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Abstract Cancer mutations in Ras occur predominantly at three hotspots: Gly 12, Gly 13, and Gln 
61. Previously, we reported that deep mutagenesis of H-Ras using a bacterial assay identified many 
other activating mutations (Bandaru et al., 2017). We now show that the results of saturation muta-
genesis of H-Ras in mammalian Ba/F3 cells correlate well with the results of bacterial experiments 
in which H-Ras or K-Ras are co-expressed with a GTPase-activating protein (GAP). The prominent 
cancer hotspots are not dominant in the Ba/F3 data. We used the bacterial system to mutagenize Ras 
constructs of different stabilities and discovered a feature that distinguishes the cancer hotspots. While 
mutations at the cancer hotspots activate Ras regardless of construct stability, mutations at lower-
frequency sites (e.g. at Val 14 or Asp 119) can be activating or deleterious, depending on the stability 
of the Ras construct. We characterized the dynamics of three non-hotspot activating Ras mutants by 
using NMR to monitor hydrogen-deuterium exchange (HDX). These mutations result in global increases 
in HDX rates, consistent with destabilization of Ras. An explanation for these observations is that muta-
tions that destabilize Ras increase nucleotide dissociation rates, enabling activation by spontaneous 
nucleotide exchange. A further stability decrease can lead to insufficient levels of folded Ras – and 
subsequent loss of function. In contrast, the cancer hotspot mutations are mechanism-based activators 
of Ras that interfere directly with the action of GAPs. Our results demonstrate the importance of GAP 
surveillance and protein stability in determining the sensitivity of Ras to mutational activation.

Editor's evaluation
This is a well executed study that provides significant new insights and connections between protein 
structure, stability and function. Numerous sites of mutation are identified that activate the small 
GTPase Ras beyond the few cancer "hot spots" that predominate cancer genomics data. While 
cancer causing mutations selectively alter regulatory interactions with GTPase-activating proteins, 
careful biophysical analysis presented here leads to the conclusion that Ras is also activated by 
mutations that decrease stability (increase dynamics) short of unfolding. Thus, protein sensitivity to 
activating mutations can depend on the stability threshold in addition to regulatory interactions with 
binding partners.
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Introduction
The small GTPase Ras (Figure 1A) cycles between active GTP-bound and inactive GDP-bound states 
(Figure 1B; Wittinghofer and Vetter, 2011). There are four principal isoforms of human Ras (H-Ras, 
N-Ras, and two splice variants of K-Ras; referred to collectively as ‘Ras’). GTP-bound Ras binds to 
the Ras-binding domains (RBDs) of effector proteins, such as Raf kinases and PI-3 kinase (PI3K), trig-
gering signaling cascades that result in cell proliferation (Ehrhardt et  al., 2002; Pylayeva-Gupta 
et  al., 2011; Schubbert et  al., 2007). Ras proteins have weak intrinsic GTPase activity (Ehrhardt 
et  al., 2002). In the cell, Ras activity is controlled by two kinds of regulators: GTPase-activating 
proteins (GAPs) and guanine nucleotide-exchange factors (GEFs). GAPs stimulate the hydrolysis of 
GTP, thereby converting Ras to the inactive GDP-bound state (Ahmadian et al., 1997). Spontaneous 
exchange of GDP for GTP is slow, and nucleotide exchange and re-activation of Ras is accelerated 
by GEFs (Bandaru et al., 2019; Boriack-Sjodin et al., 1998; Ehrhardt et al., 2002; Harrison et al., 
2016; Vetter and Wittinghofer, 2001).

The two activities associated with Ras – the enzymatic activity that results in the hydrolysis of GTP, 
and the signaling activity that enables GTP-bound Ras to bind to effector proteins – have opposing 
outcomes. The enzymatic activity switches off the signaling activity, and mutations that damage the 
catalytic center of Ras or that increase the rate of spontaneous nucleotide exchange lead to increased 
signaling activity. We use the terms ‘activity’ and ‘activation’ to refer to the signaling activity of Ras.

