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Abstract Cancers, such as squamous cell carcinoma, frequently invade as multicellular units. 
However, these invading units can be organised in a variety of ways, ranging from thin discontinuous 
strands to thick ‘pushing’ collectives. Here we employ an integrated experimental and computa-
tional approach to identify the factors that determine the mode of collective cancer cell invasion. 
We find that matrix proteolysis is linked to the formation of wide strands but has little effect on the 
maximum extent of invasion. Cell-cell junctions also favour wide strands, but our analysis also reveals 
a requirement for cell-cell junctions for efficient invasion in response to uniform directional cues. 
Unexpectedly, the ability to generate wide invasive strands is coupled to the ability to grow effec-
tively when surrounded by extracellular matrix in three-dimensional assays. Combinatorial perturba-
tion of both matrix proteolysis and cell-cell adhesion demonstrates that the most aggressive cancer 
behaviour, both in terms of invasion and growth, is achieved at high levels of cell-cell adhesion and 
high levels of proteolysis. Contrary to expectation, cells with canonical mesenchymal traits – no cell-
cell junctions and high proteolysis – exhibit reduced growth and lymph node metastasis. Thus, we 
conclude that the ability of squamous cell carcinoma cells to invade effectively is also linked to their 
ability to generate space for proliferation in confined contexts. These data provide an explanation 
for the apparent advantage of retaining cell-cell junctions in squamous cell carcinomas.

Editor's evaluation
This article constitutes a carefully written and highly impactful study that agrees with recent 
paradigm-shifting studies (e.g., doi: 10.1126/scitranslmed.abn7571 and doi: 10.1242/jcs.259275) 
suggesting that collective cell migration is the most efficacious way for epithelial cells to metas-
tasize. The study uses mathematical modeling and experimental 3D approaches to demonstrate 
that cells necessitate space to both proliferate and invade as collective thick "pushing" strands. 
Importantly, extracellular matrix patterning provides uniform directional cues that harness adherens 
junctions and facilitate the collective thick strands of cells to 'push' and effectively travel through 
3D microenvironmental settings. The study breaks new ground by incorporating cancer-associated 
fibroblasts and concludes that the pushing fronts are allied to extracellular matrix proteolysis and 
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strong cancer cell-cell adherens junctions with diminished dependence on stromal cells (e.g., cancer-
associated fibroblasts).

Introduction
Tumours exhibit a variety of histological patterns that inform pathological diagnosis and that are 
frequently linked to prognosis (Dive et al., 2014). This link with outcome suggests that the mech-
anisms specifying histological pattern are related to tumour malignancy. This may be due to some 
coupling between how cancer cells invade and their ability to proliferate. Epithelial cancer cells, 
including squamous cell carcinoma (SCC), frequently invade in collective units (Friedl and Gilmour, 
2009; Khalil et al., 2017; Wang et al., 2016). The importance of collective invasion is underscored by 
several recent studies showing that collective seeding of metastases is more efficient than single cell 
seeding (Cheung et al., 2016; Fischer et al., 2015; Khalil et al., 2017; Padmanaban et al., 2019). 
Despite the prevalence and importance of collective patterns of cancer cell invasion, it remains less 
well understood than single cell forms of invasion. Collectively invading cancer strands can be organ-
ised in a variety of different ways, from single file strands that characterise invasive lobular breast 
cancer and diffuse gastric cancer to broad cohesive units found in basal cell carcinoma (Boelens et al., 
2016; Carneiro et al., 2004; Friedl et al., 2012; Pandya et al., 2017). Histological analysis indicates 
that even within a single disease type there is considerable heterogeneity in the pattern of invasion; 
for example, both broad ‘pushing’ and strand-like infiltrative invasion can be observed in SCC (Dissan-
ayaka et al., 2012). In this study, we set out to explore the key parameters that determine the pattern 
of collective invasion using a combination of computational and experimental approaches.

Several parameters might be expected to modulate tumour histology and, more specifically, collec-
tive cancer cell invasion. The ability of cancer cells to adhere to each other through cadherin-mediated 
junctions is linked to their organisation into tightly packed clusters. E-cadherin/CDH1 and, to a lesser 
extent, P-cadherin/CDH3 are the predominant cadherins in mucosal squamous cell carcinomas (SCC 
or muSCC specifically for mucosal SCC; Nieman et al., 1999) that typically do not undergo a clear 
epithelial to mesenchymal transition (EMT). These cadherins are coupled to the actin cytoskeleton via 
a complex containing α-catenin and β-catenin (Nelson et al., 2013). Cell adhesion to the extracellular 
matrix (ECM) is also critical for cell migration and invasion in many contexts (Cooper and Giancotti, 
2019; Hamidi and Ivaska, 2018). This is primarily mediated by integrin receptors (Hamidi and Ivaska, 
2018; Janes and Watt, 2006), with ITGB1 particularly highly expressed in SCC (Janes and Watt, 
2006). The ECM presents a barrier to migration if the gaps between fibres are smaller than 3–5 μm 
(Wolf et  al., 2013; Wolf et  al., 2009). The dermal ECM underlying SCC lesions is predominantly 
composed of type I collagen (Watt and Fujiwara, 2011), and numerous studies have demonstrated 
that MMP14/MT-1MMP is the critical protease for degrading this type of matrix (Castro-Castro 
et al., 2016; Gifford and Itoh, 2019). The ECM can also be physically moved by forces generated 
by the contractile cytoskeleton (Mohammadi and Sahai, 2018; Wolf et al., 2013). In many cases, 
stromal cells are the major source of both matrix proteolytic and force-mediated matrix remodelling 
in tumours (Conklin and Keely, 2012; Kalluri and Zeisberg, 2006). Cancer-associated fibroblasts 
(CAFs, sometimes referred to as stromal fibroblasts) can promote the invasion of SCC by providing 
these functions and are frequently observed leading the migration of cancer cells that retain epithelial 
characteristics (Gaggioli et al., 2007).

Understanding the relative contributions of the multiple parameters outlined above to cell inva-
sion is a complex multi-dimensional problem with non-linear relationships between parameters and 
migratory capability. This complexity means that developing a holistic and predictive framework for 
collective cancer cell invasion using empirical methods only is challenging. For this reason, several 
studies have sought to utilise computational models. Many different types of model have been used 
including those based on evolutionary game theory (Basanta et al., 2008; Swierniak and Krzeslak, 
2013), Bayesian networks (Katz et al., 2011), differential equations (Gerisch and Chaplain, 2008; 
Peng et al., 2017; Weekes et al., 2014), agent-based models including cellular automata (Alarcón 
et al., 2003; Bull et al., 2020; Fiore et al., 2020; Gralka and Hallatschek, 2019; Karolak et al., 
2019; Norton et al., 2017; Talkenberger et al., 2017) and hybrids of the above (Anderson, 2005; 
Anderson et al., 2006; Osborne et al., 2010). Cellular Potts modelling (Cickovski et al., 2007; Graner 
and Glazier, 1992; Hallou et al., 2017; Pramanik et al., 2021; Scianna et al., 2013; Shirinifard et al., 
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2009; Szabó and Merks, 2013; Turner and Sherratt, 2002) is a flexible approach that uses voxels 
to represent different parts of cells or their environment. Changes in the properties associated with 
each voxel are determined at each time step using principles of probabilistic energy minimisation. The 
behaviour of the model therefore emerges from iterative application of rules that describes the rela-
tive favourability of different events or changes. Here we combine a Potts modelling with extensive 
experimentation to unpick the determinants of the mode of collective cancer cell invasion and their 
linkage to cancer cell growth, both in vitro and in vivo.

Results
Diverse modes of collective invasion within individual SCC
We began by surveying the diversity of invasive pattern in muSCC. Figure 1a shows considerable 
diversity in the nature of collective invasion. Furthermore, it illustrates how initial invasion involves cells 
moving from the epithelial layer into the lamina propria (often termed epidermis and dermis, respec-
tively, in cutaneous skin). Following the invasion into the dermis, cancer cells become surrounded 
on all sides by ECM. Interestingly, different patterns of invasion were observed in different regions 
of the same tumour (Figure 1a). These ranged from broad ‘pushing’ invasive masses of cells (box I), 
thinner strands of cells (box II), to single-cell width strands and apparently isolated single cells (box III - 
although this could not be definitively determined from single H&E (Hematoxylin and Eosin) sections). 
Quantitative analysis of the number of cell neighbours provided a more objective metric of invasion 
type, with high neighbour numbers (typically 4–7) indicating broad invasion patterns and low neigh-
bour numbers (2 or 3) indicating thin strand-like invasion, respectively (Figure 1b). Similar patterns 
were observed in other muSCC biopsies with different strand thickness apparent (Figure 1—figure 
supplement 1a–f). Analysis of neighbour number suggested that strand thickness does not fall into 
distinct categories, with neighbour number varying continuously between 1 and 9.

To gain insight into the dynamics of SCC invasion, we performed time-lapse imaging of primary 
patient explants. Small pieces of tissue, roughly 1 mm3 in size, were embedded in a collagen-rich matrix 
and observed by time-lapse microscopy. Similar to the diversity observed in histological sections, this 
revealed a variety of behaviours, including single-cell ‘follow the leader’ migration through to large 
‘dome-like’ multi-cellular invasion, even in samples from a single patient (Figure 1c). Cell tracking 
revealed that, in the larger invading structures, there was movement both in the direction of invasion 
and retrograde back to the main bulk of the explant. The diversity of collective invasion phenotype 
within a single tumour suggests that the type of collective invasion is not irreversibly determined by 
early events in the history of the tumour but can be influenced by variations in cell state that may occur 
later in tumorigenesis or local environmental differences.

