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Abstract Oscillatory behaviors, which are ubiquitous in transcriptional regulatory networks, are 
often subject to inevitable biological noise. Thus, a natural question is how transcriptional regula-
tory networks can robustly achieve accurate oscillation in the presence of biological noise. Here, 
we search all two- and three-node transcriptional regulatory network topologies for those robustly 
capable of accurate oscillation against the parameter variability (extrinsic noise) or stochasticity of 
chemical reactions (intrinsic noise). We find that, no matter what source of the noise is applied, the 
topologies containing the repressilator with positive autoregulation show higher robustness of accu-
rate oscillation than those containing the activator-inhibitor oscillator, and additional positive auto-
regulation enhances the robustness against noise. Nevertheless, the attenuation of different sources 
of noise is governed by distinct mechanisms: the parameter variability is buffered by the long 
period, while the stochasticity of chemical reactions is filtered by the high amplitude. Furthermore, 
we analyze the noise of a synthetic human nuclear factor κB (NF-κB) signaling network by varying 
three different topologies and verify that the addition of a repressilator to the activator-inhibitor 
oscillator, which leads to the emergence of high-robustness motif—the repressilator with positive 
autoregulation—improves the oscillation accuracy in comparison to the topology with only an 
activator-inhibitor oscillator. These design principles may be applicable to other oscillatory circuits.

Editor's evaluation
The authors study the important problem of how to achieve accurate oscillation robustly in biolog-
ical networks where noise level may be high. The authors adopted a comprehensive approach and 
study how different network configurations affect oscillation. This work makes an important contri-
bution to the field as it offers the first comprehensive survey of networks motifs capable of oscilla-
tion, with further characterization of their robustness.

Introduction
Oscillatory behaviors have been observed in a broad range of biological processes, such as cell cycle 
(Ferrell et  al., 2011; Tyson, 1991), circadian rhythms (Partch et  al., 2014), and mitotic wave in 
Drosophila embryo (Deneke et al., 2016). Oscillatory features, including period and amplitude, can 
encode functional information, which plays an essential role in coordinating gene regulation (Cai 
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et al., 2008) or transmitting distinct stimuli (Hao and O’Shea, 2012; Heltberg et al., 2019). In past 
decades, negative feedback, time delay, and nonlinearity have been identified as key mechanisms for 
biochemical oscillation (Novák and Tyson, 2008), following which researchers artificially synthesized 
biochemical networks capable of oscillation (Atkinson et al., 2003; Chen et al., 2015; Elowitz and 
Leibler, 2000; Potvin-Trottier et al., 2016; Stricker et al., 2008; Tigges et al., 2010; Zhang et al., 
2017). Repressilator (Elowitz and Leibler, 2000) and activator-inhibitor oscillator (Atkinson et al., 
2003) are the most famous of these synthetic oscillators.

While many synthetic biological circuits can oscillate, their dynamics are typically irregular, owing 
to ubiquitous biological noise such as fluctuations in the microenvironment and inherent stochasticity 
of chemical reactions (Elowitz et al., 2002; Li et al., 2009; Potvin-Trottier et al., 2016; Raser and 
O’Shea, 2004; Swain et al., 2002; Yu et al., 2018). Thus, a natural question is how the biological 
systems achieve accurate oscillation in the presence of noise. Previous studies revealed that many 
kinetic parameters can influence the robustness of the biological oscillators, such as the system size 
and degree of cooperativity of reactions (Gonze et al., 2002a), timescale of the promoter interaction 
(Forger and Peskin, 2005), repressor degradation rate (Potvin-Trottier et al., 2016), free energy 
cost measured by ATP/ADP ratios (Cao et al., 2015; Fei et al., 2018; Qin et al., 2021), and kinetic 
parameter-determined oscillation mechanisms (i.e., limit cycle or force driving) (Monti et al., 2018). 
Moreover, growing evidence suggests the existence of the relationship between network configura-
tions and noise buffering capabilities for biochemical oscillators. For example, in a synthetic microbial 
consortium oscillator composed of two different types of bacteria, adding negative autoregulation to 
the negative feedback loop increases the parameter space to oscillate persistently in the face of noise 
(Chen et al., 2015); an additional positive feedback loop in the biochemical oscillator consisting of 
the negative feedback loop can decrease the coefficient of variation (CV) of period when considering 
the stochasticity of reactions (Mather et al., 2009) and possess nearly constant period when varying 
the synthesis rate (Stricker et al., 2008).

Instead of exploring mechanisms to achieve accurate oscillation case by case, we try to under-
stand the general network design principles of accurate oscillation using the bottom-up approach 
(Ma et al., 2009; Qiao et al., 2019) and discover the specific network topologies that can oscillate 
and attenuate noise simultaneously. Here, we systematically explore the relationship between the 
network topology and robustness to different sources of noise in both two- and three-node networks. 
We first perform an exhausting search of two- and three-node network topologies to identify those 
capable of oscillation in the absence of noise, and then investigate the abilities of those oscillatory 
topologies to achieve accurate oscillation in the presence of different sources of noise. Two different 
sources are considered: parameters are perturbed by noise terms whose magnitudes are propor-
tional to parameters (i.e., extrinsic noise); chemical reactions induce stochasticity due to a small copy 
number of proteins (i.e., intrinsic noise). We classify all oscillatory topologies according to what core 
motifs they include, and then compare the ability to execute accurate oscillation in the presence of 
noise among different categories. Two categories whose core motifs include a repressilator with a 
positive feedback perform better than others. Importantly, the existence of positive autoregulation 
always enhances the performance. While these results hold regardless of what source of noise exists, 
mechanisms to attenuate different sources of noise are distinct: long period buffers the extrinsic noise, 
and high amplitude attenuates the intrinsic noise. Moreover, we experimentally validate that adding 
a repressilator to the activator-inhibitor topology in synthetic NF-κB signaling circuits can improve the 
performance to buffer noise, indicating the important role of the repressilator with a positive autoreg-
ulation in filtering noise.

Results
Searching for topologies robustly executing accurate oscillation
Index for measuring the oscillation accuracy
To measure the accuracy of the oscillatory behavior, we use the dimensionless correlation time, which 
is the correlation time ‍τ ‍ divided by the period ‍T ‍. The correlation time ‍τ ‍ describes how fast the auto-
correlation function ‍C

(
t
)
‍ exponentially decays. To be specific, for a noisy dynamic trajectory of the 

oscillator, ‍C
(
t
)
‍ displays a damped oscillation (Figure 1A):
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, and ‍⟨· · · ⟩‍ is the ensemble average; ‍T ‍ is the 

period (time needed from one peak to the next peak). If fluctuations of the noisy trajectory are small, 
the autocorrelation decays slowly, leading to a large value of ‍τ ‍. The correlation time ‍τ ‍ has the same 
unit as that of the period, so ‍τ /T ‍ is dimensionless. Therefore, instead of using ‍τ ‍, we utilize ‍τ /T ‍ to 
measure the accuracy, which is equal to the quantity that previous work has used (Cao et al., 2015) 
except a constant factor.

Figure 1. Searching all possible two-node and three-node network topologies for oscillatory topologies with high accuracy in the presence of noise. 
(A) The accuracy of the oscillatory behavior against the noise is measured by the ratio of the correlation time ‍τ ‍ to the period ‍T ‍. (B) Possible links in two-
node and three-node network topologies. (C) Two typical topologies of biological oscillators: the activator-inhibitor and the repressilator topologies. (D) 
The deterministic model. (E) Stochastic models where the extrinsic and intrinsic noise are considered separately. (F) Illustration of searching oscillatory 
topologies and measuring the robustness to noise for a given oscillatory topology. See ‘Methods’ and Supplementary file 1a for parameter ranges and 
magnitudes of extrinsic and intrinsic noise.

https://doi.org/10.7554/eLife.76188
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Network topology space
We limit ourselves to network topologies with two or three nodes (Figure 1B) and search for topol-
ogies capable of accurate oscillation using a bottom-up concept. While the signaling pathway of the 
oscillator in nature is complex, the core motif executing functions may be simple (Lim et al., 2013; 
Ma et al., 2009; Novák and Tyson, 2008; Qiao et al., 2019), and thus two- or three-node networks 
might be enough to capture key features. Besides, the number of all two- and three-node network 
topologies is 39 because there are nine links in total and each link has three options: activation, inhi-
bition, or does not exist; however, by excluding topologies with isolated nodes or symmetrical to 
existing topologies, the number of possible two- and three-node network topologies is reduced from 
39 to 1955. Here, two typical oscillatory topologies are shown in Figure 1C: the activator-inhibitor 
and repressilator topologies. For the activator-inhibitor topology, the activator (node A) has a posi-
tive autoregulation and positively regulates the inhibitor (node B), but is negatively regulated by the 
inhibitor; for the repressilator topology, each node acts as a repressor to inhibit its next node, thus 
constituting a cyclic negative-feedback loop.

Mathematical modeling
To model two- and three-node network topologies, we use transcriptional regulations to describe 
interactions among nodes (Figure 1D; see ‘Methods’). In a transcriptional regulatory network, nodes 
and links represent genes’ products and transcriptional regulations, respectively; genes’ products 
work as transcription factors to interact with the regulatory sequence of other genes and activate or 
inhibit the transcription, regulating the production rates of other genes’ products, that is, other nodes. 
Moreover, when multiple transcription factors regulate the same gene simultaneously, the competi-
tive inhibition logic is adopted: those transcription factors compete for the same binding sites. Thus, 
the transcriptional activity of a gene depends on the relative weights of transcription factors acti-
vating this gene and those inhibiting this gene. Figure 1D illustrates the ordinary differential equation 
describing dynamics of node A when node A not only activates itself but also is inhibited by node B. 
In this equation, the variable ‍A‍ represents the concentration of the product of gene A; ‍kbasal‍ is the 
basal production rate (much smaller than other terms); ‍vAA‍ is the maximum production rate caused by 
product A; ‍KAA‍ and ‍KBA‍ are binding affinities of products ‍A‍ and ‍B‍ to gene A, respectively; ‍rA‍ is the 
degradation rate; ‍n‍ is the Hill coefficient; and the production rate is determined by relative weights 
of ‍A‍ and ‍B‍.

