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On the origin of universal cell 
shape variability in confluent 
epithelial monolayers
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Abstract Cell shape is fundamental in biology. The average cell shape can influence crucial 
biological functions, such as cell fate and division orientation. But cell-to-cell shape variability is 
often regarded as noise. In contrast, recent works reveal that shape variability in diverse epithe-
lial monolayers follows a nearly universal distribution. However, the origin and implications of this 
universality remain unclear. Here, assuming contractility and adhesion are crucial for cell shape, char-
acterized via aspect ratio (r), we develop a mean-field analytical theory for shape variability. We find 
that all the system-specific details combine into a single parameter α that governs the probability 
distribution function (PDF) of r; this leads to a universal relation between the standard deviation and 
the average of r. The PDF for the scaled r is not strictly but nearly universal. In addition, we obtain 
the scaled area distribution, described by the parameter μ. Information of α and μ together can 
distinguish the effects of changing physical conditions, such as maturation, on different system prop-
erties. We have verified the theory via simulations of two distinct models of epithelial monolayers 
and with existing experiments on diverse systems. We demonstrate that in a confluent monolayer, 
average shape determines both the shape variability and dynamics. Our results imply that cell shape 
distribution is inevitable, where a single parameter describes both statics and dynamics and provides 
a framework to analyze and compare diverse epithelial systems. In contrast to existing theories, our 
work shows that the universal properties are consequences of a mathematical property and should 
be valid in general, even in the fluid regime.

Editor's evaluation
In this important study, the authors unveil the reason for nearly universal shape fluctuations that 
have been reported earlier by theoretically analysing the energy of a confluent epithelial tissue. The 
comparison of their analytic results with simulations and experimental data is compelling, only the 
justification of the cell area distribution is somewhat incomplete. The manuscript is relevant for all 
people with an interest in tissue structure and dynamics.

Introduction
D’Arcy Thompson argued, in his book On Growth and Form, physical principles could explain tissue 
packing and cell shape (Thompson, 1917). Shape formation of tissues and organs during embryogen-
esis is a long-standing, fascinating problem of developmental biology. Since cells are the functional 
units of a tissue, shapes in the organs must originate at the cellular level (Paluch and Heisenberg, 
2009; Wyatt et al., 2015; Pérez-González et al., 2021; Hannezo et al., 2013). Cell shapes are vital in 
both health and disease. As cancer progresses (Sailem and Bakal, 2017; Park et al., 2016), as asthma 
advances (Park et al., 2016; Park et al., 2015; Veerati et al., 2020; Atia et al., 2018), as wounds 
heal (Nnetu et al., 2012; Poujade et al., 2007), as an embryo develops (Farhadifar et al., 2007; 
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Atia et al., 2018), cells progressively change their shape. Besides, cell shape may influence crucial 
biological functions, such as cell growth or selective programmed cell death (apoptosis) (Chen et al., 
1997), the orientation of the mitotic plane (Wyatt et al., 2015; Bosveld et al., 2016; Xiong et al., 
2014), stem cell lineage (McBeath et al., 2004; Wang et al., 2011), terminal differentiation (Watt 
et al., 1988; Roskelley et al., 1994), and division-coupled interspersion in many mammalian epithelia 
(McKinley et al., 2018). Moreover, the nuclear positioning mechanism in neuroepithelia depends on 
cell shape variation (Yanakieva et al., 2019). Thompson regarded cell-to-cell shape variability as a 
biologically unimportant noise Thompson, 1917; however, it is now known that shape variability is 
not an exception but a fundamental property of a confluent cellular monolayer (Graner and Riveline, 
2017). In a seminal work, (Atia et al., 2018) showed that cell shape variability, quantified by the aspect 
ratio (‍r‍), follows virtually the same distribution across different epithelial systems. But, the origin of this 
near-universal behavior, and whether it is precisely universal, remains unclear.

Previous works have shown the similarity in dynamics between cellular monolayers and glassy 
systems (Angelini et al., 2011; Park et al., 2015; Malinverno et al., 2017; Garcia et al., 2015). 
Additionally, crucial insights into the dynamics of cellular systems are obtained via simplified model 
systems, treating cells as polygons (Park et al., 2015; Bi et al., 2015; Bi et al., 2016; Chiang and 
Marenduzzo, 2016; Sadhukhan and Nandi, 2021; Sussman et al., 2018). One of these models, the 
vertex model (VM), shows a rigidity transition akin to the jamming transition (Bi et al., 2015; Merkel 
et al., 2019). However, this transition does not exist in other confluent models, such as the Voronoi 
model (Sussman and Merkel, 2018) or the cellular Potts model (CPM) (Sadhukhan and Nandi, 2021). 
But, all three models are similar from the perspective of glass transition (Bi et al., 2016; Sussman 
et al., 2018; Chiang and Marenduzzo, 2016; Sadhukhan and Nandi, 2021). A point of clarification 
on the terminology is quintessential here. The jamming (rigidity) transition is a zero-temperature, 
zero-activity phenomenon. It is a genuine phase transition characterized via an order parameter. The 
observed shape index, ‍q‍, the ratio of perimeter to the square root of cell area, is an order parameter 
of the jamming transition (Park et al., 2015; Bi et al., 2015; Merkel et al., 2019). By contrast, the 
glass transition refers to the extreme dynamical slowing down when the relaxation time, ‍τ ‍, becomes 
a certain value, usually taken as ‍10 − 100s‍ in experiments. It is not associated with any phase transi-
tion, and no static order parameter exists (Berthier and Biroli, 2011). Extensive research in the last 
couple of decades shows that although jamming and glass transitions can coexist, they are distinct 
phenomena controlled by entirely different physics (Mari et al., 2009; Biroli and Garrahan, 2013; 
Berthier and Witten, 2009; Ikeda et al., 2012). However, these terms are often used imprecisely 
while describing the dynamics of biological systems. The ‘jamming transition’ is sometimes used to 
describe the changing system behavior from fluid-like fast to solid-like slow dynamics (Berthier et al., 
2019; Atia et al., 2021); this is actually the glass transition. Their synonymous use may lead to erro-
neous conclusions. Since both transitions exist in this field, distinguishing them is crucial to avoid 
confusion (Park et al., 2015; Chiang and Marenduzzo, 2016; Sussman et al., 2018; Sadhukhan and 
Nandi, 2021).

Atia et  al., 2018 argued that the universal behavior of aspect ratio in an epithelial monolayer 
is related to the jamming transition. In a jammed system, one can carry out a voronoi tesselation 
centering each particle and obtain the tesselated volume, ‍x‍, of the individual particles. ‍x‍ is known to 
follow a ‍k‍-Gamma distribution, ‍P(x, k) = [kk/Γ(k)]xk−1 exp[−kx]‍, where ‍Γ‍ is the Gamma function and 
the distribution is characterised by a single parameter ‍k‍ (Aste and Di Matteo, 2008). From this asso-
ciation, (Atia et al., 2018) conjectured the viability of describing the distribution of ‍r‍ via ‍P(x, k)‍. But, 
the analytical derivation of the ‍k‍-Gamma distribution in granular packing (Aste and Di Matteo, 2008) 
relies on the fact that ‍x‍ is additive, whereas, as the authors of Atia et al., 2018 rightly point out, ‍r‍, 
is not. Thus, there “exists no rigorous basis for the applicability of the k-Gamma distribution” (Atia 
et al., 2018). Yet, (Atia et al., 2018) and several subsequent works Lin et al., 2018; Li et al., 2021; 
Kim et al., 2020; Wenzel and Voigt, 2021 have shown that the probability distribution function (PDF) 
of scaled aspect ratio, rs (defined in ‘Aspects of universality’), in diverse biological and model systems 
can be described by ‍P(rs, k)‍, and the value of ‍k‍ is nearly the same, around 2.5, for these diverse 
systems. Furthermore, the standard deviation, ‍sd‍, vs the mean aspect ratio, ‍̄r‍, follows a universal 
relation (Atia et al., 2018; Kim et al., 2020; Ilina et al., 2020). What is the origin of this universality? 
What determines the value of ‍k ∼ 2.5‍? How is the PDF of ‍r‍ related to the microscopic properties of a 
system? Answers to questions like these are crucial for deeper insights into the cell shape variability 
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and unveiling the implications of the universality. However, it requires an analytical theory that is rare in 
this field due to the inherent complexity of the problem and the presence of many-body interactions.

The existing theoretical works on cellular shapes assume solid like property of the system: specifi-
cally, the property that deformation of a solid is elastic in nature, that is the system resumes its shape 
when the external force is relaxed. For example, cell shape in the context of the jamming transition 
within the VM has been studied in Czajkowski et al., 2018. In a recent work, Li et al demonstrated 
the presence of a gamma distribution of ‍r‍ in a wide variety of systems (Li et al., 2021). The analytical 
framework of Li et al., 2021 related this distribution to Boltzmann-like features and the elastic nature 
of the system. However, the origin of the universal properties and what dictates the value of ‍k ∼ 2.5‍ 
remained unclear. Furthermore, in the context of cellular systems, the solid-like nature is only appli-
cable deep in the glassy regime or in a jammed system (Czajkowski et al., 2018). But, most biological 
systems are fluid-like due to activity. The universal behavior in diverse systems seems to suggest that 
a more general mechanism must exist. In this work, we take a different approach. We develop a mean-
field analytical theory for cell shape variability without consideration of solid-like nature or rigidity, 
and thus, our results should be applicable even in the fluid regime. Crucially, our work reveals that the 
origin of the universal features is a mathematical property.

The main results of this work are as follows: (1) We find that the aspect ratio distribution is described 
by a single parameter, α, containing all the system-specific parameters. Having a single parameter 
within the theory implies that ‍̄r‍ determines the distribution. We demonstrate this in Figure 4f, illus-
trating the predictive power of the theory. This also implies a universal relation between ‍sd‍ and ‍̄r‍ 
(Figure 1e, Figure 3f, Figure 4d). (2) The PDF of rs is not strictly, but nearly, universal; ‍k ∼ 2.5‍ is a direct 
consequence of a mathematical property. The k-Gamma distribution for rs is obtained as a rough 
approximation of our analytical expression. Crucially, this nearly universal distribution of rs exists for 
systems even in the fluid regime; we demonstrate this by comparing our analytical results with our 
simulations (Figure 3c) and existing experimental data (Figure 4c). (3) We also obtain the PDF for the 
scaled area, ‍a‍, and show that it is not universal, in contrast to what has been proposed elsewhere 
(Wilk et al., 2014; Figure 2 and Figure 4e). (4) We demonstrate that simultaneous measurements of 
the PDFs for ‍a‍ and ‍r‍ can reveal the effects of changing physical conditions, such as maturation, on the 
individual model parameters. We have verified our theory via simulations of two distinct models of a 
confluent epithelial monolayer: the discrete lattice-based CPM on square and hexagonal lattices and 
the continuous VM (see Appendix 2 for details). Moreover, comparisons with existing experimental 
data on a wide variety of epithelial systems show excellent agreements.