Generation of an agent-based model of collective cancer invasion
To explore the possible variables responsible for the different collective invasive behaviours observed, 
we set up both experimental and computational models. Two different experimental settings were 
implemented. First, an ‘organotypic’ invasion assay in which the SCC cells are cultured as a layer 
on top of a collagen-rich matrix and exposed to a gas-liquid interface. This recapitulates the early 
invasion of disease from the epidermis into the dermis (as in the top region of Figure 1a). Second, a 
‘spheroid’ assay was used in which the SCC cells are encapsulated in a collagen-rich matrix, mimicking 
the more confined environment of disease that has already penetrated into the dermis (as in the 
bottom region of Figure 1a). Alongside these two experimental contexts, we developed a cellular 
Potts model that incorporated both SCC cells and stromal fibroblasts. The interaction of cancer cells 
with ECM and fibroblasts during invasion has been extensively modelled computationally in recent 
years (Arduino and Preziosi, 2015; Kim et al., 2015; Kumar et al., 2016; Norton et al., 2018; Pally 
et al., 2019; Sfakianakis et al., 2020). In our three-dimensional (3D) model, the voxel size was such 
that cells typically consisted of 400–800 (~83) voxels. Cell invasion could occur by a cell moving a voxel 
to a position that was previously occupied by matrix. To determine whether such a change might be 
favourable, the model included parameters that we anticipated would influence cancer cell invasion, 
including cancer cell–cancer cell adhesion, cancer cell–matrix adhesion, cancer cell–fibroblast adhe-
sion, fibroblast–matrix adhesion, cell intrinsic motility, matrix displacement, and matrix proteolysis. 
The relative influence of these parameters on changes in the position of voxels that defined a cell 
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Figure 1. Diversity of collective invasion in squamous cell carcinoma (SCC). (a) Images show a human invasive head and neck SCC stained with 
haematoxylin and eosin. Inset regions show different patterns of collective invasion: I – large rounded clusters, II – intermediate clusters, III – elongated 
strands only one or two cells wide. (b) Plot shows the mean number of cancer cell neighbours for each cell within invasive strands with the morphologies 
exemplified in panel (a) I, II, and III. One-way ANOVA with post-hoc multiple comparisons was performed. 95% confidence intervals are shown, one dot 

Figure 1 continued on next page
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between time-steps was determined along energy minimisation principles, with penalties of differing 
magnitudes for unfavourable changes in any single parameter (Figure 2a and Appendix 1 in Supple-
mentary file 1).

Experimental analysis using A431 SCC cells demonstrated that effective invasion required the addi-
tion of CAFs and, in both cases, the invasion was almost entirely collective (Figure 2b panels iii and vi). 
Careful parameterisation was performed, including analysis of the relative adhesive properties of the 
different cells to each other and the collagen-rich matrix used in our assays (Figure 2—figure supple-
ment 1a and Table 1 and Appendix 2 – table 1 in Supplementary file 1). This enabled the in silico 
replication of the fibroblast-dependent invasion observed in both organotypic and spheroid assays 
(Figure 2b). In line with previous experimental reports (Gaggioli et al., 2007), the extent of increased 
invasion scaled with the number of fibroblasts (Figure 2—figure supplement 1a).

In silico generation of diverse collective invasion behaviours
Having established an in silico model, we then explored parameter space to investigate if different 
patterns of invasion could be generated by varying the combinations of input parameters. To quanti-
tatively capture the range of invasive behaviours, a range of output metrics were collected, including 
total invasive extent, maximal invasion, number of cell neighbours, and cell proliferation (Figure 2—
figure supplement 1b and c). The tapering metric recorded how the number of immediately neigh-
bouring cells varied with the position of the cells in the invasive strand (cells were considered invasive 
if they had moved beyond the starting position of the interface between cancer cells and the matrix), 
whereas the strand width simply reflected the average width. A uniformly low neighbour number would 
indicate a long thin strand (Figure 2—figure supplement 1cI), a decreasing number of neighbours 
with increasing invasion would indicate a tapering strand (Figure 2—figure supplement 1cII), while 
a higher number of neighbours would suggest a bulkier form of collective invasion (Figure 2—figure 
supplement 1cIII). A critical function of fibroblasts is to generate permissive tracks for cancer cells 
to subsequently utilise. To mimic this without the variability generated by the somewhat stochastic 
behaviour of fibroblasts, we additionally ran simulations with a narrow track that could be permissive 
for invasion but no fibroblasts. This confirmed that cancer cells were able to exploit permissive tracks 
in the ECM (Figure 2—figure supplement 1d). Invasion in this context, termed track invasion score, 
was quantified based on the extent of matrix remodelling by invading cancer cells with weighting for 
the distance invaded (Figure 2—figure supplement 1e).

The outputs of the model in the presence of CAFs were analysed in two ways: using principal 
component analysis (PCA) and visual inspection (Figure 2c and d). PCA revealed a wide and contin-
uous spread of invasion patterns, with the first two dimensions of the PCA accounting for 75% (organo-
typic) and 65% (spheroid) of the variation (Appendix 3 – table 1 in Supplementary file 1). Notably, 
there was no indication of discrete sub-classes of invasive pattern, suggesting a continuous spectrum 
of invasive behaviours. The continuous spectrum implied by PCA was in line with the range of invasive 

represents one cell analysed. (c) Images show phase contrast microscopy of a human oral SCC invading into a collagen/Matrigel mixture. Scale bar is 
100 μm. Lower panels show manual tracking of individual cells within the clusters.

The online version of this article includes the following video, source data, and figure supplement(s) for figure 1:

Source data 1. Number of neighbouring cells for each cell within invasive strands in oral SCC tissue.

Figure supplement 1. Diversity of collective invasion in squamous cell carcinoma.

Figure supplement 1—source data 1. Number of neighbouring cells for each cell within invasive strands in head and neck SCC tissue.

Figure 1—video 1. Single cell invasion: squamous cell carcinoma cells invading as single cells.

https://elifesciences.org/articles/76520/figures#fig1video1

Figure 1—video 2. Single file strand invasion: squamous cell carcinoma cells invading as single file strand.

https://elifesciences.org/articles/76520/figures#fig1video2

Figure 1—video 3. Thick strand invasion: squamous cell carcinoma cells invading as thick strand.

https://elifesciences.org/articles/76520/figures#fig1video3

Figure 1—video 4. Pushing front invasion: squamous cell carcinoma cells invading as broad pushing invasive mass.

https://elifesciences.org/articles/76520/figures#fig1video4

Figure 1 continued

https://doi.org/10.7554/eLife.76520
https://elifesciences.org/articles/76520/figures#fig1video1
https://elifesciences.org/articles/76520/figures#fig1video2
https://elifesciences.org/articles/76520/figures#fig1video3
https://elifesciences.org/articles/76520/figures#fig1video4
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Figure 2: Agent-based modelling recapitulates diversity of collective invasion patterns. a) Images show the key steps and principles
driving the agent-based model. At each time step voxels are updated and this can include growth – matrix replaced by cell,
directional movement – cell voxel transposition, cell-cell adhesion – increase of voxels at the interface between cells, and ECM
remodelling or degradation – change in the ‘quantity’ of matrix in a voxel. Cancer cells are represented in green, fibroblasts in
magenta, and matrix in greyscale. b) Images show model outputs (panel columns 1,2,4 &5) next to experimental data when
fibroblasts are either absent or present in organotypic models (upper panels) or spheroids (lower panels). Cancer cells are green,
fibroblasts are magenta. Scale bar = 100μm. c&d) Diverse patterns of collective invasion are shown in organotypic (c) and spheroid
(d) models. PCA plot shows the metrics derived from over 2,000 simulations in the presence of fibroblasts covering variation in
cancer cell proteolysis, cancer cell – matrix adhesion, cancer cell – cancer cell adhesion. The additional lines indicate how different
metrics contribute to the first two components. The model runs corresponding to the exemplar images are indicated with roman
numerals with 3D images coloured according to mean number of SCC neighbours (blue low, red high).

Figure 2. Agent-based modelling recapitulates diversity of collective invasion patterns. (a) Images show the key steps and principles driving the 
agent-based model. At each time step, voxels are updated, and this can include growth – matrix replaced by cell, directional movement – cell voxel 
transposition, cell-cell adhesion – increase of voxels at the interface between cells, and extracellular matrix (ECM) remodelling or degradation – change 
in the ‘quantity’ of matrix in a voxel. Cancer cells are represented in green, fibroblasts in magenta, and matrix in greyscale. (b) Images show model 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.76520
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strand geometries observed in clinical muSCC samples (Figure 1). We additionally generated visual 
outputs of the model runs that lay at the edges of the PCA. This revealed diverse patterns of invasion, 
ranging from large rounded multicellular strands to single cells breaking off the main mass of tumour 
cells. The diversity in collective invasion observed in the presence of fibroblasts was in contrast to 
behaviours observed in the absence of CAFs. PCA analysis of the metrics generated from model runs 
without CAFs shows that the data reduces to a single dimension (Figure 2—figure supplement 1f 
and Appendix 3 – table 1 in Supplementary file 1), with remarkably similar behaviour in both organo-
typic and spheroid data. PCA combining runs with and without CAFs confirmed that fibroblasts boost 
invasion (Figure 2—figure supplement 1).

