themodulatednetwork disentangled the sources, evenwhen the context changed76

(Figure 1b, Figure 1–Figure Supplement 1a,b). Context changes produced a transient error in the77
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network’s output, but it quickly resumed matching the sources (Figure 1b, bottom). The transient78

errors occur, because the modulator needs time to infer the new context from the time-varying79
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Figure 1. Dynamic blind source separation by modulation of feedforward connections.
a. Schematic of the feedforward network model receiving feedback modulation from a modulator (a
recurrent network). b. Top: Sources (𝑠1,2), sensory stimuli (𝑥1,2) and network output (𝑦1,2) for two different
source locations (contexts). Bottom: Deviation of output from the sources. c. Top: Modulated readout
weights across 6 contexts (source locations); dotted lines indicate the true weights of the inverted mixing
matrix. Bottom: Deviation of readout from target weights. d. Correlation between the sources and the
sensory stimuli (left), the network outputs (center), and calculation of the signal clarity (right). Errorbars
indicate standard deviation across 20 contexts. e. Violin plot of the signal clarity for different noise levels in
the sensory stimuli across 20 different contexts.
Figure 1–Figure supplement 1. The dynamic blind source separation task cannot be solved with a
feedforward network.
Figure 1–Figure supplement 2. Robustness of the feedback-driven modulation mechanism.
Figure 1–Figure supplement 3. Model performance for two different sets of source signals.
Figure 1–Figure supplement 4. Model performance for three source signals.
Figure 1–Figure supplement 5. The modulated network model generalises across frequencies.
Figure 1–Figure supplement 6. The modulator learns a model of the sources and contexts, and infers the
current context from the stimuli.
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inputs, before it can provide the appropriate feedback signal to the feedforward network (Figure 1–80

Figure Supplement 6a, cf. Figure 1–Figure Supplement 1g-i). The modulated feedforward weights81

inverted the linear mixture of sources by switching on the same timescale (Figure 1c).82

To quantify how well the sources were separated, we measured the correlation coefficient of83

the outputs with each source over several contexts. Consistent with a clean separation, we found84

that each of the two outputs strongly correlated with only one of the sources. In contrast, the sen-85

sory stimuli showed a positive average correlation for both sources, as expected given the positive86

linearmixture (Figure 1d, left). We determined the signal clarity as the absolute difference between87

the correlation with the first compared to the second source, averaged over the two outputs, nor-88

malised by the sum of the correlations (Figure 1d, right; see Methods and Models). The signal89

clarity thus determines the degree of signal separation, where a value close to 1 indicates a clean90

separation as in Figure 1d. Note that the signal clarity of the sensory stimuli is around 0.5 and can91

be used as a reference.92

Wenext probed the network’s robustness by adding noise to the sensory stimuli. We found that93

the signal clarity gradually decreased with increasing noise levels, but only degraded to chance per-94

formance when the signal-to-noise ratio was close to 1 (1.1 dB, Figure 1e, Figure 1–Figure Supple-95

ment 2e). The network performance did not depend on the specific source signals (Figure 1–Figure96

Supplement 3) or the number of sources (Figure 1–Figure Supplement 4), as long as it had seen97

them during training. Yet, because the network had to learn an internal model of the task, we98

expected a limited degree of generalisation to new situations. Indeed, the network was able to99

interpolate between source frequencies seen during training (Figure 1–Figure Supplement 5), but100

failed on sources and contexts that were qualitatively different (Figure 1–Figure Supplement 6b-d).101

The specific computations performed by the modulator are therefore idiosyncratic to the prob-102

lem at hand. Hence, we did not investigate the internal dynamics of the modulator in detail, but103

concentrated on its effect on the feedforward network.104

Since feedback-driven modulation enables flexible context-invariant processing in a simple ab-105

stract model, we wondered how this mechanism might be implemented at the neural level. For106

example, how does feedback-driven modulation function when feedback signals are slow and im-107

precise? And how does themodulation affect population activity? In the following, wewill gradually108

increase the model complexity to account for biological constraints and pinpoint the population-109

level mechanisms of feedback-mediated invariance.110

Invariance can be established by slow feedback modulation111

Among themanymodulatorymechanisms, even the faster ones are believed to operate on timescales112

of hundreds of milliseconds (Bang et al., 2020; Molyneaux and Hasselmo, 2002), raising the ques-113

tion if feedback-driven modulation is sufficiently fast to compensate for dynamic changes in envi-114

ronmental context.115

To investigate how the timescale of modulation affects the performance in the dynamic blind116

source separation task, we trained network models, in which the modulatory feedback had an117

intrinsic timescale that forced it to be slow. We found that the signal clarity degraded onlywhen this118

timescale was on the same order of magnitude as the timescale of contextual changes (Figure 2a).119

Note that timescales in this model are relative, and could be arbitrarily rescaled. While slower120

feedback modulation produced a larger initial error (Figure 2b,c), it also reduced the fluctuations121

in the readout weights such that they more closely follow the optimal weights (Figure 2b). This122

speed-accuracy trade-off explains the lower and more variable signal clarity for slow modulation123

(Figure 2a), because the signal clarity was measured over the whole duration of a context and the124

transient onset error dominated over the reduced fluctuations.125

To determine architectural constraints on the modulatory system, we asked how these results126

depended on the input it received. So far, the modulatory system received the feedforward net-127

work’s inputs (the sensory stimuli) and its outputs (the inferred sources, see Figure 1a), but are128

both of these necessary to solve the task? We found that when the modulatory system only re-129
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ceived the sensory stimuli, the model could still learn the task, though it was more sensitive to130

slow modulation (Figure 2d, Supp. Figure 2–Figure Supplement 1). When the modulatory system131

had to rely on the network output alone, task performance was impaired even for fast modulation132

(Figure 2e, Figure 2–Figure Supplement 1). Thus, while the modulatory system is more robust to133

slow modulation when it receives the network output, the output is not sufficient to solve the task.134

Taken together, these results show that the biological timescale of modulatory mechanisms135

does not pose a problem for flexible feedback-driven processing, as long as the feedback modu-136

lation changes on a faster timescale than variations in the context. In fact, slow modulation can137
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Figure 2. The network model is not sensitive to slow feedback modulation.
a. Signal clarity in the network output for varying timescales of modulation relative to the intervals at which
the source locations change. b. Modulated readout weights across 4 source locations (contexts) for fast (top)
and slow (center) feedback modulation; dotted lines indicate the optimal weights (the inverse of the mixing
matrix). Bottom: deviation of the readout weights from the optimal weights for fast and slow modulation.
Colours correspond to the relative timescales in (a). Fast and slow timescales are 0.001 and 1, respectively.
c. Mean deviation of readout from optimal weights within contexts; averaged over 20 contexts. Colours code
for timescale of modulation (see (a)). d. & e. Same as (a) but for models in which the modulatory system only
received the sensory stimuli 𝑥 or the network output 𝑦, respectively.
Figure 2–Figure supplement 1. Robustness to slow feedback modulation depends on the inputs to the
modulatory system.
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increase processing accuracy by averaging out fluctuations in the feedback signal. Nevertheless,138

slowmodulation likely requires the modulatory system to receive both the input and output of the139

sensory system it modulates.140

Invariance can be established by spatially diffuse feedback modulation141

Neuromodulators are classically believed to diffusely affect large areas of the brain. Furthermore,142

signals in the brain are processed by populations of neurons. We wondered if the proposed mod-143

ulation mechanism is consistent with such biological constraints. We therefore extended the net-144

work model such that the sensory stimuli are projected to a population of 100 neurons. A fixed145

linear readout of this population determined the network output. The neurons in the population146

received spatially diffuse modulatory feedback (Figure 3a) such that the feedback modulation af-147

fected neighbouring neurons similarly. We here assume that all synaptic weights to a neuron re-148

ceive the same modulation, such that the feedback performs a gain modulation of neural activ-149

ity (Ferguson and Cardin, 2020). The spatial specificity of the modulation was determined by the150

number of distinct feedback signals and their spatial spread (Figure 3b, Figure 3–Figure Supple-151

ment 1a).152

This population-based model with less specific feedback modulation could still solve the dy-153

namic blind source separation task. The diffuse feedback modulation switched when the context154

changed, but was roughly constant within contexts (Figure 3c), as in the simple model. The effec-155

tive weight from the stimuli to the network output also inverted the linear mixture of the sources156

