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Abstract Serial-section electron microscopy (ssEM) is the method of choice for studying macro-
scopic biological samples at extremely high resolution in three dimensions. In the nervous system, 
nanometer-scale images are necessary to reconstruct dense neural wiring diagrams in the brain, 
so -called connectomes. The data that can comprise of up to 108 individual EM images must be 
assembled into a volume, requiring seamless 2D registration from physical section followed by 3D 
alignment of the stitched sections. The high throughput of ssEM necessitates 2D stitching to be 
done at the pace of imaging, which currently produces tens of terabytes per day. To achieve this, 
we present a modular volume assembly software pipeline ASAP (Assembly Stitching and Align-
ment Pipeline) that is scalable to datasets containing petabytes of data and parallelized to work in 
a distributed computational environment. The pipeline is built on top of the Render Trautman and 
Saalfeld (2019) services used in the volume assembly of the brain of adult Drosophila melanogaster 
(Zheng et al. 2018). It achieves high throughput by operating only on image meta-data and trans-
formations. ASAP is modular, allowing for easy incorporation of new algorithms without significant 
changes in the workflow. The entire software pipeline includes a complete set of tools for stitching, 
automated quality control, 3D section alignment, and final rendering of the assembled volume to 
disk. ASAP has been deployed for continuous stitching of several large-scale datasets of the mouse 
visual cortex and human brain samples including one cubic millimeter of mouse visual cortex (Yin 
et al. 2020); Microns Consortium et al. (2021) at speeds that exceed imaging. The pipeline also has 
multi-channel processing capabilities and can be applied to fluorescence and multi-modal datasets 
like array tomography.

Editor's evaluation
Datasets in volume electron microscopy have been growing fruit of the labor of the combined 
efforts of sample preparation specialists and electron microscopy engineers. A missing piece has 
been a method for the automation of the composition of continuous volumes out of collections of 
individual image tiles capable of handling the growing scales of the datasets. Pushing the bound-
aries of what is possible, this work illustrates how a successful approach looks like, demonstrated by 
its application to cubic millimeter volumes imaged at nanometer resolution. All being said, this work 
is but step 1 of a two-step process, whereby first a coarse but mostly correct alignment is computed, 
and then a refinement step using more local cues and with existing methods is applied, setting the 
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stage for the subsequent automated reconstruction of neuronal arbors and their synapses from 
which to infer a cellular connectome.

Introduction
Serial section electron microscopy (ssEM) provides the high spatial resolution in the range of a few 
nanometers per pixel that is necessary to reconstruct the structure of neurons and their connec-
tivity. However, imaging at a high resolution produces a massive amount of image data even for 
a volume that spans a few millimeters. For example, a cubic millimeter of cortical tissue imaged 
at a resolution of 4 × 4 × 40 nm3 generates more than a petabyte of data and contains more than 
100 million individual image tiles (W et al. 2020). These millions of images are then stitched in 2D 
for each section and aligned in 3D to assemble a volume that is then used for neuronal reconstruc-
tion. With parallelized high-throughput microscopes producing tens of terabytes of data per day, it is 
necessary that this volume assembly process is automated and streamlined into a pipeline, so that it 
does not become a bottleneck. The ideal pipeline should be capable of processing data at the speed 
of imaging (Lichtman et al., 2014) and produce a high-fidelity assembled volume. To match the speed 
of the EM imaging, the volume assembly pipeline needs to be automated to handle millions of images 
per day from multiple microscopes. Though electron microscopy is notorious for creating very large 
datasets, other volume microscopy technologies that collect 3D data would also gain from advances 
in automated and scalable methods for stitching and alignment.

Imaging and 3D reconstruction of biological samples usually involve a series of stages from preparing 
the tissue, cutting it into serial sections, imaging them using an image acquisition system, 2D regis-
tration and 3D alignment of those serial sections, and finally 3D segmentation (Figure 1a). Each serial 
section imaged comprises of several hundreds to several thousands of images depending on the reso-
lution at which they are imaged. The volume assembly process that registers and aligns these images 
works under the assumption that the images within a serial section carry some overlap between neigh-
boring tile images (Figure 1b and c). The images are registered based on some points of interest 
that are extracted from the overlapping region (Figure 1d). This also requires the raw tile images to 
be corrected for any lens distortion effects that arise from the acquisition system (Figure 1e–g). The 
stitched serial sections can then be 3D aligned using a similar process of matching patterns between 
the montages. The challenge in the volume assembly process arises when the throughput has to be 
matched with the acquisition system for large-scale datasets. Also, a highly accurately aligned 3D 
volume is necessary for further segmentation and reconstruction.

Several tools used in various stages of volume assembly pipelines perform image registration by 
extracting and matching similar features across overlapping images (Cardona et al., 2012; Wetzel 
et al., 2016; Bock et al., 2011; Karsh, 2016). Image registration using Fourier transformation (Wetzel 
et al., 2016) was used to successfully align mouse and zebrafish brain datasets acquired using wager 
mapper ssEM imaging technology. The Fiji (Schindelin et al., 2012; Rasband, 2012) plugin TrakEM2 
(Cardona et al., 2012) includes a comprehensive set of tools and algorithms to perform stitching and 
alignment of various types of microscopy image formats. AlignTK (Bock et al., 2011) implements 
scalable deformable 2D stitching and serial section alignment for large serial section datasets using 
local cross-correlation. An end-to-end pipeline to perform volume assembly and segmentation using 
existing tools was developed by R. Vescovi, 2020 and was designed to run on varied computational 
systems. The pipeline was shown to process smaller datasets through supercomputers efficiently. 
While these approaches have been successfully used in the volume assembly of smaller datasets, they 
do not scale well for large-scale datasets, lack support for different classes of geometric transforma-
tions, or do not incorporate reliable filters for false matches due to imaging artifacts (Khairy et al., 
2018).

We propose a volume assembly pipeline – ASAP (Assembly Stitching and Alignment Pipeline; 
https://github.com/AllenInstitute/asap-modules; Mahalingam, 2022) – that is capable of processing 
petascale EM datasets with high-fidelity stitching and processing rates that match the speed of 
imaging. Our pipeline is based on the volume assembly framework proposed in Zheng et al., 2018 
and is capable of achieving high throughput by means of metadata operations on every image in the 
dataset. The metadata and transformations associated with each image are stored in a MongoDB 
database fronted by Render (Trautman and Saalfeld, 2019) services to dynamically render the output 
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at any stage in the pipeline. The effectiveness of the pipeline has been demonstrated in the volume 
assembly of multiple petascale volumes and integrates well with SEAMLeSS (Macrina et al., 2021), 
which provided the final 3D alignment of these volumes.

The pipeline described here for assembly of large connectomics volumes is divided into two 
sections: (1) a software package that is scalable, modular, and parallelized and is deployable in varied 
computing environments to perform volume assembly of EM serial sections; (2) a workflow engine and 

Figure 1. Volume assembly pipeline. (a) Different stages of the electron microscopy (EM) dataset collection pipeline. The biological sample is prepared 
and cut into thin slices that are imaged using the desired image acquisition system (electron microscopy for datasets discussed in this work). The raw 
tile images from each section are then stitched together in 2D followed by a 3D alignment of them. (b) A pair of raw tile images before 2D stitching. 
The tiles have a certain overlap between them and are not aligned (the zoomed-in regions show the misalignment) and hence require a per-tile 
transformation to stitch them together. (c) The pair of tile images from (b) after stitching is performed. The zoomed-in regions illustrate the alignment 
of these images after stitching. (d) Conceptual diagram illustrating the series of steps that are involved in the 2D stitching of the serial sections. The 
steps include computation of lens distortion correction transformation followed by generation of point correspondences between the overlapping tile 
images and, finally, computation of per-tile montage transformations using the point correspondences. (e) A raw tile image without any lens distortion 
correction. (f) Tile image from (e) after lens distortion correction transformation is applied. (g) A quiver plot showing the magnitude and direction of 
distortion caused by the lens from the acquisition system.

https://doi.org/10.7554/eLife.76534
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a volume assembly workflow that utilizes these tools to automate the processing of raw EM images 
from a multiscope setup using high-performance computing (HPC) systems. The tools in ASAP are 
open source and include abstract-level functionalities to execute macro-level operations that execute 
a series of steps required for the execution of different stages of the pipeline. An example of such a 
macro operation is the computation of point-match correspondences, which requires the generation 
of tile pairs and generation of point matches using those tile pairs. The modularity of the tools allows 
for easy implementation of other algorithms into the pipeline without making major changes to the 
existing setup. The software tools can be easily deployed in different computing environments such 
as HPC systems, cloud-based services, or on a desktop computer in a production-level setting. The 
software stack also includes a set of quality c ontrol (QC) tools that can be run in an automated fashion 
to assess the quality of the stitched montages. These software tools can be easily utilized by workflow 
managers running the volume assembly workflow to achieve high throughput. The tools are designed 
to generalize well for other datasets from different domains (that carry the assumption of generating 
overlapping images) and can be adapted to process such datasets. We have also developed a work-
flow manager BlueSky (https://github.com/AllenInstitute/blue_sky_workflow_engine; Melchor et al., 
2021) that implements the volume assembly workflow using our software stack. The proposed pipe-
line combined with BlueSky has been successfully used to stitch and align several high-resolution mm3 
EM volume from the mouse visual cortex and a human dataset at speeds higher than the imaging rate 
of these serial sections from a highly parallelized multiscope setup.