Matrix proteolysis drives strand widening but not the extent of 
invasion
Having established that our model could generate diverse types of invasion, we undertook a more 
systematic analysis of parameter space to determine the contribution of specific parameters to both 
the extent and pattern of invasion. Figure  3a shows the PCA plots overlaid with shading for the 
input variable of cancer cell proteolysis, with high levels of proteolysis, trending along the vector 
for number of neighbours in both organotypics and spheroids. Somewhat contrary to expectation, 
we found that increasing cancer cell proteolysis led to only modestly elevated invasion scores in 
organotypic contexts. Moreover, the maximum invasive depth did not correlate with matrix prote-
olysis (Figure 3b). Instead the width of the strands (neighbour numbers) increased as a function of 
proteolysis, especially in organotypic assays. In simulations with low proteolysis, the model predicted 
thin strands (low neighbour and low tapering scores). To measure the effect of proteolysis on the 
shape of the invading front of cell clusters, we ran simulations initiated with a cluster of cells and a 
uniform directional cue, either without the complicating factor of pre-existing tracks or a simple single 
permissive track. Figure 3—figure supplement 1c shows that increasing proteolysis leads to reduced 
curvature and a ‘pushing’ front in the absence of a track. When a track was present, it was favoured for 
invasion and interfered with the generation of a pushing front most strikingly at intermediate levels of 
proteolysis. Inspired by previous studies (Ahmadzadeh et al., 2017; Park et al., 2020; Provenzano 
et al., 2006), we additionally considered the cases if the ECM had multiple tracks either oriented 
parallel to the direction of invasion – analogous to aligned matrix fibres – or had isotropic texture 
distributed as a chessboard – analogous to non-aligned matrix fibres. As might be expected, ECM 
fibres parallel to the direction of the invasive cue favoured invasion, but isotropic texture hindered 
invasion (Figure 3—figure supplement 1d).

Analysis of spheroid contexts yielded a different picture, with reduced maximum invasion depth 
with increasing proteolysis values. Notably, the very highest matrix degradation value yielded signifi-
cantly lower maximum invasion depth than the intermediate and lowest level. There was less differ-
ence in the overall invasion score as increasing proteolysis was linked to slightly wider strands, which 
counter-balanced the reduction in maximum invasion depth (Figure  3a and b). Both organotypic 
assays and spheroids without CAFs exhibited low levels of invasion (Figure 3—figure supplement 1a 
and b). Comparative plots of the metrics in simulations with and without CAFs confirm this (note the 
red colour) and indicate that fibroblasts favour narrower strands (note the blue colour in the neighbour 
and tapering rows). Overall, cancer cell proteolysis is primarily predicted to regulate strand width 
in both organotypic and spheroid contexts. The relationship between matrix proteolysis and strand 

outputs (panel columns 1, 2, 4, and 5) next to experimental data when fibroblasts are either absent or present in organotypic models (upper panels) or 
spheroids (lower panels). Cancer cells are green, fibroblasts are magenta. Scale bar = 100 μm. (c and d) Diverse patterns of collective invasion are shown 
in organotypic (c) and spheroid (d) models. Principal component analysis plot shows the metrics derived from over 2000 simulations in the presence of 
fibroblasts covering variation in cancer cell proteolysis, cancer cell–matrix adhesion, and cancer cell–cancer cell adhesion. The additional lines indicate 
how different metrics contribute to the first two components. The model runs corresponding to the exemplar images are indicated with roman numerals 
with three-dimensional images coloured according to mean number of squamous cell carcinoma (SCC) neighbours (blue low, red high). CAFs, cancer-
associated fibroblasts.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Agent-based modelling recapitulates diversity of collective invasion patterns.

Figure 2 continued

https://doi.org/10.7554/eLife.76520
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width was maintained even if cancer cell proliferation was reduced (Figure 3—figure supplement 1e), 
although the cell neighbour values were lower when proliferation was halved.

We tested the predictions that cancer cell matrix protease function was linked to width of inva-
sion strands by generating A431 cancer cells that either over-expressed MMP14, the major collagen 
protease, or had it deleted via Crispr/Cas9 editing methods (Figure 3—figure supplement 1f). In 
line with expectation, MMP14 over-expression increased the proteolysis of collagen, while MMP14 

Table 1. Key CC3D parameter values.

CC3D parameter
CC3D parameter 
value Real world value Comments

Monte Carlo timestep 
(MCS) 1 30 s

Voxel 1 2 microns

VCAF target volume 800 voxels 6400 microns3 6500 microns3 experimental measure

VCAF target surface 700 voxels 2800 microns2 4900 microns2 experimental measure

SCC initial target volume 400 voxels 3200 microns3

SCC dividing volume 800 voxels 6400 microns3

Median SCC volume in 
wild-type conditions 550 voxels 4400 microns3 4500 microns3 experimental measure

SCC surface area 324 voxels (median) 1296 microns2 (median)
Sphere assumed for surface area
1700 microns2 experimental measure

Mean time to mitosis 8640 MCS 3 days

SCC-ECM adhesion 10 (contact energy) 45.53 (experimental measure)
Adhesions are normalised to SCC-ECM adhesion. They are 
inverted and multiplied by 10 to give contact energies

SCC-SCC adhesion 21 (contact energy) 21.8

SCC-CAF adhesion 35 25.2

SCC-CAF adhesion was marginally reduced below 
experimental measure in model (contact energy would be 18 
from experiment)

CAF-CAF adhesion 45 9.3

CAF-ECM adhesion 15 29.6

SCC-ECM adhesion for 
zero-density ECM 40 11.4

CAF-CAF repulsion range 20 voxels 40 microns Approximately 1.5 CAF widths

SCC taxis energy 13 median speed 0.2 microns/min 0.2 microns/min experimental measure

CAF taxis minimum energy 3.5 0.06 micron/min

CAF taxis maximum energy 21 0.29 microns/min

CAF median speed 10 0.1 microns/min 0.1 microns/min experimental measure

CAF taxis stimulation range 30 voxels Approximately 2.5 CAF widths

CAF ECM pushing rate 0.0140

Corresponds to a reduced CAF 
speed of 0.07 microns/min through 
ECM

Speed due to pushing is three times faster than speed due to 
degradation

CAF ECM degradation rate 0.0012

Corresponds to a reduced CAF 
speed of 0.018 microns/min through 
ECM

Degradation and pushing effects on speed are sub-linear. The 
effective median speed is between 0.07 and 0.088 microns/min

SCC pushing rate 0

SCC degradation rate 0.0001

Corresponds to a reduced SCC 
speed of 0.009 microns/min through 
ECM

Effect of degradation is half for SCCs compared to CAFs. 
Effects are normalised to kinesis levels

CAF, cancer-associated fibroblast; ECM, extracellular matrix; SCC, squamous cell carcinoma; VCAF, vulval CAF.

https://doi.org/10.7554/eLife.76520
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Figure 3 - source data 1
Quantification of invading strand length, width and tapering in A431 cells with/without MMP14 manipulation.
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https://doi.org/10.7554/eLife.76520


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Computational and Systems Biology

Kato, Jenkins et al. eLife 2023;12:e76520. DOI: https://doi.org/10.7554/eLife.76520 � 10 of 31

deletion reduced proteolysis (as assessed by DQ collagen fluorescence) (Figure 3—figure supple-
ment 1g). Figure 3c and d shows that experimentation confirmed the major predictions of our model. 
In particular, the maximum invasion depth in the organotypic context did not simply increase with 
MMP14 levels, with strand lengths similar between MMP14 KO and over-expressing cells. In contrast, 
the strand width was notably affected by MMP14 levels in both organotypic and spheroid assays 
(yellow lines in Figure  3c indicate strand width), with KO cells generating thin strands and over-
expressing cells generating thick strands. The positive relationship between ECM proteolysis and 
strand width was particularly strong in organotypic contexts (Figure 3c and d). Of note, matrix prote-
olysis promoted wide strands even if cancer cell proliferation was prevented by pre-treatment with 
mitomycin C (Figure 3—figure supplement 1h). These results are highly concordant with the model 
predictions and confirm that MMP14 is a major determinant of the mode of collective cancer cell 
invasion but plays little role in determining the maximum distance invaded.

Cancer cell-cell adhesion promotes wide invasive strands
We turned our attention to investigate how cancer cell adhesion to either other cancer cells or the 
matrix influenced the mode of collective invasion. Figure 4a shows PCA plots of invasion characteris-
tics with the strength of cancer cell–matrix adhesion overlaid in green shading. There was no consis-
tent association between cancer cell-matrix adhesion and invasive pattern in the organotypic context, 
with high adhesion values distributed across the PCA plot. The relationship between cell-matrix adhe-
sion and invasion score was relatively flat, with only very high cell-matrix adhesion values boosting 
invasion. This prediction is supported by the lack of effect of ITGB1 deletion on cancer invasion in the 
experimental organotypic model (Figure 4c and d – Figure 4—figure supplement 1b and c confirm 
that ITGB1 KO cells are defective in collagen I and Matrigel adhesion). In the spheroid context, there 
was a somewhat stronger association between matrix adhesion and invasion. Minimal invasion was 
observed in the absence of fibroblasts (Figure 4—figure supplement 1a). Intriguingly, the strongest 
correlation was with the tapering metric that reflects whether strands have a uniform breadth or 
taper as they invade deeper (Figure 4b – row 4). Experiments using ITGB1 KO A431 cells provided 
support for this prediction. To rule out a compensatory role for ITGB3 in ITGB1 KO cells, we combined 
targeting of both ITGB1 and ITGB3. Figure 4—figure supplement 1d–f shows that these cells were 
still able to invade. Greater tapering observed in ITGB1 KO spheroids (Figure 4c and d). Interestingly, 
and in line with model predictions, this was not observed in organotypic assays (Figure 4b–d).

