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Abstract Microbes have disproportionate impacts on the macroscopic world. This is in part due 
to their ability to grow to large populations that collectively secrete massive amounts of secondary 
metabolites and alter their environment. Yet, the conditions favoring secondary metabolism despite 
the potential costs for primary metabolism remain unclear. Here we investigated the biosurfactants 
that the bacterium Pseudomonas aeruginosa makes and secretes to decrease the surface tension 
of surrounding liquid. Using a combination of genomics, metabolomics, transcriptomics, and math-
ematical modeling we show that the ability to make surfactants from glycerol varies inconsistently 
across the phylogenetic tree; instead, lineages that lost this ability are also worse at reducing the 
oxidative stress of primary metabolism on glycerol. Experiments with different carbon sources 
support a link with oxidative stress that explains the inconsistent distribution across the P. aeruginosa 
phylogeny and suggests a general principle: P. aeruginosa lineages produce surfactants if they can 
reduce the oxidative stress produced by primary metabolism and have excess resources, beyond 
their primary needs, to afford secondary metabolism. These results add a new layer to the regula-
tion of a secondary metabolite unessential for primary metabolism but important to change physical 
properties of the environments surrounding bacterial populations.

Editor's evaluation
This important study proposes how Pseudomonas aeruginosa is able to produce costly secondary 
metabolites. By combining a wide variety of experimental and computational approaches and 
studying 31 isolates in several growth environments, they present highly compelling evidence that 
secondary metabolites are produced in this species when it is not suffering from oxidative stress 
linked to its primary metabolism. This paper helps to understand pathogen metabolism, and more 
generally, how environmental conditions can allow for the evolution of costly collective behavior.

Introduction
Microorganisms touch practically every human activity, in harmful and beneficial ways: they cause 
infections (Morens et al., 2004) and help us digest food (Rowland et al., 2018), make bioterrorism 
weapons (Henderson, 1999) and synthesize life-saving drugs (Demain and Fang, 2000), contribute 
to climate change (Bardgett et  al., 2008), and clean our wastewater (Kartal et  al., 2010). The 
outsize impact of microbes on the macroscopic world that surrounds them comes from their ability to 
multiply to populations of billions that cooperate to transform chemicals in vast amounts. Many of the 
chemicals that they release are compounds unessential to growth, development, and division: they 
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are secondary metabolites. But despite their importance, it remains unclear why microbes invest in 
secondary metabolites (Cavalier-Smith, 1992; Kell et al., 1995).

Secondary metabolites enable collective traits like cell-cell signaling (Dufour and Rao, 2011), 
microbial warfare (Demain and Fang, 2000), pathogenesis (Nicas and Iglewski, 1985), and nutrient 
scavenging (Albelda-Berenguer et al., 2019). These collective traits bring fitness advantages to a 
population (Maplestone et al., 1992) but by diverting precursors, cofactors, and energy away from 
primary metabolism they can also bring a cost to the individual cell (Yan et  al., 2018). How did 
secondary metabolites evolve and how are they maintained by natural selection?

Social evolution theory provides an answer. A secondary metabolite that brings a fitness cost C 
to the cell and a benefit B to the population can be favored by natural selection if rB >C, where r is 
the relatedness among different genotypes across the population (West et al., 2006). This means 
that secondary metabolite with a high cost can still be evolved if relatedness r is very high, such as in 
monoclonal populations. But population mixing and mutation, which are frequent in a microbial world 
(Andersen et al., 2015; Andersen et al., 2018), mean that microbial populations can have a low 
relatedness, and a low r limits the maximum cost allowed for secondary metabolites.

Social evolution theory therefore predicts that secondary pathways should have a low cost 
(Cavalier-Smith, 1992). But many secondary products need multiple enzymes for their biosynthesis 
(Osbourn, 2010), and their burden on primary metabolism can be hard to avoid. Microorganisms have 
sophisticated molecular networks that can sense environmental stimuli and regulate the expression 
of secondary pathways to lower their cost (Brakhage, 2013; Bibb, 2005; Bayram et al., 2016; Lind 
et al., 2015). Experiments in laboratory culture show, for example, that microbes can regulate the 
production of secondary metabolites depending on environmental conditions such as the type and 
quantity of the nutrients provided, especially the carbon source (Ruiz et al., 2010), that they can 
restrict production to specific growth phases, typically the stationary phase (Malik, 1980), and that 
many secondary metabolites are controlled by quorum sensing (Whiteley et al., 1999), a type of cell-
cell communication that regulates genes in a density-dependent way. Understanding how microbes 
regulate their secondary metabolites complements the evolutionary explanation by providing a 
different level of explanation—molecular mechanism—of the same biological phenomenon (Bateson 
and Laland, 2013).

Here we investigate the evolution and regulation of biosurfactants that the bacterium Pseudomonas 
aeruginosa secretes to decrease the surface tension of the surrounding liquid (Abdel-Mawgoud 
et al., 2010). These biosurfactants are secondary metabolites, and they enable spectacular collective 
behaviors like swarming (Tremblay et al., 2007; Deforet, 2022), climbing over walls (Yang et al., 
2021), killing microbial competitors (Sotirova et al., 2008), and breaching the epithelial barriers of a 
host (Zulianello et al., 2006). These collective feats, impossible to achieve by a single bacterium, can 
benefit the population. But a P. aeruginosa cell produces 20% or more of its dry weight in biosurfac-
tants (Guerra-Santos et al., 1984), which is potentially a huge cost (Xavier et al., 2011). A full under-
standing of P. aeruginosa surfactant secretion requires both evolutionary and molecular explanations 
(Yan et al., 2019).

The first step in the biosynthesis of rhamnolipid surfactants is catalyzed by the RhlA enzyme, which 
takes a metabolic intermediate from fatty acid synthesis, β-hydroxyacyl-acyl carrier protein (β-hydroxy-
acyl-ACP), and produces 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs) (Zhu and Rock, 2008). The 
RhlB and RhlC enzymes each add one unit of rhamnose to the HAAs to produce mono-rhamnolipids 
and di-rhamnolipids (Chong and Li, 2017). The expression of the rhlAB operon is regulated by a 
network that includes at least three quorum sensing signals (Mukherjee et al., 2018; Latifi et al., 
1996) and is conditional to the nutrients in the media, requiring a high carbon-to-nitrogen or carbon-
to-iron ratio (Xavier et al., 2011; Boyle et al., 2015; Mellbye and Schuster, 2014). This regulatory 
strategy—called metabolic prudence—delays the expression of the secondary biosynthetic genes to 
times when the population is large enough, but also checks if the individual cell has sufficient carbon 
source to make the product at low or no cost to its fitness (Xavier et al., 2011). Metabolic prudence 
regulates the expression of other secondary metabolites in P. aeruginosa besides surfactants (Mellbye 
and Schuster, 2014) and may provide a general evolutionary explanation for secondary metabolites 
in other microbes as well (Bruger and Waters, 2015). Compared to the non-regulated constitutive 
production, metabolic prudence lowers the C/B ratio and stabilizes biosurfactant synthesis—even 
when r is low—by preventing cheaters from increasing in frequency (de Vargas Roditi et al., 2013). 

https://doi.org/10.7554/eLife.76119
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But this evolutionary explanation alone cannot explain why the surfactant production varies widely 
among strains, even when they are closely related (Müller et al., 2011), and even though the genes 
encoding the secondary pathway—rhlA, rhlB, and rhlC—are highly conserved (Germer et al., 2020). 
A better understanding of the molecular processes driving surfactant secretion can shed light on the 
evolution of regulation of this secondary metabolite.

Here we investigate surfactant secretion among diverse P. aeruginosa strains that we isolated from 
infected patients. We start by focusing on the role of glycerol as a carbon source, a relevant nutrient 
for P. aeruginosa infection (Scoffield and Silo-Suh, 2016; Abdel-Mawgoud et al., 2014) that puts 
a substantial strain on Pseudomonas primary metabolism (Poblete-Castro et al., 2020). Then, we 
investigate other carbon sources to search for a general explanation: we show that the lineages that 
lost their ability to make the surfactants tend to grow not less but slower compared to lineages that 
can make surfactants. Using metabolomics and mathematical modeling, we link the inability to reduce 
oxidative stress produced by primary metabolism with the lack of surfactant secretion. Our results add 
a new layer to the regulation of surfactant biosynthesis and help explain the inconsistent variation of 
this secondary metabolite that P. aeruginosa secretes to alter the surface tension of its surrounding 
environment.