One remarkable aspect of our work is as follows. It is often hard to control a specific property in a 
biological system as a perturbation can significantly affect other proteins. However, α includes all such 
effects. Therefore, even in the absence of detailed knowledge of the individual changes, our theory 
allows the characterization of different effects in diverse systems by treating α as a control param-
eter. Such a characterization can illuminate the mechanistic notion if functions and shapes are related 
irrespective of the molecular details. We further demonstrate in our simulations that α can also be a 
parameter for the dynamics. Thus, the same parameter describes both statics and dynamics, governs 
the origin and aspects of universality, and provides a framework to analyze and compare diverse 
epithelial systems.

Results
Analytical theory for the shape variability
Simplified model systems, representing cells as polygons, have been remarkably successful in 
describing both the static and dynamic aspects of an epithelial monolayer (Honda, 1978; Honda and 
Eguchi, 1980; Farhadifar et al., 2007; Bi et al., 2014; Fletcher et al., 2014; Bi et al., 2015; Park 
et al., 2015). The energy function, ‍H‍, governing these models is

	﻿‍
H =

N∑
i=1

[
λA(Ai − A0)2 + λP(Pi − P0)2

]
,
‍�

(1)

where ‍N ‍ is the number of cells, the first term constrains area, ‍Ai‍, to a target area, A0, determined 
by cell height and cell volume, with strength ‍λA‍. Cell heights in experiments remain almost constant 
in an epithelial monolayer (Farhadifar et al., 2007). The second term describes cortical contractility 
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and adhesion (Figure 1a; Bi et al., 2015; Farhadifar et al., 2007; Prost et al., 2015). It constrains 
the perimeter, ‍Pi‍, to the target perimeter ‍P0‍ with strength ‍λP‍. The energy function, Equation 1, 
can be numerically studied (Albert and Schwarz, 2016) via different confluent models, such as the 
VM (Farhadifar et al., 2007; Bi et al., 2015), the Voronoi model (Bi et al., 2016; Honda, 1978), 
or more microscopic models such as the CPM (Graner and Glazier, 1992; Hirashima et al., 2017; 
Hogeweg, 2000) and the phase-field model (Nonomura, 2012; Palmieri et al., 2015; Wenzel and 
Voigt, 2021). For concreteness, we mostly focus our discussions below within the CPM that has been 
demonstrated to be more appropriate for variable cellular shapes and sizes (Bosveld et al., 2016). 
However, our analytical results should generally apply for a confluent system independent of the 
microscopic details of the models, and we have verified them via numerical simulations in both the 
VM and the CPM on a square and hexagonal lattice. Furthermore, we have neglected cell division 
and apoptosis in our simulations for the results presented in the main text; their rates are usually low 
in epithelial monolayers (Poujade et al., 2007; Park et al., 2015). For example, they are of the order 
of ‍10−2‍ per hour and per day, respectively, for an MDCK monolayer (Puliafito, 2017). Nevertheless, 
we show in Appendix 4, that the general conclusions of the theory remain unchanged when their 
rates are not very large.

Our starting point is the energy function, Equation 1, describing a confluent system of cells. We 
assume that the probability of a specific cellular configuration is given by a Boltzmann weight at 
an effective temperature, ‍T ‍ (see ‘Details of the analytical calculation’ for details). Note that ‍T ‍ in an 
active system includes contributions from all possible activities and the equilibrium temperature. An 
exact interpretation of ‍T ‍ depends on the system, and several definitions of ‍T ‍ exist, for example, the 
ratio of correlation to response function (Nandi and Gov, 2018; Petrelli et al., 2020; Nandi and 
Gov, 2017), from Einstein relation (Szamel, 2014), etc. The confluent models (such as the VM or 
the CPM) for epithelial systems, have two main variants: depending on the presence or absence of 
activity in the form of self-propulsion. The second variant represents equilibrium systems; ‍T ‍ is treated 
at the same footing as an equilibrium temperature and provides good agreements with experiments 
(Glazier and Graner, 1993; Hirashima et al., 2017; Sussman et al., 2018; Fletcher et al., 2014). 
Thus, the Boltzmann distribution is justified, at least within our simulations (Appendix 1). Excellent 
agreements of our results with experiments and analyses of the experimental systems in terms of an 
effective temperature (Atia et al., 2018; Kim et al., 2020) also validate this description. (Li et al., 
2021) also finds a Boltzmann distribution description at an effective temperature applies to a wide 
variety of systems. An exact analytical calculation for the distribution of ‍r‍ is impractical; therefore, we 
have made several simplifying assumptions. They are either motivated by or justified in our simula-
tions. Here, we briefly discuss the main aspects of the calculation and relegate the technical details 
to the Materials and Methods (‘Details of analytical calculation’) . A detailed comparison of the 
analytical theory with our simulations and justifications of the assumptions are shown in ‘Comparison 
with simulations’.

One crucial aspect of these model systems (such as the VM, the CPM, or the Voronoi model) of 
epithelial monolayer is the constraint of confluency, which is area fraction is unity at all times; it enters 
the problem via the area term in Equation 1. This constraint is an intricate mathematical problem 
rendering a direct analytical calculation impractical. However, we can bypass this difficulty and gain 
valuable insights into the distribution of ‍r‍. First, a thin actomyosin layer, known as cortex, mainly 
governs the cellular mechanical properties (Prost et al., 2015). Therefore, the perimeter term should 
be dominant in determining shape. Second, shape fluctuation in these models can occur only via 
changes in the boundary. Third, ‍r‍ being non-dimensional can vary independently of the cell area. 
Thus, in the regime of our interest, when the cells are compact objects (in contrast to being fractal-like 
in other regimes Sadhukhan and Nandi, 2021, see Appendix 2), we expect the area term in Equa-
tion 1 to be not crucial in determining ‍r‍. We have tested this assumption in two different ways in our 
simulations. First, if the area term is not paramount, the distribution of ‍r‍ should not depend on ‍λA‍; 
as detailed later (Figure 2b and Figure 2—figure supplement 1), this is indeed true. Second, in the 
regime of our interest, the distribution of ‍r‍ of a single cell (treating the rest of the system as medium 
Graner and Glazier, 1992; Glazier and Graner, 1993) is nearly the same as that of a confluent system 
(Figure 2a). Moreover, as discussed below, the energy from the area term varies only slightly as ‍λA‍ 
changes. Therefore, we assume that the area constraint is satisfied and not crucial for the aspect ratio 
distribution.

https://doi.org/10.7554/eLife.76406
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Then the energy function, Equation 1, becomes a sum of energies coming from individual cells. 
Since the perimeter of a cell is independent of that of others, we can concentrate on a particular cell, 
‍i‍, with energy

	﻿‍ HP = λPP2
i − 2λPP0Pi,‍� (2)

where the first term represents contractility, and the second, effective adhesion. We have ignored the 
constant part as it does not affect any system properties. We first develop a coarse-grained descrip-
tion of cell-perimeter designating it via a set of representative points, as described in ‘Details of 
the analytical calculation’. To calculate the aspect ratio, ‍r‍, we first need to obtain the two radii of 
gyrations, s1 and s2, around the two principal axes (see ‘Radius of gyration’ for the definitions). Then 

‍r = s1/s2‍, considering ‍s1 > s2‍ without loss of generality. However, a direct calculation of s1 and s2 is 
intricate due to their anisotropic natures. A slightly simpler calculation is possible for ‍s‍, the radius of 
gyration around the center of mass, and we have ‍s

2 = s2
1 + s2

2‍ (Davis and Denton, 2018). Therefore, 
we first obtain the distribution of ‍s2‍, ‍P(s2)‍, and then using this, obtain ‍P(r)‍. As detailed in ‘Details of 
the analytical calculation’, using ‍s2 = A(r + 1/r)‍, with ‍A‍ being the cell area, we obtain

	﻿‍
P(r) = 1

N

(
r + 1

r

)3/2 (
1 − 1

r2

)
e−α(r+ 1

r ),
‍�

(3)

where the normalization constant ‍N ‍ is determined via the constraint that total probability must be 
unity and ‍α ∝ λP(1 − KP0)/T ‍ with ‍K ‍ being a constant.

Additionally, as detailed in ‘Distribution for area’, Equation 18 together with the constraint of 
confluency (Weaire, 1986; Gezer et al., 2021), give the distribution for the scaled area ‍a = A/Ā‍, where 
‍̄A‍ is the average of area. It is a Gamma distribution, with a single parameter μ,

	﻿‍
P(a) = µµ

Γ(µ)
aµ−1 exp[−µa].

‍�
(4)

Since μ is related to the constraint of confluency, it should be independent of ‍λP‍; our simulations 
show that this is indeed true (Figure 3e). Therefore, α and μ together can distinguish how the model 
parameters ‍λP‍ and ‍T ‍ are affected by changing conditions such as maturation.

Note that the power 3/2 of the algebraic term in Equation 3 comes from the mathematical prop-
erty of closed-looped objects. That is, for closed-loop objects, the lowest non-zero eigenvalue will 
have degeneracy 2, leading to the exponent 3 in the algebraic part of Equation 18, as detailed 
in ‘Details of the analytical calculation’. As shown below (next section), Equation 3 can be roughly 
approximated as a ‍k‍-Gamma distribution for rs that has been fitted with experimental and simula-
tion data (Atia et al., 2018; Kim et al., 2020; Li et al., 2021; Wenzel and Voigt, 2021). The value 
of ‍k ∼ 2.5‍ found in these fits comes from this mathematical property. Since the perimeter of a cell 
must be closed-looped, this mathematical property is inevitable. On the other hand, all the system 
specific details are contained in the parameter ‍α‍. We treat it as a free parameter in the theory and 
obtain its value via fits with data. Thus, Equation 3 provides a remarkable description, where all the 
system-specific details enter through a single parameter, α; it has profound implications leading to the 
universal behavior as we now illustrate.

Aspects of universality
We show the PDF of the aspect ratio, ‍P(r)‍, at different values of α in Figure 1b, ‍P(r)‍ decays faster as ‍α‍ 
increases, as expected from Equation 3. The plots look remarkably similar to the experimental results 
shown in Atia et  al., 2018; we present detailed comparisons with experiments later. (Atia et  al., 
2018) has demonstrated that the PDFs of the scaled aspect ratio, ‍rs = (r − 1)/(̄r − 1)‍, where ‍̄r‍ is the 
ensemble-averaged ‍r‍, across different systems follow a near-universal behavior. We now plot the PDFs 
of rs in Figure 1c. The PDFs almost overlap, but they are not identical. A closer look at Equation 3 
shows that if ‍̄r + 1/̄r‍ goes as ‍1/α‍, we can scale ‍α‍ out of the equation and obtain a universal scaled distri-
bution for rs. However, as shown in Figure 1d, there is a slight deviation in ‍̄r + 1/̄r‍ with the functional 
form of ‍1/α‍. This tiny deviation implies that the PDF of rs is not universal. If one ignores ‍1/r‍ compared 
to ‍r‍, Equation 3 becomes a ‍k‍-Gamma function for rs with ‍k = 2.5‍. However, since ‍r ∼ O(1)‍, this cannot 
be a good approximation, and the observed spread of ‍k‍ around 2.5 is natural when fitted with this 

https://doi.org/10.7554/eLife.76406
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function (Atia et al., 2018; Li and Ciamarra, 2018; Kim et al., 2020; Wenzel and Voigt, 2021). On 
the other hand, since the deviation (Figure 1d) is minute, the PDFs of rs for different systems look 
nearly universal (Figure 1c): the α-dependence becomes so weak for the PDFs of rs that they seem to 
be independent of α. This result is a strong prediction of the theory and, as we show below, is corrob-
orated by available experimental data on diverse epithelial systems.