Next, we explored the relationship between cancer cell–cancer cell adhesion and invasion when 
fibroblasts were present (Figure 5a). These analyses yielded several predictions that caught our atten-
tion. First, reducing cancer cell–cancer cell adhesion reduced the total invasion score in organotypic 
assays across relatively large ranges of parameter space (Figure 5a and b – note the association of 
increasing magenta intensity and invasion score vectors in the PCA plot). This is counter to the widely 
held view that EMT and increased single cell characteristics promote invasion. Specifically, in organo-
typic contexts, lower cancer cell–cancer cell adhesion resulted in shorter invasive strands that thinned 
rapidly as they invaded (this is reflected in the Max. Invasion, Mean Neighbour, and Tapering rows in 
Figure 5b). Once again, little invasion was observed in the absence of fibroblasts (Figure 5—figure 
supplement 1a). Figure 5—figure supplement 1c explicitly plots the change in strand width as a 

experimental parameterisation using A431 cancer cells. Yellow indicates a high value, dark blue a low value. (c) Images show the effect of modulating 
matrix proteolysis via either MMP14 Crispr KO or MMP14 over-expression in cancer cells (green) both organotypic and spheroid assays including 
fibroblasts (magenta). Scale bar = 100 μm. (d) Quantification of three biological replicates of the experiment shown in panel (c) with strand length, 
strand width, and tapering shown – 1 unit is equivalent to 0.52 μm. Error bars indicate 95% confidence intervals, one dot represents one strand. ECM, 
extracellular matrix.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Quantification of invading strand length, width, and tapering in A431 cells with/without MMP14 manipulation.

Figure supplement 1. Matrix proteolysis determines strand width but not the distance invaded.

Figure supplement 1—source data 1. Quantification of invading strand width in A431 WT and MMP14 OE cells pretreated with mitomycin C.

Figure supplement 1—source data 2. Uncropped western blot images of WT, MMP14 KO, MMP14 OE, CTNNA1 KO, MMP14 KO/CTNNA1 KO, and 
MMP14 OE/CTNNA1 KO A431 lysates stained for MMP14, alpha-catenin, vimentin, fibronectin, or β-actin.

Figure 3 continued

https://doi.org/10.7554/eLife.76520
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****

Figure 4: Cancer cell - matrix adhesion modulates the tapering of strands. a)PCA plots show the metrics derived from over 2,000
simulations in the presence of fibroblasts covering variation in cancer cell – matrix adhesion with values indicated by the intensity of
green, cancer cell proteolysis (not colour coded), cancer cell – cancer cell adhesion (not colour coded). b) Heatmaps show how varying
the cancer cell – matrix adhesion value (x axis) impacts on different metrics when fibroblasts are included in all simulations. WT
indicates the ‘wild-type’ value based on experimental parameterisation using A431 cancer cells. Yellow indicates a high value, dark blue
a low value. c) Images show the effect of modulating matrix adhesion via Crispr KO of ITGB1 in cancer cells (green) in both organotypic
and spheroid assays including fibroblasts (magenta). Scale bar = 100μm. d) Quantification of three biological replicates of the
experiment shown in panel c) with strand length, strand width and tapering metric shown – 1 unit is equivalent to 0.52μm. Unpaired t-
test was performed. 95% confidence intervals are shown.
Figure 4 - source data 1
Quantification of invading strand length, width and tapering in A431 cells with/without ITGB1 manipulation.
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function of depth for varying cancer cell–cancer cell adhesion. The simpler context of cell invasion into 
a thin permissive gap further supported the prediction that cancer cell–cancer cell adhesion is linked 
to wider invading strands (Figure 5—figure supplement 1d). The situation in spheroid assays was 
more subtle, with increases in invasion only predicted at very high values ≥2 WT (Figure 5b). Of note, 
the Neighbour and Tapering metrics did not vary much depending on cancer cell–cancer cell adhe-
sion. To test these predictions, we generated A431 cells defective in cell–cell adhesion as a result of 
Crispr-mediated deletion of α-catenin/CTNNA1 (Figure 3—figure supplement 1f). Strikingly, and, in 
line with the model predictions, these cells lacking adherens junctions were significantly less invasive, 
both in terms of strand length and strand width, in organotypic assays (Figure 5d). In spheroid assays, 
loss of α-catenin did not affect strand length and had only a modest effect on strand width (~20% 
reduction compared to a 60% reduction in width in organotypic assays).

The pro-invasive role of cell-cell junctions depends on a uniform 
directional cue and supra-cellular coordination of the actomyosin 
cytoskeleton
The data described above establish an intriguing context-dependent role for cell-cell junctions in 
collective invasion – with a positive relationship between cell-cell adhesion and invasion in organotypic 
contexts but not in spheroid contexts. To rule out that the location of CAFs drive invasive pattern, 
we mixed CAFs with SCCs in organotypic simulations (Figure 5—figure supplement 1e). The results 
were highly consistent with the results of CAFs mixed in with ECM, with only minor differences in the 
number of fractured objections and tapering. These analyses rule out CAF location as a dominant 
driver of invasive pattern. One key difference between these two contexts is that cancer cells in the 
organotypic context are subject to a uniform gradient of chemotactic cues, whereas in the spheroid 
context, the cancer cells are subject to a radial chemotactic cue. We used our model to test if switching 
to a uniform chemotactic gradient in the spheroid context would generate a positive relationship 
between cell-cell adhesion and invasion. Figure 5e quantifies track invasion score in simulations of 
spheroids with either uniform or radial chemotactic cues. These analyses indicate that cancer cell junc-
tions are favourable for invasion when cells are subject to a uniform directional cue. The importance 
of junctions only when there is a uniform directional cue suggests that it may not be cell-cell adhesion 
per se that is important but some linkage between cell-cell adhesions and coordination of collective 
invasion. Consistent with this idea, cadherin-mediated coordination of actin and myosin dynamics is 
important for effective collective migration of neural crest cells during cranio-facial development and 
for border cell migration in the Drosophila egg chamber (Geisbrecht and Montell, 2002; Shellard 
et al., 2018). We hypothesised that a similar mechanism might also underlie the context-dependent 
importance of adherens junctions in cancer cell invasion.

Previous work revealed that collectively invading cancer cells have a supra-cellular actomyosin 
network that enables the coordinated migration of cell groups. Figure  6a confirms control A431 
cells exhibit supra-cellular organisation of their actomyosin network (Hidalgo-Carcedo et al., 2011). 
Furthermore, knockout of CTNNA1 disrupts the formation of a supra-cellular actomyosin network 
(Figure 6a – quantification shown in Figure 6—figure supplement 1a). As expected, CTNNB1 failed 
to localise to cell-cell contacts in CTNNA1 KO A431 cells (Figure 6a). To experimentally disrupt the 
supra-cellular actomyosin network while retaining cell-cell junctions, we utilised two experimental 

experimental parameterisation using A431 cancer cells. Yellow indicates a high value, dark blue a low value. (c) Images show the effect of modulating 
matrix adhesion via Crispr KO of ITGB1 in cancer cells (green) in both organotypic and spheroid assays including fibroblasts (magenta). Scale bar = 
100 μm. (d) Quantification of three biological replicates of the experiment shown in panel (c) with strand length, strand width, and tapering metric shown 
– 1 unit is equivalent to 0.52 μm. Unpaired t-test was performed. 95% confidence intervals are shown, one dot represents one strand.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Quantification of invading strand length, width, and tapering in A431 cells with/without ITGB1 manipulation.

Figure supplement 1. Cancer cell–matrix adhesion modulates the tapering of strands.

Figure supplement 1—source data 1. Quantification of ECM adhesion in A431 WT and ITGB1 KO cells.

Figure supplement 1—source data 2. Uncropped western blot images of WT, ITGB1 KO, ITGB1 KO/control KD, and ITGB1 KO/ITGB3 KD A431 lysates 
stained for integrin β1, integrin β3, or β-actin.

Figure 4 continued
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Figure 5: Cancer cell - cancer adhesion is required for efficient invasion in response to uniform directional cues. a) PCA plots show the
metrics derived from over 2,000 simulations in the presence of fibroblasts covering variation in cancer cell – cancer cell adhesion with
values indicated by the intensity of magenta, cancer cell proteolysis (not colour coded), cancer cell – matrix adhesion (not colour
coded). b) Heatmaps show how varying the cancer cell – cancer cell adhesion value (x axis) impacts on different metrics when
fibroblasts are included in all simulations. WT indicates the ‘wild-type’ value based on experimental parameterisation using A431
cancer cells. Yellow indicates a high value, dark blue a low value. c) Images show the effect of modulating cancer cell - cell adhesion via
Crispr KO of CTNNA1 in cancer cells (green) in both organotypic and spheroid assays including fibroblasts (magenta). Scale bar =
100μm. d) Quantification of three biological replicates of the experiment shown in panel c) with strand length, strand width and
tapering shown – 1 unit is equivalent to 0.52μm. Unpaired t-test was performed. Error bars indicate 95% confidence intervals. e) Plots
show the track invasion score with varying cancer cell – cancer cell adhesion in simulations lacking fibroblasts, but with a single
permissive track favouring invasion. Cartoons indicate the initial set up of cell positions and the directional cue in the simulation.
Figure 5 - source data 1
Quantification of invading strand length, width and tapering in A431 cells with/without CTNNA1 manipulation.
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tools, ROCK:ER (a fusion of the ROCK2 kinase domain to the regulatory domain of the oestrogen 
receptor) and ROCK kinase inhibition. In the presence of 4OHT, ROCK:ER boosts actomyosin contrac-
tility throughout the cytoplasm including at cell-cell interfaces (Croft et  al., 2004), and the latter 
reduces the activity of the supra-cellular actomyosin belt. Figure 6b and c shows that these manipula-
tions have the desired effect on active actomyosin, as determined by pS19-MLC staining (Figure 6—
figure supplement 1b and c confirms these observations with staining for MYH9). We next tested 
the effect of these perturbations on A431 MMP14 over-expressing cells that generate wide invasive 
strands. Figure 6d and e shows that both manipulations reduce the width of invading strands, demon-
strating that disrupting actomyosin coordination mechanisms phenocopy loss of adherens junctions 
with respect to the width of invading strands (note: for this experiment we used ECM pre-conditioned 
by fibroblasts in the absence of drug and then added cancer cells in the presence of the indicated 
perturbations). Furthermore, the data support a model in which adherens junctions influence invasive 
pattern by enabling supra-cellular coordination of actomyosin, and not simply determining whether 
cancer cells are able to maintain contact with one another. Consistent with this view, we observed 
supra-cellular organisation of actomyosin and the retention of adherens in all but the thinnest invading 
strands in human SCC.