Results
Surfactant production varies inconsistently across the phylogenetic 
tree
We investigated the phenotypic variability among clinical isolates in a diverse panel of 31 P. aeru-
ginosa strains, including 28 isolates from infected patients (Yan et  al., 2017) and the 3 types of 
strains PAO1, PA14, and PA7, all of which have their genomes sequenced. We grew each strain in 
synthetic media using glycerol as the sole carbon source and ammonium sulfate as the sole nitrogen 
source, producing a carbon-to-nitrogen molar ratio of 7.0. Then we used the drop collapse assay 
(Figure 1A) to classify each strain as surfactant absent, moderate, or high. Previous work had shown 
that glycerol enables the biosynthesis and secretion of surfactants in the strain PA14 (Boyle et al., 
2015), a finding that we confirmed here with the wild-type PA14 and its isogenic mutants in the 
rhamnolipid synthesis. As expected, the wild type caused drop collapse indicating surfactant secre-
tion, the ΔrhlA mutant did not, indicating loss of surfactants, and the complementation of the ΔrhlA 
with the L-arabinose inducible PBADrhlAB restored the drop collapse but only when L-arabinose was 
added, as expected (Figure 1B). Among the clinical isolates, however, there was a wide variability 
of surfactant phenotypes. The strongest producers (n=17) showed phenotypes similar to the wild-
type PA14, while non-producers (n=8) showed no surfactant secretion similar to the ΔrhlA mutant; 
moderate producers (n=6) showed a phenotype in between. There was no obvious relation between 
the body site infected in the patient and the surfactant phenotype (Figure 1C). There was also no 
coherent distribution with the isolates’ phylogeny, which we built using the sequence variation in 
core genes, also supported by a poor correlation in Moran’s I test of p=0.14. Ancestral reconstruc-
tion of the surfactant secretion trait supports that the ability to make surfactants from glycerol was 
present in the common ancestor of all strains (Figure 1—figure supplement 2). Importantly, the 
genes rhlA, rhlB, and rhlC, the genes encoding the secondary biosynthesis pathway, were present 
in all 31 isolates, and their sequence was 100% conserved. This indicates that the absence of surfac-
tant secretion was not due to a loss of the biosynthetic pathway. Instead, we hypothesized that the 
phenotypic variation was due to the life histories of the strains: some lineages may have lost their 
ability to rewire their regulatory network to overcome the specific selective pressures that they had 
faced during their evolution.

We further investigated whether variation elsewhere in the genome—particularly in the accessory 
genome (the set of genes missing in at least one strain)—could explain the phenotype differences. 
Among the 8290 accessory genes, 354 are only absent in those non-producers but present in all 
mild and strong producers (Supplementary file 1). In a principal component analysis (PCA) of the 
presence-absence profiles, there was no visible grouping of isolates by their surfactant phenotype 
(Figure 1—figure supplement 2), which is consistent with the lack of association with the phyloge-
netic tree built from the core genome.

https://doi.org/10.7554/eLife.76119
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Surfactant secretion lost in strains with slower exponential growth
To search for a general explanation, we conducted analyses that showed producers have faster 
primary metabolisms in the same media of drop collapse assay. This finding was unexpected because, 
if anything, secondary metabolism should divert resources from primary metabolism (Yan et  al., 
2018): strains that produce surfactants would grow slower, not faster. We started by noting differ-
ences among the growth curves of the 31 strains, as assessed by the dynamics of the population 
optical density at 600  nm (OD600). The maxima that the population densities reached showed no 
obvious difference in producers vs non-producers, but the cultures did vary widely in the shape of 
their lag phase and the exponential phase (Figure 2A). The shape of the growth curve, as a whole, 
was not predictive of surfactant secretion because hierarchical clustering using the entire time series 
failed to separate producers and non-producers (Figure 2—figure supplement 1). Instead, the slope 
of the exponential growth phase was steeper in producers. This was also shown using non-negative 
matrix factorization (Lee and Seung, 1999), which could decompose each growth curve as a weighted 
sum of three basis functions (i.e. features). This analysis showed that—although the growth curves 
of the producers (orange lines; including mild and strong producers) and non-producers (blue lines) 
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Figure 1. The ability to make surfactants from glycerol and reduce the surface tension of its liquid medium varies widely among clinical isolates of 
Pseudomonas aeruginosa, is uncorrelated with phylogeny, and is not associated with the tissue of origin. (A) The drop collapse assay assesses the ability 
of P. aeruginosa to reduce the surface tension of its media by looking at the shape of a drop placed onto polystyrene. (B) The phenotypic assay in the 
wild-type PA14 (which can make surfactants from glycerol) is compared with the PA14 ΔrhlA isogenic mutant (which does not produce the rhamnolipid 
biosurfactants because it lacks a key biosynthetic gene). We also included the complementation mutant PA14 ΔrhlA PBADrhlA with and without the 
inducer of the PBAD promoter, L-arabinose. As expected, the ability to reduce surface tension is only present in the PA14 wild type and in the induced 
PBAD mutant. The ΔrhlA and the PBAD mutant in the absence of L-arabinose show high surface tensions like the fresh media. (C) A phylogenetic tree built 
from the core genome of 28 clinical isolates obtained from patients with cancer at Memorial Sloan Kettering Cancer Center (Lind et al., 2015; Cai 
et al., 2017) and the three type strains PAO1, PA14, and PA7. The tissue where each isolate was originally obtained from is indicated by the colored 
circles. The surfactant phenotype was assessed for all strains using the drop collapse assay after growth in glycerol minimal medium. The phenotype 
shows no obvious pattern with phylogeny or tissue of origin.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Phylogenetic ancestor state reconstruction of surfactant secretion from glycerol minimal media.

Figure supplement 2. A principal component analysis (PCA) of the matrix of presence/absence of genes in each strain.

https://doi.org/10.7554/eLife.76119
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largely overlapped (Figure 2A)—producers had higher weights for base 1, which agrees with a faster 
growth rate in the exponential phase (Figure 2B). This was also confirmed by dividing each growth 
curve into three phases (Figure 2C and Figure 2—figure supplement 2) and defining seven quan-
titative features to characterize each growth phase (Figure 2D and Supplementary file 2). Random 
forest classification revealed that the top two features associated with surfactant production were the 
maximum and the average specific growth rates in phase I, the exponential growth phase (Figure 2E). 
Features of phase III (the decay phase), such as the starting value of OD600 in phase III which represents 
the final biomass produced by different strains in phase II, were among the least significant.

These analyses indicate that the ability to make surfactants, which typically peak when growth 
slows down from exponential (Latifi et al., 1996; Boyle et al., 2015; Mellbye and Schuster, 2014), 
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Figure 2. The shape of the growth curve in glycerol minimal media distinguishes surfactant producers from non-producers. (A) Growth curves obtained 
in glycerol minimal media for producers (high and moderate, in orange) and non-producers (in blue). (B) We used two types of analysis: first, non-
negative matrix factorization (NNMF) was used to decompose the growth curves into three additive basis functions (features). Each growth curve can 
be approximately represented by the weighted sum of these functions. The components 1 and 2 (basis function multiplied by weights; left panels) and 
weights (right panels) from NNMF of surfactant producers differ from non-producers. The shaded areas represent 95% bootstrap confidence intervals of 
the mean. (C) Second, we used supervised feature selection by random forest classifier, first divides each growth curve (excluding the initial lag phase) 
into three phases. (D) Each phase is described by seven quantitative features. (E) The random forest analysis quantifies the importance of each feature 
in distinguishing producers from non-producers. Inset: boxplot of maximum specific growth rate of phase I grouped by surfactant production. Welch’s 
t-test was used in (D) and (G) for significance testing. ****, p-value ≤0.0001; *, p-value ≤0.05; ns, p-value >0.05.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Hierarchical clustering of growth curves of Pseudomonas aeruginosa clinical isolates and three type strains PA14, PAO1, and PA7 
in glycerol minimal medium.

Figure supplement 2. Growth curve of Pseudomonas aeruginosa strains in glycerol minimal medium.

https://doi.org/10.7554/eLife.76119
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is associated with the speed of the exponential phases, and hence, an efficient primary metabolism 
on glycerol. This suggests that the non-producer lineages had particular life histories that are selected 
for specific metabolic adaptations, and that those adaptations had the collateral damage of impacting 
their ability to grow on glycerol as a sole carbon source.

Metabolomics shows differences in intracellular metabolomes 
associated with loss of surfactant biosynthesis
We then searched the composition of the intracellular metabolome for differences that distinguish 
producer and non-producer lineages. We extracted the metabolites from all our strains except for 
two non-producers (M55212 and F23197), which grew too slowly during the transition between phase 
I and phase II when rhamnolipid production begins (Materials and methods). Liquid chromatography-
mass spectrometry (LC-MS)revealed 67 metabolites whose identities are known, and their abun-
dances varied significantly across the tested strains (Figure 3—figure supplement 1A–B). Hierarchical 
clustering and PCA (Figure 3—figure supplement 2A–B) showed a reasonable separation between 

Predictive component (5%)

Partial least squares regression of 
intracellular metabolomes

TCA cycle metabolites associated with surfactants

Metabolite loadings grouped by pathway

Non-producer (-)
Producer (+,+/-)

Blue metabolites: higher in
surfactant producers (+ and +/-)
Green metabolites: higher in
surfactant non-producers (-)

Higher in surfactant 
producers (+ and +/-)

Higher in surfactant
non-producers (-)

Figure 3. Intracellular metabolites measured in glycerol minimal media differ between surfactant producers and non-producers. (A) OPLS-DA 
(orthogonal partial least squares discriminant analysis) was used to compare the intracellular metabolomes of producers (high and moderate) and 
non-producers. The predictive component is high in producers and low in non-producers. (B) OPLS-DA loading values for the predictive component 
of a selected number of metabolites. Metabolites with asterisk (*) are significantly different between producers and non-producers (adjusted p-value 
of a Mann-Whitney test <0.05). (C) Differential abundance of metabolites involved in reactions catalyzed by some Fe-S-containing enzymes whose 
activities are inhibited by reactive oxygen species (ROS). Abbreviations: acnA: aconitate hydratase A, acnB: aconitate hydratase B, sdhB: succinate 
dehydrogenase subunit, fumA: fumarase A; fumB: fumarase B; gltB: glutamate synthase subunit; gltD: glutamate synthase subunit.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Metabolites identified in this study were examined and imputed to represent the profile of all 31 strains for further analysis.