Although the PDFs of rs are not strictly universal, there is another aspect, ‍sd‍ vs ‍̄r‍, which is universal. 

We show the ‍sd =
√

r2 − r̄2
‍ as a function of ‍̄r‍ in Figure 1e. Since there is only one parameter, α, in 

Equation 3, it determines both ‍sd‍ and ‍̄r‍. The monotonic dependence of ‍̄r‍ on α (Figure 1d) implies 
a unique relationship between them. Therefore, we can express ‍α‍ in terms of ‍̄r‍ and, in turn, ‍sd‍ as 
a function of ‍̄r‍. Since there is no other system-dependent parameter in this relation, it must be 
universal. Note that ‍α ∝ λP/T ‍ at a constant ‍P0‍, thus, α increases as ‍λP‍ increases or ‍T ‍ decreases. Both 
‍sd‍ and ‍̄r‍ become smaller as α increases, and the system on the ‍sd‍ vs ‍̄r‍ plot moves towards the origin 
(Figure 1e). From the perspective of the dynamics, the relaxation time, ‍τ ‍, of the system grows as ‍α‍ 
increases (Sadhukhan and Nandi, 2021). Thus, small ‍̄r‍ and large ‍τ ‍, that is, less elongated cells and 
slow dynamics, follow each other, and the energy function, Equation 1, controls both behaviors. 
Finally, we show in Figure 1f some representative PDFs, Equation 4, at different values of μ for the 
scaled area ‍a = A/Ā‍. The PDF of ‍a‍ has been argued to be universal Wilk et al., 2014; our theory 
shows that although the PDFs of ‍a‍ for different systems follow the same functional form, they are not 
identical.

Comparison with simulations
We now compare our analytical theory with simulations of two distinct confluent models: the CPM 
and the VM. In our simulations, we use the original energy function, Equation 1, and other simulation 
details are presented in the Appendix 2. Unless otherwise stated, the CPM simulations, presented in 
the main text, are on the square lattice; the data for hexagonal lattice CPM simulations are shown in 
Figure 3—figure supplement 1. We first present tests of the crucial assumption that, in the regime of 
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Figure 1. Theoretical results for cell shape variability. (a) Schematic illustration of a confluent model of an epithelial monolayer. Cortical contractility and 
adhesion impose competing forces. (b) PDF of aspect ratio, ‍r ‍, is governed by the parameter α. (c) PDF of the scaled aspect ratio, ‍rs = (r − 1)/(̄r − 1)‍ 
is nearly universal. (d) The PDF of rs can be universal if ‍̄r + 1/̄r ‍ is proportional to ‍1/α‍ (Equation 3), but there is a slight deviation showing that it is not 
strictly universal. Inset: Same as in the main figure, but in log-log scale. Lines are fits with the ‍1/α‍ form. (e) Standard deviation (‍sd ‍) vs ‍̄r ‍ follows a universal 
relation; the state points move towards the origin as α increases. (f) The PDF of ‍a‍ follows Gamma distribution with a single parameter, μ, Equation 4.
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our interest here, we can ignore the constraint of confluency that enters via the area term in Equation 
1. We simulate, within the CPM, single cells treating the rest of the system as medium and compare 
the distribution of ‍r‍ with that in a confluent system. As shown in Figure 2a, the PDFs are nearly the 
same. Next, we have simulated the confluent systems with varying ‍λA‍ and find that the distribution of ‍r‍ 
remains almost independent of ‍λA‍. We have obtained ‍α‍ that characterizes the aspect ratio distribution 
via Equation 3 at fixed ‍λP‍, ‍P0‍, and ‍T ‍ but varying ‍λA‍. As shown in Figure 2b, within both the CPM and 
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Figure 2. Tests of theoretical assumptions. (a) PDFs of aspect ratio, ‍r ‍, within the CPM for a single cell in a medium are nearly identical with those for a 
confluent system when the parameters are the same: ‍λA = 1.0‍, ‍λP = 0.5‍, ‍P0 = 38‍ and ‍A0 = 90‍. Symbols and lines are data for the confluent system 
and single cell in a medium, respectively. (b) ‍α‍, giving the distribution of ‍r ‍ remains independent of ‍λA‍. For the CPM, ‍λP = 0.5‍, and ‍T = 25.0‍; for the 
VM ‍T = 2.5 × 10−3‍, ‍λP = 0.02‍, ‍A0 = 1‍, and ‍P0 = 3.7‍. (c) PDF of the scaled area, ‍a‍, within the CPM at different ‍λA‍, but fixed ‍T = 12.5‍ and ‍λP = 0.5‍. 
The lines are fits with Equation 4 with the values of μ as shown. (d) μ almost linearly increases with ‍λA‍. For the CPM simulations in (b) and (c), we have 

‍A0 = 40‍ and ‍P0 = 26‍. The PDFs are calculated from at least ‍4 × 104‍ independent configurations.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Distribution of aspect ratio does not depend on ‍λA‍.

Figure supplement 2. Distribution of aspect ratio for different values of ‍λA‍.

Figure supplement 3. Scaled area distribution within the VM with varying ‍λA‍.

Figure supplement 4. Dependence of μ on ‍T ‍.

https://doi.org/10.7554/eLife.76406


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology | Physics of Living Systems

Sadhukhan and Nandi. eLife 2022;11:e76406. DOI: https://doi.org/10.7554/eLife.76406 � 8 of 28

the VM, α remains almost constant with varying ‍λA‍ (the distributions are shown in Figure 2—figure 
supplement 2). Finally, the scaled area, ‍a‍, given by Equation 4, is a sharply peaked function around 
‍a = 1‍. We show the distribution of ‍a‍ within the CPM in Figure 2c: the lines are fits with Equation 4 
with μ as a fitting parameter. Thus, assuming that cells satisfy the target area, we can ignore the area 
term in Equation 1 to obtain the distribution of ‍r‍.

Figure 2c shows that ‍P(a)‍ becomes more sharply peaked as ‍λA‍ increases; this makes sense as 
greater values of ‍λA‍ ensure the area constraint is more effective and the distributions become sharply 
peaked around the average area. Thus, the standard deviation of ‍A‍ decreases as ‍λA‍ increases. This 
implies that the variation in energy from the area term in Equation 1 is even less. We have checked 
that it is less than 10% for about a 300% change in ‍λA‍. Thus, treating the area part of Equation 
1 as a constant is justified. Figure 2d shows that μ almost linearly increases with ‍λA‍. We present 
similar results for the VM in Figure 2—figure supplement 3. Since the area term is related to the cell 
height that remains nearly constant and the geometric constraint of confluency, we do not expect a 
substantial variation in ‍λA‍ in a particular system. However, μ also varies with ‍T ‍ (see Figure 2—figure 
supplement 4). Thus, in contrast to what has been proposed elsewhere (Wilk et  al., 2014), as ‍T ‍ 
changes, though the PDF of ‍a‍ is well-described by the same function, Equation 4, the values of μ can 
be different. Thus, the PDFs for different systems or the same system at different levels of activity and 
maturation need not be identical.

We now show that our analytical theory agrees well with simulation data. To highlight that the 
distribution of ‍r‍ and its associated universal properties are also valid in the fluid regime, we have 
mostly simulated the systems in this regime. However, some of the simulations are also in the glassy 
regime (with relaxation time greater than 104). Since glass transition is not associated with any thermo-
dynamic transition, we do not expect a drastic change in the static properties, such as the distribution 
of ‍r‍. Figure 3a and b show representative plots for the comparison of the PDFs of ‍r‍ within the CPM, 
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Figure 3. Comparison with simulations. (a) PDF of ‍r ‍ at different ‍λP‍ within the CPM, with ‍λA = 1.0‍, and ‍T = 25.0‍. Symbols are simulation data, and 
lines represent the fits with Equation 3. (b) PDF of ‍r ‍ within the VM with varying ‍T ‍, ‍λP = 0.02‍, ‍λA = 0.5‍, ‍P0 = 3.7‍. Lines are fits with Equation 3 with α 
as shown. (c) PDFs for the rs, for the same data as in (a) and (b) for the CPM and the VM, respectively, show a virtually universal behavior. (d) Theory 
predicts α linearly varies with ‍λP/T ‍, simulation data within both the models agree with this prediction. ‍λA = 1.0‍ for the CPM; ‍P0 = 3.7‍ and ‍λA = 0.5‍ for 
the VM simulations. Dotted lines are fits with a linear form. (e) α vs μ within the CPM when we have varied only one of the three variables: ‍T ‍, ‍λA‍, and ‍λP‍ 
does not depend on ‍λA‍, and μ does not depend on ‍λP‍. (f) Our theory predicts a universal behavior for ‍sd ‍ vs ‍̄r ‍, symbols are the CPM data at different 
parameter values, and the line is our theory (not a fit). We have also plotted the scaled relaxation time, ‍2.5/ ln τ − 0.25‍, to show them on the same 
figure. ‍τ ‍ increases as ‍̄r ‍ decreases. (g) ‍τ ‍ as functions of α (lower axis) and ‍̄r ‍ (upper axis). (h) Theory predicts α linearly decreases with ‍P0‍, this agrees 
with simulations (symbols); parameters in the CPM: ‍λA = 1.0‍, ‍λP = 0.5‍, ‍T = 16.67‍; the VM: ‍λA = 0.5‍, ‍λP = 0.02‍, ‍T = 0.0025‍. [CPM simulations here are on 
square lattice, ‍A0 = 40‍, ‍P0 = 26‍ in (a–f); PDFs are calculated over at least ‍4 × 104‍ independent configurations].

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Distribution of aspect ratio is independent of lattice type.