(Figure 3–Figure Supplement 1d, cf. Figure 1c).157

We found that only a few distinct feedback signals were needed for a clean separation of the158

sources across contexts (Figure 3d). Moreover, the feedback could have a spatially broad effect on159

the modulated population without degrading the signal clarity (Figure 3e, Figure 3–Figure Supple-160

ment 1), consistent with the low dimensionality of the context.161

We conclude that, in our model, neuromodulation does not need to be spatially precise to en-162

able flexible processing. Given that the suggested feedback-driven modulation mechanism works163

for slow and diffuse feedback signals, it could in principle be realised by neuromodulatory path-164

ways present in the brain.165

Invariance emerges at the population level166

Having established that slow and spatially diffuse feedback modulation enables context-invariant167

processing, we next investigated the underlying mechanisms at the single neuron and population168

level. Given that the readout of the population activity was fixed, it is not clear how the context-169

dependent modulation of single neurons could give rise to a context-independent network output.170

One possible explanation is that some of the neurons neurons are context-invariant and are ex-171

ploited by the readout. However, a first inspection of neural activity indicated that single neurons172

are stronglymodulated by context (Figure 4a). To quantify this, we determined the signal clarity for173

each neuron at each stage of the feedforward network, averaged across contexts (Figure 4b). As174

expected, the signal clarity was low for the sensory stimuli. Intriguingly, the same was true for all175

neurons of the modulated neural population, indicating no clean separation of the sources at the176

level of single neurons. Although most neurons had a high signal clarity in some of the contexts,177

there was no group of neurons that consistently represented one or the other source (Figure 4c).178

Furthermore, the average signal clarity of the neurons did not correlate with their contribution to179

the readout (Figure 4d). Since single neuron responses were not invariant, context invariancemust180

arise at the population level.181

To confirm this, we asked how well the sources could be decoded at different stages of the182

feedforward network. We trained a single linear decoder of the sources on one set of contexts183

and tested its generalisation to novel contexts. We found that the decoding performance was184

poor for the sensory stimuli (Figure 4e), indicating that these did not contain a context-invariant185
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representation. In contrast, the sources could be decoded with high accuracy from the modulated186

population.187

This demonstrates that while individual neurons were not invariant, the population activity con-188

tained a context-invariant subspace. In fact, the population had to contain an invariant subspace,189

because the fixed linear readout of the population was able to extract the sources across contexts.190
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However, the linear decoding approach shows that this subspace can be revealed from the popu-191

lation activity itself with only a few contexts and no knowledge of how the neural representation192

is used downstream. The same approach could therefore be used to reveal context-invariant sub-193

spaces in neural data from population recordings. Note, that the learned readout and the decoder194

obtained from population activity are not necessarily identical, due to the high dimensionality of195

the population activity compared to the sources.196

Feedback re-orients the population representation197

The question remains how exactly the context-invariant subspace is maintained by feedback mod-198

ulation. In contrast to a pure feedforward model of invariant perception (Kriegeskorte, 2015;199

Yamins and DiCarlo, 2016), feedback-mediated invariance requires time to establish after contex-200

tual changes. Experimentally, hallmarks of this adaptive process should be visible when comparing201

the population representations immediately after a change and at a later point in time. Our model202

allows to cleanly separate the early and the late representation by freezing the feedback signals203

in the initial period after a contextual change (Figure 5a), thereby disentangling the effects of feed-204

back and context on population activity.205

The simulated experiment consisted of three stages: First, the feedback was intact for a particu-206

lar context and the network outputs closely tracked the sources. Second, the context was changed207

but the feedback modulation was frozen at the same value as before. As expected, this produced208

deviations of the output from the sources. Third, for the same context the feedback modulation209

was turned back on, which reinstated the source signals in the output. In this experiment, we used210
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pure sines as signals for visualisation purposes (Figure 5a,c). To visualise the population activity211

in the three stages of the experiment, we considered the space of the two readout dimensions212

and the first principal component (Figure 5b). We chose this space rather than, e.g., the first three213

principal components (Figure 5–Figure Supplement 1), because it provides an intuitive illustration214

of the invariant subspace.215

Because the sources were two-dimensional, the population activity followed a pattern within216

a two-dimensional subspace (Figure 5b, left; Figure 5–Figure Supplement 1a). For intact feedback,217

this population activity matched the sources when projected onto the readout (Figure 5c, left).218

Changing the context while freezing the feedback rotated and stretched this representation within219

the same subspace, such that the readout did not match the sources (Figure 5b & c, center). Would220

turning the feedback modulation back on simply reverse this transformation to re-establish an in-221

variant subspace? We found that this was not the case. Instead, the feedback rotated the represen-222

tation out of the old subspace (Figure 5b, right), thereby re-orienting it into the invariant readout223

(Figure 5c, right).224

To quantify the transformation of the population representation, we repeated this experiment225

multiple times and determined the angle between the neural subspaces. Consistent with the il-226

lustration in Figure 5b, changing the context did not change the subspace orientation, whereas227

unfreezing the feedback caused a consistent re-orientation (Figure 5d). The magnitude of this sub-228

space re-orientation depended on the similarity of the old and new context. Similar contexts gen-229

erally evoked population activity with similar subspace orientations (Figure 5d,e). This highlights230

that there is a consistentmapping between contexts and the resulting low-dimensional population231

activity.232

In summary, the role of feedback-drivenmodulation in our model is to re-orient the population233

representation in response to changing contexts such that an invariant subspace is preserved.234

The mechanism generalises to a hierarchical Dalean network235

So far, we considered a linear network, in which neural activity could be positive and negative.236

Moreover, feedbackmodulation could switch the sign of the neurons’ downstream influence, which237

is inconsistent with Dale’s principle. We wondered if the same population-level mechanisms would238

operate in a Dalean network, in which feedback is implemented as a positive gain modulation. Al-239

though gainmodulation is a broadly observed phenomenon that is attributed to a range of cellular240

mechanisms (Ferguson and Cardin, 2020; Salinas and Thier, 2000), its effect at the population level241

is less clear (Shine et al., 2021).242

We extended the feedforward model as follows (Figure 6a): First, all neurons had positive firing243

rates. Second, we split the neural population (𝑧 in the previous model) into a "lower-level" (𝑧L) and244