Based on the above deterministic model, we develop stochastic models to describe the oscilla-
tory behavior in the presence of noise. According to the source of noise, the biological noise can be 
decomposed into extrinsic and intrinsic components. On the one hand, we model the extrinsic noise 
as the variability of parameters including the maximum production rate ‍v‍ and the degradation rate ‍r‍ 
(Figure 1E; see ‘Methods’): each of these parameters is added by a noise term with zero mean, and 
the standard deviation of the noise term is proportional to the value of the kinetic parameter. On 
the other hand, the intrinsic noise, generated by the stochasticity of discrete chemical reactions, is 
modeled by directly simulating the dynamics of molecular numbers rather than concentrations. To this 
end, we introduce the cell volume ‍V ‍, and naturally the molecular number of each node is the product 
of the cell volume ‍V ‍ and the concentration. As reactions progress, the molecular numbers would 
randomly increase or decrease by one at some time point (Figure 1E; see ‘Methods’), and the waiting 
time of the increase and decrease obeys exponential distributions with parameters determined by the 
production and decay rates in the deterministic model, respectively. This stochastic process can be 
exactly solved by the Gillespie algorithm, which has been widely used in previous studies (Liu et al., 
2020; Thattai and van Oudenaarden, 2001; Veliz-Cuba et al., 2015; Zhao et al., 2021); however, 
the computation cost is high, and thus we use chemical Langevin equations as approximations to 
reduce the cost (Gillespie, 2000). Although the biological noise in nature usually has the extrinsic and 
intrinsic components simultaneously, we only consider the case where only one source of noise exists 
for simplicity, that is, only extrinsic noise exists or only intrinsic noise exists.

Procedures to search for network topologies robustly executing accurate 
oscillation
To search for two- and three-node network topologies that can robustly achieve accurate oscillation 
(i.e., high dimensionless correlation time ‍τ /T ‍), two steps are performed (Figure 1F): the first step is 

https://doi.org/10.7554/eLife.76188
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to identify topologies capable of oscillation in the whole network topology space (the upper panel 
in Figure 1F); the second step is to use the 90-percentile value of ‍τ /T ‍ to quantify the robustness of 
each oscillatory network topology to achieve accurate oscillation (the lower panel in Figure 1F). For a 
given topology, the 90-percentile value of ‍τ /T ‍ is defined as the value of ‍τ /T ‍ below which 90% of ‍τ /T ‍’s 
fall when 1000 parameter sets are randomly assigned. We refer the reader to ‘Methods’ for details, 
and here we only show major procedures. In the first step (the upper panel in Figure 1F), to obtain 
oscillatory network topologies in the whole network topology space, we randomly assign 10,000 
parameter sets for each network topology and simulate the deterministic dynamics. The oscillatory 
network topology is chosen by the following two criteria: the network topology without repressilator 
is regarded as an oscillatory network topology if at least 80 parameter sets are capable of oscillation; 
the network topology with repressilator is defined as an oscillatory network topology if at least 10 
parameter sets achieve oscillation. In this way, we finally obtain 474 oscillatory network topologies, 
and nearly 35% of them are with the repressilator. If we used the threshold of 80 for all network topol-
ogies, oscillatory network topologies with repressilator only occupy 20% of all oscillatory network 
topologies, which may lose the generality of conclusions about the repressilator. In the second step 
(the lower panel in Figure 1F), for each of these 474 oscillatory network topologies, we sample 1000 
parameter sets capable of oscillation in the absence of noise and calculate the 90-percentile value 
of ‍τ /T ‍ in the presence of extrinsic noise or intrinsic noise. This value measures the robustness of the 
given topology against noise: the higher the value is, the larger probability to achieve accurate oscil-
lation the topology has.

The robustness of accurate oscillation against extrinsic noise for 
different network topologies
Classification of all 474 oscillatory network topologies
We start by classifying all 474 oscillatory network topologies according to five types of core motifs. 
These five types of core motifs are as follows: the first core motif (shown in brown in Figure 2A) is 
composed of the repressilator and a positive autoregulation, but the node with the positive auto-
regulation is not allowed to have a positive incoming link; the second core motif (shown in orange 
in Figure 2A) is similar to the first core motif except that the positive incoming link to the positive 
autoregulated node is required; the third type of core motifs include the activator-inhibitor topology 
and its two variants (shown in green in Figure 2A); the fourth and fifth core motifs are the repressilator 
and delayed negative feedback (Figure 2A), respectively. Based on the identification of five types of 
core motifs, we define C1 category as the network topologies that contain only the first type of core 
motif, and so do the C2 category, C3 category, C4 category, and C5 category. The above five cate-
gories constitute near 59% of all 474 oscillatory network topologies, while the rest of topologies are 
those containing at least two of these five types of core motifs. Note that these oscillatory network 
topologies all have a negative feedback structure, which is consistent with previous studies (Glass and 
Pasternack, 1978; Novák and Tyson, 2008).

The topologies containing repressilator with positive autoregulation perform 
better than those containing the activator-inhibitor topology when facing 
extrinsic noise, and the positive autoregulation enhances the robustness 
against extrinsic noise
Next we compare the robustness of accurate oscillation against extrinsic noise among above C1, C2, 
…, and C5 categories. Figure 2B shows the violin plots of 90 percentiles of ‍τ /T ‍ in the presence of 
extrinsic noise for the five categories, where each violin corresponds to one category. By applying 
one-tailed Wilcoxon rank-sum tests to adjacent two categories, we find that 90 percentiles of ‍τ /T ‍ for 
C1 category are significantly larger than those for C2 category, and this relation also holds between 
C2 and C3 categories, between C3 and C4 categories, and between C4 and C5 categories. These 
findings indicate that the order of these five categories according to the robustness of accurate oscil-
lation to extrinsic noise is C1 > C2 > C3 > C4 > C5. The facts that C1 > C3 and C2 > C3 demonstrate 
that topologies containing the repressilator with positive autoregulation achieve higher robustness 
against extrinsic noise than those containing the activator-inhibitor topology. Besides, core motifs in 
both C1 and C2 categories have an extra positive autoregulation in comparison to the core motif (the 

https://doi.org/10.7554/eLife.76188
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Figure 2. The relationship between network topology and robustness to extrinsic noise. (A) Venn diagram of all 474 oscillatory network topologies. The 
C1, C2, C3, C4, and C5 categories are nonoverlapping collections of network topologies that contain core motifs in brown, orange, green, blue, and 
dark blue, respectively. The number in red is the number of topologies in each region. (B) The violin plots of 90 percentiles of dimensionless correlation 
time (‍τ /T ‍) for C1, C2, …, and C5 categories present in (A). Each category corresponds to one violin plot, and topologies are denoted by dots. The 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.76188


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Qiao, Zhang, Zhao et al. eLife 2022;11:e76188. DOI: https://doi.org/10.7554/eLife.76188 � 7 of 28

repressilator) in C4 category, suggesting that the higher robustness of C1 and C2 categories than C4 
category against extrinsic noise is due to the effect of positive autoregulation in improving the robust-
ness to extrinsic noise. This effect is also validated by the comparison of the robustness between C3 
and C5 categories.

The above analyses focused on the oscillatory network topologies in C1, C2, …, and C5 categories, 
which account for nearly 59% of all oscillatory network topologies. To perform a complete research, 
we also investigate the robustness to extrinsic noise for the remaining 41% oscillatory network topol-
ogies. These topologies all contain at least two types of core motifs and can be classified into seven 
categories, based on what core motifs the topology has. Then we compare each of them with its 
‘component’ category (i.e., C1, C2, …, or C5 categories). For example, C13 category is composed of 
topologies that contain both the first and third types of core motifs, and its two ‘component’ catego-
ries are defined as C1 and C3 categories. The comparison is made in Figure 2C, where each group of 
violin plots separated by dashed lines represents the 90 percentiles of ‍τ /T ‍ (in the presence of extrinsic 
noise) for the category with combined core motifs and its ‘component’ categories. It can be seen that 
the category with combined core motifs usually shows intermediate robustness among its ‘compo-
nent’ categories. That is to say, if a network topology has low robustness against extrinsic noise, 
adding a high-robustness core motif usually improves the robustness, but the combined topology 
cannot outperform the added high-robustness core motif.

Topologies with long period achieve high robustness against extrinsic noise
The above analyses indicate that network topologies differ widely in their robustness to achieve accu-
rate oscillation, then we ask what mechanisms cause these differences. Note that how the system 
responds to the noise is often linked to the deterministic features (Monti et  al., 2018; Paulsson, 
2004; Wang et al., 2010). For example, Monti et al. found that the circuit’s ability to sense time under 
input noise becomes worse when this circuit’s deterministic behavior cannot generate the limit cycle; 
Wang et al. adopted a similar form of noise and demonstrated the importance of signed activation 
time, a quantity calculated based on deterministic behavior, on the noise attenuation; by using an 
‍Ω‍-expansion to approximate the birth-and-death Markov process, Paulsson obtained the variance of 
the protein in gene networks and found that it is related to the network’s elasticity, which is calculated 
from the deterministic model. Based on these observations, we explore two important character-
istics for the oscillator: period and amplitude. Instead of focusing on a specific oscillatory network 
topology, we consider all 474 oscillatory network topologies and study what period and amplitude 
each topology prefers. To be precise, for each network topology, we calculate the distributions of 
period and amplitude from 1000 randomly sampled oscillation parameter sets and approximate mean 
values of period and amplitude by ‍Topt‍ and ‍Aopt‍ , respectively. Here, we refer to the amplitude as 
the maximal peak value among nodes A–C; ‍Topt‍ (or ‍Aopt‍) is defined as the expectation of the best-fit 
exponential distribution of 1000 periods (or 1000 amplitudes) (Figure 2D). Therefore, the topology 
with large ‍Topt‍ tends to oscillate with long period, and the topology with large ‍Aopt‍ usually indicates an 