Figure 2. Assembly Stitching and Alignment Pipeline (ASAP) – volume assembly workflow. (a) The different steps of image processing in ASAP for 
electron microscopy (EM) serial sections. The infrastructure permits multiple possible strategies for 3D alignment, including a chunk-based approach 
in case it is not possible to 3D align the complete dataset at once, as well as using other workflows outside ASAP (Macrina et al., 2021; https://www.
microns-explorer.org/cortical-mm3) for fine 3D alignment with the global 3D aligned volume obtained using ASAP. (b–d) Representation of different 
modules in the software infrastructure. The green boxes represent software components, the orange boxes represent processes, and the purple 
processes represent databases. The color of the outline of the box matches its representation in the image processing steps shown in (a). (b) Schematic 
showing the lens distortion computation. (c) Schematic describing the process of data transfer and storage along with MIPmaps generation using the 
data transfer service Aloha. (d) Schematic illustrating the montaging process of serial sections. The same software infrastructure of (d) is then also used 
for 3D alignment as shown by the red boxes in (a).

https://doi.org/10.7554/eLife.76534
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Results
Development of a stitching and alignment pipeline
The pipeline (ASAP) described in this work is based on the principles described by Kaynig et al., 
2010, Saalfeld et al., 2010, and Zheng et al., 2018, and scales the software infrastructure to stitch 
and align petascale datasets. It includes the following stages: (1) lens distortion computation, (2) 
2D stitching, (3) global section-based nonlinear 3D alignment, (4) fine 3D alignment, and (5) volume 
assembly. ASAP performs feature-based stitching and alignment in which point correspondences 
between two overlapping images are extracted and a geometric transformation is computed using 
these point correspondences to align the images.

Figure 2 shows the volume assembly pipeline (ASAP) for building 3D reconstruction out of serial 
section transmission electron microscopy (ssTEM) images. First, single images from serial sections 
from ssTEM are collected. As the field of view is limited, multiple images that overlap with each other 
are imaged to cover the entire section. Images acquired by ssTEMs can include dynamic nonlinear 
distortions brought about by the lens system. A compensating 2D thin plate spline transformation 
is derived using a custom triangular mesh-based strategy (Collins et  al., 2019) based on point 
correspondences of overlapping image tiles as in Kaynig et al., 2010. The point correspondences 
(also referred to as point matches) are extracted using SIFT Lowe, 2004 and a robust geometric 
consistency filter using a local optimization variant of RANSAC Fischler and Bolles, 1981 and robust 
regression (Saalfeld et al., 2010) (see ‘Methods’ for more details). These point correspondences, in 
lens-corrected coordinates, are then used to find a per-image affine/polynomial transformation that 
aligns the images in a section with each other to create a montage. The affine/polynomial transforma-
tions are computed using a custom Python package, BigFeta, which implements a direct global sparse 
matrix solving strategy based on Khairy et al., 2018. The stitched montages are then globally aligned 
with each other in 3D. The 3D global alignment is performed by extracting point correspondences 
between low-resolution version of the 2D stitched sections and solved with BigFeta to obtain a thin 
plate spline per section transformation. This 3D alignment is the result of a progressive sequence of 
rotational, affine, and thin plate spline solves with tuned regularization parameters such that each 
solution initializes the next more deformable, yet increasingly regularized transformation. The globally 
aligned transformations can then be used as an initialization for computing finer and denser alignment 
transformations (an example of this is the fine alignment described in Macrina et al., 2021), which 
is computed on a per-image basis at a much higher resolution. Several iterations of the global 3D 
alignment are performed to achieve a good initialization for the fine alignment process. For all the 
datasets presented in this article, the 2D stitching and global alignment was performed using ASAP, 
and afterward the data was materialized and transferred outside of ASAP for fine alignment using 
SEAMLeSS (Macrina et al., 2021).

In a continuous processing workflow scenario, the serial sections from multiple ssTEMs are stitched 
immediately once they are imaged. 3D alignment is performed on chunks of contiguous sections 
that partially overlap with their neighboring chunks. These independently 3D aligned chunks can be 
assembled to a full volume by aligning them rigidly and interpolating the transformations in the over-
lapping region (Figure 2).

Software infrastructure supporting stitching and alignment
Our software infrastructure is designed to support EM imaging pipelines such as piTEAM (Wetzel 
et al., 2016) that produce multiple serial sections from a parallelized scope setup every hour. The 
infrastructure is designed for processing petascale datasets consisting of millions of partially overlap-
ping EM images. The infrastructure consists of four core components: (1) a modular set of software 
tools that implements each stage of ASAP (asap-modules), (2) a service with REST APIs to transfer 
data from the microscopes to storage hardware (Aloha); (3) REST APIs for creating, accessing, and 
modifying image metadata (Render); and (4) a matrix-based registration system (BigFeta). Below we 
provide a brief description of these components with a more detailed description in the section ‘ASAP 
modules’.

ASAP is implemented as a modular set of tools that includes abstract-level functions to execute 
for each stage of the volume assembly pipeline. It also includes QC tools to assess stitching quality, 
render results to disk at any stage of the pipeline, obtain optimal parameters for computing point 
correspondences, and obtain optimal parameters for solving optimal transformations. Asap-modules 

https://doi.org/10.7554/eLife.76534
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is supported by render-python for read/writes to the database and argschema for its input and output 
data validation (see ‘Methods’ for more details).

Aloha is an image transfer service (Figure 2c) that receives raw images and their metadata from 
the microscopes, stores them in primary data storage, and losslessly compresses the original data 
to reduce the storage footprint. It includes REST APIs for clients to GET/POST images and their 
metadata. It also produces downsampled representations of the images for faster processing and 
visualization.

Render (Trautman and Saalfeld, 2019) provides logic for image transformation, interpolation, and 
rendering. It is backed by a MongoDB document store that contains JSON (JavaScript Object Nota-
tion) tile specifications with image metadata and transformations. Render’s REST APIs are accessed by 
asap-modules using render-python to create, access, and modify image metadata in the database. The 
REST APIs allow the user to access the current state of any given set of image tiles during the stitching 
process. Render also includes a point-match service that handles the storage and retrieval of point 
correspondences in a database since computing point correspondences between millions of pairs of 
images are computationally expensive. Another advantage of storing the point correspondences in a 
database is that it is agnostic to the algorithm that is used for the computation of these point corre-
spondences. The point-match service (Figure 2c and e) handles the data ingestion and retrieval from 
the database using REST APIs with both operations being potentially massively distributed.

BigFeta is a matrix-based registration system that estimates the image transformations using the 
point correspondences associated with the image. BigFeta includes transformations such as rotations 
to implement rigid alignments, and 2D thin plate spline transformations that are useful for 3D image 
alignments. BigFeta can also be integrated with distributed solver packages such as PETSc (Balay 
et al., 2019) for solving large sparse matrices involving billions of point correspondences.

We also developed a workflow manager BlueSky as well as an associated volume assembly work-
flow to automatically process serial sections as they are continuously ingested during the imaging 
process. It utilizes the abstract-level functions in asap-modules to create workflows for each stage of 
the volume assembly pipeline.

Our alignment pipelines operate only on metadata (point correspondences and transforma-
tions) derived from image tiles – a feature derived from the Render services, thus allowing efficient 
processing of petascale datasets and the feasibility of real-time stitching with proper infrastructure. 
Where possible, the pipeline works with downscaled versions of image tiles (MIPmaps) that dramat-
ically increases processing speed and reduces disk usage as raw data can be moved to a long-term 
storage for later retrieval.

Beyond the use of this software infrastructure for EM data, which drove the development that we 
describe in this article, the pipeline also has multichannel processing capabilities and can be applied 
to fluorescence and multimodal datasets like array tomography (see Figure 8).