"higher-level" population (𝑧H). The lower-level population served as a neural representation of the245

sensory stimuli, whereas the higher-level population was modulated by feedback. This allowed a246

direct comparison between a modulated and an unmodulated neural population. It also allowed247

us to include Dalean weights between the two populations. Direct projections from the lower-level248

to the higher-level population were excitatory. In addition, a small population of local inhibitory249

neurons provided feedforward inhibition to the higher-level population. Third, the modulation of250

the higher-level population was implemented as a local gain modulation that scaled the neural251

responses. As a specific realisation of gain modulation, we assumed that feedback targeted in-252

hibitory interneurons (e.g., in layer 1; Abs et al., 2018; Ferguson and Cardin, 2020; Malina et al.,253

2021) that mediate the modulation in the higher-level population (e.g., via presynaptic inhibition;254

Pardi et al., 2020; Naumann and Sprekeler, 2020). This means that stronger feedback decreased255

the gain of neurons (Figure 4b). We will refer to these modulatory interneurons as modulation256

units 𝑚 (green units in Figure 4a).257

We found that this biologically more constrained model could still learn the context-invariant258

processing task (Figure 6–Figure Supplement 1a,b). Notably, the network’s performance did not259

depend on specifics of themodel architecture, such as the target of themodulation or the number260
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of inhibitory neurons (Figure 6–Figure Supplement 1c-e). In analogy to the previous model, the261

gain modulation of individual neurons changed with the context and thus enabled the flexible262

processing required to account for varying context (Figure 4c). The average gain over contexts was263

similar across neurons, whereas within a context the gains were broadly distributed (Figure 4d).264

To verify if the task is solved by the same population-level mechanism, we repeated our pre-265

vious analyses on the single neuron and population level. Indeed, all results generalised to the266

Dalean network with feedback-driven gain modulation (cf. Figure 4, Figure 5 & Figure 6). Single267

neurons in the higher- and lower-level population were not context-invariant (Figure 6e), but the268

higher-level population contained a context-invariant subspace (Figure 6f). This was not the case269
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Figure 6. Feedback-driven gain modulation in a hierarchical rate network.
a. Schematic of the Dalean network comprising a lower- and higher-level population (𝑧L and 𝑧H), a population
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Figure 6–Figure supplement 1. The Dalean network can learn the dynamic blind source separation task, and
the performance does not depend on specifics of the model architecture.
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for the lower-level population, underscoring that invariant representations do not just arise from270

projecting the sensory stimuli into a higher dimensional space. Instead, the invariant subspace in271

the higher-level population was again maintained by the feedback modulation, which re-oriented272

the population activity in response to context changes (Figure 6g).273

Feedback conveys a non-linear representation of the context274

Since single neurons in the higher-level population were not invariant to context, the population275

representation must also contain contextual information. Indeed, contextual variables could be276

linearly decoded from the higher-level population activity (Figure 7a). In contrast, decoding the277

context from the lower-level population gavemuch lower accuracy. This shows that the contextual278

information is not just inherited from the sensory stimuli but conveyed by the feedback via the279

modulatory units. We therefore expected that the modulatory units themselves would contain a280

representation of the context. To our surprise, decoding accuracy on the modulatory units was281

low. This seems counter-intuitive, especially since the modulatory units clearly co-varied with the282

contextual variables (Figure 7b). To understand these seemingly conflicting results, we examined283

how the context was represented in the activity of the modulation units.284

We found that the modulation unit activity did encode the contextual variables, albeit in a non-285

linear way (Figure 7c). The underlying reason is that the feedback modulation needs to remove286

contextual variations, which requires nonlinear computations. Specifically, the blind source sepa-287
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ration task requires an inversion of the linear mixture of sources. Consistent with this idea, non-288

linear decoding approaches performed better (Figure 7d). In fact, the modulatory units contained289

a linear representation of the "inverse context" (i.e., the inverse mixing matrix, see Methods and290

Models).291

In summary, the higher-level population provides a linear representation not only of the stimuli,292

but also of the context. In contrast, the modulatory units contained a nonlinear representation of293

the context, which could not be extracted by linear decoding approaches. We speculate that if294

contextual feedback modulation is mediated by interneurons in layer 1, they should represent the295

context in a nonlinear way.296

Discussion297

Accumulating evidence suggests that sensory processing is strongly modulated by top-down feed-298

back projections (Gilbert and Li, 2013; Keller and Mrsic-Flogel, 2018). Here, we demonstrate that299

feedback-driven gain modulation of a feedforward network could underlie stable perception in300

varying contexts. The feedback can be slow, spatially diffuse and low-dimensional. To elucidate301

how the context invariance is achieved, we performed single neuron and population analyses. We302

found that invariance was not evident at the single neuron level, but only emerged in a subspace of303

the population representation. The feedback modulation dynamically transformed the manifold304

of neural activity patterns such that this subspacewasmaintained across contexts. Our results pro-305

vide further support that gain modulation at the single cell level enables non-trivial computations306

at the population level (Failor et al., 2021; Shine et al., 2021).307

Invariance in sensory processing308

As an example of context-invariant sensory processing, we chose a dynamic variant of the blind309

source separation task. This task is commonly illustrated by a mixture of voices at a cocktail party310

(Cherry, 1953;McDermott, 2009). For auditory signals, bottom-upmechanisms of frequency segre-311

gation can provide a first processing step for the separation ofmultiple sound sources (Bronkhorst,312

2015;McDermott, 2009). However, separatingmore complex sounds requires additional active top-313

downprocesses (Parthasarathy et al., 2020;Oberfeld andKloeckner-Nowotny, 2016). In ourmodel314

top-down feedback guides the source separation itself, while the selection of a source would occur315

at a later processing stage – consistent with recent evidence for "late selection" (Brodbeck et al.,316

2020; Yahav and Golumbic, 2021).317

Although blind source separation is commonly illustrated with auditory signals, the suggested318

mechanism of context-invariant perception is not limited to a given sensory modality. The key319

nature of the task is that it contains stimulus dimensions that need to be encoded (the sources)320

and dimensions that need to be ignored (the context). In visual object recognition, for example,321

the identity of visual objects needs to be encoded, while contextual variables such as size, location,322

orientation, or surround need to be ignored. Neural hallmarks of invariant object recognition are323

present at the population level (DiCarlo and Cox, 2007; DiCarlo et al., 2012; Hong et al., 2016), and324

to some extent also on the level of single neurons (Quiroga et al., 2005). Classically, the emergence325

of invariance has been attributed to the extraction of invariant features in feedforward networks326

(Riesenhuber and Poggio, 1999;Wiskott and Sejnowski, 2002; DiCarlo and Cox, 2007; Kriegeskorte,327

2015), but recent work also highlights the role of recurrence and feedback (Gilbert and Li, 2013;328

Kar et al., 2019; Kietzmann et al., 2019; Thorat et al., 2021). Here, we focused on the role of329

feedback, but clearly, feedforward and feedback processes are not mutually exclusive and likely330

work in concert to create invariance. Their relative contribution to invariant perception requires331

further studies and may depend on the invariance in question.332

Similarly, how invariance canbe learnedwill dependon theunderlyingmechanism. The feedback-333

driven mechanism we propose is reminiscent of meta-learning consisting of an inner and an outer334

loop (Hochreiter et al., 2001; Wang et al., 2018a). In the inner loop, the modulatory system infers335

the context tomodulate the feedforward network accordingly. This process is unsupervised. In the336
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outer loop, the modulatory system is trained to generalise across contexts. Here, we performed337

this training using supervised learning, which requires the modulatory system to experience the338

sources in isolation (or at least obtain an error signal). Such an identification of the individual339

sources could, e.g., be aided by other sensory modalities (McDermott, 2009). However, the op-340

timisation of the modulatory system does not necessarily require supervised learning. It could341

also be guided by task demands via reinforcement learning, or by unsupervised priors such as a342

non-Gaussianity of the outputs.343

Mechanisms of feedback-driven gain modulation344

There are different ways in which feedback can affect local processing. Here, we focused on gain345

modulation (McAdams and Maunsell, 1999; Reynolds and Heeger, 2009; Vinck et al., 2015). Neu-346

ronal gains can be modulated by a range of mechanisms (Ferguson and Cardin, 2020; Shine et al.,347