Wilcoxon rank-sum tests (one-tailed) are applied to adjacent categories (***p<0.001; ****p<0.0001). (C) The violin plots of 90 percentiles of ‍τ /T ‍ for 
topologies that do not belong to any of C1, C2, …, and C5 categories. Taken C13 category as an example, the C13 category is the collection of the 
topology containing the first and third types of motifs simultaneously. (D) Illustration of calculations of the period average (denoted as ‍Topt‍) and the 
amplitude average (denoted as ‍Aopt‍) for a given topology. For a given topology, ‍Topt‍ (or ‍Aopt‍) is the expectation of the best-fit exponential distribution 
of 1000 periods (or 1000 amplitudes) with random assigned parameters. (E) The scatter plots of 90 percentiles of ‍τ /T ‍ versus the ranks according to ‍Topt‍ 
(left) and ‍Aopt‍ (right). Each oscillatory network topology is denoted by a dot, with color determined by its category. Spearman coefficients are illustrated 
on the top of each plot, and the plot with a relatively high Spearman coefficient is highlighted by the black box. (F) The violin plots of ‍Topt‍ for the five 
network topology categories present in (A). The Wilcoxon rank-sum tests (one-tailed) are applied to adjacent categories (ns, not significant; ***p<0.001; 
****p<0.0001). (G) Hypothesis of topology–period–robustness relation. The network topology may affect robustness to extrinsic noise by acting on 
an intermediate quantity – period. (H) Typical dynamics in the presence of extrinsic noise and corresponding autocorrelation functions for the five 
topologies present in (A). From top to bottom, the period length decreases, and the autocorrelation also decreases. The amplitude for those dynamics 
in the absence of noise is almost the same (near 12). The 90 percentile of ‍τ /T ‍ is the average from five replicates.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The same scatter plots as Figure 2E, except that each subplot represents one category.

Figure supplement 2. The distributions of ‍τ /T ‍ for 20 oscillatory network topologies when randomly sampling 1000 kinetic parameter sets.

Figure 2 continued

https://doi.org/10.7554/eLife.76188
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oscillation with high amplitude. Note that these two quantities are calculated in the noise-free system, 
and thus are not affected by the amplitude of the noise source or the type of noise.

To investigate the role of above two quantities ‍Topt‍ and ‍Aopt‍ in the robustness of accurate oscil-
lation against extrinsic noise, we calculate Spearman coefficients between these two quantities and 
90 percentiles of ‍τ /T ‍ for all 474 oscillatory network topologies (Figure 2E). In Figure 2E, each dot 
represents an oscillatory network topology, with the x-axis representing the ranking according to ‍Topt‍ 
(left panel) or ‍Aopt‍ (right panel). The Spearman coefficient between ‍Topt‍ and 90 percentile of ‍τ /T ‍ for 
all 474 oscillatory network topologies is 0.94, which is larger than that between ‍Aopt‍ and 90 percentile 
of ‍τ /T ‍ (0.88). This result not only holds for all 474 oscillatory network topologies, but also holds within 
each of C1, C2, …, and C5 categories (Figure 2—figure supplement 1). These findings indicate that 
the robustness to extrinsic noise is more highly correlated with long period rather than high amplitude.

Since the long period benefits the robustness to extrinsic noise, then we ask how network topol-
ogies affect the period and whether those topologies with long period indeed show high robust-
ness to extrinsic noise. To answer these questions, we analyze ‍Topt‍ for C1, C2, …, and C5 categories 
(Figure 2F). The ranking of these five categories according to ‍Topt‍ is C1 > C2 ≈ C3 > C4 > C5, which 
is obtained by the one-tailed Wilcoxon rank-sum tests for each adjacent two categories. This ranking 
is almost the same as that according to the robustness of accurate oscillation to extrinsic noise (C1 > 
C2 > C3 > C4 > C5) except rankings for C2 and C3 categories, suggesting that the topology with long 
period usually leads to high robustness of accurate oscillation to extrinsic noise (Figure 2G). The only 
inconsistency is that C2 and C3 categories differ in the robustness but have no significant difference 
in the probability to achieve long period. That is to say, C2 category might show better robustness to 
extrinsic noise than C3 category though they have the same period. Figure 2H shows typical dynamics 
for five different topologies when extrinsic noise exists. Those topologies from the top panel to the 
bottom panel belong to categories C1 to C5, respectively. Their dynamics have almost the same 
amplitude, but the period, as well as the autocorrelation, decreases when categories vary from C1 to 
C5. These findings suggest that topologies with prolonged period tend to have good performance to 
filter extrinsic noise, and this correlation is less likely due to that they have different amplitude.

The robustness of accurate oscillation against intrinsic noise for 
different network topologies
In the presence of only intrinsic noise, the repressilator with positive 
autoregulation is still better than the activator-inhibitor, and the advantage 
of positive autoregulation still holds
Unlike considering the robustness of accurate oscillation against parameter variability in the previous 
section, we next study the case where only intrinsic noise exists. With the same oscillatory network 
topology categories present in Figure 2A, 90 percentiles of the dimensionless correlation time (‍τ /T ‍) 
in the presence of only intrinsic noise also show a roughly similar trend from C1 to C5 categories 
(Figure 3A) except that C2 category exhibits the same robustness with C1 category to intrinsic noise 
while C2 category shows lower robustness than C1 in the presence of extrinsic noise. Moreover, the 
higher robustness of C1 and C2 categories compared with C3 category validates the better perfor-
mance of the repressilator with positive autoregulation than the activator-inhibitor topology; the 
improvement of robustness from C4 category to C1 (or C2) category indicates the effect of positive 
autoregulation on the robustness to intrinsic noise; the comparison between the robustness of C5 and 
C3 categories also implies the advantage of the positive autoregulation. These findings are consis-
tent with those when noise is only originated from the extrinsic noise. Another consistency is that the 
hybrid of core motifs imparts an intermediate robustness not only in the presence of the extrinsic 
noise (Figure 2C) but also in the presence of the intrinsic noise (Figure 3B).

Topologies with the high amplitude enable high robustness against intrinsic 
noise
Similar to the analysis of robustness to extrinsic noise, we try to answer whether the period or ampli-
tude is highly correlated with the robustness to intrinsic noise. In the presence of only intrinsic noise, 
the Spearman correlation coefficient of 90 percentiles of ‍τ /T ‍ and ‍Topt‍ for all 474 oscillatory network 
topologies is 0.72, which is smaller than that of 90 percentiles of ‍τ /T ‍ and ‍Aopt‍ (0.81) (Figure 3C). 

https://doi.org/10.7554/eLife.76188
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Figure 3. The relationship between network topology and robustness to intrinsic noise. (A–C) The same plots as in Figure 2B, C and E, except that the 
noise comes from the stochasticity of biochemical reactions. The 90 percentile of dimensionless correlation time (‍τ /T ‍) shows a higher correlation with 

‍Aopt‍ rather than ‍Topt‍ . (D) The violin plots of ‍Aopt‍ for the five network topology categories present in Figure 2A. The Wilcoxon rank-sum tests (one-
tailed) are applied to adjacent categories (ns, not significant; ***p<0.001; ****p<0.0001). (E) Hypothesis of topology–amplitude–robustness relation. The 

Figure 3 continued on next page
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These findings suggest that unlike the case of extrinsic noise where the robustness is more strongly 
correlated with period, the robustness of accurate oscillation against intrinsic noise is more highly 
correlated with amplitude. In other words, the topology with the high amplitude has a larger proba-
bility to achieve high robustness against intrinsic noise than that with long period. However, it should 
be noted that the correlation coefficient between 90 percentiles of ‍τ /T ‍ and ‍Aopt‍ for all oscillatory 
network topologies is not very close to 1 (the right panel in Figure 3C), and it is also much smaller 
than 1 even in each category (Figure 3—figure supplement 1), implying that the relation between 
the amplitude and robustness to intrinsic noise is not very strong, and that some topologies with small 
amplitude may perform better than those with high amplitude. Therefore, there might exist other 
mechanisms to attenuate intrinsic noise.

Furthermore, by applying Wilcoxon rank-sum tests to amplitude average (‍Aopt‍) for neighboring two 
categories, we find that the ranking of five network topology categories according to amplitude is C1 
> C2≈ C3 > C4 > C5 (Figure 3D). This ranking is almost the same as that according to the robustness 
to intrinsic noise (C1 ≈ C2 > C3 > C4 > C5) (Figure 3E), implying that the amplitude might link the 
topology category and the robustness to intrinsic noise. The only exception is C2 category: because 
of the fact that C1 > C2 ≈ C3 according to ‍Aopt‍ and the fact that the amplitude strongly correlates 
with the robustness, the C2 category is supposed to show the same robustness to intrinsic noise as C3 
category and exhibit lower robustness than C1 category; however, the robustness to intrinsic noise for 
C2 category is actually at the same level of C1 category, further demonstrating that the high ampli-
tude is not the only mechanism to enhance the robustness to intrinsic noise (Figure 3—figure supple-
ment 1). Figure 3F shows typical dynamics in the presence of intrinsic noise whose topologies belong 
to distinct categories. Those dynamics exhibit near period, but their amplitudes and autocorrelations 
decrease from category C1 to category C5, which supplies a possibility to enhance the robustness to 
intrinsic noise through varying topologies while maintaining period.