Ras is mutated frequently in cancers and some hyperproliferative developmental disorders (e.g. 
Noonan, Costello, and cardio-facio-cutaneous syndromes) (Li et al., 2018; Prior et al., 2020; Prior 
et al., 2012; Young et al., 2009). Data from cancer genomics show that most mutations occur at just 
three sites in Ras (Gly 12, Gly 13, and Gln 61), with the K-Ras isoform being mutated more frequently 
than H-Ras or N-Ras (Figure 1—figure supplement 1A, B; Tate et al., 2019). We refer to these three 
residues as the ‘cancer hotspot’ sites. In previous work, we used single-site saturation mutagenesis 
to assess the mutational-fitness landscape of the G-domain of H-Ras (H-Ras2-166) by employing a high-
throughput bacterial two-hybrid assay (Bandaru et al., 2017). The assay couples the transcription of 
an antibiotic-resistance factor to the binding of Ras to the RBD of C-Raf, and reports on the signaling 
activity of Ras (Figure 1C). We expected mutations at Gly 12, Gly 13, and Gln 61 to be more activating 
than other substitutions, reflecting the frequencies of mutations observed in cancer (Figure 1—figure 
supplement 1A). To our surprise, the bacterial screens identified multiple signal-activating mutations 
in Ras, with relative enrichment scores similar to those for mutations at the three cancer hotspots.

Several factors could potentially explain the difference in the mutational spectrum of Ras in cancer 
compared to that observed in the bacterial assay. First, the bacterial assay does not provide the 
complete biological context for Ras function. Ras is not membrane-localized in this system, and it 
is divorced from its normal complement of effector proteins. The distribution of cancer mutations 
reflects the mutagenic ability of specific carcinogens and the context-specific effects of Ras isoforms 
in different mammalian cells (Cook et al., 2021; Li et al., 2018; Prior et al., 2020). Analysis of the 
context-specific effects led to the proposal that there are ‘sweet spots’ at the intersection of these 
properties that are selected for in different cancers (Li et  al., 2018). Nevertheless, the difference 
between the very narrow mutational profile of Ras in cancer and the much broader range of mutations 
that activate Ras in our previous deep-mutational scans is striking, and it motivated us to examine 
whether saturation mutagenesis could identify factors that may account for this discrepancy.

To address concerns that the broad spectrum of activating mutations seen in the bacterial assay 
might be artifacts of this bacterial system, we carried out saturation mutagenesis of full-length H-Ras 
(H-Ras1-188) expressed in mammalian Ba/F3 cells (Figure 1D). The murine Ba/F3 hematopoietic cell 
line is dependent on the cytokine interleukin-3 (IL-3) for growth, but the IL-3 dependence can be 
bypassed by the expression of activated variants of tyrosine kinases, such as BCR-Abl (Daley and 
Baltimore, 1988; Mandanas et al., 1993; Warmuth et al., 2007). The Ba/F3 system is a robust assay 
for screening activating mutations in tyrosine kinases (Hoover et al., 2001; Lee and Shah, 2015; 
Watanabe-Smith et al., 2017). Cytokine independence can also be conferred on Ba/F3 cells by acti-
vated mutants of Ras (Awad, 2021; Hoover et al., 2001; White et al., 2016), providing the basis for 
our Ras saturation-mutagenesis screens.

We compared the mutational-fitness landscape of full-length H-Ras1-188 in Ba/F3 cells to data 
obtained from bacterial saturation-mutagenesis screens done for H-Ras in the absence of GAP and 
GEF regulators (‘unregulated Ras’), in the presence of both a GAP and a GEF (‘Ras+GAP+GEF’), and 
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Figure 1. Ras G-domain, the switching cycle, and schematics of the two selection assays. (A) The three principal sites of cancer mutations in Ras, 
referred to as the three cancer hotspots – Gly 12, Gly 13, and Gln 61 – are shown in the K-Ras structure. The C-terminal helix extension is indicated. PDB 
ID: 2MSD (Mazhab-Jafari et al., 2015). (B) Ras cycles between signaling-active GTP-bound and signaling-inactive GDP-bound states. (C) The bacterial-
two-hybrid system couples the C-Raf-RBD•Ras-GTP interaction to the transcription of an antibiotic resistance gene (Bandaru et al., 2017). Ras is fused 