Figure supplement 2. Dependence of α on ‍λP‍ and ‍T ‍ within the CPM and the VM.

https://doi.org/10.7554/eLife.76406
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and the VM, respectively, where the lines represent fits with Equation 3. Figure 3a shows data with 
varying ‍λP‍, and Figure 3b shows data with changing ‍T ‍. As discussed above, our theory predicts nearly 
universal behavior for the PDFs of rs (Figure 1c). We plot the simulation data for the PDFs of rs for 
both the models at different parameters in Figure 3c; the PDFs almost overlap, consistent with the 
theory (see Figure 3—figure supplement 1 for more results). An important prediction of the theory is 
that the parameter ‍α‍, which governs the behavior of the cell shape variability, is linearly proportional 
to both ‍λP‍ and ‍1/T ‍, hence with ‍λP/T ‍. This prediction also agrees with our simulations (Figure 3d and 
Figure 3—figure supplement 2). The slopes within the CPM and the VM are different; this possibly 
comes from the distinctive natures of the two models, but the qualitative behaviors are the same.

Figure 3e shows α vs μ within the CPM when we vary one of the parameters, ‍λA‍, ‍λP‍, and ‍T ‍, 
keeping the other two fixed. First, when ‍λA‍ increases, the value of μ increases, but α remains almost 
constant (also see Figure 2b). Next, when ‍λP‍ increases, although α linearly increases, μ remains 
nearly the same. Finally, both parameters linearly increase with ‍1/T ‍; since higher ‍T ‍ implies more 
fluctuations, decreasing ‍T ‍ helps both ‍r‍ and ‍a‍ to become sharply peaked (see Figure 2—figure 
supplement 4, Figure 3—figure supplement 2 for their specific behaviors, and results within the 
VM). These results show when ‍λA‍ remains constant, varying ‍λP‍ and ‍T ‍ have distinctive effects on μ 
and α. These results are significant from at least two aspects: First, μ comes from the constraint 
of confluency (see ‘Distribution for area’), which should depend only on the area and be indepen-
dent of the perimeter. Thus, the ‍λP‍-independence of μ validates the phenomenological imple-
mentation Weaire, 1986; Gezer et al., 2021 of this constraint. Second, these results can provide 
crucial insights regarding the model parameters. The maturation of a monolayer can affect both ‍λP‍ 
and ‍T ‍. Additional junctional proteins may be employed during maturation to increase ‍λP‍. On the 
other hand, different forms of activity may reduce, decreasing ‍T ‍. Since ‍α‍ increases linearly with 

‍λP/T ‍, ‍r‍ alone is not enough to determine the dominant mechanism during the maturation process. 
However, assuming that ‍λA‍ remains constant in a particular system, simultaneous measurements 
of μ and α allow distinguishing effects of changing physical conditions, such as maturation, on the 
individual parameters.

We next verify the universal result of the theory: ‍sd‍ vs ‍̄r‍. Figure 3f shows ‍sd‍ vs ‍̄r‍ within the CPM; 
we plot the theoretical prediction by the dotted line for comparison. The theory predicts that the state 
points move towards the origin as ‍α‍ increases (Figure 1e); this is consistent with our simulations. Since 

‍α ∝ λP/T ‍, higher ‍α‍ should correspond to slower dynamics. To test this hypothesis, we have simulated 
the CPM at different ‍λP‍, ‍P0‍, and ‍T ‍ to obtain the relaxation time, ‍τ ‍ (see Appendix 2 for details). From 
these control parameters, we have calculated α and then ‍̄r‍, using our theory. We show ‍τ ‍ as functions 
of ‍α‍ and ‍̄r‍ in Figure 3g; it is clear that indeed ‍τ ‍ grows as ‍α‍ increases or ‍̄r‍ decreases. To show this 
behavior of ‍τ ‍ on the same plot as ‍sd‍ vs ‍̄r‍, we plot ‍2.5/ ln τ − 0.25‍ in Figure 3f as a function of ‍̄r‍. A 
monolayer fluidizes under compressive or stretching experiments, where cell shape changes, but not 
cell area (Krishnan et al., 2012; Park et al., 2015; Atia et al., 2018). Such perturbations make the 
cells more elongated, increasing ‍̄r‍; thus, our theory rationalizes the decrease in ‍τ ‍ associated with 
fluidization under such perturbations. Finally, we show that our mean-field result that ‍α‍ decreases 
linearly with ‍P0‍ agrees with simulations (Figure 3h). Further, to test our hypothesis that our main 
results remain unchanged in the presence of cell division and apoptosis, when their rates are small, 
we have simulated the CPM, including these processes. As shown in the Appendix 4, the simulation 
results justify our hypothesis.

Comparison with existing experiments
Having shown that our theory agrees well with both the CPM and the VM simulations, we next confront 
it with the existing experimental data. We first compare the theory with data taken from Atia et al., 
2018 for three different confluent cell monolayers: the MDCK cells, the asthmatic HBEC, and the non-
asthmatic HBEC. We chose the PDFs at three different times from Figure 3a and c in Atia et al., 2018. 
We fit Equation 3 with the data to obtain ‍α‍ and present their values in Table 1; the corresponding 
fits for the MDCK cells are shown in Figure 4a (see Figure 4—figure supplement 1 for the other fits). 
Table 1 shows that α increases with maturation. Thus, progressive maturation can be interpreted as 
an increase in either ‍λP‍ or ‍1/T ‍ or both. The PDFs for rs corresponding to the MDCK cells are shown in 
the inset of Figure 4a together with one set of experimental data Atia et al., 2018; note that this is 
not a fit, yet the theory agrees remarkably well with the data.

https://doi.org/10.7554/eLife.76406
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We next calculate ‍sd‍ as a function of ‍̄r‍ using the values of α, noted in Table 1 for the three systems. 
They are shown in Figure 4b along with the theory prediction. With maturation, the state points move 
towards lower ‍̄r‍, represented by the arrow in Figure 4b. As shown in Figure 3g, larger α corresponds 
to a system with higher ‍τ ‍. Thus, with maturation, as the PDFs become sharply peaked, as the cells 
look more roundish and ‍̄r‍ becomes smaller, the system becomes more sluggish. This maturation effect 
is the same in all the systems (Figure 4b) and agrees with the interpretation presented in Atia et al., 
2018. We have also examined that the theoretical prediction of ‍sd‍ vs ‍̄r‍ agrees well with the experi-
mentally measured values shown in Atia et al., 2018.

Our theory predicts that the PDF for rs, although not strictly universal, should be almost the same 
for different systems (Figure 1c). This prediction is a consequence of a crucial aspect of the theory: 
all the system-specific details enter via a single parameter, α in Equation 3. As shown in Figure 1d, 
‍̄r + 1/̄r‍ deviates slightly from the behavior ‍1/α‍. This slight deviation implies that the PDF for rs can 
not be strictly universal and manifests as a variation in k when the PDF is fitted with the k-Gamma 
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Figure 4. Comparison with existing experiments. (a) PDF for aspect ratio, ‍r ‍. Symbols are experimental data at three different times for MDCK cells, and 
lines represent the fits with our theory, Equation 3. The values of ‍α‍ are quoted in Table 1. Inset: PDF of the rs, the lines are theory, and the symbols are 
data. (b) Using the values of ‍α‍, obtained for the three sets of data as quoted in Table 1, we obtain ‍sd ‍ vs ‍̄r ‍ using our theory. Different symbols represent 
the types of the systems, and the colors blue, red, and black represent early, intermediate, and later time data, respectively. With maturation, the system 
moves towards lower ‍̄r ‍ and smaller ‍sd ‍. (c) PDF for rs for a wide variety of systems, shown in the figure, seems to be nearly universal, consistent with our 
theory. (d) The theory predicts a universal relation for ‍sd ‍ vs ‍̄r ‍. Symbols are data for different systems, and the line is our theoretical prediction. (e) PDF 
of the scaled area for different epithelial systems and the lines represent the fits with Equation 4. (f) Predictive power of the theory: we use the ‍̄r ‍ for the 
three sets of cells from Kim et al., 2020, as marked by the hexagrams in (d), and obtain the corresponding values of ‍α‍ and obtain the PDFs for ‍r ‍ using 
Equation 3. The colors correspond to the type of cells in (d), and the continuous line corresponds to the lower ‍̄r ‍ data. Inset: Lines are the theoretical 
PDFs for rs using the values of α for different cells, and the symbols show the experimental data. We have collected the experimental and some of the 
simulation data from different papers. Data taken from other papers are marked with a blue superscript in the legends. The sources are as follows: (1) 
Atia et al., 2018, (2) Li et al., 2021, (3) Lin et al., 2018, (4) Kim et al., 2020, (5) Fujii et al., 2019, (6) Ilina et al., 2020, (7) Wilk et al., 2014 and (8) 
Puliafito, 2017.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Comparison of theory with experiments on HBEC cell monolayer data of Atia et al., 2018.

https://doi.org/10.7554/eLife.76406
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function in different experiments and simula-
tions (Atia et al., 2018; Kim et al., 2020; Li and 
Ciamarra, 2018; Lin et  al., 2020; Wenzel and 
Voigt, 2021). Nevertheless, since the deviation in 
Figure 1d is very weak, the values of ‍k‍ are very 
close to each other. Therefore, the PDFs for rs in 
diverse epithelial systems–in experiments, simu-
lations, and theory–should be nearly universal. To 
test this prediction, we have collected existing 
experimental and simulation data on different 
systems and show the PDFs of rs in Figure  4c. 
The variety in our chosen set is spectacular: it 
consists of various cancer cell lines (Kim et  al., 
2020), both asthmatic and non-asthmatic HBEC 
cells, MDCK cells (Atia et al., 2018), Drosophila 
wing disk (Lin et al., 2020), simulations data on 
both active (Li and Ciamarra, 2018) and equilib-
rium versions of the VM, the active Voronoi model 
(Atia et al., 2018), and the CPM. Yet, the PDFs 
shown in Figure 4c look nearly universal and in 
agreement with our analytical theory.

Additionally, our theory predicts a strictly 
universal behavior for ‍sd‍ vs ‍̄r‍. Since this relation 

does not have any system-specific details, data across diverse confluent monolayers must follow a 
universal relationship. We have collected existing experimental data for several systems: cancerous 
cell lines (Kim et al., 2020), human breast cancer cells (Ilina et al., 2020), and a jammed epithelial 
monolayer of MDCK cells (Fujii et al., 2019). Figure 4d shows the experimental data together with 
our theoretical prediction; the agreement with our theory, along with the aspect of universality, is truly 
remarkable. As α increases, dynamics slows down, and the points on this plot move towards lower 
‍̄r‍. This result is consistent with the finding that cell shapes are more elongated and variable as the 
dynamics become faster in different epithelial systems (Atia et al., 2018; Park et al., 2015).

We have argued that simultaneous measurements of the PDFs of cell area and ‍r‍ distinguish the 
effects of maturation on the two key parameters: ‍λP‍ and ‍T ‍. The argument relies on the negligible 
effect of the perimeter constraint on μ (Equation 4). We now show a comparison of our theoretical 
result for the PDF of ‍a‍ with existing experiments. Figure 4e shows experimental data for four different 
systems (Wilk et al., 2014; Puliafito, 2017) and the corresponding fits of Equation 4. Unlike what has 
been proposed elsewhere that epithelial monolayers have a universal area distribution (Wilk et al., 
2014), we find, in agreement with experiments, that although the functional form remain the same, 
the distribution can vary.