2021). In our model, the mechanism needs to satisfy a few key requirements: i) the modulation348

is not uniform across the population, ii) it operates on a timescale similar to that of changes in349

context, and iii) it is driven by a brain region that has access to the information needed to infer the350

context.351

Classical neuromodulators such as acetylcholine (Disney et al., 2007;Kawai et al., 2007), dopamine352

(Thurley et al., 2008) or serotonin (Azimi et al., 2020) are signalled through specialised neuromod-353

ulatory pathways from subcortical nuclei (van den Brink et al., 2019). These neuromodulators can354

control the neural gain depending on behavioural states such as arousal, attention or expectation355

of rewards (Ferguson and Cardin, 2020;Hasselmo andMcGaughy, 2004; Bayer and Glimcher, 2005;356

Polack et al., 2013; Kuchibhotla et al., 2017). Their effect is typically thought to be brain-wide and357

long-lasting, but recent advances in measurement techniques (Sabatini and Tian, 2020; Lohani358

et al., 2020) indicate that it could be area- or even layer-specific, and vary on sub-second time359

scales (Lohani et al., 2020; Bang et al., 2020; Poorthuis et al., 2013; Pinto et al., 2013).360

More specific feedback projections arrive in layer 1 of the cortex, where they target the distal361

dendrites of pyramidal cells and inhibitory interneurons (Douglas and Martin, 2004; Roth et al.,362

2016;Marques et al., 2018). Dendritic input can change the gain of the neural transfer function on363

fast timescales (Larkum et al., 2004; Jarvis et al., 2018). The spatial scale of the modulation will364

depend on the spatial spread of the feedback projections and the dendritic arbourisation. Feed-365

back to layer 1 interneurons provides an alternative mechanism of local gain control. In particular,366

neuron-derived neurotrophic factor-expressing interneurons (NDNF) in layer 1 receive a variety367

of top-down feedback projections and produce GABAergic volume transmission (Abs et al., 2018),368

thereby down-regulating synaptic transmission (Miller, 1998; Laviv et al., 2010). This gain modu-369

lation can act on a timescale of hundreds of milliseconds (Branco and Staras, 2009; Urban-Ciecko370

et al., 2015; Malina et al., 2021; Molyneaux and Hasselmo, 2002), and, although generally consid-371

ered diffuse, can also be synapse type-specific (Chittajallu et al., 2013).372

The question remainswhere in the brain the feedback signals originate. Ourmodel requires the373

responsible network to receive feedforward sensory input to infer the context. In addition, feed-374

back inputs from higher-level sensory areas to themodulatory system allow a better control of the375

modulated network state. Higher-order thalamic nuclei are ideally situated to integrate different376

sources of sensory inputs and top-down feedback (Sampathkumar et al., 2021) and mediate the377

resultingmodulation by targeting layer 1 of lower-level sensory areas (Purushothaman et al., 2012;378

Roth et al., 2016; Sherman, 2016). In our task setting, the inference of the context requires the in-379

tegration of sensory signals over time and therefore recurrent neural processing. For this kind of380

task, thalamus may not be the site of contextual inference, because it lacks the required recur-381

rent connectivity (Halassa and Sherman, 2019). However, contextual inference may be performed382

by higher-order cortical areas, and could either be relayed back via the thalamus or transmitted383

directly, for example, via cortico-cortical feedback connections.384
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Testable predictions385

Ourmodel makes several predictions that could be tested in animals performing invariant sensory386

perception. Firstly, our model indicates that invariance across contexts may only be evident at the387

neural population level, but not on the single cell level. Probing context invariance at different388

hierarchical stages of sensory processing may therefore require population recordings and corre-389

sponding statistical analyses such as neural decoding (Glaser et al., 2020). Secondly, we assumed390

that this context invariance is mediated by feedback modulation. The extent to which context in-391

variance is enabled by feedback on a particular level of the sensory hierarchy could be studied392

by manipulating feedback connections. Since layer 1 receives a broad range of feedback inputs393

from different sources, this may require targeted manipulations. If no effect of feedback on con-394

text invariance is found, this may either indicate that feedforward mechanisms dominate or that395

the invariance in question is inherited from an earlier stage, in which it may well be the result of396

feedback modulation. Given that feedback is more pronounced in higher cortical areas (McAdams397

and Maunsell, 1999; Pardi et al., 2020), we expect that the contribution of feedback may play a398

larger role for the more complex forms of invariance further up in the sensory processing hierar-399

chy. Thirdly, for feedback to mediate context invariance, the feedback projections need to contain400

a representation of the contextual variables. Our findings suggest, however, that the detection401

of this representation may require a non-linear decoding method. Finally, a distinguishing fea-402

ture of feedback and feedforward mechanisms is that feedback mechanisms take more time. We403

found that immediately following a sudden contextual change, the neuronal representation initially404

changes within the manifold associated with the previous context. Later, the feedback reorients405

the manifold to reestablish the invariance on the population level. Whether these dynamics are406

a signature of feedback processing or also present in feedforward networks will be an interesting407

question for future work.408

Comparison to prior work409

Computational models have implicated neuronal gain modulation for a variety of functions (Sali-410

nas and Sejnowski, 2001; Reynolds and Heeger, 2009). Even homogeneous changes in neuronal411

gain can achieve interesting population effects (Shine et al., 2021), such as orthogonalisation of412

sensory responses (Failor et al., 2021). More heterogeneous gain modulation provides additional413

degrees of freedom that enables, for example, attentionalmodulation (Reynolds and Heeger, 2009;414

Carandini and Heeger, 2012), coordinate transformations (Salinas and Thier, 2000) and – when am-415

plified by recurrent dynamics – a rich repertoire of neural trajectories (Stroud et al., 2018). Gain416

modulation has also been suggested as a means to establish invariant processing (Salinas and Ab-417

bott, 1997), as a biological implementation of dynamic routing (Olshausen et al., 1993). While the418

modulation in these models of invariance can be interpreted as an abstract form of feedback, the419

resulting effects on the population level were not studied.420

An interesting question is by which mechanisms the appropriate gain modulation is computed.421

In previous work, gain factors were often learned individually for each context, for example by gra-422

dient descent or Hebbian plasticity (Olshausen et al., 1993; Salinas and Abbott, 1997; Stroud et al.,423

2018), mechanisms that may be too slow to achieve invariance on a perceptual timescale (Wiskott,424

2006). In our model, by contrast, the modulation is dynamically controlled by a recurrent network.425

Once it has been trained, such a recurrent modulatory system can rapidly infer the current con-426

text, and provide an appropriate feedback signal on a timescale only limited by the modulatory427

mechanism.428

Limitations and future work429

In our model, we simplified many aspects of sensory processing. Using simplistic sensory stimuli430