Simulations using the Gillespie algorithm lead to similar conclusions
The above analyses are based on simulations for chemical Langevin equations, which can only give 
approximate solutions of the dynamical behavior in the presence of intrinsic noise. To test whether 
this approximation is feasible, we use the Gillespie algorithm to exactly solve the stochastic dynamical 
behavior when facing intrinsic noise, and then conduct similar analyses (Figure 3—figure supplement 
2) as the previous section has done. According to the robustness rankings for C1–C5 categories, the 
repressilator with positive autoregulation performs better than the activator-inhibitor, and the topol-
ogies with positive autoregulation are better than that without positive autoregulation. Besides, the 
robustness is more correlated with the mean amplitude rather than the mean period, and the order 
of the five categories sorted by the mean amplitude is almost the same as that sorted by robust-
ness, indicating the bridge role of amplitude to link topologies and the robustness to intrinsic noise. 
These results are consistent with the conclusions based on chemical Langevin equations. We also find 
that the Gillespie algorithm leads to higher dimensionless correlation times than chemical Langevin 
equations since the maximal correlation in Figure 3A is near 6 and that in Figure 3—figure supple-
ment 2A is 40. However, this difference does not indicate that chemical Langevin equations are bad 
approximations: when the system behaves normal noise filtering capability, these two methods give 
similar dimensionless correlation times (Figure 3—figure supplement 3A); when the system buffer 

correlation between ‍Aopt‍ and 90 percentiles of ‍τ /T ‍ in the presence of intrinsic noise indicates that the network topology may influence the robustness 
against intrinsic noise through the amplitude. (F) The same plot as Figure 2H except in the presence of intrinsic noise. From top to bottom, while the 
period in the absence of noise is very close (near 12), the amplitude decreases, and the autocorrelation also decreases. The 90 percentile of ‍τ /T ‍ is the 
average from five replicates.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. The same plots as Figure 3C.

Figure supplement 2. The relationship between network topology and robustness to intrinsic noise when using the Gillespie algorithm to simulate the 
dynamics.

Figure supplement 3. Comparisons of dimensionless correlation time obtained from different simulation methods.

Figure supplement 4. Same plot as Figure 2—figure supplement 2 except that the intrinsic noise is considered.

Figure 3 continued
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noise perfectly, dimensionless correlation times calculated through these two methods differ a lot, 
but autocorrelation functions remain similar (Figure 3—figure supplement 3B), which indicates that 
chemical Langevin equations still capture the system’s ability to buffer noise. The reason why large 
and extremely large dimensionless correlation times result in almost same correlations might be that 
doubling long correlation time cannot increase autocorrelation efficiently due to the property of the 
exponential function.

Relations between period/amplitude and oscillation accuracy against 
noise are validated by analytical approaches
The above simulations revealed relations between two important features (i.e., period and ampli-
tude) of the oscillator and the oscillator’s robustness to noise. However, these results just showed the 
correlation rather than the causal relationship. Besides, because the period and amplitude are usually 
positively correlated (Figure 4—figure supplement 1), it is hard to control one feature and analyze 
the effect of the other feature. Fortunately, these two problems can be solved by introducing the 
timescale or rescaling parameters. In this way, we can change one feature while maintaining the other 
feature, and then analytically derive causal relations between period or amplitude and the oscillation 
accuracy. We will illustrate these methods and corresponding results below.

To study the relation between period and oscillation accuracy against noise, we maintain the ampli-
tude and tune the period through changing the factor ‍M ‍ on the right-hand side in ordinary differential 
equations (Figure 4A), and then analyze the phase noise through the analytical approach proposed 
by Demir et al., 2000. Varying ‍M ‍ can be regarded as the rescaling of time ‍t‍, so the period is changed 
while maintaining the amplitude, and thus we can focus on the effect of period on the oscillation 
accuracy. In order to analyze the system with variable ‍M ‍, we first summarize Demir et al.’s work. They 
carried out nonlinear perturbation analysis for oscillators and obtained an exact equation for phase 
deviation. We only summarize the main results below. The dynamics of a perturbed oscillator can be 
described as a set of differential equations:
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(
x
)

+ B
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)
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)
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(
·
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‍ is random noise. The unperturbed 
system ‍̇x = f

(
x
)
‍ has a periodic solution ‍xs

(
t
)
‍ (with period ‍T ‍). It can be proved that the variance of the 

phase deviation ‍σ
2(t)‍ satisfies ‍σ

2(t) = ct‍, and ‍c‍ is as follows:

Figure 4. Effects of tuning period or amplitude on oscillation accuracies. (A, B) Relations between period (A) or amplitude (B) and oscillation accuracies. 
For the activator-inhibitor topology, we arbitrarily choose an oscillation parameter set (see Supplementary file 1b for parameters), and then we add 
‍M ‍ or ‍N ‍ in the way shown in the upper panel to tune the period or amplitude, respectively. The lower panels are simulation results of the period, 
amplitude, and dimensionless correlation time when ‍M ‍ or ‍N ‍ increases.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The mean period and mean amplitude for all 474 oscillatory network topologies show a strong positive correlation.
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 (see ‘Methods’ for details). The Equation 01 gives an analytic 

expression describing the phase noise, so we use the dimensionless ‍c‍, that is, ‍c/T ‍, to measure the 
oscillation accuracy instead of ‍τ /T ‍. To calculate ‍c/T ‍ for the systems with ‍M ‍, we use ‍T ‍ to denote 
the period for the system without ‍M ‍, and then the period for this new system is ‍MT ‍. Besides, ‍v1

(
t
)
‍ 

becomes ‍Mv1
( t

M
)
‍ (see ‘Methods’ for details). For the noise term, we merge ‍

1
M‍ with kinetic parameters 

‍vij, δi, ri‍ , that is, these parameters become ‍
1
M‍ of original values, and then we model the extrinsic and 

intrinsic noise as that in Figure 1E. Therefore, ‍B
(
x
)
‍ becomes ‍B

(
x
) 1

M‍ when facing extrinsic noise as the 
magnitude of noise source is proportional to the kinetic parameters. However, in the presence of only 

intrinsic noise, ‍B
(
x
)
‍ becomes ‍B

(
x
)√ 1

M ‍ because the noise term in the chemical Langevin equation is 
usually the square root of reaction rates. Then we can calculate the ratio of the slope of the variance 
of the phase noise to the period (‍c/T ‍) using the Equation 01 (see ‘Methods’ for details). We find that 
the ‍c/T ‍ in the presence of only extrinsic noise is proportional to the ‍1/M ‍, and that in the presence of 
only intrinsic noise is not affected by ‍M ‍. Note that the smaller the ‍c/T ‍ is, the more accurate the oscil-
lation is. Thus, large ‍M ‍ enhances the oscillation accuracy against extrinsic noise, which is also numer-
ically validated by the trend of dimensionless correlation times for the system with different ‍M ‍ (right 
lower panel in Figure 4A). Since large ‍M ‍ leads to long period but has no influence on amplitude, the 
prolonged period might be the reason for high oscillation accuracy in the presence of extrinsic noise.

For the relation between amplitude and oscillation accuracy against noise, we keep the period and 
tune the amplitude through the rescaling parameter ‍N ‍ and then analyze the rescaled system. For a 
fixed topology with a set of oscillation kinetic parameters, we replace the variables ‍A‍, ‍B‍, and ‍C‍ with 

‍
∼
A/N ‍, ‍

∼
B/N ‍, and ‍

∼
C/N ‍, respectively (Figure 4B). This rescaling makes amplitudes of ‍

∼
A‍‍N ‍ times as high as 

that of ‍A‍, and so do ‍
∼
B‍ and ‍

∼
C‍ . However, this rescaling has no influence on the period, so we can focus 

on the role of amplitude in the oscillation accuracy. The system with rescaled variables ‍
∼
A‍ , ‍

∼
B‍ , and ‍

∼
C‍ 

shows unchanged oscillation accuracy against extrinsic noise with varied ‍N ‍, but the oscillation accu-
racy against intrinsic noise increases with increased ‍N ‍ (see ‘Methods’). Taken together, large ‍N ‍ not 
only increases the amplitude but also improves the oscillation accuracy to intrinsic noise while main-
taining the period. These results are consistent with numerical simulations for tendencies of period, 
amplitude, and dimensionless correlation times (lower panel in Figure 4B). These results indicate that 
the improvement of the oscillation accuracy to intrinsic noise may due to the high amplitude rather 
than period.

Analyses of synthetic NF-κB signaling circuits demonstrate the 
improvement of the oscillation accuracy when adding a repressilator 
topology to the activator-inhibitor
In previous sections, we have used two- and three-node networks to approximate biological systems 
and focused on the noise coming from the variability in kinetic parameters or chemical reactions. 
Though biological systems are more complex than two- or three-node networks and face noise from 
various sources besides the above noises, the investigation of a specific biological system— a synthetic 
NF-κB signaling circuit is consistent with the theoretical results in previous sections. As described 
in our previous work, we implement the design of negative feedback-only circuit 1 (Figure 5A) by 
integrating the synthetic RelA-IκBα signaling circuit into the yeast MAPK pathway. The nuclear-to-
cytoplasmic RelA oscillations can be triggered by inducing the degradation of IκBα through the acti-
vation of yeast MAP kinase Fus3, and we can monitor these single-cell oscillations for up to 10 hr. 
Base on this simple circuit, we then modify its structure by adding extra regulations. One modification 
is adding constantly expressed IκBα. This copy of IκBα also inhibits RelA and is inhibited by Fus3, 
so it provides another pathway from Fus3 to activate RelA (the orange link in circuit 2 in Figure 5A). 
Another modification is adding a yeast MAPK phosphatase Msg5 (the orange link in circuit 3 in 
Figure 5A), which is activated by RelA and can dephosphorylate Fus3. In circuit 3, Msg5, RelA, and 
IκBα form a repressilator topology. To obtain the single-cell time trajectories for these three circuits, 
we employ time-lapse microscopy to track the RelA nuclear localization dynamics for over 10 hr. The 

https://doi.org/10.7554/eLife.76188
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period lengths are determined as the time intervals between the successive peaks of these trajecto-
ries, and then we calculate the CV of those period lengths for over 50 cells. We find that the circuit 2 
shows similar CV of period as that for the circuit 1, but that circuit 3 exhibits lower CV of period than 
circuit 1 (Figure 5B). These results suggest that the additional repressilator topology indeed facilitates 
the noise buffering capability for the activator-inhibitor topology.