What are the implications of these universal aspects of cell shape variability and our theory? Cell 
shape controls several crucial biological functions such as the mitotic-orientation (Wyatt et al., 2015; 
Bosveld et al., 2016; Xiong et al., 2014) and cell fate (McBeath et al., 2004; Wang et al., 2011; 
Roskelley et al., 1994). Our theory shows that the microscopic system properties are encoded via 
a single parameter, ‍α‍. Consequently, knowledge of one of the observables, such as ‍̄r‍, contains the 
information of the entire statistical properties in a monolayer. We now illustrate this predictive aspect 
of the theory. Experimental measurement of an average property is usually less complex and more 
reliable. We have collected the data for ‍̄r‍ from the supplementary material of Kim et al., 2020 for 
three different systems: 10Ca1A, 10AT, and 10 A.ErbB2, shown by the hexagrams in Figure 4d. From 
these average values, we obtain α, which we use to theoretically calculate the PDFs for ‍r‍, as shown in 
Figure 4f. The inset of Figure 4f shows our theoretical PDFs for rs, together with the corresponding 
experimental data for comparison. The excellent agreement demonstrates that cell shape variability 
results from the geometric constraint imposed by the energy function, Equation 1, and is not a choice 
but inevitable for such systems. This result, we believe, will foster analysis of diverse epithelial systems 
to understand the interrelation between geometric properties and biological functions within a unified 
framework.

Table 1. Values of α from fits of Equation 3 with 
the PDFs of ‍r‍.
The data for the three systems are taken as 
function of maturation time, in units of h (hours) 
and d (days). The experimental data are taken 
from Atia et al., 2018.

Cell type Time Value of ‍α‍

32 h 7.535

MDCK 47 h 10.998

63 h 12.496

6 d 3.060

Asthmatic HBEC 14 d 4.472

20 d 5.389

6 d 4.798

Non-asthmatic HBEC 14 d 7.358

20 d 9.602

https://doi.org/10.7554/eLife.76406
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Discussion
We have obtained a mean-field theory for cell shape variability through the energy function ‍H‍, (Equa-
tion 1; Farhadifar et al., 2007; Honda, 1978; Bi et al., 2015; Bi et al., 2016; Sadhukhan and Nandi, 
2021). We have used simplifying assumptions for analytical tractability and justified them in detailed 
simulations of the VM and the CPM on a square and a hexagonal lattice. The geometric restriction 
of confluency is a strong constraint on cell area. Considering that the area constraint is satisfied and 
that the cell cortex, described by the perimeter term, is crucial in determining the cell shape, allowed 
us to ignore the area term and obtain the distribution of ‍r‍. We have justified this assumption in our 
simulations in the regime of our interest where cells are compact objects. A detailed comparison of 
our simplified analytical theory with simulations and experiments shows excellent agreements. Recent 
experiments and simulations have revealed that cell shape variability is nearly universal in confluent 
epithelial monolayers Atia et al., 2018; Wenzel and Voigt, 2021; Kim et al., 2020; Ilina et al., 2020; 
our work provides the theoretical basis for such behavior. We have shown that the universal proper-
ties are associated with a mathematical property and valid in general, even in the fluid regime; this is 
significant since most biological systems are in the fluid regime due to activity. Our analytical theory 
reveals that the microscopic system properties enter the distribution via a single parameter, α: this 
leads to the universal behavior for ‍sd‍ vs ‍̄r‍ and a nearly universal distribution for the scaled aspect ratio 
rs. Thus far, the PDF of rs has been fitted with a k-Gamma function with ‍k‍ being around 2.5. We show 
that a rough approximation of our expression leads to the k-Gamma function; the slight variation in 
‍k‍ comes from the fact that the PDF is not strictly but nearly universal. On the other hand, ‍k ≃ 2.5‍ is 
a direct consequence of a mathematical property: the lowest degeneracy of the eigenvalues of the 
connectivity matrix being two for a closed-looped object, here the perimeter.

A better understanding of the connection between the theoretical parameters and different system 
properties is crucial to exploit the universal aspects for deeper insights. Since all of the parameters 
combine into α, the effects of changing physical conditions on the individual parameters are difficult 
to determine from the measurements of ‍r‍ alone. ‍λP‍ describes the cortical properties, and ‍T ‍ param-
eterizes different biological activities, including temperature. These are effective parameters, and 
their direct estimation in biological systems is impractical. Our theory provides an indirect way to 
estimate these parameters. The cell area in a confluent system is geometrically constrained. We have 
used the phenomenological implementation of the constraint of confluency and obtained the PDF 
for ‍a‍ (Weaire, 1986). It is a Gamma function, described by a single parameter μ. (Wilk et al., 2014) 
has proposed that the PDF of ‍a‍ is universal in various epithelial monolayers. However, we show that 
though the area distribution follows the same function, there is a variation in μ. Our work connects 
μ to the microscopic model parameters of Equation 1. In particular, μ should be independent of ‍λP‍, 
whereas α varies linearly with both ‍λP‍ and ‍1/T ‍. This distinction, assuming ‍λA‍ remains constant, allows 
inferring the effects of maturation on the individual model parameters.

We have neglected cell division, growth, and apoptosis in our theory. These are nonequilibrium 
processes, and the assumption of effective equilibrium becomes questionable. It will be interesting 
to see if the nonequilibrium statistical mechanics approach of Grossman and Joanny, 2022 can be 
applied to obtain the distribution in the presence of these processes. However, more generally, since 
the rate of these processes are low, we expect the basic form of the distribution of ‍r‍, Equation 3 to 
remain the same. The algebraic part of Equation 3 comes from the geometric property that remains 
the same. Therefore, we hypothesized that the effect of these additional processes should enter the 
distribution via ‍α‍. We have included these processes in our simulations in Appendix 4. The results 
suggest that the general form of the distribution, and the prediction that all system-specific details 
enter via the single parameter α, remain valid when these processes are not dominant (Appendix 4).

Our work demonstrates that a single parameter, α, describes both the cell shape statistics and 
the dynamics. We have shown in our simulations that the relaxation time, ‍τ ‍, grows as α increases 
or ‍̄r‍ decreases. Experiments on confluent cellular monolayer have also reported similar results (Atia 
et al., 2018; Park et al., 2015; Kim et al., 2020). Thus, as cells become more compact and their 
shape variability reduces, the monolayer becomes more sluggish. This result may have far-reaching 
consequences. Most experiments usually measure ‍̄r‍ and analyze biological functions via ‍̄r‍ (Wyatt 
et al., 2015; Bosveld et al., 2016). Our theory implies that such knowledge contains a wealth of 
information. One can obtain α from ‍̄r‍, and all other properties, such as the distribution, the standard 
deviation, and the dynamics, can be analytically calculated. Pattern formation in a biological system is 
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omnipresent during development. Pattern formation is generally controlled by gradients of different 
morphogens, such as the wingless or Dpp in the Drosophila wing (Jaiswal et al., 2006). Such gradi-
ents can be incorporated within our model. Since biological functions are related to cell shape, our 
results provide a statistical way to describe the system from the perspective of cellular functions, such 
as division or apoptosis. Such a description, in turn, will allow us to study the pattern formation in the 
presence of morphogen gradients. We are currently developing, in collaboration with colleagues, 
such a formalism to study the mechano-chemical pattern formation in the Drosophila wing disc.

It is well-recognized that different levels of organizations in biology are mechanistically related. 
One fundamental open question is how molecular-level events are related to cellular machines that 
control the cell shape (Gilmour et  al., 2017). It is a difficult question as varying a specific prop-
erty in a biological system is nearly impossible. Any perturbation will have significant impacts on 
several other proteins. Our work shows that all these perturbations enter the cell shape variability via 
a single parameter. The striking predictability, demonstrated by our theory, where ‍̄r‍ determines the 
PDF, shows that the statistical distribution of cell shape is unavoidable. How do different cells respond 
to this inevitable distribution? Is cellular response similar across diverse systems? How is it related to 
organ-level morphogenesis? Having a single parameter that describes the static and dynamic aspects 
at the cellular level should help compare and analyze different systems and answer these questions.

We have emphasized that the jamming and the glass transitions are distinct phenomena controlled 
by different physics (Mari et  al., 2009; Biroli and Garrahan, 2013; Berthier and Witten, 2009; 
Berthier et al., 2019; Atia et al., 2021). The glass transition is not associated with any thermody-
namic transition; therefore, we expect our results to remain valid even in the glassy regime. Although 
most of our simulations are in the fluid regime, some are also in the glassy regime. Glassiness is 
relevant only in the study of dynamics, and no static order parameter exists to date (Berthier and 
Biroli, 2011). Since our focus in this work is the static properties, we have not discussed the glass 
transition. By contrast, the shape index, ‍q‍, has been shown to be an order parameter of the jamming 
transition (Bi et al., 2015; Merkel et al., 2019). Our formalism can also provide the distribution of ‍q‍. 
These results will be presented elsewhere. In addition, our expression for the distribution of area is 
the same as that obtained for the Voronoi tessellated volume of a jammed granular system (Aste and 
Di Matteo, 2008). Although the Boltzmann distribution aspect at an effective temperature is similar, 
the bases of the two theories are quite different. This connection provides an alternative way to think 
about the constraint of confluency.

In conclusion, we have developed a simple mean-field theory for the aspect ratio distribution in a 
confluent epithelial monolayer. We show that the universal properties of a biological system, whose 
physics is controlled by the energy function Equation 1, come from a mathematical property. We 
have analytically derived the cell shape variability, characterized via ‍r‍. The PDF of ‍r‍ is described 
by a single parameter, α. As a result, ‍sd‍ vs ‍̄r‍ becomes universal, and the PDF for the scaled aspect 
ratio, rs, is nearly universal. A rough approximation of our analytical form for the PDF of rs leads to 
the k-Gamma distribution (Aste and Di Matteo, 2008) that has been fitted to date with the existing 
experimental data (Atia et al., 2018; Kim et al., 2020). The distribution is valid in general, even in 
the fluid regime. The near-universal value of ‍k ∼ 2.5‍ is the consequence of a mathematical property; 
the variation results from the fact that the PDFs are not strictly universal. α can also provide informa-
tion on dynamics. Having a single parameter for the statistical and dynamical aspects of an epithelial 
monolayer should foster a detailed comparison of diverse epithelial systems, provide insights on the 
relation of biological functions to shapes, and elucidate the detailed cellular responses to the inevi-
table shape variability.