Data acquisition and initiation of image processing
An important first step in our pipeline is the correction of lens distortion effects on raw images. 
Lens distortions are calculated from a special set of images with high tile overlap. These calibration 
montages are collected at least daily and after any event that might affect the stability of the beam 
(e.g., filament replacement). This step is followed by the acquisition of the neuroanatomical dataset, 
for which a bounding box is drawn around the region of interest (ROI) in each ultra-thin section. In 
certain situations, multiple ROIs are required per section. The volume assembly workflow accepts 
multiple entries referencing the same placeholder label to support reimaging. At the end of each 
acquisition session, the tiles, tile manifest, and session log are uploaded to the data center storage 
cluster and the lens correction and montaging workflows in the volume assembly workflow are trig-
gered. Figure 3 shows the specialized services that facilitate data transfer and tracking from high-
throughput microscopes to shared compute resources.

This infrastructure was used to process multiple petascale datasets, including a 1 mm3 (mouse 
dataset 1) of the mouse brain that is publicly available at microns-explorer (MICrONS Consortium 
et al., 2021). Over 26,500 sections were imaged at 4 nm/pixel resolution using five microscopes, 
running in a continuous and automated fashion (W et al. 2020). Each montage is composed of ~5000 
tiles of 15 µm × 15 µm with an overlap of 13% in both ‍x‍ and ‍y‍ directions. The total file size of a single 
montage is about 80 GB, and thus a daily throughput of 3.6 TB per system is produced in a continuous 

https://doi.org/10.7554/eLife.76534
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imaging scenario. Part of the dataset was imaged using a 50 MP camera with an increased tile size to 
5408 × 5408 pixels. This resulted in montages with ~2600 tiles at an overlap of 9% in both ‍x‍ and ‍y‍ 
directions. The infrastructure was also used to process two other large mouse datasets and a human 
dataset. The details about these datasets are shown in Table 1, where the ROI size and total nonover-
lapping dataset size (without repeated pixels) were determined from montage metadata, including 
pixel size and nominal overlap.
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Figure 3. Data flow diagram. A schematic diagram showing the flow of image data, metadata, and processed data between microscopes. Raw images 
and metadata are transferred from microscopes to our data transfer system (Aloha) and transmission electron microscopy (TEM) database, respectively. 
Aloha generates MIPmaps and compresses images and transfers them to the storage cluster for further processing by ASAP. Metadata is transferred 
to BlueSky through TEM database, which triggers the stitching and alignment process. The metadata from the stitching process is saved in the Render 
services database. The final assembled volume is transferred to the cloud for further fine alignment and segmentation. The hardware configurations are 
presented in Appendix 5.
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Automated petascale stitching
Besides stitching and aligning large-scale datasets, a requirement for the volume assembly pipeline 
is to achieve a rate that matches or exceeds the imaging speed so as to provide rapid feedback 
on issues with the raw data encountered during the stitching process. This is achieved in our pipe-
line using an automated workflow manager (BlueSky) that executes the volume assembly pipeline to 
continuously process serial sections from five different autoTEMs (Wetzel et al., 2016).

The images from the autoTEMs are transferred to the Aloha service without sending them to 
storage servers directly. The Aloha service generates MIPmaps, compresses the raw images, and then 
writes them to the storage servers. The sections processed by Aloha are then POSTed to the BlueSky 
workflow manager, which initiates the montaging process. During an imaging run, each microscope 
uploads raw data and metadata to Aloha using a concurrent upload client. Limitations of the autoTEM 
acquisition computers cap the Aloha client throughput at 0.8–1.2 Gbps per microscope, which is 
sufficient for daily imaging with a 50 MP camera as described in Yin et al., 2020; Wetzel et al., 2016. 
Transferring previously imaged directories from high-performance storage servers has shown that 
an Aloha deployment on multiple machines is capable of saturating a 10 Gbps network uplink. The 
serial sections are assigned pseudo z indices to account for errors in metadata from the scopes such 
as barcode reading errors that assigns incorrect z indices. The lens correction workflow is triggered to 
compute a transformation that can correct lens distortion effects on the raw images. This transforma-
tion is updated in the image metadata so as to be used in subsequent stages of volume assembly. The 
montaging workflow in BlueSky triggers the generation of point correspondences and stores them 
in the database using the point-match service, followed by calculating the globally optimal affine/
polynomial transformation for each image tile in the montage using the BigFeta solver. The transfor-
mations are saved as metadata associated with each tile image in the Render services database. The 
montages go through an automated QC process to ensure a high-fidelity stitching (see ‘Automated 
montage QC’), followed by a global 3D alignment of the entire dataset.

ASAP is capable of performing the global 3D alignment in chunks, making it scalable to use in larger 
datasets or with fewer computational resources. However, all our datasets have been 3D aligned as 
a single chunk. The montages are rendered to disk at a scale of 0.01 and point correspondences are 
computed between the neighboring sections represented by their downsampled versions. A per-
section thin plate spline transformation is computed using 25–49 control points in a rectangular grid. 
The per-section transformation is then applied to all the tile images in that section to globally align 
them in 3D.

Automated montage QC
QC is a crucial step at each stage of processing in EM volume assembly to ensure that the outcome 
at each stage is of high quality. ASAP-modules include a comprehensive set of tools to perform QC 
of the computed lens correction transformations, stitched montages, and 3D aligned volume. These 
tools are integrated within the lens correction and montaging workflow in the volume assembly work-
flow to automatically compute statistical metrics indicating the stitching quality and also generates 
maps of montages showing potential stitching issues (see Figure 4). The stitched montages that pass 

Table 1. Details of datasets processed using Assembly Stitching and Alignment Pipeline (ASAP) – volume assembly pipeline.

Dataset
No. of 
sections

Pixel resolution 
(nm/pixel) Image size Tile overlap

Total size 
(PiB)

Total size 
(nonoverlap) (PiB)

ROI size (in 
microns)

Mouse dataset 
1 19,945 3.95–4

‍3840 × 3840‍ (20MP camera), 
‍5408 × 5408‍ (50MP camera) 13%, 9% 1.6 1.2 ‍1300 × 870‍

Mouse dataset 
2 17,593 4.67–5 (4.78 mean) ‍5376 × 5376‍

9–10%, 9.4% 
mean 0.984 0.807 ‍1191 × 815‍

Mouse dataset 
3 17,310

3.8–4.15 (3.91 
mean) ‍5376 × 5376‍

9–10%, 9.1% 
mean 0.665 0.549 ‍647 × 672‍

Human 9673
4.65–4.95 (4.78 
mean) ‍5376 × 5376‍

9–10%, 9.5% 
mean 1.18 0.968 ‍2315 × 987‍

ROI, region of interest.

https://doi.org/10.7554/eLife.76534
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QC are automatically moved to the next stage of processing, thus enabling faster processing with 
minimal human intervention but ensuring a high-quality volume assembly.

The stitching issues that are identified include misalignments between stitched tiles, gaps in 
montages, and seams. These issues are identified based on the mean residual between point corre-
spondences from every pair of tiles. This represents how well the point correspondences have aligned 
from each of the tiles after montage transformations are applied to them (Figure 4a). This metric is 
represented in pixel distance and is used to locate areas of misalignments and seams. The gaps in 
stitching are identified by means of how many neighbor a tile image has before and after stitching and 

Figure 4. 2D stitching and automated assessment of montage quality. (a) Schematic diagram of the montage transformation using point 
correspondences. (b) Montage 2D stitched section from mouse dataset 1 (publicly available at https://www.microns-explorer.org; MICrONS 
Consortium et al., 2021). (c) Single-acquisition tile from the section in (b). (d, e) Detail of synapses (arrow heads) from the tile shown in (c). (f) Quality 
control (QC) plot of a stitched electron microscopy (EM) serial section with nonoptimal parameters. Each blue square represents a tile image of how 
they appear aligned in the montage. The red squares represent tile images that have gaps in stitching with neighboring tile images and are usually 
located in regions with resin or film. (g) A zoom-in region of the 2D montage in (f) showing the seam (white arrows) between tiles causing misalignment 
(red arrowheads) between membranes. (h) A zoomed-in region of the section showing a tile having a gap with its neighbors. (i) QC plot of a stitched 
EM serial section after parameter optimization. (j) A zoom-in region of the 2D montage in (i) showing no seams in the same region as in (g). The red 
arrowheads show the same locations as in (g). (k) A schematic plot representing the number of point correspondences between every pair of tile images 
for a section of the human dataset. Each edge of the squares in the plot represents the existence of point correspondences between tile images 
centered at the end points of the edge. The color of the edge represents the number of point correspondences computed between those tile image 
pairs.

https://doi.org/10.7554/eLife.76534
https://www.microns-explorer.org
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based on their area of overlap with its neighbors. A seam appears as misalignment between a tile and 
many of its neighbors and is identified using a cluster of point correspondences whose residuals are 
above a certain threshold. In addition to these metrics, we also compute the mean absolute deviation 
(MAD) (Figure 5) that measures the amount of distortion a tile image undergoes with the transforma-
tion. The MAD statistics is a measure using which we identify montages that are distorted (Figure 5) 
once it passes the automated QC identifying other issues. Since the crux of our computations is based 
on the point correspondences, we also generate plots to quickly visualize the density of point corre-
spondences between tile images within a section (Figure 4k).