Figure supplement 2. Variance and clustering analysis of metabolomics across Pseudomonas aeruginosa strains.

Figure supplement 3. The loading values of all predictive metabolites of the orthogonal partial least squares discriminant analysis model.

Figure supplement 4. Volcano plot of metabolomics data between wildtype (WT) Pseudomonas aeruginosa PA14 strain and its ΔrhlA mutant grown in 
glycerol minimal medium (replotted with permission from Bayram et al., 2016).

https://doi.org/10.7554/eLife.76119
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producers and non-producers. Fitting the data using the orthogonal projections to latent structures-
discriminant analysis (OPLS-DA) (Cloarec et al., 2005) confirmed that there is a significant associa-
tion between the broad metabolome and surfactant secretion (Figure 3A, R2=0.82, Q2=0.66, p-value 
= 5e−4). A Mann-Whitney U test revealed the 15 metabolites whose abundances differed most 
significantly between producers and non-producers. Then, we used those 15 metabolites to iden-
tify pathways perturbed in non-producers using the FELLA algorithm for pathway enrichment anal-
ysis (Picart-Armada et al., 2018; Figure 3—figure supplement 3, Supplementary file 3). The most 
perturbed pathways were the TCA cycle and amino acid metabolism (Figure 3B). Three out of six 
metabolites in the TCA cycle—fumarate, succinate, and citrate—were significantly changed: fuma-
rate and malate had positive loadings, which indicated higher levels in producers. Citrate, succinate, 
and to a lesser extent cis-aconitate and alpha-ketoglutarate had negative loadings, which indicated 
higher levels in non-producers (Figure 3B). Pyruvate remained relatively constant across all the strains 
(Figure 3—figure supplement 1A), implying that the differential responses in the TCA cycle were 
independent from the changes in its upstream central carbon metabolism.

Besides the TCA cycle metabolites, most of the annotated compounds in the metabolism of 
branched chain amino acids (leucine/isoleucine, valine) and sulfur-containing amino acids (cysteine/
methionine) were more abundant in non-producers than producers (Figure 3—figure supplement 
3). A notable exception was formylmethionine (fMet), which was lower in non-producers. To place 
this observation in context, we reanalyzed previous metabolomics data (Boyle et al., 2017) from an 
experiment where we had compared PA14 and its ΔrhlA mutant. Interestingly, the ΔrhlA mutant also 
had lower levels of fMet compared with the wild type (Figure 3—figure supplement 4). The ΔrhlA 
mutant grows just as fast in glycerol as the wild type (van Ditmarsch and Xavier, 2011), which means 
that the link between lower fMet and lack of surfactant secretion is not simply due to a growth defect.

Theory formalizes the link between oxidative stress, slower growth, 
and lack of surfactants
Several theoretical arguments support that non-producers might have slower primary metabolisms 
because they suffer from higher oxidative stress than the producers. First, the major differences 
include TCA intermediates (Figure 3B). The TCA cycle harbors five enzymes with Fe-S clusters, aconi-
tase A, aconitase B, succinate dehydrogenase (SDH), fumarase A, and fumarase B (Py and Barras, 
2010), which make them especially vulnerable to oxidative stress (Figure 3C). If non-producers are 
less successful at removing the oxidative stress from growth in glycerol, then the stress accumulated 
could reduce flux through the TCA cycle, which would slow down growth. The accumulation of succi-
nate and depletion of fumarate in non-producers could be due to a reduced activity of SDH under 
oxidative stress: SDH is a membrane-bound dehydrogenase linked to the respiratory chain—a major 
site of ROS production in the cell—and also a member of the TCA cycle that catalyzes the oxidation 
of succinate into fumarate (Hederstedt and Rutberg, 1981). Since SDH contains [2Fe-2S], [3Fe-4S], 
and [4Fe-4S] clusters (Ayala-Castro et al., 2008), ROS that damages Fe-S clusters could decrease 
SDH activity in vivo.

Second, we saw that non-producers also included intermediate metabolites in amino acid biosyn-
thetic pathways which are also substrates of Fe-S containing enzymes (Figure 3B). For example, the 
glutamate synthetase has a large chain (encoded by gltB) and a small chain (encoded by gltD), and 
both subunits contain Fe-S clusters that catalyze the production of glutamate from oxoglutarate and 
glutamine (Curti et al., 1996). Non-producers had slightly higher oxoglutarate and glutamine as well 
as lower glutamate than producers.

Finally, we used a whole-genome reconstruction to model the intracellular metabolic fluxes during 
growth in the glycerol medium (Nogales et al., 2017; Nogales et al., 2020). The rhamnolipids are 
produced when carbon is in excess (Boyle et al., 2015; Mellbye and Schuster, 2014) and, in the 
simulations, rhamnolipids secretion occurred when C:N flux ratio >6.3 (Figure 4—figure supplement 
1). We then set C:N to 10.0, which exceeds the minimum threshold, and we simulated various levels of 
redox stress level by changing the flux through three redox molecules—NADH (reduced nicotinamide 
adenine dinucleotide), NADPH (reduced nicotinamide adenine dinucleotide phosphate), and GSH 
(reduced glutathione)—responsible for the bulk of cellular electron transfer and the main sources of 
reactive oxygen species (ROS) (Xiao and Loscalzo, 2020). Although redox stress is ultimately caused 
by high ROS levels, not fluxes, and ROS was not an explicit variable in our model, we assumed that 

https://doi.org/10.7554/eLife.76119
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ROS could perturb intracellular metabolic fluxes, particularly the fluxes of redox molecules, and we 
then asked how cell growth and surfactant synthesis responded to these ROS-mediated indirect 
perturbations.

For all three redox molecules, we found that the maximum growth rate was maintained at an 
intermediate flux range (redox homeostasis; Figure 4A–C, upper panels, white area). The growth rate 
decreased gradually as the flux of redox molecules changed in either direction away from this homeo-
static interval (gray shading). The reason for the gradual decrease in growth rate is that deficiency or 
excess of these redox molecules which participate in the redox control of a great variety of biological 
processes disturbs the primary metabolism for growth. Importantly, before the growth starts slowing 
down due to an excess in redox species there was an abrupt shutdown in the overflow on carbon 
into many central carbon metabolites and—importantly— in the secretion of the HAAs, mono- and 
di-rhamnolipids that makeup the surfactants (Figure 4A–C, lower panels). The shutdown of overflow 
reactions under excess of redox molecules mimics the metabolic state in the non-producer strains who 
lose metabolic plasticity to overflow metabolites without compromising growth (Vemuri et al., 2006). 
When we forced these secretion fluxes to zero—to simulate a ΔrhlA mutant—the simulation did not 
predict a growth benefit. This result agrees with data showing that the ΔrhlA mutant has no growth 
benefit in glycerol media compared with wild type (van Ditmarsch and Xavier, 2011).

This also suggests that regaining surfactant synthesis should not restore fast growth in glycerol to 
non-producers, which agrees with the idea that loss of surfactant secretion is a consequence—not 
a cause—of the slower growth in non-producers. Notably, most of the overflowed metabolites are 
carbon-rich molecules, including HAA, mono-, and di-rhamnolipid (Xavier, 2011). Collectively, these 
theoretical arguments support a link between the ability to make surfactants and oxidative stress: fast 
growth and surfactant secretion are both impacted by the accumulation of ROS produced by primary 
metabolism.

Non-producers are worse at reducing oxidative stress
Our model suggested that non-producers suffer from higher oxidative stress. Pseudomonas have a 
variety of antioxidant enzymes including catalases, glutathione reductases, NADH peroxidases, and 
cysteine-based peroxidases (Mishra and Imlay, 2012), which in PA14 and PAO1 were only made when 
the growth rate maintained its maximum value under excess carbon (Xavier et al., 2011; Boyle et al., 
2015; Mellbye and Schuster, 2014). Isogenic mutants lacking some of those could make surfactants 
(Vinckx et al., 2010). If the slower growth in the clinical non-producer strains is due to impairments in 
some of those mechanisms to reduce oxidative stress, then this could affect surfactant biosynthesis.

To test this hypothesis, we compared the dynamics of hydrogen peroxide (H2O2) during growth in 
glycerol (Figure 4D and E). H2O2 is a representative ROS that can diffuse freely between cells and the 
environment; we can access its dynamics by measuring the fluorescence by the Amplex assay, where 
the difference between cell cultures and baseline reveals each strain’s net ability to reduce H2O2 (Zhao 
et al., 2012). All strains except for M1608, one of the non-producers, quenched the signal over the first 
18 hr (Figure 4E). Consistent with our hypothesis, the non-producers (blue lines) removed less H2O2 
than moderate producers (green lines) and strong producers (red lines). To factor out the possibility 
that the non-producers performed worse due to lower cell density, we calculated the H2O2 removal 
rate per cell. We observed a similar relative trend of H2O2 degradation between non-producers and 
producers (Figure 4F): a linear mixed-effect model quantified the difference that mild and strong 
producers have in per-cell H2O2 removal rates, which was in both cases significantly higher than in non-
producers (p<0.001; Figure 4G). This is consistent with the notion that non-producers suffer more 
from oxidative species, which can be caused by high production or slow degradation.