Materials and methods
Details of the analytical calculation
To set up the calculation, we represent the cell perimeter in a coarse-grained description via ‍n‍ points, 
where lj is the infinitesimal line-element between jth and (j+1)th points (see Appendix 5). Note that 
our final results are independent of this discretization of the perimeter. To calculate the aspect ratio, 
‍r‍, we first obtain the gyration tensor related to the moment of inertia tensor, a ‍2 × 2‍ tensor in spatial 
dimension two, in a coordinate system whose origin coincides with the center of mass (CoM) of the 
cell. Diagonalization of this tensor gives the two principal eigenvalues, ‍s

2
1‍ and ‍s

2
2‍, the squared-radii of 
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gyrations around the respective principal axes, and ‍r = s1/s2‍. However, as discussed in the main text, 
a direct calculation of s1 and s2 is nontrivial due to their anisotropic natures. Therefore, we calculate 
the distribution of the radius of gyration, ‍s‍, around the center of mass, and we have ‍s

2 = s2
1 + s2

2‍ (Davis 
and Denton, 2018). The distribution of ‍s2‍ is

	﻿‍
P(s2) = 1

Z

ˆ 2∏
ρ=1

δ(
n∑

j=1
xρj )δ(1 − 1

ns2 xx′)e−HP/kBT ẋ
ds

,
‍�

(5)

where ‍Z ‍ is the partition function, ‍ẋ =
∏2

ρ=1
∏n

j=1 dxρj ‍, the volume element, ‍kB‍, the Boltzmann constant, 
and ‍T ‍, the temperature. The first ‍δ‍-function in Equation 5 ensures that the origin coincides with the 
CoM of the cell; the second ‍δ‍-function selects specific values of ‍s2‍, giving the distribution function.

A precise mathematical description of adhesion remains unclear (Graner and Riveline, 2017; 
Hilgenfeldt et al., 2008; Käfer et al., 2007). The VM represents it via a line tension: ‍

∑
⟨ij⟩ Λijℓij‍, where 

‍ℓij‍ is the length between two consecutive vertices, ‍i‍ and ‍j‍ , and ‍Λij‍ gives the line tension. Since the 
degrees of freedom in the VM are the vertices, considering ‍Λij‍ constant, we obtain Equation 1. The 
constant ‍Λij‍ implies a regular cell perimeter between vertices. However, the entire cell boundary is in 
contact with other cells (Figure 1a), and the perimeter is often irregular in experiments (Käfer et al., 
2007; Atia et al., 2018). Therefore, we take a more general description, where the tension in a line-
element lj is proportional to lj with strength ‍P0‍. Thus, the adhesion part becomes ‍−λPK̃P0

∑
j l2j ‍, where 

‍̃K ‍ is a constant. At the cellular level description, this microscopic difference can be accounted for by 
a renormalized ‍P0‍. Since it is unclear how to measure ‍P0‍ in experiments, we mainly restrict our discus-
sions on ‍λP‍ and ‍T ‍. Unless otherwise stated, we assume ‍P0‍ remains constant. However, the theory 
does capture the variation in ‍P0‍, as we show within both the VM and the CPM simulations (Figure 3h).

Within our coarse-grained description, the contractile term is ‍P
2
i = (

∑
j lj)2

‍. Now we can evaluate 
the integral, Equation 5, via a Gaussian approximation. However, an exact calculation, even at this 
level, is complicated. For analytical tractability and to gain insights, we use the Cauchy-Schwartz 
inequality (Arfken et al., 2018) and write ‍(

∑
j lj)2 ≤ n

∑
j l2j = ν

∑
j l2j ‍, where ‍ν ∼ O(n)‍ is a constant. 

Note that this inequality is exact for the CPM, where we can consider ‍lj = 1‍ as the line element and 
‍ν = n‍, the number of sides comprising the perimeter (see Appendix 5). In the experiments, the perim-
eter is usually obtained via a similar discretization (Atia et al., 2018). As shown in Appendix 5, this 
inequality, with the largest ‍n‍, is a reasonable approximation for the perimeter term since the variation 
in perimeter is not too strong due to the perimeter constraint in Equation 1. Use of this inequality 
makes the evaluation of the integral slightly easier. In any case, it only affects the constant in the expo-
nential that we treat as a fitting parameter within our theory. Since we are not investigating any tran-
sition here, the use of this relation is justified. Crucially, as we describe below, the parameter ‍k ≃ 2.5‍ 
has a different origin that is not affected by this inequality. Then, the perimeter part of ‍H‍ becomes 

‍νλ̃P
∑

j l2j = νλP(1 − KP0)
∑

j l2j ‍, where ‍K = K̃/ν‍. The contractility and adhesion act as two competing 
effects (Figure 1a).

Thus, in the regime of our interest, the cell perimeter with the energy given by Equation 2 governs 
the distribution of ‍r‍ that we calculate via that of ‍s‍. In the field of polymer physics, the distribution of 
‍s‍ has been calculated (Fixman, 1962; Eichinger, 1977; Eichinger, 1980). The mathematical struc-
ture of the two problems at this stage becomes equivalent. However, note that their physics are 
quite different. Specifically, our assumptions will not hold in the regime of interest of the polymer 
physics problem. To take advantage of an established notation and provide a connection between 
two disparate fields, we present our calculation in the notation of Eichinger, 1977; Eichinger, 1980. 
As discussed earlier, we describe the cell perimeter by the vector ‍x = {x1

1, x2
1, x1

2, x2
2, . . . x1

n, x2
n}‍, repre-

senting a set of ‍n‍ points on the perimeter. Then, we have ‍HP = νλ̃Px(K ⊗ I2)x′‍, where ‍x′‍ is the column 
vector, the transpose of ‍x‍, ‍K‍, the Kirchhoff’s matrix (Eichinger, 1977; Eichinger, 1980) with ‍Kii = 2‍ 
and ‍K(i−1)i = Ki(i−1) = −1‍, and ‍I2‍, the two-dimensional identity tensor. Thus, we have

	﻿‍ HP/kBT = γx(K ⊗ I2)x′,‍� (6)

where ‍γ = νλP(1 − KP0)/kBT ‍. The distribution of ‍s2‍ is

https://doi.org/10.7554/eLife.76406
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	﻿‍
P(s2) = 1

Z

ˆ 2∏
ρ=1

δ(
n∑

j=1
xρj )δ(1 − 1

ns2 xx′)e−γx(K⊗I2)x′ ẋ
ds

,
‍�

where the squared radius of gyration is ‍s2 = n−1xx′‍. Since the radius of gyration does not depend on 
the coordinate system, we are allowed to chose one that diagonalizes ‍K‍. Say the diagonal matrix is ‍Λ‍, 
and ‍q‍ represents the normal coordinates in this system.

The radius of gyration can be defined as the root-mean-square distance of different parts of a 
system either from its center of mass or around a given axis. We have designated the former as ‍s‍, 
defined as

	﻿‍
s =

���� 1
N

N∑
i=1

(xi − xCM)2,
‍�

(7)

where ‍N ‍ is the total volume element in the system with coordinates ‍xi‍, and ‍xCM‍ is the center of mass 
(CoM) of the system. The other two radii of gyration can be defined around the two principal axes 
(since we are in spatial dimension two) passing through the CoM. We calculate these two radii of 
gyration by writing the inertia tensor in a coordinate system whose origin coincides with the CoM 
and diagonalizing the tensor. The eigenvalues ‍s

2
1‍ and ‍s

2
2‍ are the squared-radii of gyrations around 

the respective principal axes. Thus, the aspect ratio, ‍r‍, is obtained as ‍r = s1/s2‍, assuming ‍s1 ≥ s2‍. As 
discussed in the main text, due to the anisotropic nature of s1 and s2, a direct calculation for their distri-
butions is more complex than that of ‍s‍. So, we first calculate the distribution for ‍s2‍ and then, using this 
result, we obtain the distribution of ‍r‍.

Equation 5 can be written in the normal coordinate system as.

	﻿‍
P(s2) = 1

Z

ˆ 2∏
ρ=1

δ(qρn )δ(1 − 1
ns2 qq′) exp(−γq(Λ⊗ I2)q′) q̇

ds
,
‍�

(8)

where we have used ‍q
ρ
n ∝

∑
xρj ‍ that corresponds to the zero-eigenvalue mode of the matrix. Inte-

grating over ‍q
ρ
n ‍, we get rid of this zero-eigenvalue that gives translation. Thus,

	﻿‍
P(s2) = 1

Z

ˆ
δ(1 − 1

ns2 q0q′
0) exp(−γq0(Λ0 ⊗ I)q′

0) q̇0
ds

,
‍�

(9)

where we have defined ‍q0‍ as the ‍2(n − 1)‍ dimensional vector excluding the coordinates corresponding 
to the zero-eigenvalue. The normalization factor, ‍Z ‍, can be calculated exactly through the integration 
as

	﻿‍
Z ≡
ˆ

exp(−γq0(Λ0 ⊗ I2)q′
0)q̇0 =

(
π

γ

)(n−1)
|Λ0|−1.

‍�
(10)

Note that the integration in the calculation of ‍P(s2)‍ is around the boundary of the cell; to separate out 
the radial part, we now write the volume element in polar coordinate ‍u‍. Then ‍̇q0 = n(n−1)s2(n−1)−1dsu̇‍ 
and ‍q0q′

0/ns2 = uu′ = 1‍. Thus, we obtain from Equation 9

	﻿‍
P(s2) = A

ˆ ∞

−∞
dβ
ˆ

e−iβe−γns2u[(Λ0− iβ
nγs2 In−1)⊗I2]u′

u̇,
‍�

(11)

with ‍A =
( γ
π

)(n−1) |Λ0| 1
2π n(n−1)s2(n−1)−1In−1‍ is the identity matrix of rank ‍n − 1‍. Carrying out the 

integration over ‍u‍, we obtain

	﻿‍

P(s2) = A
ˆ ∞

−∞
dβe−iβ

(
π

γns2

)(n−1)

��Λ0 − iβ
γns2 I

�� .
‍�

(12)

Using the value of ‍A‍, we obtain

https://doi.org/10.7554/eLife.76406
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	﻿‍

P(s2) = 1
2πs

ˆ ∞

−∞
dβ e−iβ

∏n−1
j=1

(
1 − iβ

γns2λj

) = (γns2)n−1

2πs
|Λ0|
ˆ ∞

−∞
dβ e−iβ

∏n−1
j=1

(
γns2λj − iβ

) ,

‍�
(13)

where ‍λj‍’s are the eigenvalues of ‍K‍. The integral in Equation 13 can be performed via the contour 
integral and the resultant solution can be written as.

	﻿‍
P(s2) = (γns2)n−1

2πs
|Λ0|2πi

∑
k

Res(λk),
‍�

(14)

where ‍λk‍ are the distinct eigenvalues of ‍K‍ and ‍Res(λk)‍ gives the residue at the pole ‍λk‍. As we show 
below, the residues will have a term ‍exp[−nγs2λk]‍ and in the limit ‍s2 → ∞‍, only the smallest ‍λk‍ will 
contribute.