The QC maps (Figure 4f and i) of the montages provide a rapid means to visually inspect and iden-
tify stitching issues associated with the montage without the need to materialize or visualize large-
scale serial sections. The QC map reveals the location of gaps and seams between tiles in addition to 
providing an accurate thumbnail representation of the stitched section. The QC maps also provide an 
interactive way for the user to click on the thumbnail representation of a tile to visualize the tile image 
along with its neighbors in the stitched montage. This provides a means to quickly inspect individual 
tiles that have stitching issues. While the QC maps provide a quick view of the issues related to a 
montage, the Neuroglancer (Neuroglancer, 2010) tool can further facilitate the dynamic rendering 
of an ROI or the entire montaged section for further inspection. This provides the advantage of not 
requiring to render the intermediate output to disk.
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Figure 5. Median absolute deviation (MAD) statistics for montage distortion detection. (a) Schematic description of computation of MAD statistics 
for a montage. (b) A scatter plot of ‍x‍ and ‍y‍ MAD values for each montage. A good stitched section without distorted tile images falls in the third 
quadrant (where point d is shown). (c) An example of a distorted montage of a section solved using unoptimized set of parameters. Row 1 shows the 
downsampled version of the montaged section, row 2 shows the quality control (QC) plot of the section showing the distortions, and row 3 shows the ‍x‍ 
and ‍y‍ absolute deviation distribution for the unoptimized montage. (d) Section shown in (c) solved with optimized parameters with row 1 showing the 
downsampled montage, row 2 showing the QC plot of the section, and row 3 showing the ‍x‍ and ‍y‍ absolute deviation distribution for the section.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Parameter optimization.

https://doi.org/10.7554/eLife.76534
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A seam (Figure 4g) is defined as a misalignment between two tiles and is identified by means of 
the pixel residuals between point correspondences between the tiles. Misalignments can be elim-
inated by solving correct transformations using optimized sets of parameters. A gap between tile 
images (Figure 4h) is usually the result of inaccurate montage transformations that are caused by lack 
of point correspondences between tile pairs where the gap appears. Tile pairs that include features 
like blood vessel, resin, or film region, etc. (see Figure 4h), lack point correspondences, thus causing 
a gap between the tiles during stitching. The stitching issues associated with the resin or film region 
are ignored, while the gaps in tiles containing blood vessels are solved with optimal parameters to 
ensure no misalignments between the tile and its neighbors. The tile images that are entirely part of 
a blood vessel lack textural features for generation of point matches and hence are dropped by the 
solver during montaging. However, tile images that partially cover the blood vessel region undergo 
generation of point correspondences at a higher resolution followed by montaging using optimal 
parameters. This usually resolves the misalignments, but our framework does not limit the use of other 
algorithms such as phase correlation or cross-correlation for resolving such issues.

Sections that failed QC are examined by a human proofreader and moved to the appropriate stage 
of reprocessing. A manual proofreading process typically includes examining the QC plot for issues 
and further visualizing those areas in montage with issues to ensure that those issues either corre-
spond to resin or film region tiles or tiles corresponding to tissue region. The regions with misalign-
ments are further examined to send them to the appropriate stage of processing. If the misalignments 
are caused due to insufficient point correspondences, then they are sent to the point-matching stage 
of the montage workflow for generation of point correspondences at a higher resolution. Misaligned 
sections with sufficient point correspondences are sent to the solver stage with new parameters. 
These parameters were heuristically chosen by means of a parameter optimization algorithm based on 
the stitching quality metrics (see’Montage parameter optimization’ for more details and Figure 5—
figure supplement 1 for optimized parameter selection plots).

Unoptimized parameters can also lead to distorted montages where individual tiles are distorted 
(see Figure 5c and d for distorted and undistorted versions of the same montage). The median abso-
lute deviation (MAD) (Figure 5a and b) statistic provides a computational assessment of the quality 
of the montage and aids in the selection of optimized set of parameters to solve for a montage. The 
optimal ‍x‍ and ‍y‍ MAD statistic values were heuristically selected for every dataset.

Performance of the volume assembly pipeline: ASAP
High-quality 2D stitching and 3D alignment are necessary for accurate neuroanatomy reconstruc-
tion and detection of synaptic contacts. The 2D stitching quality is assessed by a residual metric, 
which computes the sum of squared distances between point correspondences post stitching (see 
Figure 6a). A median residual of <5 pixels was achieved for sections from all our datasets (top figure 
in Figure 6b–e), which is a requirement for successful 3D segmentation (Macrina et  al., 2021) in 
addition to having no other stitching issues as described above. We aimed at 5 pixels (20 nm) as the 
target accuracy of the stitching because it is 10 times smaller than the average diameter of a spine 
neck (Arellano et al., 2007) and half the diameter of very thin spine necks. The violin plots in Figure 6 
depict the density distribution of the median residual values computed for every serial section from 
our datasets and are grouped by the acquisition systems. It can be seen that the density of distribu-
tion is below the threshold value (the horizontal line in these plots), indicating the stitching quality of 
the serial sections. A small number of sections reported high residuals even with the optimized set of 
solver parameters (Figure 6b–e). An attempt to re-montage them with parameters that will reduce 
the residuals resulted in distorting individual tile images. Hence, these sections were montaged using 
a set of parameters that produces a montage with less distorted tiles and a residual that can be 
tolerated by the 3D fine alignment process and further segmentation. Overall, we aim to achieve 
high-fidelity stitching by attempting to keep the residuals within the threshold, while preserving the 
image scales in both ‍x‍ and ‍y‍ closer to 1 (Figure 6) and occasionally allowing montages with residuals 
above the threshold.

The global 3D alignment process produces a volume that is ‘roughly’ aligned as the point corre-
spondences are generated from montages materialized at 1% scale. This rough alignment provides 
a good initial approximation for fine alignment of the volume and for generating point correspon-
dences at higher resolutions. The quality of global nonlinear 3D alignment is measured by computing 

https://doi.org/10.7554/eLife.76534
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the angular residuals between pairs of sections (within a distance of three sections in ‍z‍). The angular 
residual is computed using the point correspondences between a section and its neighbors. The 
angular residual is defined as the angle between two vectors formed by a point coordinate (from first 
section) and its corresponding point coordinate from a neighboring section. The origin of the two 
vectors is defined as the centroid of the first sections’ point coordinates. The median of the angular 
residuals is reported as a quality metric for the global 3D alignment for our datasets (Figure 7f). 
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Figure 6. Performance of 2D stitching pipeline. (a) Schematic diagram explaining the computation of residuals between a pair of tile images post 
stitching. Residuals is a metric that is used to assess the quality of stitching in our pipeline. (b–e, top): panels (b–e) show the median of tile residuals 
per section grouped by their acquisition transmission electron microscopy (TEM). The horizontal line in these figures marks the threshold value that is 
set to assess the quality of stitching. Table 2 shows the median residual values in nm for all our datasets. (b–e , bottom): panels (b–e) show the median 
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stitching indicate the level of deformation that a tile image undergoes post stitching – an indicator of the degree of quality of the 2D montaged section. 
(b) Mouse dataset 1. (c) Mouse dataset 2. (d) Human dataset. (e) Mouse dataset 3.
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Figure 7. Global nonlinear 3D aligned volume of the mouse dataset 1. (a) View of the global nonlinear 3D aligned volume from the ‍xz‍ plane. The 
figure shows the view of the global nonlinear 3D alignment of the sections with the volume sliced at position marked by the red lines in (e). (b) View 
of the global nonlinear 3D aligned volume from the ‍yz‍ plane. Figure shows the view of the volume sliced at position marked by the red lines in (e). (c) 
Zoomed-in area from (a) showing the quality of global nonlinear 3D alignment in the ‍xz‍ plane. (d) Zoomed-in area from (b) showing the quality of global 
nonlinear 3D alignment in the ‍yz‍ plane. (e) Maximum pixel intensity projection of the global nonlinear 3D aligned sections in the z-axis showing the 
overall alignment of sections within the volume. The red lines represent the slicing location in both ‍xz‍ and ‍yz‍ plane for the cross-sectional slices shown 
in (a) and (b). (f) A plot showing the distribution of median angular residuals from serial sections grouped by the dataset.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Global nonlinear 3D aligned volume of the mouse dataset 2.

Figure supplement 2. Global nonlinear 3D aligned volume of the human dataset.