– compositions of sines – allowed us to focus on the mechanisms at the population level, while431

avoiding the complexities of natural sensory stimuli and deep sensory hierarchies. Although we432

do not expect conceptual problems in generalising our results to more complex stimuli, such as433
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speech or visual stimuli, the associated computational challenges are substantial. For example,434

the feedback in our model was provided by a recurrent network, whose parameters were trained435

by back-propagating errors through the network and through time. This training process can get436

very challenging for large networks and long temporal dependencies (Bengio et al., 1994; Pascanu437

et al., 2013).438

In our simulations we trained the whole model – the modulatory system, the sensory represen-439

tation and the readout. For the simplistic stimuli we used, we observed that the training process440

mostly concentrated on optimising the modulatory system and readout, while a randommapping441

of sensory stimuli to neural representations seemed largely sufficient to solve the task. For more442

demanding stimuli, we expect that the sensory representation the modulatory system acts upon443

may become more important. A well-suited representation could minimise the need for modula-444

tory interventions (Finn et al., 2017), in a coordinated interaction of feedforward and feedback.445

To understand the effects of feedback modulation on population representations, we included446

biological constraints in the feedforward network and the structure of the modulatory feedback.447

However, we did not strive to provide a biologically plausible implementation for the computation448

of the appropriate feedback signals, and instead used an off-the-shelf recurrent neural network449

(Hochreiter and Schmidhuber, 1997). The question how these signals could be computed in a450

biologically plausible way remains for future studies. The same applies to the question how the451

appropriate feedback signals can be learned by local learning rules (Lillicrap et al., 2020) and how452

neural representations and modulatory systems learn to act in concert.453

Methods and Models454

To study how feedback-drivenmodulation can enable flexible sensory processing, we built models455

of feedforward networks that are modulated by feedback. The feedback was dynamically gener-456

ated by a modulatory system, which we implemented as a recurrent network. The weights of the457

recurrent network were trained such that the feedback modulation allowed the feedforward net-458

work to solve a flexible invariant processing task.459

The dynamic blind source separation task460

As an instance of flexible sensory processing we used a dynamic variant of blind source separation.461

In classical blind source separation, two or more unknown time-varying sources 𝑠(𝑡) need to be462

recovered from a set of observations (i.e. sensory stimuli) 𝑥⃗(𝑡). The sensory stimuli are composed463

of an unknown linear mixture of the sources such that 𝑥⃗(𝑡) = 𝐴𝑠(𝑡) with a fixed mixing matrix 𝐴.464

Recovering the sources requires to find weights𝑊 such that𝑊 𝑥⃗(𝑡) ≈ 𝑠(𝑡). Ideally,𝑊 is equal to the465

pseudo-inverse of the unknown mixing matrix 𝐴, up to permutations.466

In our dynamic blind source separation task, we model variations in the stimulus context by
changing the linear mixture over time – albeit on a slower timescale than the time-varying signals.
Thus, the sensory stimuli are constructed as

𝑥⃗(𝑡) = 𝐴(𝑡)𝑠(𝑡) + 𝜎𝑛𝜉(𝑡) , (1)

where 𝐴(𝑡) is a time-dependent mixing matrix and 𝜎𝑛 is the amplitude of additive white noise 𝜉(𝑡).467

The time-dependent mixing matrix determines the current context and was varied in discrete time468

intervals 𝑛𝑡, meaning that themixingmatrix𝐴(𝑡) (i.e. the context) was constant for 𝑛𝑡 samples before469

it changed. The goal of the dynamic blind source separation task is to recover the original signal470

sources 𝑠 from the sensory stimuli 𝑥⃗ across varying contexts. Thus, the network model output471

needs to be invariant to the specific context of the sources. Note that while the context was varied,472

the sources themselves were the same throughout the task, unless stated otherwise. Furthermore,473

in the majority of experiments the number of source signals and sensory stimuli was 𝑛𝑠 = 2. A list474

of default parameters for the dynamic blind source separation task can be found in Table 1.475
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Source signals476

As default source signals we used two compositions of two sines each ("chords") with a sampling
rate of 𝑓𝑠 = 8000Hz that can be written as

𝑠1(𝑡) = sin
(

2𝜋𝑓11𝑡∕𝑓𝑠
)

+ sin
(

2𝜋𝑓12𝑡∕𝑓𝑠
)

(2)
𝑠2(𝑡) = sin

(

2𝜋𝑓21𝑡∕𝑓𝑠
)

+ sin
(

2𝜋𝑓22𝑡∕𝑓𝑠
)

(3)

with frequencies 𝑓11 = 100 Hz, 𝑓12 = 125 Hz, 𝑓21 = 150 Hz and 𝑓22 = 210 Hz. Note that in our model477

we measure time as the number of samples from the source signals, meaning that timescales are478

relative and could be arbitrarily rescaled.479

In Figure 5, we usedpure sine signalswith frequency 𝑓 for visualisationpurposes: 𝑠𝑖 = sin
(

2𝜋𝑓𝑡∕𝑓𝑠
)

.480

Wealso validated themodel on signals that are notmade of sinewaves, as a sawtooth and a square481

wave signal (Figure 1–Figure Supplement 4). Unless stated otherwise, the same signals were used482

for training and testing the model.483

Time-varying contexts484

We generated the mixing matrix 𝐴 for each context by drawing random weights from a uniform485

distribution between 0 and 1, allowing only positive mixtures of the sources. Unless specified486

otherwise, we sampled new contexts for each training batch and for the test data, such that the487

training and test data followed the same distribution without necessarily being the same. The488

dimension of themixingmatriceswas determined by number of signals 𝑛𝑠 such that𝐴was of shape489

𝑛𝑠 × 𝑛𝑠. To keep the overall amplitude of the sensory stimuli in a similar range across different490

mixtures, we normalised the row sums of each mixing matrix to one. In the case of 𝑛𝑠 = 2, this491

implies that the contexts (i.e. the mixing matrices) are drawn from a 2-dimensional manifold (see492

Figure 8, bottom left). In addition, we only used the randomly generated mixing matrices whose493

determinant was larger than some threshold value. We did this to ensure that each signal mixture494

was invertible and that the weights needed to invert the mixing matrix were not too extreme. A495

threshold value of 0.2 was chosen based on visual inspection of the weights from the inverted496

mixing matrix.497

Modulated feedforward network models498

Throughout thiswork, wemodelled feedforward networks of increasing complexity. Common to all499

networks was that they received the sensory stimuli 𝑥⃗ and should provide an output 𝑦 thatmatches500

the source signals 𝑠. In the following, we first introduce the simplest model variant and how it is501

affected by feedback from themodulatory system, and subsequently describe the different model502

extensions.503

Modulation of feedforward weights by a recurrent network504

In the simplest feedforward network the network output 𝑦(𝑡) is simply a linear readout the sensory
stimuli 𝑥⃗(𝑡), with readout weights that are dynamically changed by the modulatory system:

𝑦(𝑡) = (𝑀(𝑡)⊙𝑊0) 𝑥⃗(𝑡) (4)

Table 1. Default parameters of the dynamic blind source separation task.

parameter symbol value

number of signals 𝑛𝑠 2
number of samples in context 𝑛𝑡 1000
additive noise 𝜎𝑛 0.001
sampling frequency 𝑓𝑠 8 kHz
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where 𝑊0 are the baseline weights and 𝑀(𝑡) the modulation provided by the modulatory system.505

𝑀(𝑡) is of the same shape as𝑊0 and determines the element-wise multiplicative modulation of the506

baseline weights. Because the task requires the modulatory system to dynamically infer the con-507

text, we modelled it as a recurrent network – more specifically a long-short termmemory network508