To identify the genes that would explain the varying tolerance to oxidative stresses, we performed 
a Spearman correlation between gene presence or absence and the time averaged H2O2 removal rate 
per cell. No gene passed the significance threshold (p<0.05) after Benjamini-Hochberg correction for 
multiple hypothesis testing. It is possible that oxidative stress tolerance is a system-level phenotype 
that depends on the interactions among many genes in multiple pathways. Alternatively, the pheno-
type can be determined by a small number of, but different genes for different strains. For example, 
the worst strain in this assay, M1608, lacks katE (Supplementary file 1), a catalase that degrades H2O2 
(Mulvey et al., 1988), and another non-producer, F5677, lacks the redox sensor soxR (Hidalgo et al., 
1998).

https://doi.org/10.7554/eLife.76119
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Figure 4. Computer simulations using flux-balance analysis and experiments with H2O2 indicate that the ability 
to produce surfactants in glycerol media depends on a strain’s ability to reduce oxidative stress. (A-C) Computer 
model: the simulations vary the redox balance of Pseudomonas metabolism by altering the fluxes of (A) 
NADH (reduced nicotinamide adenine dinucleotide), (B) NADPH (reduced nicotinamide adenine dinucleotide 
phosphate), and (C) GSH (reduced glutathione). The upper panels show the predicted maximum growth rates, 
and lower panels are predicted maximum byproduct secretion fluxes. C:N indicates the carbon-to-nitrogen influx 
ratio provided by the culture medium. C:N=3 and C:N=10 represent carbon- and nitrogen-limiting conditions, 
respectively. Abbreviations: HAA: 3-(3-hydroxyalkanoyloxy) alkanoate; monoRL: monorhamnolipid; diRL: 
dirhamnolipid; aKG: alpha-ketoglutarate. (D–G). Experimental comparison of the ability to remove hydrogen 
peroxide (H2O2) among strong surfactant producers (+), weak producers (±), and non-producers (−). (D) Population 
density (OD600). (E) The total amount of hydrogen peroxide removed from the environment. Negative values 
indicate net cellular production of hydrogen peroxide released to the environment. (F) The specific hydrogen 
peroxide removal rate. In both (E) and (F), each trajectory of H2O2 fluorescence intensity was normalized to the 
averaged trajectory of the wild-type PA14 strain. (G) Effect size of surfactant production as a predictor of H2O2 
removal rate per unit of OD600 determined by a linear mixed-effect model shows that producers can reduce 
oxidative stress better than non-producers.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure 4 continued on next page

https://doi.org/10.7554/eLife.76119
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RNAseq reveals oxidative stress response in non-producers
To investigate transcriptomic differences associated with the surfactant phenotype, we selected 11 
representative strains (6 strong producers, 3 mild producers, and 2 non-producers), in proportion to 
the number in each category. We then assessed their transcriptomics in Phase II, which is typically 
when producers start their surfactant biosynthesis (van Ditmarsch and Xavier, 2011). A PCA of the 
gene expression profiles could not cluster the strains according to their phenotypes (Figure 5—figure 
supplement 1). We then turned to RLQ analysis (R, L, and Q are explained in Figure 5A) to find both 
genes (Figure 5B) and pathways (Figure 5C) associated with rhamnolipid production.

As expected, the genes in the biosynthesis of rhamnose (rmlA, rmlB, rmlC, rmlD), rhamnolipid 
biosynthesis (rhlA, rhlB, rhlC, rhlR, rhlI), and quorum sensing (lasA, lasB, lasI, pqsABCDEH) were signifi-
cantly less expressed in the non-producers (Figure 5B, Figure 5—figure supplement 2). Interestingly, 
in vitro data shows that the expression of genes from the above list, including lasI, lasR, rhlI, rhlR, pqsA, 
pqsR, in P. aeruginosa PAO1, can be significantly reduced by quorum sensing quencher and oxidative 
stress by exogenous H2O2 (Mohamed et al., 2020), supporting that the loss of the phenotype is linked 
to oxidative stress. More importantly, the zwf gene encoding glucose 6-phosphate dehydrogenase 
(G6PDH) was expressed higher in non-producers (Figure 5—figure supplement 2). G6PDH, a major 
source of NADPH that contributes to antioxidant defenses by reducing oxidized glutathione, was 
expressed higher, supporting our hypothesis that non-producers experience higher oxidative stress. 
Other genes, including the peroxide-sensing transcriptional regulator (oxyR), catalases (katA, katB), 
alkyl hydroperoxide reductases (ahpC, ahpF), glutaredoxin (grx), glutathione reductase (gor), and 
thioredoxins (trxA, trxB1, trxB2) were not highly expressed in the producers (Figure 5—figure supple-
ment 2). We speculate that the stress levels may occur locally within the cells (e.g. within SDH) so that 
the oxidative stress response is also local. Another possibility is that the antioxidant defense may be 
regulated at the metabolic level. A notable example is biosynthesis of phenazine, whose genes (e.g. 

Figure supplement 1. Theoretical estimation of threshold carbon (glycerol):nitrogen (ammonium) ratio above 
which carbon is in excess in the sense that carbon release through rhamnolipids and central carbon metabolites 
does not compromise biomass production.

Figure 4 continued

−30 −20 −10 0 10 20 30 40 50

−60

−40

−20

0

20
pa

u0
09

20

pau00430pau00910

pau00625

pau00626

pau01220

pau00040
pau00053

pau00500 pau00261
pau00405

pau00471

pau01053pau00523

pau00525

RL+/-

RL-

R
LQ

 a
xi

s 
2

RLQ axis 1
−1 0 1 2

−1
0
1

RLQ axis 1

R
LQ

 a
xi

s 
2

C. Pathways associated with surfactant secretion

RLQ axis 1

R
LQ

 a
xi

s 
2

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
lasB

rhlA/B/C/R

rhlI

zwf

asd

fadB

xylX

catB

galU
40980

lasI

phnA/B

pqsB/C/D/E/H

cysD/N 
rmlA/B

rmlC/D
trpE/G

phzA1/B1/B2

11250

19740

38200

ilvH/I
09820

31540

dapA/B
09730

accA/B/C

acnB 06430
06450

ilvE
pchB

pchD/E/F/G

leuB/C/D
ilvC/D

31310

bglX

acsA
lpd3/V

13090
atoB

63250
31530

gdhA fdhA

pcaB/C/D
pobA
catC

58220
06270

37530

37550

53790

20670

exaA
spuB
72690

72850

gdhB

hpaC

hpcB/C/D

10640
10650
hpaA

narG/H

0.8

RL+/-

RL-

R
LQ

 a
xi

s 
2

RLQ axis 1
−1 0 1 2

−1
0
1

B. Genes associated with surfactant secretionA. RLQ: integrative analysis
of genes, pathways
and rhamnolipid phenotype 

lasARSt
ra

in Strain
Pathw

ay

L

Q

Phenotype Gene

Gene

KEGG pathways:

Figure 5. Transcriptomic data, analyzed using the RLQ analysis, reveals genes and metabolic pathways with expression associated with the ability to 
produce surfactants in glycerol minimal media. (A) RLQ provides a way to analyze simultaneously associations from three tables. The results reveal not 
only the genes (B) but also the pathways (C) whose expression is associated with the rhamnolipid phenotype. The insets in both (B) and (C) represent 
the surfactant secretion phenotype (assessed in glycerol) in the two principal RLQ axes. Genes and pathways align with the direction of each phenotypic 
category: in panel (C), the top five pathways (‘pau’ are KEGG pathway IDs) associated with each phenotype are highlighted in black. The five-digit 
number in panel (C) represents the PA14 locus ID.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Principal component analysis (PCA) plot of RNA expression colored by surfact production phenotypes in glycerol minimal media.

Figure supplement 2. Comparisons of expression for selected genes across strains with different abilities of surfactant biosynthesis from glycerol.

https://doi.org/10.7554/eLife.76119
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phzA1/B1/B2) are highly expressed in the producers but not in the non-producers. It was previously 
shown that the phenazine pyocyanin plays a role in the reduction of oxidative stress as it can restore 
growth of the ‍∆‍oxyR mutant in rich medium (LB) and undergoes H2O2 oxidation (Vinckx et al., 2010).

The RLQ analysis also revealed the top five pathways enriched specifically in each phenotype group: 
strong producers were enriched in acarbose and validamycin biosynthesis (pau00525), phenazine 
biosynthesis (pau00405), polyketide sugar unit biosynthesis (pau00523), starch and sucrose metab-
olism (pau00500), and pentose and glucuronate interconversions (pau00040) (Supplementary file 
4). By contrast, non-producers were enriched in the biosynthesis of siderophore group nonribosomal 
peptides (pau01053), ascorbate and aldarate metabolism (pau00053), monobactam biosynthesis 
(pau00261), D-glutamine and D-glutamate metabolism (pau00471), and sulfur metabolism (pau00920).