Figure supplement 3. Global nonlinear 3D aligned volume of the mouse dataset 3.

https://doi.org/10.7554/eLife.76534
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The quality metric ensures a high-quality global 
nonlinear 3D alignment of the sections in all three 
(‍xy‍, ‍yz‍, ‍zx‍) planes of the volume (see Figure 7 for 
global nonlinearly 3D aligned slices from mouse 
dataset 1 and Figure 7—figure supplements 1–3 
for slices from other datasets). For the datasets 
described in this article, this global alignment 
was the initialization point for the fine alignment 
done outside ASAP with SEAMLeSS (Macrina 
et  al., 2021). An illustration of the fine-aligned 
volume using SEAMLeSS on mouse dataset 1 
can be found at https://www.microns-explorer.​
org/cortical-mm3. The infrastructure present in 
ASAP can be however extended to ‘fine’ align-
ments because ASAP is ready to implement 3D 
transformation both at the level of sections and at 
the level of individual image tiles. The quality of 
the fine alignment will depend on the transform 
that the user chooses to implement, ASAP is just 
a framework/vehicle for that transform.

Table 3 provides a comparison of both dataset 
acquisition times and their volume assembly. The 
acquisition times represent the serial sections 
imaged using five different ssTEMs running 
in parallel. Each of the dataset processing 
times is under the same infrastructure settings 
(see ‘BlueSky workflow engine for automated 
processing’ for details on hardware setting), but 
with several optimizations implemented in ASAP 
with every dataset. The ASAP processing times 
also include the manual QC processing time dura-
tion. For each dataset, the manual QC processing 
time is roughly a few minutes per serial section, 
but has not been quantified for an accurate esti-
mation that can be reported here. All of our data-
sets were processed in a time frame that matches 
or exceeds the acquisition time, thus achieving 
high-throughput volume assembly.

Application to other imaging pipelines: Array tomography
The software infrastructure described in this article can also be applied to fluorescence and multimodal 
datasets such as array tomography (Figure 8). Array tomography presents some unique challenges 
for image processing because imaging can be performed in both light and electron microscopy. In 
addition, multiple channels can be imaged simultaneously and multiple rounds of imaging can be 
performed on the same physical sections with light microscopy (Collman et al., 2015). To properly 
integrate all these images, in addition to the image processing steps of 2D stitching and alignment 
that apply to EM, the multiple rounds of light microscopy of the same section must be registered to 
one another, and the higher resolution EM data must be co-registered with the light microscopy data. 
Finally, alignments based on one set of images must be applied to the other rounds and/or modalities 
of data. The Render services allow for image processing steps to define new transformations on the 
image tiles without making copies of the data, including transformations that dramatically alter the 
scale of the images, such as when registering between EM and light microscopy data. The Render and 
point-match services provide a flexible framework for corresponding positions between tiles to be 
annotated, allowing those correspondences to be used as constraints in calculating the appropriate 
transformations at each step of the pipeline. The result is a highly multimodal representation of the 

Table 3. Processing time comparison between 
acquisition system and Assembly Stitching and 
Alignment Pipeline (ASAP).
The acquisition times shown are based on 
serial sections imaged using five different serial 
section transmission electron microscopies 
(ssTEMs) running in parallel. The stitching time 
for all the datasets includes the time it took 
to stitch all the serial sections including semi-
automated quality control (QC) and reprocessing 
sections that failed QC on the first run and the 
global 3D alignment. The stitching was done in 
a noncontinuous fashion that included correctly 
uploading/reuploading corrupted, duplicate 
sections, etc. Each section was stitched using 
a single node from the compute cluster. The 
different processing times of the different 
datasets reflect the optimization of the pipeline 
over time, while still keeping a throughput in 
pace with imaging acquisition.

Dataset
No. of 
sections

Acquisition 
time (months)

ASAP 
processing 
time 
(includes 
manual 
processing 
times)

Mouse 
dataset 1

26,500 6 4 months

Mouse 
dataset 2

17,584 3 6 weeks

Human 
dataset

9,661 2 4 weeks

Mouse 
dataset 3

17,309 3 10 days

https://doi.org/10.7554/eLife.76534
https://www.microns-explorer.org/cortical-mm3
https://www.microns-explorer.org/cortical-mm3
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dataset that can be dynamically visualized in multiple channels and resolutions at each step of the 
process through the integration of Render services with the Neuroglancer visualization tool (Figure 8).

Discussion
The volume assembly pipeline ASAP was designed to produce high throughput if it is scalable, flex-
ible, modular, upgradeable, and easily deployable in a variety of environments, including large-scale 
distributed systems. The pipeline leverages Render service’s capability of processing by means of 
metadata operations and persisting data in databases. This largely facilitates multiple iterations of 
processing the data until a desired aligned volume is achieved. The need for rendering intermediate 
output is also eliminated at each iteration since the output can be dynamically rendered by applying 
the metadata associated with the images. This potentially saves computational time and resources in 
addition to increasing the throughput. Demonstrating its scalability, ASAP has been used to process 
several large-scale datasets, including a millimeter cube of mouse cortex that is already public at 
https://www.microns-explorer.org. Though ASAP is compatible with several strategies for fine align-
ment (Figure 2), the one used for all the datasets in this article was SEAMLeSS, which is described in 
Macrina et al., 2021.

Figure 8. Stitching of multichannel conjugate array tomography data. (a, top) Experimental steps in conjugate array tomography: Serial sections are 
collected onto glass coverslips and exposed to multiple rounds of immunofluorescent (IF) staining, imaging, and elution, followed by post-staining and 
imaging under a field emission scanning electron microscopy (FESEM). (a, bottom) Schematic illustrating the substeps of image processing large-scale 
conjugate array tomography data. 2D stitching must be performed on each round of IF imaging and EM imaging. Multiple rounds of IF imaging of 
the same physical section must be registered together to form a highly multiplexed IF image of that section. The higher resolution by typically smaller 
spatial scale FESEM data must then be registered to the lower resolution but larger spatial scale IF data for each individual 2D section and FESEM 
montage. Finally, alignments of the data across sections must be calculated from the IF, or alternatively EM datasets. In all cases, the transformations 
of each of these substeps must be composed to form a final coherent multimodal, multiresolution representation of the dataset. (b–d) Screenshots of 
a processed dataset, rendered dynamically in Neuroglancer through the Render web services. (b) An overview image of a single section of conjugate 
array tomography data that shows the result of stitching and registering multiple rounds of IF an EM data. Channels shown are GABA (blue), TdTomato 
(Red), Synapsin1a (green), PSD95 (yellow), and MBP (purple). Small white box highlights the region shown in (c). (c) A zoom-in of one area of the section 
where FESEM data was acquired, small white box shows the detailed region shown in (d). (d) A high-resolution view of an area of FESEM data with IF 
data overlaid on top. One can observe the tight correspondence between the locations of IF signals and corresponding ultrastructural correlates, such a 
myelinated axons on MBP, and postsynaptic densities and PSD95.

https://doi.org/10.7554/eLife.76534
https://www.microns-explorer.org
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The volume assembly pipeline maximizes the speed and quality of stitching and alignment on 
large-scale datasets. One of the main improvements is the addition of a parameter optimization 
module that generates optimized sets of parameters for 2D stitching. This parameter optimization 
was introduced for montaging in mouse dataset 2, mouse dataset 3, and the human dataset. The 
use of optimization parameters resulted in less distorted montages with residuals within acceptable 
threshold values. It also compensated for some deviation in lens distortion correction accuracy, while 
reducing the number of iterations of processing.

Quality assessment
In a software pipeline that processes tens of millions of images, it is essential to have automated 
metrics of quality control. The statistical metrics such as MAD of the image scales to auto-detect 
deformed montages combined with detecting other stitching issues by the QC module facilitates 
faster processing while ensuring that the stitched sections meet the QC criteria. Also, early detec-
tion of poor point correspondences by the QC module drastically reduces the need for reprocessing 
montages through several iterations. About 2% of sections undergo this re-computation of point 
correspondences at a higher scale. Speed-up is also achieved by automating data transfer and inges-
tion into our volume assembly workflow from imaging. This is achieved by means of automatically 
querying the imaging database for sections that have been imaged and have passed imaging QC 
(W et al. 2020). The metadata of the QC passed sections are automatically ingested into the volume 
assembly workflow, which also triggers the stitching process. The imaging database was not devel-
oped during imaging of mouse dataset 1, hence the status of imaging and QC for each section was 
maintained in a spreadsheet and manually updated.

ASAP is capable of handling reimaged serial sections without overwriting the metadata for its 
earlier versions during processing. Also, the system is capable of handling missing sections (in case 
of serial section loss during sectioning or aperture burst/damage during imaging) and partial sections 
(sections that are cut partially from the volume). The missing sections are treated as ‘gaps’ in the 
volume and have minimal impact on the quality of alignment. Currently, the pipeline has successfully 
handled a gap of three consecutive sections (and five consecutive sections for the human dataset) 
in the volume. Feature-based computation of point correspondences is effective in finding features 
across sections with gaps between them and also robust to contrast and scale variations between 
image pairs.