(LSTMs; Hochreiter and Schmidhuber, 1997) – with 𝑁ℎ = 100 hidden units. In particular, we used509

LSTMs with forget gates (Gers et al., 2000) but no peephole connections (for an overview of LSTM510

variants see Greff et al. (2016)).511

In this work we treated the LSTM as a black-box modulatory system that receives the sensory
stimuli and the feedforward network’s output andprovides the feedback signal in return (Figure 1a).
A linear readout of the LSTM’s output determines the modulation𝑀(𝑡) in Equation 4. In brief, this
means that

𝑀(𝑡) = LSTM(𝑥⃗(𝑡), 𝑦(𝑡)) , (5)

where LSTM(⋅) is a function that returns the LSTM readout. For two-dimensional sources and sen-512

sory stimuli, for instance, LSTM(⋅) receives a concatenation of the two-dimensional vectors 𝑥⃗(𝑡)513

and 𝑦(𝑡) as input and returns a two-by-two feedback modulation matrix – one multiplicative factor514

for each weight in𝑊0. The baseline weights𝑊0 were randomly drawn from the Gaussian distribu-515

tion  (1, 0.001) and fixed throughout the task. The LSTM parameters and readout were learned516

during training of the model.517

Extension 1: Reducing the temporal specificity of feedback modulation518

To probe our model’s sensitivity to the timescale of the modulatory feedback (Figure 2), we added
a temporal filter to Equation 5. In that case the modulation𝑀(𝑡) followed the dynamics

𝜏
d𝑀(𝑡)
d𝑡

= −𝑀(𝑡) + LSTM(𝑥⃗(𝑡), 𝑦(𝑡)) , (6)

s
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Figure 8. Schematic of the dynamic blind source separation task, the context space and the modulated
feedforward network. Information flow is indicated by black arrows and the flow of the error during training
with backpropagation through time (BPTT) is shown in yellow.
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with 𝜏 being the time constant of modulation. For small 𝜏, the feedback rapidly affects the feed-519

forward network, whereas larger 𝜏 imply a slowly changing modulatory feedback signal. The unit520

of this timescale is the number of samples from the source signals. Note that the timescale of the521

modulation should be considered relative to the timescale of the context changes 𝑛𝑡. As a default522

time constant we used 𝜏 = 100 < 𝑛𝑡 (see Table 2).523

Extension 2: Reducing the spatial specificity of feedback modulation524

To allow for spatially diffuse feedback modulation (Figure 3), we added an intermediate layer be-
tween the sensory stimuli and the network output. This intermediate layer consisted of a pop-
ulation of 𝑁𝑧 = 100 units that were modulated by the feedback, where neighbouring units were
modulated similarly. More specifically, the units were arranged on a ring to allow for a spatially con-
strained modulation without boundary effects. The population’s activity vector 𝑧(𝑡) is described by

𝑧(𝑡) = 𝑚⃗(𝑡)⊙ (𝑊 x𝑥⃗(𝑡)) , (7)

with the sensory stimuli 𝑥⃗(𝑡), a weight matrix 𝑊 x of size 𝑁𝑧 × 𝑛𝑠 and the vector of unit-specific
multiplicativemodulations 𝑚⃗(𝑡). Note that the activity of the unitswas not constrained to be positive
here. The output of the network was then determined by a linear readout of the population activity
vector according to

𝑦(𝑡) = 𝑊 ro𝑧(𝑡) (8)

with a fixed readout matrix𝑊 ro.525

The modulation to a single unit 𝑖 was given by

𝜏
d𝑚𝑖(𝑡)
d𝑡

= −𝑚𝑖(𝑡) +
𝑁FB
∑

𝑗=1
𝐾𝑖𝑗 𝑙𝑗 , (9a)

with 𝑙𝑗 = LSTM(𝑥(𝑡), 𝑦(𝑡))𝑗 . (9b)

Here, 𝜏 is the modulation time constant, 𝐾 a kernel that determines the spatial specificity of mod-526

ulation, LSTM(⋅)𝑗 the 𝑗-th feedback signal from the LSTM and 𝑁FB the total number of feedback527

signals. As in the simple model, the 𝑁FB feedback signals were determined by a linear readout528

from LSTM.529

The modulation kernel 𝐾 was defined as a set of von Mises functions:

𝐾𝑖𝑗 = exp
(

1
𝜎2
𝑚
cos

(

𝑧loc𝑖 − 𝑙loc𝑗

)

)

, (10)

where 𝑧loc𝑖 = 2𝜋𝑖
𝑁𝑧

∈ [0, 2𝜋[ represents the location of the modulated unit 𝑖 on the ring and 𝑙loc𝑗 the530

"preferred location" of modulatory unit 𝑗, i.e., the location on the ring that it modulates most ef-531

fectively. These "preferred locations" 𝑙loc𝑗 of the feedback units were evenly distributed on the ring.532

The variance parameter 𝜎2
𝑚 determines the spatial spread of the modulatory effect of the feedback533

units, i.e., the spatial specificity of the modulation. Overall, the spatial distribution of the modu-534

lation was therefore determined by the number of distinct feedback signals 𝑁FB and their spatial535

spread 𝜎2
𝑚 (see Table 2 for a list of network parameters).536

Extension 3: Hierarchical rate-based network537

We further extended the model with spatial modulation (Equation 7–Equation 10) to include a
two-stage hierarchy, positive rates and synaptic weights that obey Dale’s law. Furthermore, we
implemented the feedback modulation as a gain modulation that scales neural rates but keeps
them positive. To this end, we modelled the feedforward network as a hierarchy of a lower-level
and a higher-level population. Only the higher-level population received feedback modulation.
Splitting theneural populations in thisway allowedus tomodel the connections between themwith
weights that follow Dale’s law. Furthermore, the unmodulated lower-level population could serve
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as a control for the emergence of context-invariant representations. The lower-level population
consisted of 𝑁L = 40 rate-based neurons and the population activity vector was given by

𝑧L(𝑡) =
[

𝑊 Lx𝑥⃗(𝑡)
]

+ , (11)

where 𝑊 Lx is a fixed weight matrix, 𝑥⃗(𝑡) the sensory stimuli and the rectification [⋅]+ = max(0, ⋅)
ensures that rates are positive. The lower-level population thus provides a neural representation
of the sensory stimuli. The higher-level population consisted of 𝑁H = 100 rate-based neurons that
received feedforward input from the lower-level population. The feedforward input consisted of
direct excitatory projections as well as feedforward inhibition through a population of𝑁I = 20 local
inhibitory neurons. The activity vector of the higher-level population 𝑧H(𝑡) was thus given by

𝑧H(𝑡) =
[

𝑝(𝑡)⊙ (𝑊 HL𝑧L(𝑡) −𝑊 HI𝑧I(𝑡))
]

+ (12)
𝑧I(𝑡) =

[

𝑊 IL𝑧L(𝑡)
]

+ . (13)

Here𝑊 HL, 𝑊 HI and𝑊 IL are positive weight matrices, 𝑧I(𝑡) the inhibitory neuron activities and 𝑝(𝑡)538

the neuron-specific gain modulation factors. As for the spatially modulated network of Extension539

2, the network output 𝑦(𝑡) was determined by a fixed linear readout 𝑊 ro (see Equation 8). The540

distributions used to randomly initialise the weight matrices are provided in Table 3.541