Protease-driven strand widening requires cell-cell junctions
The analyses above investigate the relationship between individual cancer cell parameters and inva-
sion; we additionally explored how combinations of parameter variations influenced invasive pattern 
and extent. The data described above argue that, by virtue of their role in coordinating supra-cellular 
actomyosin, cell-cell junctions would be required for high levels of proteolysis to generate wide inva-
sive tracks. We, therefore, explored the interplay between cancer cell–cancer cell adhesion and prote-
olysis in determining SCC invasion using both modelling and experimental strategies. Potts modelling 
predicted that the high neighbour number observed when matrix proteolysis is high would depend 
upon cell-cell junctions in organotypic assays (note the higher values in the top right regions on 
the plots in Figure 7ai). Interestingly, this cooperative interaction between proteolysis and cell-cell 
adhesion was not predicted to influence the extent of maximum invasion, which was dominated by 
cell-cell adhesion alone (Figure 7aii). These predictions were supported by experimentation: deletion 
of CTTNA1 prevented the formation of wide invasive strands by MMP14 over-expressing A431 cells 
in the organotypic invasion assays (Figure 7c), with more subtle effects observed in the spheroid 
assays (Figure  7a, d, and e). Figure  3—figure supplement 1a and b indicates that CAFs favour 
narrower invasive strands; therefore, to more fully explore how ECM proteolysis and cell-cell adhesion 
co-ordinately determine the geometry of collective invasion, we revisited simulations, without CAFs, 
designed to monitor the curvature of the invading cell cluster (Figure 3—figure supplement 1d). 
Figure 7—figure supplement 1a and b shows that if both ECM proteolysis and cell-cell adhesion are 
high then a broad, virtually flat, invasive front is generated. Reducing either proteolysis or cell-cell 
adhesion leads to increased curvature. Together, these analyses establish that a broad ‘pushing’ front 
of invasion requires both high proteolysis and high cancer cell–cancer cell adhesion.

Strand widening is coupled to cancer cell growth
While the focus of our analysis has been the pattern of invasion, the widening of tracks might also 
represent a mechanism for generating additional space for cell growth in confined environments. As 

simulations. WT indicates the ‘wild-type’ value based on experimental parameterisation using A431 cancer cells. Yellow indicates a high value, dark blue 
a low value. (c) Images show the effect of modulating cancer cell-cell adhesion via Crispr KO of CTNNA1 in cancer cells (green) in both organotypic 
and spheroid assays including fibroblasts (magenta). Scale bar = 100 μm. (d) Quantification of three biological replicates of the experiment shown in 
panel (c) with strand length, strand width, and tapering shown – 1 unit is equivalent to 0.52 μm. Unpaired t-test was performed. Error bars indicate 95% 
confidence intervals, one dot represents one strand. (e) Plots show the track invasion score with varying cancer cell–cancer cell adhesion in simulations 
lacking fibroblasts but with a single permissive track favouring invasion. Cartoons indicate the initial set up of cell positions and the directional cue in the 
simulation.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. Quantification of invading strand length, width, and tapering in A431 cells with/without CTNNA1 manipulation.

Figure supplement 1. Cancer cell–cancer cell adhesion is required for efficient invasion in response to uniform directional cues.

Figure 5 continued

https://doi.org/10.7554/eLife.76520


 Research article﻿﻿﻿﻿﻿﻿ Cancer Biology | Computational and Systems Biology

Kato, Jenkins et al. eLife 2023;12:e76520. DOI: https://doi.org/10.7554/eLife.76520 � 15 of 31

Ctrl

+ 4
OHT

0

50

100

150

200

250

St
ra

nd
 w

id
th

WT

MMP14
OE

MMP14
OE+

Y27
63

2

0

100

200

300

St
ra

nd
 w

id
th

a

b

WT MMP14 OE
MMP14 OE +

Y27632

c

d

A431-MMP14 OE-ROCK:ER

Ctrl + 4OHT

**** ****
*

****e

Figure 6: Supra-cellular coordination of actomyosin organisation by cell – cell junctions enables wide invading strands. a) Images show the
β-catenin (magenta), F-actin (orange), DNA (blue) and active myosin (pS19-MLC - green) networks in control A431 and CTNNA1 KO A431
cells. b) Images β-catenin (magenta), F-actin (orange), DNA (blue) and active myosin (pS19-MLC - green) networks in control A431 and
10μM Y27632 treated cells. Scale bar = 20μm. c) Images show β-catenin (magenta), F-actin (orange), DNA (blue) and active myosin (pS19-
MLC - green) networks in control A431 ROCK:ER and 4-OHT-treated cells. Scale bar = 20μm. d) Images show organotypic killing assays using
control or MMP14 over-expressing A431 cells in the presence or absence of 10μM Y27632. Scale bar = 100μm. Plot shows the
quantification of strand width from three biological replicates – 1 unit is equivalent to 0.52μm. One way ANOVA with post-hoc multiple
comparisons was performed. Error bars indicate 95% confidence intervals. e) Images show organotypic invasion assays using MMP14 over-
expressing A431 cells additionally engineered to contain ROCK:ER in the presence or absence of 4-OHT. Scale bar = 100μm. Plot shows the
quantification of strand width from three biological replicates. Unpaired t-test was performed. Error bars indicate 95% confidence intervals.
Figure 6 - source data 1
Quantification of invading strand width in A431 cells with/without manipulation of actomyosin contractility.
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Figure 6. Supra-cellular coordination of actomyosin organisation by cell–cell junctions enables wide invading strands. (a) Images show the β-catenin 
(magenta), F-actin (orange), DNA (blue), and active myosin (pS19-MLC - green) networks in control A431 and CTNNA1 KO A431 cells.( b) Images 
β-catenin (magenta), F-actin (orange), DNA (blue), and active myosin (pS19-MLC - green) networks in control A431- and 10-μM Y27632-treated cells. 
Scale bar = 20 μm. (c) Images show β-catenin (magenta), F-actin (orange), DNA (blue), and active myosin (pS19-MLC - green) networks in control A431 

Figure 6 continued on next page
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proliferation is a feature of our model, we additionally investigated whether cancer cell growth might 
be impacted as a result of change in cancer cell–cancer cell adhesion and proteolysis. Interestingly, 
the vectors reflecting cell growth and neighbour number in the PCA analysis were closely aligned 
(Figure 2c and d). EdU staining revealed that proliferating cells were observed throughout spheroids 
(Figure 8—figure supplement 1a and b). Moreover, there was a positive association between the 
proportion of EdU positive cells in invading strands and the strand width. The modelling indicated that 
the linkage between strand widening and growth was particularly pronounced in the spheroid simu-
lations lacking fibroblasts (Figure 2—figure supplement 1f). Given that we have established matrix 
proteolysis and cancer cell–cancer cell adhesion as the major determinants of neighbour number and 
strand width, we therefore investigated the relationship between these parameters and cell growth. 
Neither was predicted to have a strong effect on cell growth in organotypic assays, either in the pres-
ence or absence of CAFs (Figure 8a). In contrast, a strong positive relationship between proteolysis 
and growth was predicted in the context of spheroids lacking CAFs (Figure 8a). Cancer cell–cancer 
cell adhesions were also predicted to make a positive contribution to growth, albeit smaller than the 
effect of proteolysis (Figure 8a). We proceeded to test these predictions experimentally. Manipula-
tion of MMP14 and CTTNA1 had minimal effect on cell growth in unconfined two-dimensional (2D) 
culture conditions (Figure 8—figure supplement 1c). Figure 8b and c confirms that both proteolysis 
and cancer cell–cancer cell adhesion are required for effective cell growth in 3D collagen matrices. 
Moreover, the positive effect of boosting proteolysis required cell-cell adhesions (Figure 8b and c 
compares MMP14 OE with αCATKO MMP14 OE). Ectopic activation of ROCK2, which disrupts cyto-
skeletal cohesion in cell clusters, also reduced growth in 3D collagen (Figure 8—figure supplement 
1d and e). Together, these data suggested that the supra-cellular actomyosin network, invasive strand 
width, and cancer cell growth might be linked.

The linkage between strand widening and growth might be due to the ability of cells to generate 
space when surrounded by ECM. This could be the result of proteolysis, which would explain the 
effect of MMP14 manipulation, but it is less clear why this might require adherens junctions. We 
hypothesised that cell-cell junctions and the supra-cellular coordination of the actomyosin network 
might enable cancer cells to physically remodel the ECM (Figure 8d–f). Similar to previous work with 
single cells Wyckoff et  al., 2006, we observed that clusters of control cancer cells displaced the 
ECM. This was observed directly in time-lapse movies and as the formation and compaction of ECM 
fibres at the cancer cell-ECM interface (note arrows in Figure 8e and f). These analyses also revealed 
highly dynamic membrane blebs and filopodia at the cancer cell-ECM interface. ECM compaction was 
absent when CTNNA1 KO cells were used. MMP over-expression reduced ECM compaction and led 
to the formation of gaps in the ECM adjacent to the cancer cells with reduced numbers of membrane 
blebs (Figure 8f). These analyses provide a direct demonstration of the ‘pushing’ term used in the 
computational modelling and are consistent with a role for the supra-cellular actomyosin cable in 
generating the pushing force.