The software stack includes capabilities to interface with different solvers through BigFeta including 
a ​scipy.​sparse-​based solver and the interfaces provided by PETSc (Balay et al., 2019, Balay et al., 
2021, Balay et al., 1997). This has allowed us to nonlinearly globally 3D align an entire volume on a 
single workstation as well as on a distributed system. Our code base was also improved to allow for 
reprocessing individual sections that are reimaged and inserting them in existing global nonlinear 3D 
aligned volume. In addition to file storage, our software tools now support object stores using an S3 
Application Program Interface (API) such as Ceph, Cloudian, and AWS, enabling real-time processing 
of large-scale datasets in the cloud as well as on-premises. The entire software stack is designed and 
developed using open-source dependencies and licensed under the permissive Allen Institute Soft-
ware License. Also, our software stack and its modules are containerized allowing rapid deployment 
and portability. It also includes integration tests for each module for seamless development and code 
coverage. Automated processing of EM datasets can be accomplished with a custom workflow based 
on an open-source workflow manager (BlueSky) that is well suited to incorporate complex workflows 
with readable, flexibility workflow diagrams allowing rapid development.

Image processing at the speed of imaging
The reconstruction of neural circuits requires high spatial resolution images provided by EM and 
drastic advances made in the field of EM connectomics (MICrONS Consortium et al., 2021; Wetzel 
et al., 2016; MICrONS Consortium et al., 2021; Shapson-Coe et al., 2021) that make it suitable 
for imaging large-scale EM volumes and producing dense reconstructions. ASAP aligns well with 
such large-scale EM volume production systems facilitating seamless processing of data through 
automated data ingestion, 2D stitching, 3D alignment, and QC – all chained together as a contin-
uous process. Developing a pipeline that can produce 2D stitching at a rate better than imaging was 
the most challenging problem. In addition, we invested heavily to develop a set of software tools 
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that is modular, easily adaptable and upgradeable to new algorithms, computing systems and other 
domains, and able to run in a production-level setting.

The offline processing duration of all our datasets using ASAP has been shown to exceed the 
speed of imaging. ASAP is capable of processing the datasets in parallel with the imaging session 
with sufficient computational resources. The mouse dataset 1 was processed in parallel with imaging 
(stitching of serial sections) followed by a chunk-based global 3D alignment (first iteration). Efficient 
data transfer from the multiscope infrastructure, coupled with automated processing capabilities of 
ASAP, assisted in the processing of the mouse dataset 1 in parallel to imaging and at speeds that 
match the imaging. The em stitch software package leverages the GPU-based computations on the 
scope for imaging QC to stitch the montages on-scope. This accelerates the stitching process and 
the rapid feedback loop between imaging and volume assembly. Though our current processing rate 
already outperforms image acquisition, the next step is to perform the image processing in real time, 
ideally close to the microscopes and as images are collected. Such strategy has been proposed by Jeff 
Lichtman and colleagues (Lichtman et al., 2014), and there are many aspects of the work presented 
here that will facilitate transition to on-scope real-time stitching and alignment.

Scaling to larger volumes and across image modalities
Our pipeline was developed with a focus on standardization and was built entirely with open-source 
libraries as an open-source package. Our intention is for others to use and potentially scale it beyond 
the work described in this article. As we demonstrate in Figure 8, the use of ASAP goes well beyond 
electron microscopy, and it is being used in fluorescent data as well. The modularity of ASAP can be 
leveraged to include GPU-based algorithms at various stages of the pipeline, thus paving the way for 
further increase in throughput. Processing in parallel with imaging, we were able to stitch and globally 
nonlinearly 3D align 2 PB of EM images from the 1 mm3 mouse visual cortex at synapse resolution 
within a period of ~4 months, and other petascale datasets with a montaging rate exceeding the 
imaging rate. With improvements made to the pipeline, stitching and global nonlinear 3D alignment 
of a dataset similar in size took just 10 days of processing time for mouse dataset 3. This throughput 
makes the volume assembly pipeline suitable for processing exascale datasets that spans larger 
cortical areas of the brain across species. Although the pipeline was designed for EM connectomics, 
it can be easily adapted to process datasets from any other domain of image sets that share the basic 
underlying assumptions in imaging.

Methods
Imaging with electron microscopy
Three of the samples processed by the infrastructure described in this article originated from mice. 
All procedures were carried out in accordance with the Institutional Animal Care and Use Committee 
approval at the Allen Institute for Brain Science with protocol numbers 1503, 1801, and 1808. All mice 
were housed in individually ventilated cages, 20–26°C, 30–70% relative humidity, with a 12 hr light/
dark cycle. Mouse genotypes used were as follows: mouse 1, Slc-Cre/GCaMP6s (JAX stock 023527 
and 031562); mouse 2, Slc17a7-IRES2-Cre/CamK2a-tTA/Ai94 (JAX stock 023527, 024115); mouse 3, 
Dlx5-CreER/Slc-Cre/GCaMP6s (JAX stock 010705, 023527, 031562).

Preparation of samples was performed as described earlier (W et al. 2020); briefly, mice were tran-
scardially perfused with a fixative mixture of 2.5% paraformaldehyde and 1.25% glutaraldehyde in 
buffer. After dissection, slices were cut with a vibratome and post-fixed for 12–48 hr. Human surgical 
specimen was obtained from a local hospital in collaboration with local neurosurgeon. The sample 
collection was approved by the Western Institutional Review Board (protocol # SNI 0405). The patient 
provided informed consent, and experimental procedures were approved by the hospital institute 
review boards before commencing the study. A block of tissue ~ 1 × 1 × 1  cm of anteromedial 
temporal lobe was obtained from a patient undergoing acute surgical treatment for epilepsy. This 
sample was excised in the process of accessing the underlying epileptic focus. Immediately after exci-
sion the sample was placed into a fixative solution of 2.5% paraformaldehyde, 1.25% glutaraldehyde, 
2 mM calcium chloride, in 0.08 M sodium cacodylate buffer for 72 hr. The samples were then trimmed 
and sectioned with a vibratome to 1000-µm-thick slices and placed back in fixative for ~96 hr. After 
fixation, slices of mouse and human were extensively washed and prepared for reduced osmium 

https://doi.org/10.7554/eLife.76534


 Tools and resources﻿﻿﻿﻿﻿﻿ Cell Biology | Neuroscience

Mahalingam, Torres et al. eLife 2022;11:e76534. DOI: https://doi.org/10.7554/eLife.76534 � 19 of 32

treatment (rOTO) based on the protocol of Hua et al., 2015. Potassium ferricyanide was used to 
reduce osmium tetroxide and thiocarbohydrazide (TCH) for further intensification of the staining. 
Uranyl acetate and lead aspartate were used to enhance contrast. After resin embedding, ultrathin 
sections (40 nm or 45 nm) were manually cut in a Leica UC7 ultra-microtome and an RMC Atum-
tome. After sectioning, the samples were loaded into the automated transmission electron micro-
scopes (autoTEM), and we followed the TEM operation routine (described in Wetzel et al., 2016 and 
MICrONS Consortium et al., 2021) to bring up the HT voltage and filament current and then align 
the beam. Calibration of the autoTEM involved tape and tension calibration for barcode reading, 
measuring beam rotation and camera pixels, and stage alignment. Then, EM imaging was started. 
The mouse datasets were obtained from primary visual cortex and higher visual areas, and the human 
dataset was obtained from the Medial Temporal Gyrus (MTG).

Image catcher (Aloha) service
Aloha is a core component of our acquisition infrastructure designed to facilitate the transfer and 
preprocessing of images intended for the image processing workflow. Aloha is implemented as a 
scale-out Python web service using flask/gunicorn. This service is designed to accept image arrays 
defined by a flat-buffers protocol and atomically write them in a designated location in losslessly 
compressed tiff format. While the array is in memory, the service also writes progressively downsam-
pled versions of that image (MIPmaps) to another designated location. By using the uri-handler library 
(Torres, 2021a), Aloha can write to various cloud providers and on-premises object storage systems as 
well as file system-based storage. The Aloha library includes a set of client scripts that allow uploading 
from an existing autoTEM-defined directory as well as utilities to encode numpy arrays for the REST 
API. Aloha web service is configured to interact with the piTEAM’s TEMdb backend and tracks the 
state of transfers in a set of custom fields. In the automated workflow, a process queries these fields 
in order to ingest completed montage sets to the volume assembly workflow. Aloha can be easily 
replaced with a data transfer module of choice based on the imaging infrastructure and the volume 
assembly workflow allowing for modularity.