Again, the modulation was driven by feedback from the LSTM, but in this model variant we as-
sumed inhibitory feedback, i.e., stronger feedback signalsmonotonically decreased the gain. More
specifically, we assumed that the feedback signal targets a population ofmodulation units 𝑚⃗, which
in turn modulate the gain in the higher-level population. The gain modulation of neuron 𝑖was con-
strained between 0 and 1 and determined by

𝑝𝑖(𝑡) =
1

1 + exp
(

𝑚𝑖(𝑡)
) (14)

with 𝑚𝑖(𝑡) being the activity of a modulation unit 𝑖, which follows the same dynamics as in Equa-542

tion 9a (see Figure 6a).543

Training the model544

We used gradient descent to find the model parameters that minimise the difference between the
source signal 𝑠(𝑡) and the feedforward network’s output 𝑦(𝑡):

 =
𝑛𝑡
∑

𝑡=1
dist(𝑠(𝑡), 𝑦(𝑡)) (15)

with a distance measure dist(⋅). We used the machine learning framework PyTorch (Paszke et al.,545

2019) to simulate the networkmodel, obtain the gradients of the objective  by automatic differen-546

tiation and update the parameters of the LSTM using the Adam optimiser (Kingma and Ba, 2014)547

with a learning rate of 𝜂 = 10−3. As distance measure in the objective we used a smooth variant548

Table 2. Default parameters of the network models.

parameter symbol value

number of hidden units in LSTM 𝑁ℎ 100
number of units in middle layer 𝑧 𝑁𝑧 100
number of distinct feedback signals 𝑁FB 4
number of neurons in lower-level population 𝑁𝐿 40
number of neurons in higher-level population 𝑁𝐻 100
number of inhibitory neurons 𝑁𝐼 20
timescale of modulation 𝜏 100
spatial spread of modulation 𝜎2

𝑚 0.2
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Table 3. Distributions used for randomly initialised weight parameters

weights distribution

𝑊0  (1, 0.001)
𝑊 x  (0, 0.5)
𝑊 Lx  (0, 0.5)
𝑊 ro  (0, 0.5)
𝑊 HL  (1, 0.5) ⋅ 20∕𝑁H

𝑊 IL  (1, 0.5)∕𝑁I

𝑊 HI  (1, 1) ⋅ 20∕𝑁H

LSTM parameters  (−
√

1∕𝑁H,
√

1∕𝑁H)
LSTM readout  (−

√

1∕𝑁FB,
√

1∕𝑁FB)

of the L1 norm (PyTorch’s smooth L1 loss variant), because it is less sensitive to outliers than the549

mean squared error (Huber, 1964).550

During training, we simulated the network dynamics over batches of 32 trials using forward Eu-551

ler with a timestep of Δ𝑡 = 1. Each trial consisted of 𝑛𝑡 time steps (i.e. samples) and the context (i.e.552

mixing matrix) differed between trials. Since the model contains feedback and recurrent connec-553

tions, we trained it using backpropagation through time (Werbos, 1990). This means that for each554

trial, we simulated the model and computed the loss for every time step. At the end of the trial555

we propagated the error through the 𝑛𝑡 steps of the model to obtain the gradients and updated556

the parameters accordingly (Figure 8). Although the source signals were the same in every trial,557

we varied their phase independently across trials to prevent the LSTM from learning the exact sig-558

nal sequence. To this end, we generated 16,000 samples of the source signals and in every batch559

randomly selected chunks of 𝑛𝑡 samples independently from each source. Model parameters were560

initialised according to the distributions listed in Table 3.561

In all model variants we optimised the parameters of the modulator (input, recurrent and read-562

out weights as well as the biases of the LSTM; see Equation 5 & Equation 9b). The parameters563

were initialised with the defaults from the corresponding PyTorch modules, as listed in Table 3.564

To facilitate the training in the hierarchical rate-based network despite additional constraints, we565

also optimised the feedforward weights 𝑊 HL, 𝑊 HI, 𝑊 IL, 𝑊 Lx and 𝑊 ro. In principle, this allows to566

adapt the representation in the two intermediate layers such that themodulation is most effective.567

However, although we did not quantify it, we observed that optimising the network readout 𝑊 ro568

facilitated the training the most, suggesting that a specific format of the sensory representations569

was not required for an effective modulation.570

To prevent the gainmodulation factor from saturating at 0 or 1, we added a regularisation term
 to the loss function Equation 15 that keeps the LSTM’s output small:

 = 𝜆out
𝑛𝑡
∑

𝑡=1

𝑁FB
∑

𝑗=1

|

|

|

LSTM(𝑥(𝑡), 𝑦(𝑡))𝑗
|

|

|

(16)

with 𝜆out = 10−5.571

Gradient values were clipped between -1 and 1 before each update to avoid large updates. For572

weights that were constrained to be positive, we used their absolute value in the model. Each573

network was trained for 10,000 to 12,000 batches and for 5 random initialisations (Figure 1–Figure574

Supplement 2).575

Testing and manipulating the model576

We tested the network model performance on an independent random set of contexts (i.e. mixing577

matrices), but with the same source signals as during training. During testing, we also changed578
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the context every 𝑛𝑡 steps, but the length of this interval was not crucial for performance (Figure 1–579

Figure Supplement 1d).580

To manipulate the feedback modulation in the hierarchical rate-based network (Figure 4), we581

provided an additional input to the modulation units 𝑚 in Equation 9a. We used an input of 3 or −3582

depending on whether the modulation units were activated or inactivated, respectively. To freeze583

the feedback modulation (Figure 6), we discarded the feedback signal and held the local modula-584

tion 𝑝 in Equation 14 at a constant value determined by the feedback before the manipulation.The585

dynamics of the LSTM were continued, but remained hidden to the feedforward network until the586

freezing was stopped.587

Unmodulated feedforward network models588

Linear regression.589

As a control, we trained feedforward networkswithweights that were not changed by amodulatory
system. First, we used the simplest possible network architecture, in which the sensory stimuli are
linearly mapped to the outputs (Figure 1–Figure Supplement 1a):

𝑦(𝑡) = 𝑊 𝑥(𝑡). (17)

It is intuitive that a fixed set of weights𝑊 cannot invert two different contexts (i.e. different mixing590

matrices 𝐴1 and 𝐴2). As an illustration we trained this simple feedforward network on one context591

and tested it on different contexts. To find the weights 𝑊 , we used linear regression to minimise592

the mean squared error between the source signal 𝑠(𝑡) and the network’s output 𝑦(𝑡). The training593

data consisted of 1024 consecutive time steps of the sensory stimuli for a fixed context, and the594

test data consisted of different 1024 time steps generated under a potentially different mixing.595

We repeated this procedure by training and testing a network for all combinations of 20 random596

contexts.597

Multi-layer nonlinear network.598

Since solving the task was not possible with a single set of readout weights, we extended the feed-599

forward model to include 3 hidden layers consisting of 32, 16 and 8 rectified linear units (Figure 1–600

Figure Supplement 1d). The input to this network was one time point from the sensory stimuli and601

the target output the corresponding time point of the sources. We trained the multi-layer network602

on 5000 batches of 32 contexts using Adam (learning rate 0.001) to minimise the mean squared603

error between the network output and the sources.604

Multi-layer network with sequences as input.605

Solving the task requires the network to map the same sensory stimulus to different outputs de-606

pending on the context. However, inferring the context takes more than one time point. To test607

if a feedforward network with access to multiple time points at once could in principle solve the608

task, we changed the architecture of the multi-layer network, such that it receives a sequence of609

the sensory stimuli (Figure 1–Figure Supplement 1g). The output of the network was a sequence610

of equal length. We again trained this network on 5000 batches of 32 contexts to minimise the611

error between its output and the target sources, where both the network input and output were612

sequences. The length of these sequences was varied between 1 and 150.613

Data analysis614

Signal clarity615

To determine task performance, we measured how clear the representation of the source signals
is in the network output. We first computed the correlation coefficient of each signal 𝑠𝑖 with each
output 𝑦𝑗