Figure 1 continued on next page
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in the presence of a GAP alone (‘Ras+GAP’). While the first two conditions yield similar patterns of 
mutational sensitivity, the Ras+GAP condition leads to starkly different results. The GAP switches off 
Ras signaling activity, and only mutations that enable Ras to evade GAP control allow cell proliferation. 
The mutational profile of H-Ras in the mammalian Ba/F3 cell line closely resembles the results of the 
bacterial screens using H-Ras co-expressed with a GAP. These results point to the importance of GAP 
surveillance in controlling Ras activity in Ba/F3 cells, and also demonstrate that the bacterial assay is a 
reliable indicator of the effects of mutations on Ras function. Strikingly, just like in the bacterial assay, 
the mammalian experiments reveal additional gain-of-function mutations with similar levels of activa-
tion as mutations at the cancer hotspots.

The importance of a special feature associated with the cancer hotspots emerged from the compar-
ison of mutational profiles for longer and shorter H-Ras constructs using the bacterial assay. The 
shorter construct – residues 2–166, the construct typically used in crystallographic studies of H-Ras (Pai 
et al., 1990) – corresponds to the core G-domain of H-Ras and was used in our previous saturation-
mutagenesis study. The longer construct spans residues 2–180 (H-Ras2-180), and we found that it is more 
stable. Our earlier study had characterized several mutations outside the hotspots that activate Ras to 
varying degrees, but are not prominent in cancer (Bandaru et al., 2017). We now report the analysis 
of protein dynamics for three of these mutations (H27G, L120A, and Y157Q) by hydrogen-deuterium 
exchange (HDX) measured by nuclear magnetic resonance (NMR). The mutants show increased HDX 
rates throughout the protein relative to wild-type Ras, consistent with destabilization.

The saturation-mutagenesis data show that several infrequent cancer mutations (e.g. at Val 14 or 
Asp 119) are deleterious in the shorter construct and become activating in the longer Ras construct. 
We infer that these activating mutations have a destabilizing effect that only the longer Ras construct 
can accommodate, allowing the increased signaling capacity to be manifested. In contrast, the effect 
of mutations at the three cancer hotspots is independent of the Ras construct stability. We also present 
the results of saturation-mutagenesis experiments for K-Ras, which yield similar mutational patterns 
as for H-Ras. Our analysis shows that many activating mutations impact the thermodynamic stability 
of Ras, and the destabilizing effect of the mutations correlates with their low observed frequency in 
cancer.

Results and discussion
Saturation-mutagenesis of H-Ras in mammalian Ba/F3 Cells
Ba/F3 cells were transduced with a retroviral library of variants of full-length human H-Ras and allowed 
to grow for a day in the presence of IL-3. Then, a fraction of the cells were harvested and used as the 
‘unselected’ population. The remainder of the cells were grown for a week without IL-3 in the medium 
(the ‘selected’ population). The DNA from both cell populations was harvested and sequenced to 
count the occurrence of each particular variant. The effect of Ras mutations on fitness is quantified 
by relative enrichment scores (‍∆Ei

x‍), also referred to as fitness values (Equation 1; see Materials and 
methods):