Protease-driven tumour growth and lymph node metastasis require 
cell-cell junctions
Finally, we sought to test whether key findings of our integrated in silico and in vitro analysis also 
applied in an in vivo context with a heterogeneous environment including a greater diversity of 

ROCK:ER- and 4-OHT-treated cells. Scale bar = 20 μm. (d) Images show organotypic killing assays using control or MMP14 over-expressing A431 cells 
in the presence or absence of 10 μM Y27632. Scale bar = 100 μm. Plot shows the quantification of strand width from three biological replicates – 1 
unit is equivalent to 0.52 μm. One-way ANOVA with post-hoc multiple comparisons was performed. Error bars indicate 95% confidence intervals, one 
dot represents one strand. (e) Images show organotypic invasion assays using MMP14 over-expressing A431 cells additionally engineered to contain 
ROCK:ER in the presence or absence of 4-OHT. Scale bar = 100 μm. Plot shows the quantification of strand width from three biological replicates. 
Unpaired t-test was performed. Error bars indicate 95% confidence intervals, one dot represents one strand.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Quantification of invading strand width in A431 cells with/without manipulation of actomyosin contractility.

Figure supplement 1. Supra-cellular coordination of actomyosin organisation by cell–cell junctions enables wide invading strands.

Figure supplement 1—source data 1. Quantification of pMLC intensity in A431 WT, CTNNA1 KO, and cells with actomyosin manipulation.

Figure 6 continued

https://doi.org/10.7554/eLife.76520
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Figure 7. Proteolysis-driven strand widening requires adherens junctions. (a) Heatmaps show how varying the matrix proteolysis (x-axis) and cancer 
cell–cancer cell adhesion value (y axis) impacts on different metrics when fibroblasts are included in all simulations. WT indicates the ‘wild-type’ value 
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Figure 7 continued on next page
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stromal cell types not included in our model. A431 cells engineered to have different levels of MMP14 
and CTTNA levels were injected into the dermal space within the ears of mice. This anatomical loca-
tion was chosen because the dermis represents the first tissue that SCC invades into, and cells can 
spread from the dermis to local lymph nodes, which reflects the clinical spread of the disease. This 
environment is spatially confined with some fibroblasts in addition to thin layers of fat, cartilage, 
and muscle. It was not possible to include all these additional factors with appropriately controlled 
parameterisation. Therefore, we concentrated on validating the relationship between matrix prote-
olysis, cancer cell-cell adhesion, and invasive spread in vivo. In addition, if stromal support, such as 
that provided by fibroblasts, is limited then the mechanisms that promote wide invasive strands also 
favour growth. To test these ideas, we injected A431 cells with combinations of MMP14 and α-catenin 
manipulations into the intradermal space of mouse ears. This environment is spatially restrictive with 
lymphatic drainage to local lymph nodes. Of note, MMP over-expressing cells generated tumours with 
particularly wide, bulging, margins (Figure 9a). Strikingly, there was a strong correlation between the 
levels of MMP14 and tumour growth (Figure 9b). Histological analysis revealed clusters of SCC cells in 
the ear distant from the main tumour. In MMP14 over-expressing tumours, these clusters were larger, 
rounder (as judged by aspect ratio), and further from the tumour (Figure 9—figure supplement 1a 
and b). Metastatic spread to lymph nodes also correlated with MMP14 levels, which are in line with 
previous reports (Bartolomé et al., 2009; Devy et al., 2009; Wang et al., 2021). Notably, and in 
contrast to the prevailing dogma, reducing cancer cell–cancer cell adhesion did not lead to a more 
aggressive tumour phenotype but reduced both tumour growth, and very few mice were observed 
to have lymph node metastases (Figure 9c). This could be partly compensated by over-expression of 
MMP14, suggesting that a defect in ‘space’ generation might underpin the defect in the CTNNA1 
KO cells. However, the growth and lymph node metastasis of MMP14 o.e./CTNNA1 KO cells were 
reduced compared to the MMP14 o.e. cells (Figure 9c), indicating that the tumour promoting effect 
of elevated MMP14 levels depends on cell-cell adhesion. Together, these analyses demonstrate that 
MMP14-driven matrix proteolysis promotes invasion in wide collective units and tumour growth in 
spatially confined contexts. Furthermore, the widening of invasive units, tumour growth, and lymph 
node metastases depends upon adherens junction-mediated supra-cellular coordination of the acto-
myosin network.

Discussion
The combined computational and experimental analysis of collective cancer cell invasion presented 
here raises several findings that warrant further consideration. Although, matrix proteolysis was 
broadly associated with higher levels of invasion (Castro-Castro et al., 2016; Egeblad and Werb, 
2002), it was not a simple linear relationship (Figure 8—figure supplement 1d). Most notably, high 
proteolysis reduces the maximal extent of invasion but increases the strand width in both the model 
and experiments. The ability of cells with high levels of proteolysis to generate space means that 
there is less pressure to constrict cells into longer thinner strands. The importance of space limita-
tion for effective invasion is underscored by the reduced invasion observed when spheroids have a 
‘choice’ between invasion and spreading over an unimpeded matrix layer. High proteolysis essentially 
reduces the space limitation. This is also linked with high levels of proliferative capacity in 3D envi-
ronments. Our analysis demonstrated that this growth effect was clearly observed in vivo. MMP14 

in cancer cells (green) in both organotypic assays including fibroblasts (magenta). Scale bar = 100 μm. (c) Quantification of three biological replicates of 
the experiment shown in panel (b) with strand length and strand width shown – 1 unit is equivalent to 0.52 μm. One-way ANOVA with post-hoc multiple 
comparisons was performed. Error bars indicate 95% confidence interval, one dot represents one strand. (d) Images show the effect of combinatorial 
modulation of matrix proteolysis and cancer cell-cell adhesion via Crispr KO of CTNNA1 and/or MMP14 and/or MMP14 over-expression in cancer cells 
(green) in both spheroid assays including fibroblasts (magenta). (e) Quantification of three biological replicates of the experiment shown in panel (d) with 
strand length and strand width shown. Scale bar = 100 μm. One-way ANOVA with post-hoc multiple comparisons was performed. Error bars indicate 
95% confidence interval, one dot represents one strand.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Quantification of invading strand width and length in A431 cells with/without manipulation of MMP14 and/or CTNNA1.

Figure supplement 1. Proteolysis-driven strand widening requires adherens junctions.

Figure 7 continued

https://doi.org/10.7554/eLife.76520
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Figure 8 continued on next page
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shows quantification of the growth assay shown in (b). Two-way ANOVA with post-hoc multiple comparisons was performed. Error bars indicate 95% 
confidence intervals. Data from three biological replicates. (d) Fluorescent image shows reflectance of collagen fibre (cyan) and cell membrane of A431 
WT cells in three-dimensional (3D) culture. (e) Fluorescent image shows reflectance of collagen fibres around A431 WT cells in 3D culture at two time 
points. t=0 min: magenta, t=100 min: green. (f) Fluorescent images show reflectance of collagen fibres (cyan) and cell membrane of A431 WT, CRNNA1 
KO, or MMP14 over expressing cells (red) in 3D culture. White arrows highlight the formation and motion of collagen bundles adjacent to the cell 
clusters, yellow arrows highlight gaps.

The online version of this article includes the following source data and figure supplement(s) for figure 8:

Source data 1. Quantification of cancer cell proliferation in 3D culture.

Figure supplement 1. Strand widening is linked to tumour growth and metastasis.

Figure supplement 1—source data 1. Quantification of proliferation of WT, MMP14, CTNNA1, and/or ROCKER manipulated A431 in 2D and 3D 
culture.

Figure 8 continued
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Figure 9. Strand widening is linked to tumour growth and metastasis. (a) H&E images are shown on tumours growing in the ears of mice with 
the indicated manipulations of MMP14 and CTNNA1. Scale bar = 50 μm. (b) Plot shows quantification of A431 tumour growth with the indicated 
manipulations of MMP14 and CTNNA1. (c) Table shows quantification of mice with primary tumours and mice with lymph node metastases when 
injected with A431 cells with the indicated manipulations of MMP14 and CTNNA1. The total number of mice for each condition also applies to the data 
plotted in (b). Two-way ANOVA with post-hoc multiple comparisons was performed. Error bars indicate 95% confidence intervals.

The online version of this article includes the following source data and figure supplement(s) for figure 9:

Source data 1. Tumour size and number of metastasis in WT and MMP14 and/or CTNNA1 manipulated tumour-bearing mice.

Figure supplement 1. Interplay of adherens junctions and matrix proteolysis determines the invasive pattern and growth.

Figure supplement 1—source data 1. Tumour invasion metrics.

https://doi.org/10.7554/eLife.76520
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over-expressing tumours grew and metastasised aggressively. This argues that SCC cells invading in 
thick strands are efficient at metastasis. Crucially, the aggressive behaviour of MMP14 over-expressing 
cells is reduced by depletion of α-catenin. This argues strongly against a single cell form of migration 
being optimal for lymph node metastasis of SCC cells. The importance of adherens junctions for effi-
cient metastasis is increasingly appreciated, this work suggests that one advantage of both adherens 
junctions and matrix proteases in collective migration is that the cells remain in a state capable of 
generating the space required for growth.