Figure 6. Extrinsic oxidative stress by adding H2O2 increases PrhlAB activity without impacting cell growth in the 
stain PA14 in glycerol medium. (A–D) Growth (A, C) and gfp expression (B, D) of PA14::PA1/04/03-GFP (constitutive 
promoter) and PA14::PrhlAB-GFP (rhlAB promoter) with increasing levels of H2O2 added to the media at the 
beginning of exponential growth (gray dash line). The shaded area represents the range of all replicates from the 
same experiment. (E, F) The ratio of growth rate (E) and promoter activity (F) of PA14::PrhlAB-GFP to PA14::PA1/04/03-
GFP in phase II under different levels of H2O2 in glycerol minimal media. The p-value quantifies the significance of 
the coefficient (slope) obtained from linear fitting.

https://doi.org/10.7554/eLife.76119
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Exogenous oxidative stress impacts expression of surfactant 
biosynthetic genes
So far, we have shown data supporting that surfactant producers can reduce ROS better than non-
producers. This explains why strains that grow slower in glycerol also tend to produce less surfactants 
from that carbon source, likely due to the impact of ROS on growth. It is even possible that the ability 
to direct metabolic fluxes to surfactant secretion is part of a multifarious response to oxidative stress. 
Previous work in an engineered strain of P. putida showed that inducing surfactant synthesis reduces 
production of the final electron acceptor CO2, suggesting that directing metabolic flux to surfactant 
secretion could indeed serve as an alternative electron sink (Tiso et al., 2016).

To investigate the link with oxidative stress further, we measured the expression of the rhamnolipid 
synthesis operon rhlAB to extrinsic oxidative stress using PA14 genetically engineered with a reporter 
fusion (PrhlABgfp). This strain allows tracking the expression of rhlAB through a dynamic readout of green 
fluorescence (Figure 6). A PA14 carrying gfp under a constitutive promoter, PA1/04/03gfp (Lambertsen 
et al., 2004), was used in parallel to account for growth effects on the gfp dynamics. We then added 
H2O2 at different doses always at the time when the culture started entering the exponential phase 
of growth in glycerol. In both PA14::PrhlABgfp and PA14::PA1/04/03gfp, the start of the exponential phase 
was increasingly delayed as the concentration of H2O2 was larger (Figure 6A and C), but once the 
exponential growth started there was no difference in the growth rate under different H2O2 concen-
trations (Figure 6E). This indicates that PA14 can restore normal operation of its primary metabolism 
after removal of the extrinsic stress.

The apparent removal of H2O2 during the lag phase may be achieved by metabolic rewiring that 
affects rhamnolipid production in the late exponential phase (phase II). Similar to growth dynamics, 
the promoter activity of both mutants was also delayed, and the time delay is longer at higher H2O2 
concentration (Figure 6B and D). We determined that the ratio of the median PrhlAB expression relative 
to the median PA1/04/03 increased linearly with the H2O2 concentration (Figure 6F, orange). Since PA1/04/03 
measures the growth dependence of promoter activity (e.g. changes in number of RNA polymerases 
and ribosomes), the increased ratio showed that extrinsic redox stress can induce rhlAB expression via 
a growth-independent mechanism that likely involves transcriptional activators.

We next compared the above results obtained using PA14 wild-type strain and the ΔrhlA mutant. 
The gfp dynamics showed that in the absence of H2O2 the ΔrhlA strain still attempts to express rhlAB 
at a similar level as the wild type (p=0.3). We observed no decrease in the growth rate with increasing 
H2O2 concentration (Figure 6E), which indicates that the lack of surfactant biosynthesis had no detri-
mental impacts on the primary metabolism. Similar to the PA14 wild-type strain, H2O2 increased the 
expression of the rhlAB promoter relative to the constitutive promoter in the ΔrhlA mutant (Figure 6F, 
blue), but the baseline promoter activity increased significantly compared to the wild type (1.14×, 
p<0.01). Taken together, these results indicate that the genes for surfactant biosynthesis can be 
induced by extrinsic redox stress, and that the induction is stronger if surfactant synthesis fails to start.

Mathematical model predicts impact of carbon sources on surfactant 
production
All analyses so far were done in glycerol, a carbon source relevant for P. aeruginosa rhamnolipid 
production in bioremediation (Zhao et al., 2021) and clinical settings (Scoffield and Silo-Suh, 2016; 
Abdel-Mawgoud et al., 2014). But could different environments lead strains that are non-producers 
in glycerol to produce surfactants, and vice-versa? To address this question, we developed a predic-
tive model from data and then sought out to test its predictions experimentally.

The model is a function ‍f ‍ that takes as input a given carbon source ‍mi‍ and predicts whether a 
strain produces surfactants from that source. To parameterize the model we obtained a dataset using 
the BIOLOG phenotype microarrays PM1 and PM2a; these two arrays together contain 190 distinct 
carbon sources in separate wells of two 96-well microtiter plates. We used the same composition 
as in the glycerol media (minus the glycerol). Then, we grew each of the 31 strains in each of the 
190 nutrients and negative controls (wells without carbon source) for 24 hr (shorter than 48 hr used 
previously to facilitate high throughput). We measured the final absorbance (OD600) to quantify the 
ability to grow in that nutrient (Figure 7A; Figure 7—figure supplement 1A). The data showed that 
D-glucose (also known as dextrose) was the best carbon source for growth. Also, we saw 40 carbon 

https://doi.org/10.7554/eLife.76119
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sources (including the non-metabolizable isomer of D-glucose, L-glucose) in which none of the strains 
could grow on (OD600 <0.05).

Then we assessed the ability of each strain to secrete surfactants from each carbon source and 
gave a score of 0 (absent), 1 (moderate), or 2 (high) using the drop collapse assay. To avoid exper-
imentalist bias, the drop collapse was done by an experimentalist blind to the surfactant secretion 
score that we had determined previously in glycerol. The final dataset totaled N=6014 data points (31 

Figure 7. Glucose can make some strains secrete surfactants that could not do it from glycerol, further linking primary metabolism, oxidative stress, and 
surfactant secretion. (A) The 31 strains were profiled for growth and surfactant secretion in 190 carbon sources (see supporting Figure 8 for full dataset), 
here ranked by their potential for growth (highest on top; the carbon sources selected by model highlighted in red; succinate in blue; and the tween 
positive controls in gray). (B) We trained a predictive model using the LASSO (least absolute shrinkage and selection operator), a supervised learning 
approach that shrinks linear regression parameters using an L1-penalty. The parameter fitting minimizes the sum of the squared errors of the model (left-
hand term in the mathematical expression) and the sum of the absolute values of the betas, the model parameters (right-hand term in the mathematical 
expression) The values obtained for the parameters beta reveal D-glucose as the only carbon source (besides the positive controls) better than glycerol 
at inducing surfactant secretion. (C) Validation using glucose minimal medium reveals seven strains that improved surfactant secretion compared to 
glycerol, and four strains that worsened. This is in sharp contrast to succinate, a carbon source that imposes more oxidative stress and where no strain 
produces surfactants. (D) Similar experiment as in Figure 6 but now adding H2O2 to PA14 growing in glucose. The extrinsic stress had no significant 
impact on the growth rate, even in the mutant lacking rhlA. (E) The rhlAB expression was also unaffected by H2O2, indicating that glucose places a lower 
burden on primary metabolism, enabling cells to both cope with oxidative stress and keep their level of the genes needed to make the surfactants.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. D-glucose is predicted to induce surfactant secretion better than glycerol.

https://doi.org/10.7554/eLife.76119
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strains grown on 194 conditions each, including the 190 carbon sources and 4 negative controls)—a 
sizeable dataset that we used to parameterize the model.

As with any high throughput approach, the BIOLOG data came with a loss of precision. We could 
assess that imprecision first by looking at three positive controls—tween20, tween40, and tween80—
which come in the PM1 BIOLOG plate and are themselves surfactants, which means that they should 
produce a score of 3 regardless of surfactant secretion. The error of failing to identify collapse in these 
compounds was 4.2%. Then, we collected additional BIOLOG data on the PA14 ΔrhlA, which cannot 
produce surfactants. The rate of false identification of collapse in this strain was 1.3%. Finally, we used 
the fact that the PM1 plates contain glycerol in one of the wells to compare those results with our 
previous surfactant secretion scores (Figure 1). The assay correctly determined 8/8 non-producers, 
which amount to a 100% specificity rate. It failed to detect 10/23 producers, which amount to a 43% 
sensitivity rate. Taken together, these results show that BIOLOG assay was mildly sensitive but highly 
specific: while it may miss some surfactant secretion cases, it is unlikely to overestimate the ability of 
a specific sugar to induce secretion.

In the model, we encoded each carbon source as a set of ‍p‍ hot-encoded binary variables ‍Xi‍ 
. We included another covariate important to determine the surfactant production outcome: the 
OD600 after at 24 hr (covariate ‍Oi‍), which quantifies whether that strain could grow on that nutrient. 
The model therefore had ‍p + 1‍ parameters, each represented by the Greek letter ‍β‍ with an index 
(‍i = 1, . . . , p + 1‍) where ‍p‍ is the number of nutrient conditions tested (‍β1‍ represents the parameter, 
or effect size, for the OD600, and each ‍β2‍ to ‍βp+1‍ represents the parameters or effect sizes for each 
nutrient). We used the LASSO (Tibshirani, 1996) to impose an L1-penalization for the parameter 
λ (see equation in Figure 7). Then we used threefold cross-validation, which splits the dataset into 
training and testing in repeated iterations and uses the test loss (the error rate of the model) to tune 
the penalty parameter. As common practice with LASSO, we choose the penalty value that was one 
standard error above the one that produced the minimum loss in the test: λ=9 × 10–3 (Figure 7—
figure supplement 1B). This penalty shrank all but 11 parameters to 0 (Figure 7—figure supplement 
1C). The covariates with non-zero effect sizes included OD600 and 10 carbon sources (Figure 7D). The 
top three compounds were—as expected—the positive controls tween80, tween40, and tween20. 
This provided a sanity check that the model worked as intended. D-glucose came in fourth place: the 
only carbon source that the model deemed better than glycerol at favoring P. aeruginosa surfactant 
production.