Render services
The Render services are a core component of the infrastructure. They provide the main logic for image 
transformation, interpolation, and rendering. They also provide a rich API:

•	 A REST API for creating and manipulating collections of tiles or image ‘boxes’ (also called 
canvases; canvases are regions that can span multiple and partial tiles).

•	 A REST API for accessing image tile, section, and stack meta information; for example, the 
number of tiles, dimensions, ids, and camera setup.

•	 A REST API and core logic for rendering/materializing image tiles/canvases, arbitrary regions 
that span a number of (or partial) tiles, or even whole sections. In that capacity, it is used to 
reflect the current state of any given tile collection. (This is invaluable to proofreading interme-
diate stitching results.) In combination with dynamic rendering (i.e., rendering that is not based 
on materializing image files to storage), the Render services support lightweight web pages 
with feedback to detect imaging and stitching issues.

The Render services are backed by a MongoDB document store that contains all tile/canvas data 
including tile transformations. Both the Render services and the MongoDB document store are 
supported by dedicated hardware. The Render services code base is available and documented at 
https://github.com/saalfeldlab/render; Preibisch, 2022.

Point-match service
A time-consuming and CPU-intensive process in the volume assembly pipeline is the computation of 
point correspondences between image tile pairs since this is the only stage of processing where the 
image data is read in memory besides the process of rendering the aligned volume to disk. Persisting 
this data is therefore invaluable. Robust rotation and contrast invariant correspondence candidates 
are generated using SIFT (Lowe, 2004). These candidates are then filtered by their consensus with 
respect to an optimal geometric transformation, in our case an affine transformation. We use a local 
optimization variant of RANSAC Fischler and Bolles, 1981 followed by robust regression Saalfeld 
et al., 2010. Local optimization means that, instead of picking the ‘winner’ from a minimal set of 
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candidates as in classic RANSAC, we iteratively optimize the transformation using all inlier candidates 
and then update the inlier set. The ‘winner’ of this procedure (the largest set of inliers) is then further 
trimmed by iteratively removing candidates with a residual larger than 3 standard deviations of the 
residual distribution with respect to the optimal transformation and then reoptimizing the transfor-
mation. We use direct least-squares fits to optimize transformations. The computed point correspon-
dences are stored in a database and can be retrieved/modified using the point-match service. The 
advantage of such a database is that it is agnostic to the source of point correspondences. Therefore, 
it can receive input from the point-match generator, regardless of the method of point-match gener-
ation such as SURF, SIFT, phase correlation, etc.

Render-python API
The other core component of the software stack includes render-python, a Python API client and 
transformation library that interacts with both asap-modules and the Render services. The render-
python components interact with Render service Java clients that perform computationally expensive 
operations locally to avoid taxing Render services running on centralized shared hardware.

Render-python is a python-based API client and transformation library that replicates the data 
models in the Render services. While Render services utilize the mpicbg Fiji library to implement 
transformations, render-python reproduces these using using numpy to enable analysis in a Python 
ecosystem. Render-python is continuously integration tested against Render for compatibility and 
provides dynamic access to the database and client scripts provided by Render. The source code for 
render-python is available at https://github.com/AllenInstitute/render-python (Collman et al., 2022).

Besides render-python, ASAP interfaces with other tools for solving transformations and visualiza-
tions. A description of these tools is as follows:

BigFeta: The BigFeta package implements a Python-based sparse solver implementation of 
alignment problems based on the formulation in EMAligner (Khairy et al., 2018). In addition to 
optimizations and new transform functionality, BigFeta extends the previous approach to use 
PETSc (petsc.org) for scalable computation and allows input and output using render-python 
objects, as well as JSON file, MongoDB document store, and Render services interaction.
em stitch: em stitch includes tools based on BigFeta and render-python for use as a standalone 
montage processing package without connecting to a database or REST API, ideal for online 
processing utilizing the same hardware running a microscope. Importantly, em stitch includes a 
module to derive a mesh-based lens distortion correction from highly overlapping calibration 
acquisitions and pre-generated point correspondences.
vizrelay: vizrelay is a configurable microservice designed to build links from a Render services 
instance to a Neuroglancer-based service and issue redirects to facilitate visualization. This 
provides a useful mechanism for setting Neuroglancer defaults, such as the extent of the 
volume or color channel options when reviewing alignments.

ASAP modules
The ASAP volume assembly pipeline includes a series of modules developed using Python and the 
render-python library that implement workflow tasks with standardized input and output formatting. 
The source code for ASAP modules is available at https://github.com/AllenInstitute/asap-modules; 
Mahalingam, 2022.

The submodules in ASAP include scripts to execute a series of tasks at each stage of the volume 
assembly pipeline. Some of the workflow tasks included in ASAP are as follows:

•	 asap.dataimport: Import image (tile) metadata to the Render services from custom micro-
scope files, generate MIPmaps and update the metadata, render downsampled version of the 
montaged serial section.

•	 asap.mesh_lens_correction: Include scripts to compute the lens distortion correction 
transformation.

•	 asap.pointmatch: Generate tile pairs (see Figure 2d) and point correspondences for stitching 
and alignment.

•	 asap.point_match_optimization: Find the best possible set of parameters for a given set of tile 
pairs.

•	 ​asap.​solver: Interface with BigFeta solver for stitching the serial sections.
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•	 asap.em_montage_qc: Generate QC statistics on the stitched sections as explained in ‘Auto-
mated petascale stitching.’

•	 asap.rough_align: Compute per-section transformation for 3D alignment and scale them to 
match their original layered montage collection and generate new metadata describing the 
alignment at full resolution.

•	 asap.register: Register an individual section with another section in a chunk. This module is 
typically used to align reimaged sections to an already aligned volume.

•	 asap.materialize: Materialize final volume as well as downsampled versions of sections in a 
variety of supported formats.

ASAP modules are schematized for ease of use with argschema, an extension of the marshmallow 
Python package that allows marshaling of command-line arguments and input files. ASAP modules 
interact with other tools that comprise the peta-scale stitching and alignment software tools eco-
system (see Figure 9).

Montage parameter optimization
In two dimensions (x, y), BigFeta implements the optimization described by Khairy et al., 2018 as the 
following regularized least-squares problem:

	﻿‍

Ktx = Lx

Kty = Ly‍�
(1)

with

	﻿‍

K = ATWA + λ

L(x,y) = λt(x0,y0) + ATWb(x,y)‍�
(2)

Figure 9. Set of software tools developed to perform petascale real-time stitching.
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where ‍t(x,y)‍ are the unknowns for which to solve – these are interpreted to define the parameters 
of tile transformations, ‍A‍ is an m × n matrix from m point correspondences derived from 2n total 
unknowns, ‍W‍ is an mxm diagonal matrix weighting the point correspondences, λ is an n × n diagonal 
matrix containing regularization factors for the unknowns, ‍t(x0,y0)‍ is the initialization for the unknowns 
against which the regularization penalizes, and ‍b(x,y)‍ is a right-hand-side term to the unknowns intro-
duced to generalize the method to additional transformation models.

Bigfeta allows the regularization parameter λ to differently constrain distinct terms of a given 
transformation such as the translation, affine, and polynomial factors on an individual tile basis.

Montage quality in ASAP is evaluated by metrics of residuals and rigidity of the output montage 
(Figure 4, Figure 5). For tile deformations that are well-defined by an affine transformation, these 
metrics are most impacted by the translation and affine regularization parameters (λ) used in the 
BigFeta solver step (equation 2). As the optimal configuration of these values can be impacted by 
the accuracy of the initialization as well as the weight and distribution of point correspondences, it 
is sometimes necessary to re-evaluate the regularization parameters for different imaging, tissue, or 
preprocessing conditions. We provide an ‘optimization’ module, ​asap.​solver.​montage_​optimization, 
which leverages the fast solving capabilities of BigFeta to sweep across a range of regularization 
parameters and provide an acceptable set of parameters given targets for correspondence residual in 
pixels and tile scale MAD value.

In each dataset where montage optimization was used, we found that a MAD cutoff of 0.005 in 
both ‍x‍ and ‍y‍ was usually sufficient to provide a group of acceptable montages. However, in some 
cases individual montages or sets of montages must be run with relaxed criteria – for these cases, 
candidate montages were usually found by increasing the MAD statistic to 0.006 and 0.007 in x and y, 
respectively. In our experience, these sets of montages seem to share a lens distortion model, and we 
assume that this inadequate model requires additional deformation at the tile and montage level. To 
help with these cases, our implementation of montage optimization has the option to iteratively relax 
these constraints to a predetermined boundary such that inadequate cutoffs can be increased until 
there are a desired number of candidate montages.