In silico analysis revealed that reducing cancer cell-ECM adhesion had a minor effect on deter-
mining the mode of invasion. Experimentation using ITGB1 knock-out cells supported this analysis and 
notably confirmed the relationship between strand tapering and cancer cell-ECM adhesion. Moreover, 
unless cancer cell-ECM adhesion was very strong, the relationship between this variable and extent of 
invasion was rather weak in both organotypic and spheroid assays. Broadly, these data are consistent 
with the integrin independence of amoeboid forms of migration in 3D and hint at a role for either 
adhesion forces mediated by the glycocalyx or a role for outward forces that enable a ‘chimneying’ 
type of migration. In the future, it will be interesting to explore feedback loops between ECM prop-
erties, including density and stiffness, cell-matrix adhesion, cell behaviour, and low-affinity ECM adhe-
sion mechanisms. A more sophisticated framework covering cell-ECM adhesion might also enable 
explanation of the experimental observation of thinner strands when ITGB1 is deleted (Figure 4). 
Cancer cell-cell adhesions exert a greater influence on collective cancer invasion than cell-ECM adhe-
sions (Figure 8—figure supplement 1d). Intriguingly, the positive role of cancer cell-cell adhesions 
was most pronounced in simulations with a uniform chemotactic gradient. We propose that this 
reflects a crucial role of cell-cell adhesions in coordinating a supra-cellular actomyosin cytoskeleton in 
collectively invading clusters. This is likely to involve coordination of cell polarity complexes at sites 
of cell-cell contact. Interestingly, loss of cell-cell junctions was not sufficient to promote a clear switch 
to single cell invasion. This is likely due to the lack of available space in 3D contexts. This observa-
tion is consistent with CDH1-deficient tumours, such as invasive lobular carcinoma of the breast and 
some gastric cancers, typically showing thin strand-like patterns of invasion. Intriguingly, we observed 
transitions to single cell behaviour upon combined manipulation of CTNNA1 and MMP14 – either 
over-expression or knockout. The reasons for this are not immediately apparent, but the MMP14 
knockout phenotype and the increase in single cell migration when ITGB1 and ITGB3 are depleted 
are consistent with protease- and adhesion-independent amoeboid cell migration (Friedl and Wolf, 
2010; Lämmermann et al., 2008; Tozluoğlu et al., 2013; Wolf et al., 2003). Our modelling frame-
work is not set up to consider amoeboid migration; hence, the transitions to single cell migration are 
not efficiently predicted. In future work, it will be interesting to integrate modelling frameworks for 
collective and amoeboid forms of migration.

To conclude, our integrated in silico and experimental approach reveals some of the key determi-
nants of the mode of collective cancer invasion. Broad pushing fronts are associated with high matrix 
proteolysis and strong cancer cell-cell junctions and a lower dependence on CAFs. Reducing either 
proteolysis or cancer cell-cell adhesions leads to thinner invasive strands, with cell-matrix adhesions 
tuning strand tapering. We observe and experimentally demonstrate an unexpected linkage between 
the mechanisms that promote the widening of invasive strands and ability of cancer cells to grow 
when surrounded by ECM.

Materials and methods

 Continued on next page

Key resources table 

Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Anti-MMP14 (rabbit monoclonal) Abcam ab51074 WB (1:1000)

Antibody
Anti-alpha-catenin (rabbit 
monoclonal) Abcam ab51032 WB (1:1000)

Antibody
Anti-vimentin (mouse 
monoclonal) Sigma SAB4200761 WB (1:1000)

https://doi.org/10.7554/eLife.76520
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Reagent type 
(species) or resource Designation Source or reference Identifiers Additional information

Antibody
Anti-fibronectin (rabbit 
polyclonal) Sigma F3648 WB (1:1000)

Antibody
Anti-integrin β1 (mouse 
monoclonal) Abcam ab24693 WB (1:1000)

Antibody
Anti-integrin β3 (rabbit 
monoclonal) Abcam ab179473

WB (1:1000)
IF (1:500)

Antibody Anti-actin (mouse monoclonal) Sigma A4700 WB (1:2000)

Antibody
Anti-pS19-MLC (rabbit 
polyclonal) Cell Signaling 3671 IF (1:100)

Antibody
Anti-myosin MHC IIa (rabbit 
polyclonal) Covance PRB-440P IF (1:100)

Antibody
Anti-β-catenin (mouse 
monoclonal) Santa Cruz sc7963 IF (1:100)

Antibody
Anti-integrin β1 (mouse 
monoclonal) Santa Cruz sc13590 IF (1:100)

Cell line (Homo-
sapiens) A431

Cell Service department 
of Francis Crick Institute

Cell line (Homo-
sapiens) VCAF2B

Previously established 
(Gaggioli et al., 2007)

Transfected construct 
(Homo-sapiens)

px458
CTNNA1 gRNA Santa Cruz sc-419475

Transfected construct 
(Homo-sapiens)

px458
MMP14 gRNA This paper gctgctttgggccgagccg Targeting gRNA sequence

Sequence-based 
reagent siRNA: non-targeting Dharmacon

siGENOME Non-Targeting 
Control siRNAD-001210-01-05

Silencer Select
Used at 20 nM

Sequence-based 
reagent siRNA: targeting ITGB3 Dharmacon

siGENOME SMARTpool M-
004124-02-0010

Silencer Select
Used at 20 nM

Transfected construct 
(Homo-sapiens) pMMP14-mCherry

Generous gift from 
Dr. Machesky at CRUK 
Beatson Institute

Transfected construct 
(Homo-sapiens) pCSII-mCherry-CAAX Previously generated

Lentiviral construct to transfect 
and express membrane targeting 
mCherry

Transfected construct 
(Homo-sapiens) pCSII-ECFP-CAAX Previously generated

Lentiviral construct to transfect and 
express membrane targeting ECFP

Transfected construct 
(Homo-sapiens) pCSII-KEIMA-CAAX Previously generated

Lentiviral construct to transfect 
and express membrane targeting 
KEIMA

Chemical compound, 
drug Collagen I BD Biosciences 354236

Chemical compound, 
drug Matrigel BD Biosciences 354234

Chemical compound, 
drug

DQ collagen, type I from bovine 
skin, fluorescein conjugate Thermo Fisher Scientific D12060

Chemical compound, 
drug Y27632 Tocris Bioscience 1254

Chemical compound, 
drug 4-Hydroxytamoxifen (4OHT) Sigma H7904

Commercial assay 
or kit

Edu Cell Proliferation kit for 
imaging, Alexa Fluor 488 dye Fisher Scientific C10337

 Continued
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Experimental
Cell culture
Human vulval CAFs are described in Gaggioli et al., 2007. CAFs were cultured in Dulbecco's Modified 
Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS) and 1% insulin–transferrin–
selenium (Invitrogen, no. 41400–045) and 100  U/ml penicillin, and 100  μg/ml streptomycin. Human 
vulval SCC cell line A431 cells were grown in DMEM supplemented with 10% FBS, 100  U/ml penicillin, 
and 100  μg/ml streptomycin. For ROCK inhibitor treatment cells were treated with 10 µM Y27632.

Stable cell lines
CTNNA1 or MMP14 KO A431 cells were generated by CRISPR-Cas9 as previously described (Labern-
adie et al., 2017). Briefly, pX458 vectors encoding gRNA sequences were transfected into A431 cells, 
and single GFP positive cells were sorted into 96-well plate 2 days after transfection. Cells were grown 
for 2 weeks, and KO was checked by western blot and sequencing of genome DNA. For MMP14 
overexpressing cells, A431 cells were transfected with pMMP14-mCherry (generous gift from Dr. 
Machesky at CRUK Beatson Institute) and selected by G418 for 2 weeks. mCherry positive cells were 
sorted by flow cytometry. Stably labelled A431 cells and CAFs were obtained by infecting lentivirus 
containing fluorescent protein gene. 293 FT cells were transfected with pCSII-mCherry-CAAX, pCSII-
ECFP-CAAX, or pCSII-KEIMA-CAAX construct and lentiviral RRE, REV, and VSVG encoding plasmids 
(5 µg each) by Xtremegene HP (Roche) according to the manufacturer’s recommendation. Resulting 
supernatant containing lentivirus was then infected to target cells.

Western blotting
Cells were lysed with Laemmli sample buffer containing 2.5% β-mercaptoethanol and heated at 95°C 
for 5  min. Samples were loaded to 4–15% polyacrylamide gels (Bio-Rad) for electrophoresis. Proteins 
were then transferred to a Poly Vinylidene DiFluoride (PVDF) membrane (Merck), which was blocked 
with 5% dry milk, Tris buffered saline, 0.2% Tween, and incubated with primary antibodies (over-
night at 4°C) followed by secondary antibodies (1:10000) for 1   hr at room temperature. Proteins 
were detected by using Luminata Crescendo (Merck) and LAS600 (GE Healthcare). The following 
antibodies were used: anti-MMP14 rabbit monoclonal (1:1000, EP1264Y, Abcam), anti-alpha-catenin 
rabbit monoclonal (1:1000, EP1793Y, Abcam), anti-Vimentin mouse monoclonal (1:1000, 1A4, Sigma), 
anti-Fibronectin rabbit polyclonal (1:1000, Sigma), anti-integrin β1 mouse monoclonal (1:1000, P5D2, 
Abcam), anti-integrin β3 rabbit monoclonal (1:1000, ERP17507, Abcam), and anti-actin mouse mono-
clonal antibody (1:2000, AC-40, Sigma).

Explant invasion assay
Human head and neck squamous cell carcinoma were collected with informed consent from all 
subjects and following ethical approval from the Institute of Cancer Research/Royal Marsden Hospital 
– reference CCR 2924. Frozen sections were stained as described previously (Hidalgo-Carcedo et al., 
2011 Calvo et al., 2013). Patient-derived SCC tissues were chopped into small pieces (roughly 1 mm3) 
and embedded in Collagen I/ Matrigel. Time-lapse images were taken by microscope every 10 min.