To validate the glucose result, we grew all the 31 strains in minimal medium using D-glucose as 
the sole carbon source, now using media that we made ourselves from scratch as opposed to the 
high throughput—but less precise—BIOLOG plates and we did each test in triplicate for added rigor. 
Consistent with our model, glucose improved surfactant secretion overall, showing better secretion 
seven strains relatively to the secretion we had seen in glycerol (Figure 7C); this included three strains 
that were non-producers in glycerol but turned into producers in glucose. Interestingly, the switch 
also went in the opposite direction: four strains had worse surfactant scores in D-glucose than in 
glycerol. This suggests a complex strain-to-strain variability in the metabolic features of P. aeruginosa. 
Nonetheless, the data showed that—at least for some strains—glucose, a carbon source which should 
impose less burden on primary metabolism (Guerra-Santos et al., 1984), could free up resources for 
secondary metabolism.

To test this idea further, we tested another carbon source, succinate, which P. aeruginosa can grow 
on (Figure 7A) but which—according to our model—should not improve secretion relatively to glyc-
erol. Succinate enters the carbon metabolism directly through the TCA cycle, and compared to glyc-
erol and glucose, the initial TCA cycle flux would be faster and generate more ROS level that would 
burden primary metabolism and impair surfactant synthesis. Indeed, none of the strains secreted 
surfactants in succinate (Figure 7C).

To investigate how oxidative stress might impact expression rhlAB in glucose we added H2O2 
and monitored PrhlABgfp fluorescence in the PA14 wild type and ΔrhlA strains. As described previ-
ously (Figure 6), we used the same constitutive PA1/04/03gfp as the baseline for comparison. Phase I 
growth rate was unaffected, indicating that both strains could still remove oxidative stress effectively 
(Figure 7D). As in glycerol, the rhlAB expression levels showed the same higher baseline level in the 
ΔrhlA compared to the wild type. But, contrasting with the results from glycerol, D-glucose did not 
increase rhlAB expression with increasing H2O2 in either strain (Figure  7E). Taken together, these 
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results support that carbon sources that place a lower burden on primary metabolism leave resources 
available to both deal with extrinsic oxidative stress and sustain surfactant production.

Discussion
Here we investigated the evolution and regulation of surfactant secretion using diverse isolates of P. 
aeruginosa. Our results suggest a generalizable principle: that a strain can use its secondary metabolic 
pathways to produce surfactants if it can meet its primary requirements of energy production, biomass 
synthesis, and reduction of oxidative stress (Figure 8A). The lineages that retained their ability to make 
surfactants from glycerol were also those capable of reducing the oxidative stress created by primary 
metabolism and could overflow any excess carbon to the secondary metabolic pathway (Figure 8B). 
The inconsistent distribution across the phylogenetic tree was possibly due to the life histories of 
each lineage. Non-producing strains showed impaired abilities to reduce oxidative stress, a slower 
exponential growth in that carbon source (indicating a deficient primary metabolism), and perturbed 
levels of TCA cycle metabolites consistent with oxidative damage and accumulated intermediates 
of amino acid synthesis (also consistent with a slower primary metabolism). Those burdens may be 
what prevented the strains from making surfactants as their resources were prioritized for primary 
metabolism (Figure 8C). This was consistent with the observation the OD600 at the end of exponential 
growth was not a good distinguisher for producers and non-producers, indicating that their final yield 
of biomass production was unaffected, while their exponential growth was.

What were the selective pressures that led to the diversity of surfactant secretion phenotypes? The 
answer to this question is less clear. The strains uncapable of making surfactants from glycerol-lacked 
genes (Supplementary file 1) that suggested a particular path which led to their loss of phenotype. 
Importantly, though, all three genes of the secondary biosynthetic pathway (rhlA, rhlB, rhlC) were 
intact, and some of those strains could make surfactants in D-glucose. Absence of a selective pressure 
to produce surfactants from glycerol in the life histories of non-producer lineages could account for 
these results. But another explanation is that the impaired ability to reduce oxidative stress in glycerol 
is a maladaptive consequence of specific adaptations experienced by those lineages. Since the strains 
were isolated from hospitalized patients—a host-associated environment where we may expect oxida-
tive stresses imposed by the immune system in their fight against pathogens (Zhu et al., 2019) and by 
antibiotic treatment (Mohamed et al., 2020)—it is unlikely that the selection was for a worse response 
to oxidative stress.

Experiments in PAO1 and clinical isolates had shown previously that P. aeruginosa decreases 
expression of the key quorum-sensing genes (lasI, lasR, rhlI, rhlR, pqsA, and pqsR) in response to 
oxidative stress caused by exogenous H2O2 (Mohamed et  al., 2020). Considering that quorum 
sensing regulates many genes (Whiteley et al., 1999), shutting down surfactant biosynthesis could be 
part of a broader response to reduce oxidative stress and save resources for primary metabolism. For 
PA14, a strain capable of reducing the stress produced by glycerol metabolism, adding an extrinsic 
oxidative stress induced expression of rhlAB in glycerol, though not in glucose. ΔrhlA increased the 
baseline expression in both glycerol and glucose but did not impact the rate of rhlAB increase with 
H2O2, suggesting an intricate regulation. Also, the lack of rhlA did not impact growth—in glycerol or 
glucose—compared to the wild type, even in the highest H2O2 concentrations tested. This is consis-
tent with our flux-balance modeling of Pseudomonas metabolism, where shutting down rhamnolipid 
secretion did not impact the growth rate because the excess carbon could be alternatively secreted 
in other forms such as acetate (Figure 4A).

We did detect nuanced consequences of deleting surfactant biosynthesis in PA14: previous data 
shows that the ΔrhlA isogenic mutant of PA14 has lower levels of fMet (Boyle et al., 2017) which, 
interestingly, also happened in non-producer isolates analyzed here. fMet plays a role in translation 
initiation, and in the quality control mechanisms that degrade misfolded proteins (Piatkov et  al., 
2015). Bacillus subtilis lacking formyl-methionine transferase—the enzyme attaching a formyl group 
to methionine loaded on tRNAfmet—is more sensitive to H2O2 and defective in swarming (Cai et al., 
2017). This link between fMet, oxidative stress, and the loss of rhamnolipid synthesis is intriguing 
and warrants further research. Also, the ΔrhlA mutant had higher levels of gamma-glutamylcysteine 
(Figure  3—figure supplement 4), the immediate precursor of glutathione. Since glutathione is a 
well-known antioxidant that protects cells from oxidative damage (Ezraty et al., 2017), the result 
could indicate a mild oxidative stress. The finding that ΔrhlA expressed rhlAB at a higher level than 
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Figure 8. The allocation of metabolic resources made from glycerol in primary vs secondary metabolism. (A) Growth and rhamnolipid biosynthesis on 
glycerol as the sole carbon source place a strong burden on Pseudomonas aeruginosa: The bacterial cell has to make all the molecules needed for 
energy, biomass, and redox homeostasis; surfactant biosynthesis—a secondary metabolic pathway—competes for those resources. (B) P. aeruginosa 
lineages that retain the ability to make surfactants from glycerol meet their primary needs and use excess resources for secondary metabolism. (C) P. 
aeruginosa uncapable of making surfactants from glycerol was also worse at reducing the oxidative stress produced from growth in glycerol; the needs 
imposed on primary metabolism, such as maintaining redox homeostasis, may leave insufficient resources for secondary metabolism, explaining the loss 
of surfactant secretion.

https://doi.org/10.7554/eLife.76119
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the wild type—in glycerol and in glucose—suggests a futile attempt by this mutant to synthesize more 
surfactants. The fatty acid biosynthesis pathway that provides precursors for surfactant biosynthesis 
regenerates NAD(P)+ from NAD(P)H. ΔrhlA could perturb this pathway causing minor increases in 
oxidative stress.

Our analysis adds to the model of metabolic prudence, which provided a social evolutionary expla-
nation for biosurfactant secretion. The model of metabolic prudence says that the microbial cell can 
lower the cost of a cooperative public good by delaying expression to times when it has excess carbon 
source (Xavier et al., 2011). A detailed study suggested that the strain PA14, needs to regulate rhlAB 
expression to carefully split the flux of carbon between biomass production and rhamnolipid synthesis 
(Boyle et al., 2015). Here, comparing diverse strains reminds us that heterotrophs like P. aeruginosa 
use organic compounds like glycerol, glucose, and succinate as carbon source for biomass, but also 
as an energy source. That energy fuels essential processes, including the reduction of oxidative stress, 
which ends up competing with secondary metabolism. This adds molecular detail to complement the 
evolutionary explanation and advance our understanding of P. aeruginosa surfactants.