Since the cell perimeter must be closed-looped, ‍K‍ is a tridiagonal matrix with periodicity. There-
fore, the number of zero-eigenvalues must be one, and the lowest degeneracy of the non-zero eigen-
values must be two (Kulkarni et al., 1999; Witt et al., 2009; Eichinger, 1977; Eichinger, 1980). We 
have already integrated out the coordinate corresponding to the zero-eigenvalue. Let us designate 
the lowest non-zero eigenvalue as λ. The pole corresponding to λ is located at ‍β = −iγns2λ‍, and of 
order 2. Thus, we obtain the residue as

	﻿‍
Res = d

dβ

[ e−iβ
∏n−3

j=1
(
γns2λj − iβ

)
]
β=−iγns2λ

.
‍�

(15)

Let’s first take the derivative, with respect to β, of the numerator and write part of the residue as

	﻿‍
term1 = −i e−γns2λ

(γns2)n−3 ∏n−3
j=1 (λj − λ)

.
‍�

(16)

Next, differentiating the denominator, we obtain the other part of the residue as 

	﻿‍

term2 = e−iβ
[ i

(γns2λ1 − iβ)2 ∏n−3
j=2

(
γns2λj − iβ

) + i
(γns2λ2 − iβ)2 ∏n−3

j=1,j̸=2
(
γns2λj − iβ

) +

. . .
]����

β=−iγns2λ

= i e−γns2λ

(γns2)n−2 ∏n−3
j=1 (λj − λ)

[
1

λ1 − λ
+ 1

λ2 − λ
+ 1

λ3 − λ
+ . . .

]
.

‍
� (17)

A comparison of term1 and term2, given by Equation 16 and Equation 17, respectively, shows 
that there is an extra factor of ‍s2‍ in the denominator of term2. Thus, in the limit ‍s2 → ∞‍ term2 can be 
ignored compared to term1. Therefore, we obtain the distribution function for ‍s2‍ as.

	﻿‍
P(s2) = |Λ0|n2γ2

∏n−3
j=1 (λj − λ)

s3e−γnλs2
≡ Cs3e−α̃s2

‍
,
�

(18)

where ‍C‍ is the normalization constant that we will fix later, and ‍̃α = γnλ‍. Note that the lowest eigen-
value for the ‍n‍-dimensional Kirchoff’s matrix is proportional to ‍1/n‍, thus ‍nλ ∼ O(1)‍.

Now, ‍s
2 = s2

1 + s2
2‍ and the aspect ratio ‍r = s1/s2‍. Moreover, we have ‍s1s2 = A‍, where ‍A‍ is the area of 

the cell. Since the distribution of cell area is sharply peaked (Figure 2c in the main text), as the cell 
division and apoptosis are slow processes, ‍A‍ can be taken as a constant. Therefore, using the last two 
relations in the first, we obtain ‍s2 = A(r + 1/r)‍. Thus, we obtain from Equation 18, the distribution of 
‍r‍ as.

	﻿‍
P(r) = 1

N

(
r + 1

r

)3/2 (
1 − 1

r2

)
e−α(r+ 1

r ),
‍�

(19)
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where ‍N ‍ is the normalization constant: ‍N = Γ(5/2)/α5/2 − W(5/2)1F1(5/2, 7/2,−2α)‍, where ‍W(x) = 2x/x‍, 

‍Γ(x)‍ is the Gamma function, and ‍1F1(a, b, c)‍ is the Kummer’s confluent Hypergeometric function (Erdelyi 
et al., 1953), ‍α ∝ λP(1 − KP0)/T ‍.

Note that the exponent 3 in the algebraic part of Equation 18 comes from the mathematical prop-
erty, therefore, must be true for any system. This is the source of the value ‍k ≃ 2.5‍ when Equation 
19 is approximated as a ‍k‍-Gamma distribution, as discussed in the main text. For the analysis of the 
theory, a symbolic software, such as ‘Mathematica’ (Wolfram Research Inc, 2019) is helpful. We note 
here that the relation between ‍sd‍ and ‍̄r‍ is quite complex, though for most practical purposes it can be 
taken as a straight line: ‍sd ≃ 0.71 r̄ − 0.75‍.

Radius of gyration
There are different ways to define the radius of gyration depending on the application. Mathemati-
cally, it is the root mean square distance from the centre of mass or a given axis. We have designated 
the first as ‍s‍ (Equation 7). For a two-dimensional object, there are two independent axes, therefore, 
there will be two radii of gyration, s1 and s2, in the second method. As detailed in the Discussion, s1 
and s2 are obtained as the two eigenvalues of the gyration tensor. The significance of these two eigen-
values are as follows: the geometric properties of the system are equivalent to those of an ellipse with 
s1 and s2 as the major and minor axes. Considering that the mass is uniformly distributed throughout 
the system, the area is proportional to ‍s1s2‍ or ‍s2‍. We have used this property to obtain the distribution 
of ‍r‍ in the analytical derivation of Equation 19.

Distribution for area
Equation 18 gives the distribution of the squared radius of gyration of different cells in a monolayer. 
Using this equation, we now derive the distribution of area, ‍A‍. Note that Equation 18 is valid irrespec-
tive of whether the system is confluent or not. We have argued in the main text that the constraint of 
confluency is not crucial to obtain the distribution of the aspect ratio. But, this argument is not valid 
when we are interested in the distribution of cellular area, ‍A‍. Since confluency is a strong geometric 
constraint on ‍A‍, we must include this constraint in the derivation of ‍P(A)‍. Now, as detailed in ‘Radius 
of gyration’, ‍s2 ∝ A‍. Therefore, Equation 18 gives.

	﻿‍ P(A) ∼ A3/2 exp[−βA]‍,� (20)

where β is a constant related to ‍̃α‍. We now consider the constraint of confluency. It is actually a long-
standing hard mathematical problem. Even for random patterns, no exact result exists yet. (Weaire, 
1986) proposed a phenomenological implementation of this constraint as a polynomial function of 
area; this remains one of the simplest possible ways to date to deal with this constraint (Gezer et al., 
2021). Keeping only one term of this polynomial for simplicity, we can write this constraint as ‍f(A) ∼ Aν

‍ 
(Weaire, 1986; Gezer et al., 2021). Using this in Equation 20, we obtain

	﻿‍ P(A) ∼ Aµ−1 exp[−βA],‍� (21)

where we have defined ‍µ = ν + 5/2‍. From Equation 21, we obtain the average area, ‍̄A = µ/β‍. Thus, we 
obtain the normalized distribution for the scaled area, ‍a = A/Ā‍, as

	﻿‍
P(a) = µµ

Γ(µ)
aµ−1 exp[−µa].

‍�
(22)

This is the well-known k-Gamma function, defined in Aste and Di Matteo, 2008, and usually 
denoted with the variable ‍k‍. This same function has been used in fitting the scaled aspect ratio, rs, 
data in different existing experiments and simulations. Therefore, to avoid confusion with ‍k‍, which is 
obtained fitting the rs data, we have used μ to define the distribution function for ‍a‍. Since μ comes 
from the constraint of confluency, it should be independent of ‍λP‍. Our simulation results within both 
the CPM and the VM (Figure 3e, in the main text) support this hypothesis.
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Appendix 1
Boltzmann Distribution
As we discussed in the main text, there are two types of models of confluent systems, depending 
on the presence or absence of self-propulsion. In the absence of self-propulsion, the models are 
in equilibrium. It has been shown in the literature, that the equilibrium variants of the models do 
capture the static and dynamical properties of a confluent epithelial system (Farhadifar et al., 2007; 
Atia et al., 2018; Park et al., 2015). For concreteness, we have considered the equilibrium variants 
of the models in this work. Therefore, we expect that the Boltzmann distribution should hold, that is, 
a configuration with energy ‍E‍, given by Equation 1, should have the weightage of ‍∼ exp[−E/kBT]‍. 
However, as discussed below in Appendix 2, we restrict ourselves in the low-‍P0‍ regime, where the 
cells, on average, cannot satisfy the perimeter constraint. This implies a nontrivial dependence of 
the distribution around ‍E → 0‍ coming from the constraint of confluency that in turn restricts the 
minimum value of the perimeter; the energy cannot go below a certain value. However, we show in 
Appendix 1—figure 1 that we can still approximate the distribution via a Boltzmann distribution.

If the system follows the Boltzmann distribution, that is, ‍P(E) ∼ exp(−E/T)‍, plots of ‍log[P(E)]‍ as a 
function of ‍E/T ‍ for different ‍T ‍ should follow a master curve that is a linearly decreasing function. As 
shown in Appendix 1—figure 1, except at very close to ‍E → 0‍, ‍P(E)‍ as a function of ‍E/T ‍ at different 
‍T ‍ indeed follows a master curve, implying the existence of the Boltzmann distribution.

Appendix 1—figure 1. The systems in our simulation follow a Boltzmann distribution. If the system follows a 
Boltzmann distribution at a temperature T, plot of the logarithm of distribution log[P(E)] as a function of E/T 
at different T should follow a master curve that linearly decreases with E/T. In the main figure, we show the 
distribution, P/E at different T and the inset shows the data collapse for P/E as a function of E/T. The data 
presented in this figure are obtained from the CPM simulation of a total system size 120X120 with 360 cells. We 
have set ‍P0 = 26‍ and ‍A0 = 40‍. We have equilibrated the system for 105 time steps before collecting data.

https://doi.org/10.7554/eLife.76406
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Appendix 2
Simulation details
We have verified our theory via simulations of two distinct models: the CPM and the VM. In both 
the simulations, we have used the energy function ‍H‍, given in Equation 1 in the main text. The 
CPM is a lattice-based model. The underlying lattice has some effects on the quantitative aspects 
of the model; for example, on the square lattice, the object with the minimum possible perimeter 
for a given area is a square. However, the qualitative behaviors are independent of the lattice. To 
ascertain that the simulation results are independent of the lattice, we have simulated the CPM on 
two different lattices: the square lattice and the hexagonal lattice.

For the glassy dynamics, the geometric restriction leads to two different regimes, the low-‍P0‍, and 
the large-‍P0‍ regime. However, the large-‍P0‍ regime characterizes quite large adhesion compared 
to the cortical contractility; this regime, we feel, is not relevant for the experiments. Therefore, we 
present most results when ‍P0‍ is not too large. Here, we briefly discuss the different models.

Cellular Potts Model (CPM)
In CPM, dynamics proceeds by stochastically updating one boundary lattice site at a time. In a 

Monte-Carlo simulation (MC), we accept a move with a probability, ‍P(σ → σ′) = e−
∆H

T ‍, where we 
have set Boltzmann constant ‍kB‍ to unity, ‍∆H‍ is the change in energy going from one configuration 
to the other. ‍σ‍ and ‍σ′‍ are the cell indices of the current cell and the target cell indices, respectively. 
Unit of time (1 MC time) refers to ‍M ‍ such elementary moves, where ‍M ‍ is the total number of lattice 
sites in the simulation.