Spheroid invasion assay
A431 and CAF cells were detached from the cell culture dishes with trypsin and re-suspended in sterile 
0.25% methylcellulose solution in DMEM. The cellulose solution contained a 1:1 ratio of A431 and CAF 
cells at a concentration of 1 × 105 cells/ml. Twenty microlitre droplets were plated onto the underside 
of a 10-cm culture dish and allowed to form spheroids in a 37°C incubator overnight (hanging drop 
method). The spheroids were then embedded in a collagen I/Matrigel gel mix at a concentration of 
approximately 4  mg/ml collagen I and 2  mg/ml Matrigel (BD Bioscience) in 24-well glass-bottomed 
cell culture plates (MatTek) on a 37°C hot block. The gel was incubated for at least 30  min at 37°C with 
5% CO2. The gel was covered with DMEM media containing 10% FCS. Sixty hours later, the spheroids 
embedded in the gel were washed with PBS and then fixed for 30  min at room temperature with 4% 
paraformaldehyde. The spheroids were then imaged with an inverted Zeiss LSM780 at a magnification 
of ×10, ×20, and ×63. Z-stack images spanning 100–150  μm were collected, and image stacks were 
processed by ZEN software (Carl Zeiss) to yield maximum-intensity projections.

https://doi.org/10.7554/eLife.76520
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For quantification of the images, strand length and width were measured using Fiji software. Strand 
tapering was calculated by the following formula: strand width at 20% from the root/strand width at 
80% from the root.

For EdU labelling experiment, spheroids were incubated with EdU containing medium for 1 hr prior 
to fix the samples.

For mitomycin C treatment experiment, cells were treated with 0.5 μg/ml mitomycin C for 24 hr 
prior to be subjected to hanging drop procedure.

Organotypic invasion assay
Organotypic invasion assays were performed as previously described (Gifford and Itoh, 2019). Briefly, 
collagen I (BD Biosciences cat. No. 354249) and Matrigel (BD Biosciences cat. No. 354234) were 
mixed to yield a final collagen concentration of 4 mg/ml and a final Matrigel concentration of 2 mg/
ml. After the gel had been left to set at 37°C for 1 hr, mixture of 5 × 105 A431 cells and 5 × 105 vulval 
CAFs (VCAFs) were plated on the top in complete medium. Twenty-four hours later, the gel was then 
mounted on a metal bridge and fed from underneath with complete medium (changed daily). After 
6 days, the cultures were fixed with 4% PFA plus 0.25% glutaraldehyde in PBS and imaged using Zeiss 
LSM780 at a magnification of ×10 and ×20. Z-stack images spanning 100–150  μm were collected, and 
image stacks were processed by ZEN software to yield maximum-intensity projections.

For organotypic killing assay, the gels containing 5 × 105 VCAFs were set without cancer cells and 
incubated for 5 days in complete media. Then the gels were incubated with the media with puromycin 
(5 µg ml–1) for 48 hr to kill the fibroblasts and then washed three times with complete media (30 min 
per wash). 5 × 105 cancer cells were then plated on top, and the assays proceeded as usual.

For quantification of the images, strand length and width were measured using Fiji software. Strand 
tapering was calculated by the following formula: strand width at 20% from the root/strand width at 
80% from the root.

Wound healing assay
4 × 104 cells in 70 µL medium were seeded into each well of two-well culture insert (ibidi) and cultured 
overnight. After removing culture insert complete medium was added to the dish, and images were 
taken at 0, 9, and 24 hr. Empty area was measured using Fiji, and the results of 9 and 24 hr were 
normalised to that of 0 hr.

Proliferation assays
2D assay – 5 × 104 cells were seeded in 24-well plate, and the number of cells was counted everyday 
using Countess II automated cell counter (Thermo Fisher Scientific). Results were normalised to day 
1. 3D ‘confined’ assay – SCC cells were mixed in collagen I/Matrigel at a concentration of 3 × 103 /
ml, and 100 µL of the mixture was put in 96-well plate and incubated for an hour at 37°. After the 
incubation, 150 µL of complete medium was added to each well. Images of growing cells were taken 
at indicated time points with EVOS FL microscope system (Thermo Fisher Scientific).

ECM adhesion assay
Six-well plate was coated with collagen I (20  μg/ml) and Matrigel (20  μg/ml) for 2  hr. Cells were 
detached with Cell Dissociation Buffer enzyme-free (GIBCO), and 1 × 105 cells were seeded in each 
well. After 15 min of incubation, wells were washed twice with PBS, and cells were fixed with PFA. The 
number of cells in each field of view was counted to quantify the ECM adhesion ability of the cells.

Collagen and collagen proteolysis imaging
Cells were seeded in a collagen/Matrigel mix as described for the proliferation assays. Collagen fibres 
were imaged using reflectance imaging on a confocal microscope. For timelapse analysis, cell cultures 
were maintained at 37°C and 5% CO2. To visualise collagen proteolysis, the collagen/Matrigel mix was 
supplemented with 50 μg/ml DQ Collagen I. Collagen proteolysis was then imaged using a confocal 
with excitation at 488 nm and emission in the range 490–540 nm.

https://doi.org/10.7554/eLife.76520
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Immunostaining
Cells were fixed with 4% paraformaldehyde for 10  min and permeabilised in 0.1% Triton X-100 for 
10  min. Cells were blocked in 1% BSA for 1  hr before incubation with primary antibodies – pS19-MLC 
(Cell Signaling #3671 L), myosin MHC IIa (Covance PRB-440P), fibronectin (Sigma F3648), β-catenin 
(Santa Cruz sc7963), integrin β1 (Santa Cruz sc13590), and integrin β3 (Abcam, ab179473) at 4°C 
overnight. After incubation, the appropriate fluorescence-conjugated secondary antibodies for 1 hr, 
cells were washed with PBS. Images were acquired with an inverted Zeiss LSM780 at a magnification 
of ×20 and ×63. For quantification of the pMLC staining, regions of interest were drawn around equal 
numbers of ‘free boundary zones’ of A431 cells in clusters and cell-cell contact zones, and the mean 
fluorescent intensity was measured. The values were then normalised to the mean of all the boundary 
and contact zones for WT A431 cells. Staining of frozen human tissue sections was performed in a 
similar manner, except that fixation and permeabilisation times were doubled, and 5% BSA was used 
as a block.

In vivo tumour growth
Cells were detached from culture flask and resuspended in 4 mg/ml Matrigel/PBS at a concentration 
of 2.5 × 107. Twenty microlitre of cell suspension was injected into ear intradermis of athymic nude 
mouse using 31 G needle (BD). The tumour size was measured every 3–4 days using caliper until it 
reached 0.6 mm in diameter. At the end point, mice were sacrificed, and the tumour samples were 
fixed with 4% PFA overnight and processed by standard methods for haematoxylin and eosin staining. 
Cervical lymph node was taken out and analysed for metastatic seeding.

Computational
Cellular Potts model
Detailed information on mathematical background and C++ coding implementation for each cellular 
mechanism within the model can be found in Appendix 1 in Supplementary file 1 and at the 
GitHub repository https://github.com/RobertPJenkins/kato_jenkins_et_al_CC3D, (copy archived at 
swh:1:rev:b730d817f5c9cb11a4b3c5e02ccf03c829395fff; Jenkins, 2022).

Simulation quantification
MATLAB functions quantifying invasion metrics can be found at the GitHub repository listed above. 
For each simulation outcome of interest (e.g. each combination of parameter values), 10 CC3D simu-
lations were run to generate invasion metrics. All invasion metrics were calculated in MATLAB (version 
2019a). Unless stated, all invasion metrics were recorded at day 4. Invading cells are classed as all cells 
beyond the tumour interface at day 0. Maximum invasion is given by the maximum distance of any 
invasive SCC centroid to the initial tumour interface. Invasion score is equal to the total number of 
invasive SCCs multiplied by the mean distance of invasive centroids to the initial tumour interface. For 
mean number of SCC neighbours, tapering and number of fractured objects in the bulk tumour mass 
at day 4 are found. The mean number of SCC neighbours is calculated for all cells in the bulk tumour 
mass that is invading. For these cells, the gradient of line of best fit between the number of neigh-
bours and distance from initial tumour interface is calculated to give the tapering metric. Fractured 
objects are defined as objects unconnected to the bulk tumour mass and containing at least one SCC. 
The number of these distinct objects is counted for the fractured object metric. For cell growth, the 
total number of SCCs versus time is recorded, and an exponential fitted to the resulting curve. For the 
combination of very large SCC-degradation (eight WT), SCC-SCC adhesion (two WT), and SCC-ECM 
adhesion (four WT) in the presence of CAFs, spheroids can become hollow and break apart. In such 
circumstances, there is no bulk tumour mass resulting in a mean number of neighbours of zero for the 
main tumour mass and a large number of fractured objects. There are four instances of this, and these 
data have been removed (leaving six simulations for this region of parameter space) prior to PCA 
analysis and heatmap generation. The track invasion score is taken at day 5. It is calculated by finding 
all points around a permissive track, beyond the initial tumour boundary where the ECM density is 
0.75 or below (initial condition set to 1). These points are then weighted according to their distance 
from the boundary and then summed. For the spheroid permissive track simulations, both sides of 
the initial tumour mass are quantified. Track width is calculated as the maximum width of the invading 
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strand. Strands that are either non-invasive or where the entire tumour mass has invaded uniformly 
do not record track width values. Curvature is quantified on day 7. The leading invasive edge is 
reduced to two one-dimensional signals in x-z and y-z for mid-points of y and x, respectively. Each 
one-dimensional signal is then smoothed with a smoothing window of 50 pixels. The LineCurvature2D 
function (Dirk-Jan Kroon (2021). 2D Line Curvature and Normals, MATLAB Central File Exchange. 
Retrieved 9 November 2021. https://www.mathworks.com/matlabcentral/fileexchange/32696-2d-​
line-curvature-and-normals) is used to calculate curvature for each signal and the average taken. For 
all heatmaps, for each box the x-axis represents the percentiles from 0.5 to 99.5 (left to right) of all 10 
simulations for that outcome of interest.
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