3D realignment
A common use case after 3D global alignment involves realigning a subset of the dataset while main-
taining the global alignment reached for the rest of the volume. The ​asap.​solver.​realign_​zs module 
implements this operation by increasing the λ parameters in equation 1 for neighboring sections 
while allowing custom inputs for the sections that need to be realigned. As such, it is possible to inte-
grate re-montaged sections, re-computed point correspondences, or more deformable transforma-
tions into an existing 3D alignment without requiring changes on the global scale. For all the datasets 
presented in this article, after global alignment the data was then transferred for fine alignment using 
SEAMLeSS (Macrina et al., 2021). The fine alignment was performed by the team of Sebastian Seung 
in Princeton or ZettaAI.

Chunk fusion
The ​asap.​fusion package provides modules to support chunk-based 3D alignment workflows. The 3D 
aligned chunks can then be fused together. ​asap.​fusion.​register_​adjacent_​stack provides utilities to 
register overlapping 3D aligned chunks using translation, rigid, similarity, or affine transformations. 
Then, given a JSON-defined tree describing the layout and relative transformation between chunks, ​
asap.​fusion.​fuse_​stacks will assemble metadata representing a combined volume using Render’s 
‘InterpolatedTransform’ to interpolate between independently optimized transformations in the 
overlap region of two chunks.

Materialization
Alignment through BigFeta produces tile metadata that can be interpreted by Render and its clients 
to produce ‘materialized’ representations of the stack. These representations are rendered client-side, 
having transformations applied and flattening overlapping tiles. The output of materialization can be 
in a number of file formats including n5 and the CATMAID large data tilesource (Schneider-Mizell 
et al., 2016; Saalfeld et al., 2009), which are included in Render. It is also possible to implement 
custom output formats based on available Python libraries using render-python to access Render’s 
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client scripts. As SEAMLeSS expects data in the cloud-volume-compatible Neuroglancer precom-
puted format Neuroglancer, the datasets in Table 1 were materialized with a Python script that uses 
render-python to write to Neuroglancer precomputed format using the cloud-volume library.

BlueSky workflow engine for automated processing
The automated workflow engine called BlueSky was developed in Django backed by a PostgreSQL 
database with stable backups, graceful restarts, and easy migrations. It provides a web-based user 
interface for the user to visualize, run, and edit running jobs at various stages in the workflow. BlueSky 
uses Celery and RabbitMQ to run workflow tasks in diverse computing environments, from local execu-
tion on a workstation to remote execution using a compute cluster (PBS, MOAB, SLURM). BlueSky is 
flexible in terms of designing complex workflows as the workflow diagrams (see Appendix 1—figure 
1, Appendix  2—figure 1) can be specified in readable formats such as YAML, JSON, or Django 
allowing rapid development. BlueSky can be used for many different purposes, but for the image 
processing task related to this article the workflow includes the following steps: (1) ingest montage 
sets, (2) generate MIPmaps, (3) apply MIPmaps, (4) wait for the assigned lens correction transform, 
(5) apply the lens correction transform, (6) extract tile pairs for determining point correspondences, 
(7) generate 2D montage point correspondences, (8) run the 2D montage solver, (9) automatically 
check for defects, (10) place potential defects in a manual QC queue, and (11) generate downsam-
pled montage. BlueSky is publicly available on GitHub (https://github.com/AllenInstitute/blue_sky_​
workflow_engine). The volume assembly workflow is designed to use BlueSky workflow engine for 
processing our datasets. The custom EM volume assembly workflow (https://github.com/AllenInsti-
tute/em_imaging_workflow; Torres et al., 2021b) facilitates continuous processing of the datasets at 
speeds that match or exceed data acquisition rates (see Appendix 3—figure 1, Appendix 4—figure 
1).

For all our datasets, BlueSky utilized three different kinds of hardware nodes in our HPC cluster. 
The configurations are as follows:

•	 2× Intel Xeon 2620 processor with 256 GB RAM
•	 2× Intel Xeon 2630 processor with 256 GB RAM
•	 2× Intel Xeon Gold 6238 processor with 512 GB RAM

All our datasets were processed using a maximum of 50 nodes to perform 2D stitching of sections 
in parallel. A combination of the nodes with the above configuration was used in processing.

Array tomography alignment
To register the light and electron array tomography data into a registered conjugate image stack, we 
developed a set of modules that used a manual process for image registration. Briefly, one module 
(make_EM_LM_registration_projects_multi) created a TrakEm2 project in which the EM data is in 
one z-layer, and each light microscopy channel is in a different z-layer. From there, we created a 
blended view of DAPI and MBP stain to create an image with recognizable features between the 
two datasets. Users manually identified sets of correspondences between the images, including the 
centers of myelinated processes, the centers of mitochondria visible often in the autofluorescence 
of the DAPI channel, and spatially distinct regions of heterochromatin that appears bright in the 
DAPI channel and dark in the EM. Between 12 and 20 corresponding points were identified in each 
section, and TrackEm2 was used to fit as similarity transform to bring the images into register. A 
second module (import_LM_subset_from_EM_registration_multi) then exported the transformations 
saved in this Trakem2 project back into the render framework. We implemented this custom workflow 
outside of the main automated EM image processing pipeline so it is available in a separate repository 
(https://www.github.com/AllenInstitute/render-python-apps; Collman, 2018) within the submodule 
‘renderapps/cross_modal_registration’.
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used is already publicly available on https://www.microns-explorer.org/cortical-mm3#em-imagery 
with available imagery and segmentation (https://tinyurl.com/cortical-mm3). Moreover cloud-volume 
(https://github.com/seung-lab/cloud-volume) can be used to programmatically download EM imagery 
from either Amazon or Google with the cloud paths described below. The imagery was reconstructed 
in two portions, referred to internally by their nicknames 'minnie65' and 'minnie35' reflecting their 
relative portions of the total data. The two portions are aligned across an interruption in sectioning. 
minnie65: AWS Bucket: precomputed: https://bossdb-open-data.s3.amazonaws.com/iarpa_microns/​
minnie/minnie65/em Google Bucket: precomputed: https://storage.googleapis.com/iarpa_microns/​
minnie/minnie65/emminnie35: AWS Bucket: precomputed: https://bossdb-open-data.s3.amazonaws.​
com/iarpa_microns/minnie/minnie35/em Google Bucket: precomputed: https://storage.googleapis.​
com/iarpa_microns/minnie/minnie35/em. We have also made available in Dryad raw data of the 
remaining datasets https://doi.org/10.5061/dryad.qjq2bvqhr.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Macarico da Costa 
N, Mahalingam G, 
Torres R, Buchanan 
J, Takeno M, Yin 
W, Bumbarger D, 
Collman F, Reid R

2022 ASAP-TEM-sample https://​doi.​org/​10.​
5061/​dryad.​qjq2bvqhr

Dryad Digital Repository, 
10.5061/dryad.qjq2bvqhr
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Appendix 1

Appendix 1—figure 1. Intelligence Advanced Research Projects Activity (IARPA) MICrONS phase 2 montage 
workflow with support for lens correction and manual intervention.

https://doi.org/10.7554/eLife.76534
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Appendix 2

Appendix 2—figure 1. Electron microscopy (EM) workflow diagram from 10 represented in YAML as DAG.

https://doi.org/10.7554/eLife.76534
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Appendix 3

Appendix 3—figure 1. Performance of BlueSky workflow manager. Time spent by the sections from all the 
datasets in each job queue in the montaging workflow. The processing times include the duration between 
the time the job started running in a node and the time the node releases the job as successfully completed. 
Processing times shown are based on running the job in a single computing node in every job queue.

https://doi.org/10.7554/eLife.76534
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Appendix 4

Appendix 4—figure 1. Performance of BlueSky workflow manager. Total processing time for sections montaged 
using the BlueSky workflow manager for all the datasets. Processing times shown are based on running the job in a 
single computing node in every job queue.

https://doi.org/10.7554/eLife.76534
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Appendix 5
Hardware configuration of all our services
The data transfer system (Aloha) by design scales out to multiple hosts, and networking is often 
the key factor for throughput. Currently, it is running (asymmetrically) on one of the following 
configurations:

•	 2× Intel Xeon Platinum 8160, 1 TB RAM
•	 2× Intel Xeon E5-2630 v4, 128 GB RAM

BlueSky is a lightweight service and shares hardware resources with the Render service and Mongo 
database. The hardware configuration is as follows:

•	 2× Intel Xeon Gold 6128 CPU, 512 GB RAM, 6x HPE 12 TB SAS 7200 RPM HDD
The TEM database is also a lightweight service except that it requires a Mongo database, but the 
service rests on a dedicated server with the following configuration:

•	 2× Intel Xeon E5-2630 v4, 128 GB RAM, 2 × 1 TB Seagate pro SSDs.

https://doi.org/10.7554/eLife.76534
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