Such improvement of the oscillation accuracy when adding a repressilator topology to the 
activator-inhibitor in the synthetic NF-κB circuit can also be validated using the mathematical models 
as described in Figure 1. We use nodes A, B, and C to denote IκBα, RelA, and Fus3, respectively, 
and thus circuits 1 and 3 in Figure 5A are networks shown in upper and lower panels in Figure 5C, 

Figure 5. Experimental evidence of the improvement of oscillation accuracy when adding a repressilator topology to the activator-inhibitor. (A) 
Schematic showing the synthetic NF-κB signaling circuits (circuit 1) and other two circuits (circuits 2 and 3) with more complicated structures. In circuit 
1, RelA activates IκBα, but the latter inhibits RelA, constituting a negative feedback; we regard circuit 1 as the activator-inhibitor where the positive 
autoregulation is replaced by multiple reactions. Based on circuit 1, we construct circuit 2 by adding a copy of IκBα to form a new link from Fus3 to 
NF-κB (RelA), where RelA, IκBα, and Fus3 cannot constitute a repressilator. Circuit 3 is circuit 1 with additional negative regulation from RelA to Fus3, 
which is constructed by adding a yeast MAPK phosphatase Msg5 that is activated by RelA and dephosphorylate Fus3. Circuit 3 includes a repressilator 
consisting of RelA, IκBα, and Fus3. (B) Bar plots of coefficients of variation (CVs) of period for three synthetic circuits present in (A). For each circuit, 
time required from the peak of RelA to next peak from 0 to 10 hr for over 50 cells is recorded to calculate the CV. Two replicates are performed for each 
circuit. (C) Procedures to study how adding repressilator topology to activator-inhibitor affect the oscillation accuracy by using mathematical models 
present in Figure 1. ‍KCA‍ represents the binding affinity of protein C to gene A, and large ‍1/KCA‍ indicates strong inhibition from protein C to protein 
A. (D–G) Simulation results for period (D), amplitude (E), and dimensionless correlation time in the presence of extrinsic (F) or intrinsic (G) noise when 

‍1/KCA‍ increases. See Supplementary file 1c for parameters. The marker with x coordinate 0 denotes the value for activator-inhibitor. The error bar 
represents the standard deviation for 100 repeated simulations. Increasing ‍1/KCA‍ (i.e., strengthening the inhibition from protein C to protein A) prolongs 
period, increases the amplitude, and improves the oscillation accuracy.

https://doi.org/10.7554/eLife.76188


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Qiao, Zhang, Zhao et al. eLife 2022;11:e76188. DOI: https://doi.org/10.7554/eLife.76188 � 14 of 28

respectively. These two networks are interconvertible by tuning ‍KCA‍ (the binding affinity of protein C 
to gene A): (near) zero ‍1/KCA‍ indicates the little effect of protein C to protein A, and thus protein A is 
not affected by protein C, leading to the activator-inhibitor; non-zero ‍1/KCA‍ implies the existence of 
the inhibition from protein C to protein A, resulting in the network with an activator-inhibitor and a 
repressilator. For a given oscillation parameter set for the activator-inhibitor, we first set ‍1/KCA‍ to be 
(near) zero and calculate period, amplitude, and dimensionless correlation time in the presence of 
extrinsic or intrinsic noise (the first points in Figure 5D–G); then we increase ‍1/KCA‍ , and calculate the 
corresponding quantities (i.e., period, amplitude, and dimensionless correlation time, as shown from 
the second points in Figure 5D–G). We can find that the period, amplitude, and dimensionless correla-
tion time for the activator-inhibitor are usually smaller than those with an additional repressilator, and 
this gap enlarges with increased ‍1/KCA‍ , that is, the increased strength of the negative regulation from 
the additional node C to the inhibitor node A (Figure 5C). Therefore, we demonstrate that adding the 
repressilator to the activator-inhibitor enhances the oscillation accuracy. This is consistent with that C1 
and C2 categories exhibit higher robustness than C3 categories. Moreover, the prolonged period and 
increased amplitude, which are also observed in C1 and C2 categories, may be the reason for such 
enhancement (Figure 5D and E).

Discussion
It remains the major challenge in biology to understand how living systems perform complex behav-
iors accurately in the presence of inevitable noise. Instead of studying biological networks case by 
case, we try to answer whether there exist general network design principles for living systems to 
execute biological functions by using a bottom-up strategy (Lim et al., 2013; Zhang and Tang, 2019).

Here, we systematically explore the network design principles for accurate oscillation in both two- 
and three-node networks. We identify several key motifs that have distinct robustness to noise. The 
motif —— a repressilator with positive autoregulation behaves better than other motifs present in 
Figure 2A in most cases, especially the activator-inhibitor oscillator; the additional positive autoregu-
lation can improve the robustness. These results are consistent in spite of sources of noise. However, 
different sources of noise utilize distinct mechanisms to filter noise: the variability of parameters, a 
type of extrinsic noise, is largely filtered through long period, and the intrinsic noise is buffered by 
high amplitude.

Interestingly, investigations of three engineered NF-κB signaling circuits partly validate our simula-
tion results. For the negative-feedback loop circuit, if the additional new regulations form a repressi-
lator, low variance of period will occur, but if no repressilator emerges, the variance of period shows 
no significant change. These findings show the advantage of the repressilator against noise.

While modifying network topology and changing regulation strength for a fixed topology are both 
options to improve the robustness of accurate oscillation, each network’s robustness is an indicator of 
the probability of this network topology achieving accurate oscillation with varied regulatory strengths 
(Figure 2—figure supplement 2, Figure 3—figure supplement 4): the network topology with high 
robustness tends to show high dimensionless autocorrelation time when varying regulatory strengths, 
that is, accurate oscillation (first 10 bars in Figure 2—figure supplement 2 and Figure 3—figure 
supplement 4); the network topology with low robustness displays a bad performance of oscillation 
accuracy in the whole parameter space (last 10 bars in Figure 2—figure supplement 2 and Figure 3—
figure supplement 4). Besides, our work also suggests that tuning network topology is more efficient 
than changing regulatory strength. This is based on the observations that network topologies with 
low robustness (last 10 bars in Figure 2—figure supplement 2 and Figure 3—figure supplement 4) 
cannot have a high oscillation accuracy even when searching all kinetic parameter space, but changing 
topologies may increase the probability of high oscillation accuracy. So we suggest that a feasible way 
to improve the oscillation accuracy in synthetic networks is to first modify the topology to avoid low-
robustness ones and then tune the regulation strength, as illustrated in Figure 5C.

Mechanisms to buffer different sources of noise in the oscillator can be dramatically different. On 
the one hand, long period is able to attenuate extrinsic noise, which is also called the time-averaging 
strategy. This strategy has been widely studied in nonoscillatory networks, such as circuits that are 
sensitive to the stimulus (Hornung and Barkai, 2008), circuits with ‘‘switch-like’’ behaviors (Wang 

https://doi.org/10.7554/eLife.76188
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et al., 2010), and adaptive circuits (Nie et al., 2020; Sartori and Tu, 2011). For these nonoscillatory 
circuits, fluctuations in output have been proven to be related to some key timescales, and long times-
cales often result in the output with small variance. On the other hand, the intrinsic noise is hard to be 
attenuated through time averaging, such as the adaptive incoherent feed-forward loop (Sartori and 
Tu, 2011). Actually, the right way to buffer intrinsic noise in biological oscillators was found to depend 
on levels of molecules. For example, the importance of protein numbers has also been demonstrated 
in the work of Potvin-Trottier et al., 2016. They found that increasing the peak and bottom values 
decreases the CV in the decay phase of the oscillator. Based on these results, it is suggestive that 
the network topology with long period and high amplitude may enable good robustness to both 
extrinsic and intrinsic noise. Interestingly, it is usually not hard to obtain long period and high ampli-
tude simultaneously since the long period tends to allow the protein number to climb to a high level 
(Figure 4—figure supplement 1).

Our work only focused on the effects of biological noise on oscillation accuracy, neglecting other 
dynamic changes caused by noise. These dynamics may include the loss of multistability and occur-
rence of oscillation. Specifically, the way to model the noise may cause the loss of multistability 
(Duncan et al., 2015; Vellela and Qian, 2009); the presence of noise can produce oscillation even 
when the corresponding deterministic model cannot oscillate, which has been validated in the toggle-
switch system and excitable system (Lindner et al., 2004; Terebus et al., 2019; Zaks et al., 2005). 
The possible reason might be the noise-induced transition between different states. Since our work 
only studied network topologies whose deterministic model can generate oscillation, we did not 
count the topologies that cannot oscillate in the deterministic model but begin to oscillate in the 
stochastic model. Due to the popularity of such topologies, how these topologies buffer noise will be 
of interest and may lead to the discoveries of new principles.

In this work, the extrinsic noise is assumed only from fluctuations in kinetic parameters, and its 
magnitude linearly depends on the level of the parameter. Except this type of extrinsic noise, cells 
also face the random partitioning that occurs during cell division, noisy stimulus, and so on (Monti 
et al., 2018; Veliz-Cuba et al., 2015). Since two different types of noise studied in this work require 
different mechanisms to buffer, other sources of noise may also need new mechanisms to filter. Thus, 
some unknown principles need to be further revealed and incorporated into network design as the 
increasingly improved complexity and multiple sources of noise.