More generally, our analysis highlights the importance of balancing the individual costs and popu-
lation benefits of secondary metabolism. There are many products of secondary metabolism that 
contribute to the outsize impact that microbes have on the macroscopic world. Products of one micro-
bial species can impact other species—cooperatively or competitively—potentially amplifying micro-
bial functions in diverse communities such as the human microbiome (Xavier, 2011). The surfactants 
of P. aeruginosa are only one instance of the multitude of microbial secondary metabolism (Demain, 
2014). But their analysis suggests a general principle: natural selection will favor sophisticated 
regulation that conciliates the individual-level costs and the population-level benefits of secondary 
metabolism.

Materials and methods
Media
Glycerol synthetic media were prepared with 800 ml of Milipore water, 200 ml of 5× minimal salts 
buffer, 1 ml of 1 M magnesium sulphate, 0.1 ml of calcium sulphate with 0.5 gN/l nitrogen (ammonium 
sulphate), iron at 5 μM (iron III sulphate), and 3.0 gC/l glycerol, respectively. 5× stock minimal salts 
buffer was prepared with 12 g of Na2HPO4 (anhydrous), 15 g of KH2PO4 (anhydrous), and 2.5 g of 
NaCl into 1 l water.

Growth curve assays
The clinical isolates were inoculated in 3 mL of lysogen broth (LB) and incubated at 37°C overnight 
with shaking at 250 rpm. 500 μL of cell culture was pelleted and washed three times with PBS. 0.0025 
units were inoculated into 3.0 g of carbon/liter of medium in glycerol minimal medium (7.7 g/l of glyc-
erol) in BD Falcon (BD Biosciences, San Jose, CA) 96-well flat-bottom plates, with 150 μL of suspen-
sion per well. The plate was incubated during 48 hr at 37°C in a Tecan Infinite M1000 or Tecan Infinite 
M1000 Pro plate reader (Männedorf, Switzerland), with an orbital shaking of 4 mm of amplitude. OD600 
was measured in 10 min intervals.

Rhamnolipid production quantification
The production of rhamnolipids was assessed by drop collapse assay (Jain et al., 1991; Chen et al., 
2007). We placed 50 μL of the culture’s supernatant on a polystyrene surface (the lid of a 96-well 
plate). The presence of rhamnolipids decreases the surface tension of the liquid, making the drop 
collapse. We considered a strain rhamnolipid non-producer if the drop does not spread, a mild-
producer if spreads, but not enough to pass over the lid’s circle that corresponds to the wells, and 
producer if spreads over it.

Pangenome analysis
The pangenomes of our clinical P. aeruginosa isolates were identified using the roary tool (Page et al., 
2015) using the output of genome annotation from prokka (Seemann, 2014). The core genes need 
to have at least 95% identity using blastp and to be present in at least 99% of all genomes, and then 
were aligned with the MAFFT method (Katoh et al., 2002).

https://doi.org/10.7554/eLife.76119
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Phylogenetic analysis
The phylogenetic tree of clinical P. aeruginosa strains was constructed from core genomes as previ-
ously described (Yan et al., 2017). Moran’s I test was carried out using the ape package in R (Paradis 
and Schliep, 2019). The ancestral state of swarming and rhamnolipid production was reconstructed 
using corHMM package (Beaulieu et al., 2013).

Growth curve analysis
We first normalized the growth curves conducted in different experimental batches (different micro-
titer plates) using the PA14 inoculated in the same plate as the reference for normalization. The 
plate-specific coefficients were obtained by solving a linear regression model ‘log(OD of PA14)~Plate 
+ Time’ (the Wilkinson notation) using Matlab function fitlm, where Plate is plate ids and Time is 
time points (both are categorical variables). Then the growth curves in each plate were normal-
ized by multiplying the adjustment coefficient of the plate. These normalized growth curves were 
then smoothed by Savitzky-Golay filter (sgolayfilt function in Matlab). The growth phases (phase 
I, II, III) were determined by the following rules: (phase I) first-order derivative  >0  and second-
order derivative  >0; (phase II) first-order derivative  >0  and second-order derivative  <0; (phase 
III) first-order derivative  <0. The mean and maximum specific growth rate for each growth phase 
were estimated from the best-fit model among three models of bacterial growth curves: (Morens 
et  al., 2004) exponential model ‍y
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−ō

)2

‍

 

, where ‍o
(
t
)
‍ is the growth curve data observed at time point t and 

‍
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factorization and random forest regression were performed in python using sklearn.decomposition.
NMF and sklearn.ensemble.RandomForestClassifier, respectively.

Metabolite extraction
All P. aeruginosa strains were grown until the end of exponential phase of growth in glycerol minimal 
medium. Bacteria was then loaded into 0.25-μm nylon membranes (Millipore) using vacuum, trans-
ferred to pre-warmed hard agar plates with the same medium composition and incubated at 37°C 
during 2.5 hr. The filters were then passed to 35-mm polystyrene dishes (Falcon) with 1 mL of 2:2:1 
methanol:acetonitrile:H2O quenching buffer and incubated there during 15 min on dry ice. Cells were 
removed by scraping, and the lysate containing quenching buffer was transferred to 1.5 mL tubes 
and centrifuged at 16,000 rpm for 10 min at 4°C. Supernatant transferred to fresh tubes and stored 
at –80°C.

Metabolomic data preprocessing
The extracts were profiled using LC-MS, identifying a total of 92 compounds (Supplementary file 5). 
Some compounds contained missing values. These missing values in metabolite abundance can be 
(Morens et al., 2004) truly missing; (Rowland et al., 2018) present in a sample but its level is below 
detection limit; (Henderson, 1999) present in a sample at a level above the detection limit but missing 
due to failure of algorithms in data processing. Here we assume that a metabolite with missing values 
in all three replicates is truly missing in the sample and removed from our analysis (Supplementary file 
5). However, if the missing values were only found in one or two replicates, the missing values were 
imputed by the average of the non-missing values. After that imputation, all compounds remaining 
with missing values were removed (Supplementary file 5).

The peak areas were normalized using cross-contribution compensating multiple standard normal-
ization (Redestig et al., 2009) with NormalizeMets R package (De Livera et al., 2018). This method 
relies on the use of multiple internal standards. Since LC-MS lacks such internal standards, we used 
instead a set of metabolites assumed to be constant across all the strains. They were selected with a 
Kuskal-Wallis test, adjusting the p-value with Benjamini-Hochberg method. The ones with a p-value 

https://doi.org/10.7554/eLife.76119


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Evolutionary Biology

Santamaria, Liao et al. eLife 2022;11:e76119. DOI: https://doi.org/10.7554/eLife.76119 � 19 of 27

above 0.05 were considered constant (pyruvate, methylglyoxal, (S)–2-acetolactate, tyramine, D-glu-
cose, (S)-lactate, N-acetyl-L-glutamate 5-semialdehyde, 4-aminobutyraldehyde, and glycine), there-
fore after the normalization step they were removed (indicated in red, Supplementary file 5A). The 
processed area peaks for all metabolites are included in Supplementary file 5.

Unsupervised analysis of metabolomic data
The hierarchical clustering of the normalized metabolomic data was performed using gplots R package 
(Warnes et al., 2015), with Euclidean distance and Ward’s aggregation method. The clustering was 
performed with all metabolites, including 16 unidentified metabolites that we could not identify (indi-
cated in black, Figure 2—figure supplement 2). We included these 16 unidentified compounds in 
the clustering analysis because they were detected in all strains and therefore were not artifacts of 
the LC-MS. Nonetheless, because they were unidentified, we removed them from Figure 3—figure 
supplement 2 and from the downstream analyses. Two other compounds, fumarate and guanosine, 
which were only putative initially, were bioinformatically confirmed as all other compounds with the 
same molecular weight are produced by enzymatic reactions missing in our clinical isolates. The PCA 
was done with R’s base method, using also the normalized data and previously removing the 16 
metabolites with unknown identity. The plot was obtained using ggplot2 R package (Wickham, 2016).

Metabolic pathway enrichment
The differential metabolites between rhamnolipid producers and non-producers were determined 
by a Mann-Whitney test, with p-values adjusted with Benjamini-Hochberg method and a significance 
level of 0.05. These compounds were fed to FELLA algorithm (Picart-Armada et al., 2018; Picart-
Armada et al., 2017). FELLA retrieves a graph describing the relationships among pathway, module, 
enzyme, reaction, and compounds of P. aeruginosa strain PA14 from the KEGG database. The graph 
was then used as an input network of differential compounds for its diffusion algorithms (Vandin 
et al., 2011). The output of FELLA consists of all subnetworks of the entries predicted to have a high 
connectivity with the differential compounds. We filtered the subnetwork entries to keep only meta-
bolic pathways. The entries shown in Supplementary file 3 are the ones with a significant probability 
of receiving part of the simulated flux.

OPLS-DA model
OPLS-DA model of metabolomics data was built using ropls R package (Thévenot et al., 2015), fixing 
the number of orthogonal components to 3. R2 and Q2, key parameters for assessing the validity of the 
model, were assessed with sevenfold cross-validation. The significance of the model was determined 
by permutation test (n=2000). The p-value corresponds to the proportion of Q2

perm above Q2. With a 
p-value below 0.05 we considered the model significant. The loadings of the predictive component of 
the model were extracted to determine how each metabolite contributes to the separation according 
to the phenotype.