𝑟𝑖𝑗 =
∑

𝑡(𝑠𝑖(𝑡) − 𝑠̄𝑖)(𝑦𝑗(𝑡) − 𝑦̄𝑗)
𝜎𝑠,𝑖𝜎𝑦,𝑗

, (18)
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where 𝑠̄𝑖 and 𝑦̄𝑗 are the respective temporal mean and 𝜎𝑠,𝑖 and 𝜎𝑦,𝑗 the respective temporal standard
deviations. The signal clarity in output 𝑦𝑗 is then given by the absolute difference between the
absolute correlation with one compared to the other signal:

𝑐𝑗 = | |𝑟1𝑗| − |𝑟2𝑗| | . (19)

By averaging over outputs we determined the overall signal clarity within the output. Note that616

the same measure can be computed on other processing stages of the feedforward network. For617

instance, we used the signal clarity of sources in the sensory stimuli as a baseline control.618

Signal-to-noise ratio619

The signal-to-noise ratio in the sensory stimuli was determined as the variability in the signal com-
pared to the noise. Since the mean of both the stimuli and the noise were zero, the signal-to-noise
ratio could be computed by

SNR =
𝜎2
𝑠

𝜎2
𝑛

,

where 𝜎𝑛 was the standard deviation of the additive white noise and 𝜎𝑠 the measured standard620

deviation in the noise-free sensory stimuli, which was around 0.32. As a scale of the signal-to-noise621

ratio we used decibels (dB), i.e., we used dB = 10 log10(SNR).622

Linear decoding analysis623

Signal decoding.624

We investigated the population-level invariance by using a linear decoding approach. If there was625

an invariant population subspace, the source signals could be decoded by the samedecoder across626

different contexts. We therefore performed linear regression between the activity in a particular627

population and the source signals. This linear decoder was trained on 𝑛𝑐 = 10 different contexts628

with 𝑛𝑡 = 1, 000 time points each, such that the total number of samples was 10, 000. The linear629

decoding was then tested on 10 new contexts and the performance determined using the R2 mea-630

sure.631

Context decoding.632

We took a similar approach to determine from which populations the context could be decoded.633

For the dynamic blind source separation task the context is given by the source mixture, as de-634

termined by the mixing matrix. Since we normalised the rows of each mixing matrix, the context635

was determined by two context variables. We calculated the temporal average of the neuronal ac-636

tivities within each context and performed a linear regression of the context variables onto these637

averages. To exclude onset transients, we only considered the second half (500 samples) of every638

context. Contexts were sampled from the two-dimensional grid of potential contexts. More specif-639

ically, we sampled 20 points along each dimension and excluded contexts, in which the sensory640

stimuli were too similar (analogously to the generation of mixing matrices), leaving 272 different641

contexts (see Figure 7c, right). The linear decoding performance was determined with a 5-fold642

cross-validation and measured using R-squared. Since the modulatory feedback signals depend643

non-linearly on the context (Figure 7c), we tested two non-linear versions of the decoding approach.644

First, we performed a quadratic expansion of the averaged population activity before a linear de-645

coding. Second, we tested a linear decoding of the inverse mixing matrix (four weights) instead of646

the two variables determining the context.647

Population subspace analysis648

We visualised the invariant population subspaces by projecting the activity vector onto the two649

readout dimensions and the first principal component. To measure how the orientation of the650

subspaces changes when the context or feedback changes, we computed the angle between the651

planes spanned by the respective subspaces. These planes were fitted on the three-dimensional652
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data described above using the least squaresmethod. Since wewere only interested in the relative653

orientation of the subspaces, we used a circular measure of the angles, such that a rotation of654

180 degrees corresponded to 0 degrees. This means that angles could range between 0 and 90655

degrees.656

Code availability657

The code for models and data analysis is publicly available under https://github.com/sprekelerlab/658

feedback_modulation_Naumann22.659
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Figure 1–Figure supplement 1. The dynamic blind source separation task cannot be solved
with a feedforward network, unless the network receives a sequence of inputs at once. This
would require an additional mechanism to retain information over time. a. Schematic of a
feedforward network consisting of a linear readout only. b. Pairwise signal clarity of one context
when the network is trained on another context. c. Correlation between the distance between
two contexts and their pairwise signal clarity (see (b)). d. Schematic of a multi-layer feedforward
network with three hidden layers (32, 16 and 8 rectified linear units). e. Loss during training for
the network in (d), measure by the mean squared error between the output and the sources. f.
Network performance after training. Left: Correlation of the outputs with the sources over 20
contexts. Error bars indicate standard deviation. Right: Signal clarity across 20 contexts for the
trained network. g. Schematic of network architecture and training setup when using a sequence
of 𝑛𝑡 samples as input to the multi-layer network. h. Same as (e) but for different number of
samples. Color code corresponds to (i). i. Signal clarity for trained networks that receive different
numbers of samples as input.
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Figure 1–Figure supplement 3. Model performance for two different sets of source signals.
Left: Compositions of sines with 𝑓11 = 120 Hz, 𝑓12 = 2.2 Hz, 𝑓21 = 100 Hz and 𝑓22 = 145 Hz. Right:
Sawtooth function with frequency 140 Hz and composed sine of 150 Hz and 210 Hz. a1/2. Loss over
training. b1/2. Signal clarity for 20 test contexts measured in the sensory stimuli and the network
output. c1/2. Example traces of the sources and the network output (top) and corresponding devi-
ation between them (bottom). The context changes at time 0. d1/2. Top: Readout weights across 6
contexts; dotted lines indicate the optimal weights. Bottom: Deviation of readout from the optimal
weights.
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tion of network output from sources within contexts. Average across contexts shown in dark red.
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Figure 5–Figure supplement 1. Principal component analysis captures the low-dimensional
population subspaces and the subspace re-orientation with feedback. a. Fraction of vari-
ance explained by principal component analyses on single contexts (coloured lines) and across all
contexts (black line). b. Population activity in the space of the first 3 PCs for 5 contexts. Colour
indicates the location of the contexts in context space as shown in (c). d. Violin plot of the angle
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back modulation (FB mod). e. Population activity in the space of the first 3 PCs in different stages
of the experiment. Left: context 1 with intact feedback, center: context 2 with frozen feedback,
right: context 2 with intact feedback. Black lines indicate the readout vectors. f. Same as (e) but
from a different viewpoint to show the readout space.
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Figure 6–Figure supplement 1. The Dalean network can learn to solve the dynamic blind
source separation task, and the performance does not depend on specifics of the model
architecture. a. Loss over training. b. Violin plot of the signal clarity for 20 test contextsmeasured
in the sensory stimuli and the network output. c. Violin plot of signal clarity for models in which
excitatory, inhibitory or both types of synapses are modulated by feedback; measured over 20
contexts. d. Mean signal clarity across 20 contexts for different numbers of inhibitory neurons
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targets of modulation from (c). Error bars indicate standard deviation. The yellow arrow indicates
the default parameter used in the main results. The star indicates networks without feedforward
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