Another limitation of our work is that we did not decompose the reactions in the deterministic 
model into detailed elementary reaction steps when using the Gillespie algorithm. The advantage of 
simulating nonelementary reactions with Hill-type rate functions is the low computation cost, and in 
some biological networks, it leads to consistent results with the model composed of all elementary 
reactions (Gonze et al., 2002b; Kim et al., 2014; Sanft et al., 2011). However, this approach may 
not be always accurate, depending on the timescale separation of reactions (Kim et al., 2014; Sanft 
et al., 2011); for example, the Hill-type reaction rate is based on the quasi-steady-state approxima-
tion, which does not hold when binding/unbinding of TF to the promoter is slow or comparable to 
the timescales of protein production or decay (Choi et al., 2008). Furthermore, this method neglects 
detailed reaction in gene regulatory networks, and thus fails to study the roles of these reactions in 
stochasticity. These detailed reactions include the binding and unbinding of the transcription factor 
to the promoter, dimerization of transcription factors, transcription, and translation (Cao et al., 2018; 
Shahrezaei and Swain, 2008; Terebus et al., 2019). We anticipate the need for a more detailed 
model where every reaction of Hill-type form is decomposed into the elementary reactions. The 
recent development about stochastic algorithms with fast computation makes it feasible to simulate 
such detailed model for all two- and three-node network topologies, for example, algorithms focusing 
on solving the chemical master equations (Cao et al., 2010; Cao et al., 2016; Munsky and Kham-
mash, 2006; Terebus et al., 2021) and variants of the Gillespie algorithms that directly simulate the 
temporal dynamics (Gillespie and Petzold, 2003). Besides, the construction of probability surfaces 
through these algorithms may shed light on new principles for accurate oscillation.

https://doi.org/10.7554/eLife.76188
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Methods
Mathematical modeling
Deterministic model
To model two-node and three-node network topologies, we use transcriptional regulatory networks 
and assume competitive inhibition among multiple transcription factors. The competitive inhibition 
means that multiple transcription factors compete for the same binding sites if they regulate one gene 
simultaneously (Shi et al., 2017). So the gene expression depends on the relative weight of transcrip-
tion factors inhibiting this gene and that activating this gene. The following set of ordinary equations 
is used to describe the deterministic dynamics of a three-node transcriptional regulatory network:

	﻿‍
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(2)

where ‍A‍, ‍B‍, and ‍C‍ are the concentrations of proteins A, B, and C. ‍xi = A, B‍ or ‍C‍ in each equation 
denotes the concentration of protein activating the gene, and ‍yi = A, B‍ or ‍C‍ the concentration of 
protein inhibiting the gene. The production rate constant ‍vij‍ represents the maximal production rate 
of protein ‍i‍ regulated by protein ‍j‍, with ‍Kij‍ binding affinity. If there exist proteins activating gene i, ‍δi‍ 
is zero; if no protein activates gene i, ‍δi‍ is non-zero and represents the production rate caused by other 
proteins. ‍kbasal‍ is the basal production rate. The equations for the two-node transcriptional regulatory 
network can be obtained in a similar way.

To provide a better explanation about the nonlinear reaction term in above equations, we took 
the following case as an example: protein A (i.e., TF) binds to gene B to inhibit the gene expression, 
and protein B binds to the same site in gene B to activate the gene expression. We assumed that (1) 
there are three binding sites in gene B, which once protein A (or B) binds to, then B (or A) cannot. The 
elementary reactions are described as follows:

	﻿‍ A + GB ⇌ GB · A, A + GB · A ⇌ GB · A2, A + GB · A2 ⇌ GB · A3,‍�

	﻿‍ B + GB ⇌ GB · B, B + GB · B ⇌ GB · B2, B + GB · B2 ⇌ GB · B3,‍�

where ‍GB, A, B‍ denote gene B, protein A, and protein B, respectively. The dissociation rates 
(‍kreverse/kforward‍) for these six reactions are ‍K1, K2, · · · , K6‍ . Therefore, the fraction of the gene B at the 
state ‍GB · B3‍ in equilibrium is given by

	﻿‍

1
K4K5K6

B3

1+ 1
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A+ 1
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A2+ 1
K1K2K3
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‍�

Furthermore, we assumed that (2) ‍K6 ≪ K5, K4‍ and ‍K3 ≪ K2, K1‍ , so that this fraction can be 
rewritten as

	﻿‍

1
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B3

1+ 1
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B3 .
‍�

We further assumed (3) that only gene B staying at the state ‍GB · B3‍ can lead to transcription and 
subsequent translation for protein B, and (4) that the binding/unbinding of TFs to a gene can achieve 
a rapid equilibrium as TF levels change, and thus the production rate of protein B is modeled as

	﻿‍
vBB

1
K4K5K6

B3

1+ 1
K1K2K3

A3+ 1
K4K5K6

B3 ,
‍�

where ‍vBB‍ is the maximal production rate when gene B is bound with three protein B. This form is 
the same as those in (1) if ‍K1K2K3‍ and ‍K4K5K6‍ are substituted by ‍K

3
AB‍ and ‍K

3
BB‍ , respectively.
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Stochastic model in the presence of extrinsic noise
To generate extrinsic noise, we perturb each kinetic parameter ‍vij, δi, ri‍ by multiplying the sum of 1 and 
an independent temporal noise term, and obtain a new system described by the following stochastic 
differential equations:

	﻿‍
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(3)

Here, the control parameter ‍ε‍ indicates magnitude of perturbation of kinetic parameters, and large 
‍ε‍ represents big perturbation of kinetic parameters. ‍ηij‍ , ‍ξi‍, ‍ζi‍ are independent noise terms and all 
modeled by the Ornstein–Uhlenbeck process:

	﻿‍ τnoisedz = −zdt + σdWt‍� (4)

where ‍Wt‍ is standard Wiener processes. This equation implies that ‍z
(
t
)
‍ has zero mean and variance 

‍
σ2

2τ noise ‍ .

Stochastic model in the presence of intrinsic noise
To induce intrinsic noise, we replace the concentration of protein with the number of protein by 
introducing the cell volume ‍V ‍ and assume that production events and degradation events occur inde-
pendently and randomly. To be precise, we use ‍XA, XB, XC‍ to denote numbers of proteins A, B, C, 
respectively, and then we replace ‍A, B, C‍ in Equation 2 by ‍XA/V, XB/V, XC/V ‍, respectively. Therefore, 
the dynamics of protein numbers ‍XA, XB, XC‍ are described by the following reactions:
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We used the following two algorithms to simulate the above system.

Gillespie algorithm
We used the standard Gillespie algorithm to simulate the system. There are six reactions in total (as 
shown above), and the propensity functions are the reaction rates listed above the arrow. Note that 
we did not decompose the reactions with the Hill function rate into the elementary reactions; the 
reaction rate with the Hill function type has also been applied to other discrete stochastic models 
(Gonze and Goldbeter, 2006; Gonze et al., 2002b; Veliz-Cuba et al., 2015; Wang et al., 2019; 
Zhao et  al., 2021) and proven to be an accurate approximation for the model composed of all 
elementary reactions under certain circumstances (Kim et al., 2014; Sanft et al., 2011). In our simu-
lations, each of the six reactions occurs with the random waiting time, which obeys an exponen-
tial distribution with mean of the inverse of the propensity function. For example, the reaction of 
decreasing protein A by 1 has the propensity function rAXA, and increasing protein A by 1 corresponds 

to 
‍
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‍
. Once we get one trajectory, we can 

calculate the autocorrelation time. See Figure 3—figure supplement 2 and Figure 3—figure supple-
ment 3 for simulation results.
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Langevin equations
We also used the Langevin equation, a good approximation of this system under certain conditions 
(Gillespie, 2000), to model the system. The corresponding chemical Langevin equations are as follows:

	﻿‍
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where ‍Xi‍ is the number of protein ‍i‍, and ‍Wi
t‍ is the standard Wiener process. The control parameter 

‍V ‍ reflects the magnitude of stochasticity of biological reactions. The big ‍V ‍ indicates small degree of 
stochasticity of biological reactions. See the next section for settings in the numerical simulation.

Numerical simulations
Numerical simulations for deterministic models were carried out in MATLAB (see https://github.com/​
LingxiaQiao/oscillation, (copy archived at swh:1:rev:72a2d3d1146b14e7988c1cc06208fe1252e9a6f5; 
Qiao, 2022) for MATLAB scripts). We use the solver ode15s to simulate the dynamics. Simulations for 
stochastic models were also implemented in MATLAB. In the presence of extrinsic noise, we used the 
Milstein scheme (Kloeden and Platen, 2013) to numerically solve the noise term ‍ηij, ξj, ζj‍ and used 
the Euler scheme to solve the dynamics of proteins’ concentrations. To be specific, the noise term ‍z‍ 
(‍z = ηij, ξj, ζj‍) at ‍n + 1‍ time step is determined by the following manner (‍τnoise = 1‍):
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where ‍∆t‍ is the time step, and ‍δWn‍ obeys the normal distribution with mean zero and variance ‍∆t‍. 
Then, the protein’s concentration is solved by the Euler scheme (taking A as an example):
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In the presence of intrinsic noise, we also used the Milstein scheme to numerically solve the 
dynamics of proteins’ copy numbers. Taking ‍XA‍ as an example, its value at ‍n + 1‍ time step is as follows:
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Searching for topologies capable of accurate oscillation
There are two steps for searching for topologies robustly capable of accurate oscillation. The first 
step is to select network topologies that are able to robustly oscillate among all two- and three-node 
network topologies. For each topology, 10,000 sets of kinetic parameters are assigned randomly, 

https://doi.org/10.7554/eLife.76188
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with ranges shown in Supplementary file 1a; for each parameter set, the initial state of the protein 
concentration is set to be 0, and we use ode15s in MATLAB to simulate the deterministic dynamics in 
the time interval [0, 1000]. The dynamics is regarded as oscillation if the following two requirements 
are satisfied: every protein concentration cannot maintain unchanged in the time interval [700, 1000]; 
peaks in the time interval [700, 1000] cannot differ a lot. The first requirement excludes the dynamics 
reaching the steady state, and the second the damping oscillator. We record the number of oscillatory 
dynamics for each topology, and then regard the topology with this number larger than 80 as the 
oscillatory topology. But for the topology with the repressilator, if the number of oscillatory dynamics 
exceeds 10, we still regard this topology as the oscillatory topology. This loose threshold ensures 
enough oscillatory topologies with the repressilator. In this way, we get 474 oscillatory topologies.

The second step is to explore the robustness of accurate oscillation for the above 474 oscillatory 
topologies. For each oscillatory topology, we sample enough parameter sets until there are 1000 
parameter sets capable of oscillation. For each of these 1000 parameter sets, we record the period 
T and the amplitude (the maximal peak value among all protein concentrations) from deterministic 
behavior; next we simulate the stochastic behavior in the time interval [0, 100T]. In the presence of only 
extrinsic noise, the initial concentration is set to be the state when the concentration B reaches the 
highest value in a period, but in the presence of intrinsic noise, the initial concentration is converted to 
the copy number by multiplying the concentration with the cell volume ‍V ‍. We use schemes mentioned 
in the previous sections to numerically solve the stochastic dynamics, with the time step in Supple-
mentary file 1a. For a given noisy trajectory, the dimensionless autocorrelation time ‍τ /T‍ is ‍−1/ log

(
c
)
‍ 

, where ‍c‍ is the autocorrelation coefficient at T. Since there are two or three trajectories each of which 
corresponds to a type of protein, so there are two or three dimensionless autocorrelation times, and 
we use the largest one as the final dimensionless autocorrelation time. Finally, we use the 90 percen-
tile of dimensionless autocorrelation time to measure the robustness of this topology against noise. 
The 90 percentile is averaged over five repeated simulations.