Genome-scale modeling
Custom Python codes were developed with the COBRApy package (Ebrahim et al., 2013) to carry 
out all metabolic flux modeling and simulations in the paper. Since iJN1411 model was developed for 
P. putida, we removed genes and associated reactions that are missing in all our strains but present 
in the iJN1411 model. The futile cycles involving NADH, NADPH, and GSH were also removed. The 
modified iJN1411 model was further expanded by adding rhamnolipid biosynthesis pathway involving 
9 new metabolites and 12 new reactions.

The boundary fluxes of the model were set to mimic the composition of the glycerol minimum 
medium. For C:N=10, the lower bounds of glycerol and ammonium fluxes were set to –10 and –3, 
respectively. For C:N=3, the lower bounds were set to –3 and –3, respectively. The flux unit is mmol/
gDW/hr throughout the paper. To constrain the total producing flux of NADH (the same for NADPH 
and GSH) at a certain value ‍C‍, we first defined a binary variable ‍Xk‍ for each NADH-involving reac-
tion ‍k‍ to indicate whether NADH is produced by this reaction. Given the stoichiometric coefficient 
of NADH in this reaction (‍sk‍) and its flux value (‍fk‍), the mathematical constraints for ‍Xk‍ was set by 

‍Xk = 1‍ for ‍skfk > 0‍ and ‍Xk = 0‍ otherwise. Therefore, the constraint that equalizes the total NADH 
producing flux and a constant ‍C‍ is simply ‍

∑
k skXkfk = C‍ . However, both ‍Xk‍ and ‍fk‍ are variables and 
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such quadratic constraint has not yet been supported by COBRApy. We overcame this difficulty by 
defining ‍Ak = Xkfk‍ and linearized the product with the following two inequalities: ‍Xklb ≤ Ak ≤ Xkub‍ 
and ‍fk −

(
1 − Xk

)
ub ≤ Ak ≤ fk −

(
1 − Xk

)
lb‍ , where ‍lb‍ and ‍ub‍ are the lower and upper bounds of ‍fk‍ . 

The two constraints ensure that ‍Ak = 0‍ when ‍Xk = 0‍ and ‍Ak = fk‍ when ‍Xk = 1‍. The minimum/maximum 
flux values of byproduct secretion were simulated by flux variability analysis at maximum growth rate.

Detection of hydrogen peroxide (H2O2)
The H2O2 level in the extracellular medium was quantified with Amplex Red Hydrogen Peroxide/
Peroxidase Assay Kit (Invitrogen, Carlsbad, USA, Catalog no. A22188). 500 μL of overnight growth 
in LB medium cell suspension were spun down, washed twice in PBS, and resuspended into glycerol 
medium at OD 1. Each reaction was done in a final volume of 100 μL, with a final concentration of 
50 μM of Amplex Red reagent, 0.1 U/mL of HRP (Horseradish Peroxidase), and 0.2 cell OD, in glycerol 
synthetic medium, in BD Falcon (BD Biosciences, San Jose, CA) 96-well flat-bottom plates. The first 
column of the plate corresponded to the reaction without cells (the volume was substituted by PBS), 
and the last column instead of cells contained H2O2 (final concentration 10 μM). OD600 and fluores-
cence 530/590 nm were measured in 10 min intervals (48 hr 37°C).

RNA-seq and data analysis
The P. aeruginosa strains were inoculated into LB and grown with agitation for 16 hr. The overnight 
culture was diluted in glycerol synthetic medium the next day and grew to late exponential phase to 
harvest RNA. Cells were harvested by centrifuge and then immediately resuspended in RNAprotect 
(QIAGEN). The RNA was extracted using the RNeasy Mini Kit from QIAGEN. The standard RNA 
sequencing was done by Genewiz (Genewiz, Inc; South Plainfield, NJ) using pair-end indices of 150 bp 
read length on an Illumina HiSeq platform. The raw fastq files first went through quality check by 
fastQC (Andrews, 2010), and aligned with STAR (Dobin et al., 2013). The final output was generated 
using DEseq2 (Love et al., 2014) package in R. The read counts for each gene are included in Supple-
mentary file 6. The SRA accession number for the RNAseq data is listed in Supplementary file 7.

RLQ analysis
To test for the functional associations between genes and rhamnolipid production, we adopted the 
RLQ analysis (ade4 package in R) that was developed for identifying the associations between traits 
and environmental variables. Here we applied it to RNAseq analysis to understand the main co-struc-
tures between gene functions and phenotypes mediated gene expression. The theory of RLQ anal-
ysis is described in detail elsewhere (Thioulouse et al., 2018). Briefly, it builds on the simultaneous 
ordination of three tables: an R table (categorical) describing rhamnolipid production (strong-, mild-, 
and non-producers) for 11 selected isolates (each replicate was treated as an independent observa-
tion), an L table (continuous) describing the RNAseq counts of 1474 core genes shared among the 11 
isolates, and a Q table (binary) describing 120 KEGG pathways for the 1474 genes. We first applied 
corresponding analysis (CA) to table L and Q and PCA to table R. In the CA of R and Q, each strain 
and gene were weighted by their total RNA expression levels, respectively. The three separate ordi-
nations are then used as inputs to the rlq function. The output of the function includes coefficients 
for the gene functions and phenotypes (loadings) as well as the scores of strains (out of phenotypes) 
and scores of genes (out of gene functions). RLQ analysis maximizes the squared cross-covariances 
between the two sets of scores weighted by gene expressions.

Hydrogen peroxide (H2O2) degradation
H2O2 was removed from environment by cells which degrade H2O2 intracellularly. The cumulative 
H2O2 removal curve was calculated by subtracting the values of emission of the wells containing each 
strain from the values of emission of the wells without cells or H2O2. Then they were normalized to 
the relative scale by dividing their values by the corresponding values (at the same time points) of the 
control strain (PA14) in the same experiment (plate). These normalized curves were then smoothed by 
the Savitzky-Golay filter (sgolayfilt function in Matlab). The H2O2 removal rate per cell was calculated 
by dividing the first-order derivative of the cumulative removal curves by OD values. To estimate the 
effect of rhamnolipid production on per-cell H2O2 removal rate, we developed a linear mixed-effect 
model that extends the simple linear regression model by considering both fixed and random effects. 
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The model was specified by the Wilkinson notation ‘RemovalRate ~Time + RHL + (1|CurveID)’, where 
RemovalRate is per-cell H2O2 removal rate, Time is time point (categorical variable), RHL is cate-
gorical rhamnolipid production (non-producer, mild-producer, and strong-producer), and CurveID is 
the unique ID for each strain and replicate. The expression ‘(1|CurveID)’ indicates that CurveID was 
modeled as random effects. The model was solved by fitlme in Matlab.

Promoter activity and growth rate comparison
Two P. aeruginosa strains carrying chromosomal insertions of the reporter fusion PrhlABgfp (Lequette 
and Greenberg, 2005) and PA1/04/03gfp (a constitutive promoter, to be used as internal standard) 
(Lambertsen et  al., 2004) in a PA14 background (Xavier et  al., 2011), respectively, were inocu-
lated into LB, and overnight cultures were harvested and washed with PBS three times. Cells were 
diluted to OD600=0.1 in synthetic media and monitored using TECAN plate reader for both OD600 
and GFP fluorscence. Upon cells entering the exponential phase, H2O2 was added to the cells at a 
concentration in the assay of 0, 10, 20, 50, and 100 mM, continuing growth monitoring over 48 hr. 
After identifying growth phase II, the promoter activity at each timepoint within this interval was 
calculated as: ‍P = dGFP

dt · 1
OD‍ . The ratio of promoter activity in each experiment was extracted as Rp 

= 
‍

median
(

PrhlAB
)

median
(

PA1/04/03
)
‍
 . Similarly, the growth rate was calculated as ‍G = dOD

dt · 1
OD‍ , and the ratio of strains 

with different promoters was calculated as 
‍
RG = median

(
GPrhlAB

)
median

(
GPA1/04/03

)
‍
 . The effect of H2O2 was estimated by 

fitglme in Matlab as: log(R)~a0+‍β·‍ [H2O2]+‍ϵ‍, where R is the measured ratio of either promoter activity 
or growth rate, and ‍ϵ‍ is denoted as the random effect of experiments. This procedure was used too 
for performing the promoter activity and growth rate analyses in PA14 ∆rhlA mutant.

BIOLOG assay to obtain data for predictive modeling
We grew each of the P. aeruginosa stains in the BIOLOG phenotype microarrays PM1 and PM2a from 
Biolog Inc (Hayward, California, USA). We prepared minimal media without any carbon source added 
(800 ml of Milipore water, 200 ml of 5× minimal salts buffer, 1 ml of 1 M magnesium sulphate, 0.1 ml of 
calcium sulphate with 0.5 gN/l nitrogen [ammonium sulphate], iron at 5 μM [iron III sulphate]; 5× stock 
minimal salts buffer was prepared with 12 g of Na2HPO4 [anhydrous], 15 g of KH2PO4 [anhydrous], 
and 2.5 g of NaCl into 1 l water). We grow 5 mL bacterial cultures for 12–16 hr at 250 rpm and 37 ℃, 
then aliquoted washed 1.5 mL in media without carbon source and adjusted the initial OD by further 
dilution. We added 150 ul of inoculated media onto each well of a BIOLOG plate and incubated for 
24 hr overnight shaking at 250 rpm at 37℃. After that we measured the endpoint OD and assessed 
surfactant secretion using the drop collapse assay.
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