With square lattice
We have implemented CPM with square lattice in Fortran 90 and followed a Connectivity Algorithm 
developed in Durand, 2016 to prevent fragmentation of cells (Sadhukhan and Nandi, 2021). We 
have chosen a simulation box of size ‍120 × 120‍ with 360 total cells in the system. The average area of 
cells in the system is 40, and the minimum possible perimeter on a square lattice with this area is 26. 
Unless otherwise specified, we always start with an initial configuration where each cell is rectangular 
with a size ‍5 × 8‍. We first equilibrate the system for ‍8 × 105‍ MC time before collecting the data of 
aspect ratio. The variables that characterize the system are ‍λA‍, ‍λP‍, ‍P0‍, and ‍T ‍. We have ignored cell 
division and apoptosis, as discussed in the main text. However, to test the effects of these processes, 
we have included them within this model and present a specific set of results in Appendix 4.

To obtain the relaxation time, ‍τ ‍, we have calculated the overlap function, ‍Q(t)‍, defined as

	﻿‍
Q(t) = 1

N

N∑
σ=1

⟨W(a − |Xσ
cm(t + t0) − Xσ

cm(t0)|)⟩t0 ,
‍�

(23)

where ‍Xσ
cm(t)‍ is the center of mass at time ‍t‍ of a cell with index ‍σ‍, ‍W(x)‍ is a Heaviside step function

	﻿‍

W(x) =





1 if x ≥ 0

0 if x < 0,
‍�

(24)

‍⟨. . .⟩t0‍ denotes averaging over initial times and the overline implies ensemble average. Relaxation 
time is defined as ‍Q(t = τ ) = 0.3‍. The parameter ‍a‍ is related to the vibrational motion of the particles 
(here cells) inside the cage formed by its neighbors. We have set ‍a = 1.12‍ (Sadhukhan and Nandi, 
2021). We have taken 50 t0 averaging and 20 configurations for ensemble averaging.

With Hexagonal lattice
To simulate CPM on the hexagonal lattice, we have used an open-source application CompuCell3D 
(Swat, 2012; Zajac et  al., 2003). CPM is the core of CompuCell3D. We have simulated the 2D 
confluent cell monolayer with periodic boundary conditions using the same energy function, 
Equation 1, in the main text. In this simulation, we have taken ‍128 × 128‍ simulation box size with 
361 cells. Initially, Cells are of three different types of areas and perimeters. We have started with a 
rectangular slab of the cell monolayer. We first equilibrate the system for 105 MC time steps before 
collecting the data. Fragmentation is allowed in these simulations; however, we have restricted 

https://doi.org/10.7554/eLife.76406
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ourselves in the low ‍T ‍ regime, where fewer cells are fragmented. While calculating the PDFs, we 
have eliminated the fragmented cells.

Vertex Model (VM)
Vertex models (VM) can be viewed as the continuum version of the CPM. Within VM, vertices of 
the polygons are the degrees of freedom, and cell edges are defined as straight lines (or lines 
with a constant curvature) connecting between vertices (Farhadifar et al., 2007; Fletcher et al., 
2014). Within the Monte-Carlo simulatoin (Wolff et al., 2019), dynamics proceeds by stochastically 
updating each vertex position of all the cells by a small amount ‍δr‍. We accept the move with a 

probability ‍P(C → C′) = e−
∆H

T ‍ where we have set Boltzmann constant ‍kB‍ to unity, ‍∆H‍ is the change 
in energy going from ‍C → C′‍. Initially, we start will 1024 cells having equal area ‍(= 1.0)‍ and perimeter 
‍(= 3.72)‍. We have equilibrated the system for ‍2 × 106‍ MC time before the start of collecting data.

Two different regimes
As we discussed in the main text, theoretical studies have shown the existence of two distinct 
regimes as a function of ‍P0‍ within these models of confluent epithelial cells (Sadhukhan and Nandi, 
2021; Bi et al., 2015). The existence of these two regimes is controlled by a geometric constraint. 
Given a certain average cell area, the perimeter can have a minimum value. If ‍P0‍ in Equation 1 is 
less than this value, cells cannot achieve this target perimeter: the cells in this regime are compact. It 
seems that this is the regime of experimental interest. In contrast, when ‍P0‍ is large compared to this 
minimum value, cells can achieve this value to minimize energy ‍H‍. Within the CPM, the cells look like 
fractal objects in this regime (Sadhukhan and Nandi, 2021). This behavior is expected to be similar 
within both the VM and the Voronoi model. But there are technical difficulties to simulate these latter 
models in this regime due to numerical instabilities.

https://doi.org/10.7554/eLife.76406
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Appendix 3
Procedure to calculate aspect ratio (‍r‍) in our simulation
As stated in the main text, we characterize the cell shape via aspect ratio, ‍r‍. To calculate ‍r‍, we follow 
(Atia et al., 2018) and briefly discuss the method here. Consider one particular cell, represented 
by the set of points ‍{x1

i , x2
i }‍, as schematically shown in Appendix 3—figure 1. We first calculate the 

gyration tensor, ‍I‍, (proportional to the moment of inertia tensor) in a frame of reference whose origin 
coincides with the center of mass ‍(x1

c , x2
c)‍ of the cell.  ‍I‍ is a ‍2 × 2‍ tensor in spatial dimension two. We 

next diagonalize ‍I‍ and obtain the two eigenvalues, ‍s
2
1‍ and ‍s

2
2‍. Without loss of generality, we assume 

that ‍s1 ≥ s2‍, and obtain ‍r = s1/s2‍. This process can be viewed as approximating the cell with an ellipse 
with the major and minor axes given by s1 and s2, respectively. For the CPM on the square lattice and 
the VM, we have written our own codes; for the CompuCell3D (Swat, 2012; Zajac et al., 2003), we 
have used <Plugin Name="MomentOfInertia"/>in the.XML file and using the example of Demos/
MomentOfInertia, we have calculated the lengths of semiaxes in the ​Steppables.​py file. We have 
obtained the aspect ratio of a cell by taking the ratio of lengths of semi-major and semi-minor axes.

A Typical Cell Configuration

Appendix 3—figure 1. The process to calculate the aspect ratio of a Cell. We first obtain the moment of inertia, I, 
in a frame of reference whose origin coincides with the center of mass of the cell, then diagonalize I, and calculate 
r, as the square root of the ratio of the two eigenvalues, s2

1 and s2
2, assuming s1 ≥ s2.

https://doi.org/10.7554/eLife.76406
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Appendix 4
Including cell division and apoptosis
We have ignored cell division and apoptosis in our theory since the rates of these processes are 
extremely low. However, even when these processes are present, as long as their rates are not very 
high, we expect the form of the distribution, Equation 3 in the main text, should remain valid. There 
are two distinct parts in ‍P(r)‍. The algebraic part is determined by the geometric property, which is a 
cell perimeter is a closed-loop object. This property cannot change. Therefore, the effects of these 
processes can enter the distribution via ‍α‍ alone. Thus, the main conclusions of the theory should 
remain valid even when division and apoptosis are present.

We have included cell division and apoptosis in our simulations to test this hypothesis. We keep 
the rate of division, ‍k

−1
d ‍, and apoptosis, ‍k−1

a ‍, the same such that the average number of cells remains 
the same. Every kd time step, we randomly select a cell and divide it into two, with a randomly 
chosen division plane. To decide the division plane, we first calculate the center of mass (CoM) 
and then chose a point on the perimeter in a random direction. The line connecting the CoM and 
this point gives the division plane (a line for the two-dimensional system). The area of these two 
daughter cells then grows till it becomes of the order of A0 (Equation 1 in the main text). To avoid 
dividing a cell that has just undergone division, we impose a cut-off on the area (‍≥ 32‍) for selecting 
a cell for division. For apoptosis, every ka time step, we randomly choose a cell and assign it a target 
area ‍A0 = 0‍. We also relax the constraint that does not allow fragmentation in our simulation for the 
cells undergoing apoptosis.

We show the PDF of ‍r‍ at three representative values of ka above. As shown in Appendix 4—
figure 1a PDFs of r at different values of ‍kd = ka‍ can be fitted with Equation 3, the values of α for 
the best fits are quoted in the figure. Crucially, an important prediction of the theory that the PDF 
for rs becomes nearly universal remains also valid, as shown in Appendix 4—figure 1b. We find that 
α as a function of kd or ka quickly reaches a constant with increasing ka (that is, with decreasing rate) 
(Appendix 4—figure 1c).
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Appendix 4—figure 1. PDF of r at three representative values of ka. (a) PDFs of r at different values of kd = ka 
(quoted in b) within CPM for λP = 0.5 and T = 12.5. (b) PDF of rs corresponding to the same data as in (a). The lines 
are fits with Equation 3 of the main text. (c) α vs kd or ka quickly reaches a constant with increasing ka.
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Appendix 5
Validity of the approximation of perimeter
We have used the Cauchy-Schwartz inequality, ‍(

∑
j lj)2 ≤ n

∑
j l2j = ν

∑
j l2j ‍, where ‍ν ∼ O(n)‍ is a 

constant. Within the CPM, the perimeter consists of ‍n‍ elementary sides, as schematically shown in 
Appendix 5—figure 1a above, then ‍P

2
i = [

∑n
j=1 ℓj]2

‍. Since ‍ℓj = 1‍, ‍P
2
i = [

∑n
j=1 ℓj]2 = n

∑n
j=1 ℓ

2
j ‍. The 

inequality is exact in that case. The data from the simulation confirms this (Appendix 5—figure 1). 
In the case of the continuum models, such as the vertex model, we can use a similar discretization 
as schematically shown by the red line in the inset of Appendix 5—figure 1. In fact, the estimate 
of cell perimeter in the experiments is obtained via a similar discretization method. With such a 
discretization representing the continuous cell perimeter via a discrete line, we again find that the 
inequality is very close to equality (Appendix 5—figure 1b).

The approximation of replacing the inequality by equality now depends on the fluctuation of the 
total perimeter or ‍n‍. This fluctuation depends on the values of the model parameters, such as ‍T ‍, ‍λP‍, 

‍P0‍, etc. We find that for the parameter values used in this work to simulate the systems, the highest 
fluctuation of the perimeter, or in the value of ‍n‍, is less than 5%. Thus, we are justified to approximate 
the inequality by equality.

�� ��

P2
i = [

n

∑
j=1

ℓj]

2
P2

i = [
n

∑
j=1

ℓj]

2

n
n ∑ j=
1

ℓ2 j

n
n ∑ j=
1

ℓ2 j

(a) (b)

Appendix 5—figure 1. Test of the perimeter inequality. (a) In the CPM, the approximation of P2
i as 

‍
n
∑

j
l2j

‍
, where 

n is the number of elementary lengths, ℓj is exact as can be seen from plot where the two estimates are equal. (b) 
For the continuum models, such as the vertex model, we can use a similar discretization as schematically shown 
in the figure. Experimental estimate of the perimeter comes from such a discretization, where the continuous cell 
perimeter is represented by a discrete line, as schematically shown with the red line. Even in this case, we find that 
the inequality is very close to an equality.
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