Analytical results for the relation between robustness and period when 
tuning the timescale M
Phase noise in Demir et al.’s study
In this section, we briefly summarize Demir et al., 2000 study about the phase noise. We consider the 
dynamics described by the following equations:
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where ‍U
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‍. The ‍µi‍ ’s are Floquet exponents. We can further choose ‍µ1 = 0‍ and 

‍u1
(
t
)

= ẋs
(
t
)
‍. Then corresponding ‍v1

(
t
)
‍ will play an important role in calculating the phase noise.

From the nonlinear perturbation analysis, ‍z
(
t
)

= xs
(
t + α

(
t
))

+ y
(
t
)
‍ solves Equation 5 for a small 

‍y
(
t
)
‍. The ‍α

(
t
)
‍ and ‍y

(
t
)
‍ are called as phase noise and deviation noise, respectively. It can be proved 

that the variance of the phase noise ‍α
(
t
)
‍ increases linearly with time ‍t‍, that is,

	﻿‍ Var
(
α
(
t
))

= ct‍� (7)
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where ‍c‍ is given by

	﻿‍
c = 1

T

ˆ T

0
vT

1

(
t
′)

B
(

xs
(

t
′))

BT
(

xs
(

t
′))

v1

(
t
′)

dt
′
.
‍�

(8)

Since ‍c‍ has the same unit as ‍T ‍, we divide ‍c‍ by ‍T ‍ to ensure a dimensionless index when measuring 
the phase noise.

The vector ‍v1
(
t
)
‍ when tuning ‍M‍

We first consider the oscillator governed by the following equation:

	﻿‍ ẋ = f
(
x
)
‍� (9)

We still use notations in the previous section to denote the quantities for this system. For example, 
the solution ‍xs

(
t
)
‍ , the period ‍T‍, the Jacobi ‍A

(
t
)
‍ of ‍f

(
x
)
‍ at the solution ‍xs

(
t
)
‍ . We assume the state 

transition matrix ‍Φ
(
t, s

)
= U

(
t
)

exp
(
D
(
t − s

))
V
(
s
)
‍ , which satisfies the first Floquet exponent is 0 and 

the first column of ‍U
(
t
)
‍ is the time derivative of ‍xs

(
t
)
‍ . Then the first row of ‍V

(
t
)
‍ is denoted as ‍v

T
1
(
t
)
‍ , 

which can be used to calculate the variance of phase noise.
Next, we explore how ‍v1

(
t
)
‍ changes when the right-hand term is divided by the timescale ‍M ‍. By 

this way, we obtain

	﻿‍ ẋ = f
(
x
) 1

M‍� (10)

It is easy to verify that the system governed by Equation 10 has a periodic solution ‍xs
(
t/M

)
‍ with 

period ‍MT ‍. The linearization of this system gives

	﻿‍ ẇ = 1
M A

( t
M
)

w
(
t
)
‍�

where ‍w
(
t
)

= x
(
t
)
− xs

(
t/M

)
‍ . According to the definition of ‍Φ

(
t, s

)
‍ , ‍Φ

(
t, s

)
‍ satisfies

	﻿‍
dΦ

(
t,s
)

dt = A
(
t
)
Φ
(
t, s

)
, Φ

(
s, s

)
= I.‍�

So ‍Φ
( t

M , s
M
)
‍ satisfies

	﻿‍
dΦ

( t
M , s

M
)

dt = 1
M A

( t
M
)
Φ
( t

M , s
M
)

, Φ
( s

M , s
M
)

= I.‍�

Therefore, ‍Φ
( t

M , s
M
)
‍ is the state transition matrix for ‍̇w = 1

M A
( t

M
)

w
(
t
)
‍ . Since 

‍Φ
(
t, s

)
= U

(
t
)

exp
(
D
(
t − s

))
V
(
s
)
‍ , we can obtain

	﻿‍
Φ
( t

M , s
M
)

= 1
M U

( t
M
)

exp
(

D
(

t−s
)

M

)
MV

( s
M
)
‍�

where the first term ‍
1
M‍ in the right-hand term is to ensure the first column of ‍

1
M U

( t
M
)
‍ is the time 

derivative of ‍xs
( t

M
)
‍ , that is, ‍

1
M ẋs

( t
M
)
‍ . Thus, the first row of ‍MV

( t
M
)
‍ is ‍MvT

1
( t

M
)
‍ , which can be used to 

calculate the variance of phase noise.

Oscillation accuracy against extrinsic noise when tuning the time scale
For the system governed by Equation 2, we add ‍

1
M‍ to the right-hand side and perturb the ‍vij, δi, ri‍ to 

introduce the extrinsic noise, thus leading to the following equations:

	﻿‍




dA
dt =

(
kbasal +

∑
i viA

(
xi

KiA

)3
+δA

1+
∑

i

(
xi

KiA

)3
+
∑

i

(
yi

KiA

)3 − rAA

)
1
M + ε 1

M

( ∑
i viAηiA

(
xi

KiA

)3
+δAξA

1+
∑

i

(
xi

KiA

)3
+
∑

i

(
yi

KiA

)3 − rAAζA

)

dB
dt =

(
kbasal +

∑
i viB

(
xi

KiB

)3
+δB

1+
∑

i

(
xi

KiB

)3
+
∑

i

(
yi

KiB

)3 − rBB

)
1
M + ε 1

M

( ∑
i viBηiB

(
xi

KiB

)3
+δBξB

1+
∑

i

(
xi

KiB

)3
+
∑

i

(
yi

KiB

)3 − rBBζB

)

dC
dt =

(
kbasal +

∑
i viC

(
xi

KiC

)3
+δC

1+
∑

i

(
xi

KiC

)3
+
∑

i

(
yi

KiC

)3 − rCC

)
1
M + ε 1

M

( ∑
i viCηiC

(
xi

KiC

)3
+δCξC

1+
∑

i

(
xi

KiC

)3
+
∑

i

(
yi

KiC

)3 − rCCζC

)
,

‍�
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For simplicity, we still use ‍x‍ and ‍f
(
x
)
‍ to denote ‍

(
A, B, C

)
‍ and the terms in the first brackets in the 

right-hand terms, respectively. Thus, the above equations can be rewritten as

	﻿‍ ẋ = f
(
x
) 1

M + 1
M Bex

(
x
)
Π
(
t
)
‍�

where ‍Π
(
t
)
‍=‍
(
ηAA, ηBA, ηCA, ξA, ζA, ηAB, ηBB, ηCB, ξB, ζB, ηAC, ηBC, ηCC, ξC, ζC

)
‍, and ‍Bex

(
x
)
‍ is the matrix 

whose elements are coefficients of the random noise when ‍M = 1‍. Recall that the ‘ ‍v1
(
t
)
‍ ’ in Equation 

8 is ‍Mv1
( t

M
)
‍ for the system ‍̇x = f

(
x
) 1

M‍ , so the slope of variance of phase noise over period for the 
system with timescale ‍M ‍ is

	﻿‍

1
MT

1
MT

ˆ MT

0
MvT

1

(
t
′

M

)
1
M

Bex
(

xs
(

t
′
/M

)) 1
M

BT
ex

(
xs
(

t
′
/M

))
Mv1

(
t
′

M

)
dt

′

‍�

By replacing ‍t
′
‍ with ‍t

′′
M ‍ and using ‍t

′
‍ to denote ‍t

′′
‍ , we obtain

	﻿‍

1
MT2

ˆ T

0
vT

1

(
t
′)

B
(

xs
(

t
′))

BT
(

xs
(

t
′))

v1

(
t
′)

dt
′

‍�

So it can be concluded that large ‍M ‍ causes small normalized phase noise in the presence of extrinsic 
noise. As large ‍M ‍ also leads to long period but has no effect on the amplitude, the long period might 
be the reason for high oscillation accuracy in the presence of extrinsic noise.

Oscillation accuracy against intrinsic noise when tuning the timescale
Similarly, for the system governed by Equation 2, we add ‍

1
M‍ to the right-hand side and introduce 

the cell volume ‍V ‍ to incorporate the intrinsic noise, thus leading to the following chemical Langevin 
equations:

	﻿‍




dXA =


Vkbasal + V

∑
i viA

(
Xi

KiA

)3
+δAV3

V3+
∑

i

(
Xi

KiA

)3
+
∑

i

(
Yi

KiA

)3 − rAXA


 1

M dt +
√

1
M

��������Vkbasal + V

∑
i viA

(
Xi

KiA

)3
+δAV3

V3+
∑

i

(
Xi

KiA

)3
+
∑

i

(
Yi

KiA

)3 + rAXAdWA
t

dXB =


Vkbasal + V

∑
i viB

(
Xi

KiB

)3
+δBV3

V3+
∑

i

(
Xi

KiB

)3
+
∑

i

(
Yi

KiB

)3 − rBXB


 1

M dt +
√

1
M

��������Vkbasal + V

∑
i viB

(
Xi

KiB

)3
+δBV3

V3+
∑

i

(
Xi

KiB

)3
+
∑

i

(
Yi

KiB

)3 + rBXBdWB
t

dXC =


Vkbasal + V

∑
i viC

(
Xi

KiC

)3
+δCV3

V3+
∑

i

(
Xi

KiC

)3
+
∑

i

(
Yi

KiC

)3 − rCXC


 1

M dt +
√

1
M

��������Vkbasal + V

∑
i viC

(
Xi

KiC

)3
+δCV3

V3+
∑

i

(
Xi

KiC

)3
+
∑

i

(
Yi

KiC

)3 + rCXCdWC
t

‍�

We use ‍X ‍ and ‍f
(
X
)
‍ to denote ‍

(
XA, XB, XC

)
‍ and the terms in the first brackets in the right-hand 

terms, respectively. Thus, the above equations can be rewritten as

	﻿‍ Ẋ = f
(
X
) 1

M +
√

1
M Bin

(
X
)
Λ
(
t
)
‍�

where ‍Λ
(
t
)
‍ is ‍

(
dWA/dt, dWB/dt, dWC/dt

)
‍, and ‍Bin

(
X
)
‍ is the matrix whose elements are coefficients of 

the random noise when ‍M = 1‍. If we use ‍v
in
1
(
t
)
‍ to represent the ‘ ‍v1

(
t
)
‍ ’ for the system ‍Ẋ = f

(
X
)
‍ , the ‘ 

‍v1
(
t
)
‍ ’ for the system ‍Ẋ = f

(
X
) 1

M‍ is ‍Mvin
1
( t

M
)
‍ . So the slope of variance of phase noise over period for 

the system with cell volume ‍V ‍ is

	﻿‍

1
MT

1
MT

ˆ MT

0
M

(
vin

1

(
t
′

M

))T √
1
M

Bin

(
xs
(

t
′
/M

))√
1
M

BT
in

(
xs
(

t
′
/M

))
Mvin

1

(
t
′

M

)
dt

′

‍�

By replacing ‍t
′
‍ with ‍t

′′
M ‍ and using ‍t

′
‍ to denote ‍t

′′
‍ , we obtain

	﻿‍

1
T2

ˆ T

0

(
vin

1

(
t
′))T

B
(

xs
(

t
′))

BT
(

xs
(

t
′))

vin
1

(
t
′)

dt
′

‍�

It can be seen that ‍M ‍ has no effect on the normalized slope of variance of phase noise, so the long 
period might not influence the noise in proteins when facing intrinsic noise.

https://doi.org/10.7554/eLife.76188
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Analytical results for the relation between robustness and amplitude 
when tuning the rescaling parameter ‍N‍
Deterministic model with rescaled variables
To analyze the relation between amplitude and oscillation accuracy against noise, we replace ‍

(
A, B, C

)
‍ 

in Equation 2 with 
‍

(
∼
A/N,

∼
B/N,

∼
C/N

)

‍
 , which allows us to tune the amplitude by varying ‍N ‍. After this 

rescaling, we obtain the following equations for ‍
∼
A‍ , ‍

∼
B‍ and ‍

∼
C‍:

	﻿‍




d
∼
A

dt = Nkbasal +
∑

i NviA

( ∼x i
NKiA

)3
+NδA

1+
∑

i

( ∼x i
NKiA

)3
+
∑

i

( ∼y i
NKiA

)3 − rA
∼
A

d
∼
B

dt = Nkbasal +
∑

i NviB

( ∼x i
NKiB

)3
+NδB

1+
∑

i

( ∼x i
NKiB

)3
+
∑

i

( ∼y i
NKiB

)3 − rB
∼
B

d
∼
C

dt = Nkbasal +
∑

i NviC

( ∼x i
NKiC

)3
+NδC

1+
∑

i

( ∼x i
NKiC

)3
+
∑

i

( ∼y i
NKiC

)3 − rC
∼
C

‍�

(11)

where ‍
∼x i = xi

N , ∼y i = yi
N ‍ . If ‍N = 1‍, this equation is the same as Equation 2, so ‍

∼
A‍ , ‍

∼
B‍, and ‍

∼
C‍ show same 

amplitudes with ‍A, B‍, and ‍C‍, respectively. Nevertheless, if ‍N ̸= 1‍, the amplitude of ‍
∼
A‍ , ‍

∼
B‍, or ‍

∼
C‍ is ‍N ‍ 

times as high as that of ‍A, B‍, or ‍C‍. Note that ‍N ‍ has no effect on the period.

Oscillation accuracy against extrinsic noise when tuning the rescaling 
parameter
In the system governed by Equation 11, we assume that ‍N ‍ causes binding affinities, ‍vij‍ ’s, and ‍δi‍ ’s to 
‍N ‍ times their original values, but the ‍ri‍ ’s remain unchanged. Next, we consider the system described 
by Equation 11 in the presence of only extrinsic noise. We perturb each kinetic parameter ‍vij, δi, ri‍ 
by the same method as mentioned in the section ‘Mathematical modeling’ and obtain a new system 
described by the following equations:

	﻿‍




d
∼
A

dt = Nkbasal +
∑

i NviA

( ∼x i
NKiA

)3
+NδA

1+
∑

i

( ∼x i
NKiA

)3
+
∑

i

( ∼y i
NKiA

)3 − rA
∼
A + ε




∑
i NviAηiA

( ∼x i
NKiA

)3
+NδAξA

1+
∑

i

( ∼x i
NKiA

)3
+
∑

i

( ∼y i
NKiA

)3 − rA
∼
AζA




d
∼
B

dt = Nkbasal +
∑

i NviB

( ∼x i
NKiB

)3
+NδB

1+
∑

i

( ∼x i
NKiB

)3
+
∑

i

( ∼y i
NKiB

)3 − rB
∼
B + ε




∑
i NviBηiA

( ∼x i
NKiB

)3
+NδBξA

1+
∑

i

( ∼x i
NKiB

)3
+
∑

i

( ∼y i
NKiB

)3 − rB
∼
BζA




d
∼
C

dt = Nkbasal +
∑

i NviC

( ∼x i
NKiC

)3
+NδC

1+
∑

i

( ∼x i
NKiC

)3
+
∑

i

( ∼y i
NKiC

)3 − rC
∼
C + ε




∑
i NviCηiA

( ∼x i
NKiC

)3
+NδCξA

1+
∑

i

( ∼x i
NKiC

)3
+
∑

i

( ∼y i
NKiC

)3 − rC
∼
CζA




‍�

where ‍ηij‍ , ‍ξi‍, ‍ζi‍ are independent noise terms and all modeled by Equation 4 By multiplying ‍1/N ‍ to 
both sides of above equations, we get

	﻿‍




1
N

d
∼
A

dt = kbasal +
∑

i viA

( ∼x i
NKiA

)3
+δA

1+
∑

i

( ∼x i
NKiA

)3
+
∑

i

( ∼y i
NKiA

)3 − rA
1
N
∼
A + ε




∑
i viAηiA

( ∼x i
NKiA

)3
+δAξA

1+
∑

i

( ∼x i
NKiA

)3
+
∑

i

( ∼y i
NKiA

)3 − rA
1
N
∼
AζA




1
N

d
∼
B

dt = kbasal +
∑

i viB

( ∼x i
NKiB

)3
+δB

1+
∑

i

( ∼x i
NKiB

)3
+
∑

i

( ∼y i
NKiB

)3 − rB
1
N
∼
B + ε




∑
i viBηiA

( ∼x i
NKiB

)3
+δBξA

1+
∑

i

( ∼x i
NKiB

)3
+
∑

i

( ∼y i
NKiB

)3 − rB
1
N
∼
BζA




1
N

d
∼
C

dt = kbasal +
∑

i viC

( ∼x i
NKiC

)3
+δC

1+
∑

i

( ∼x i
NKiC

)3
+
∑

i

( ∼y i
NKiC

)3 − rC
1
N
∼
C + ε




∑
i viCηiA

( ∼x i
NKiC

)3
+δCξA

1+
∑

i

( ∼x i
NKiC

)3
+
∑

i

( ∼y i
NKiC

)3 − rC
1
N
∼
CζA




‍�
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Let ‍

∼
∼
A =

∼
A
N ,‍‍

∼
∼
B =

∼
B
N ‍ , and ‍

∼
∼
B =

∼
B
N ‍ , the set of equations for ‍

∼
∼
A‍ , ‍

∼
∼
B‍ , and ‍

∼
∼
C‍ is the same as that in Equa-

tion 3, in which ‍N ‍ do not appear. So the dynamics of ‍
∼
∼
A‍ , ‍

∼
∼
B‍ , or ‍

∼
∼
C‍ will not change with varied ‍N ‍, thus 

leading to the same accuracy of oscillation when varying ‍N ‍. Based on ‍

∼
∼
AN =

∼
A,‍‍

∼
∼
BN =

∼
B‍, and ‍

∼
∼
CN =

∼
C‍ 

and the fact that the rescaling has no effect on the correlation function, ‍
∼
A‍ shows the same accuracy of 

oscillation as ‍

∼
∼
A‍ , and so does ‍

∼
B‍ or ‍

∼
C‍ . Therefore, in the system for ‍

∼
A‍ , ‍

∼
B‍, and ‍

∼
C‍ , its oscillation accuracy 

remains the same with varied ‍N ‍. Since ‍N ‍ influences the amplitude while maintaining the period, the 
change in the amplitude will not affect the oscillation noise against extrinsic noise.

Oscillation accuracy against intrinsic noise when tuning the rescaling 
parameter
The dynamics of the system described by Equation 11. in the presence of only intrinsic noise is 
governed by

	﻿‍




dX∼
A

=


VNkbasal + V

∑
i NviA

( X∼
i

NKiA

)3

+NδAV3

V3+
∑

i

( X∼
i

NKiA

)3

+
∑

i

( Y∼
i
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‍
 , and ‍V ‍ is the cell volume. By multiplying ‍1/N ‍ to both sides 

of above equations, we get
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In above equations, ‍N ‍ only negatively affects the magnitude of noise term, so the oscillation accu-
racies of 

‍
X∼

∼
A‍
 , 

‍
X∼

∼
B‍
 , and 

‍
X∼

∼
C‍

 increased with increased ‍N ‍. Thus, the oscillation accuracies of 
‍
X∼

A‍
 , 

‍
X∼

B‍
 , and 

‍
X∼

C‍
 also increased with increased ‍N ‍ because the correlation function is not affected by the rescaling 

operation. Besides, large ‍N ‍ increase the amplitude while maintaining the period. Taken together, the 
high amplitude may enhance the oscillation noise against intrinsic noise.
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