	﻿‍
∆Ei

x = log10

[
cx,selected

i
cx,unselected

i

]
− median

(
log10

[
Cwt,selected ⊘ Cwt,unselected

])
‍�

(1)

to the N-terminal domain of the α-subunit of the E. coli RNA polymerase. C-Raf-RBD is fused to the λ-cI protein. The GAP and the GEF can be co-
expressed in the system. E. coli cells are transformed with a DNA library of ‘unselected’ variants. The bacteria are grown in the presence of an antibiotic 
for 9 hr, then the DNA library of ‘selected’ variants is isolated. Next-generation sequencing (NGS) is used to count the frequency of each variant in the 
unselected and selected samples. (D) Ba/F3 assay for Ras activity. Mutant H-Ras libraries are transfected into HEK 293T cells to generate a retroviral 
library of mutants. Ba/F3 cells are transduced with the retroviral library. After 24 hours, a fraction of the cells are used as the unselected population, 
and the remainder of the cells – the selected population – are cultured for 7 days in the absence of IL-3 before harvesting them by centrifugation. The 
genomic DNA of the selected and unselected populations is isolated and sequenced using NGS. The relative enrichment scores are calculated using 
the selected and unselected counts (see Equation 1).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Analysis of the distribution of Ras mutations in COSMIC v94.

Figure 1 continued
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The first term of Equation 1 is the logarithm of the ratio of counts (c) of observing codons repre-
senting each amino acid x at each position i in the selected and unselected samples. The second term 
of Equation 1 is the median of the ordered list of logarithms of the elements of the vector obtained 
by conducting pair-wise division, denoted ⊘, between the selected and unselected counts (Cwt,selected 
and Cwt,unselected, respectively) for the variants that are synonymous with the wild-type (wt) allele. A 
Ras variant with an enrichment score of zero propagates in the assay at the same rate as the wild-
type variants. Variants with scores of ±1 propagate ten-fold faster or slower than wild-type variants, 
respectively.

The experiment was repeated twice, once while varying residues 2–160 (the core G-domain; the 
remaining 29 residues were not varied), and once while varying residues 2–188. The resulting fitness 
values are shown in the form of a heatmap in Figure 2A, averaged over the two replicates (Figure 2—
figure supplement 1A). Each entry in the matrix indicates the fitness score for substituting a particular 
residue in Ras with one of the 20 amino acids, with shades of red and blue indicating gain or loss-of-
function relative to wild-type, respectively.

There are several positions in H-Ras at which multiple substitutions lead to a strong gain-of-
function. These residues include the cancer hotspots (Gly 12, Gly 13, and Gln 61), as well as several 
other residues that are not as frequently found to be mutated in cancer (e.g. Val 14, Arg 68, Lys 117, 
and Asp 119). The fact that several amino acid substitutions at each of these sites lead to increased 
fitness suggests that the mutations disrupt inhibitory interactions. Positions at which mutations lead 
to a strong loss-of-function are sparse in the dataset. Residues in the hydrophobic core of the protein, 
for which mutations to polar residues are expected to decrease the stability of the protein, show little 
or no evidence for loss of fitness when mutated. For example, the sidechains of Leu 19, Leu 79, Val 
81, and Val 114 pack together in the hydrophobic core of Ras. These residues tolerate substitutions 
by many polar residues with no apparent reduction in fitness with respect to wild-type Ras. Since only 
mutations that bypass the IL-3 dependence promote cell growth in the assay, and wild-type H-Ras 
does not promote growth (Figure 2—figure supplement 1B), a neutral mutation can barely be distin-
guished from a deleterious mutation.

The mutational profile for Ras in Ba/F3 cells resembles that for Ras co-
expressed with a GAP in the bacterial assay
The two properties of the Ba/F3 dataset noted above, namely strong activation by many mutations at 
specific sites and a general sparsity of sites where mutations lead to loss-of-function, are reminiscent 
of the mutational profile for H-Ras2-166 co-expressed with a GAP (H-Ras2-166+GAP) in the bacterial assay 
(Bandaru et al., 2017). The GAP inactivates wild-type Ras by stimulating GTP-hydrolysis. Under these 
conditions, the assay is not sensitive to the effects of mutations that further reduce the activity of Ras 
by destabilizing the protein. Mutations that disrupt the interaction with the GAP, such as substitutions 
of Gly 12 or Gly 13, or that compromise the catalytic activity of Ras, such as substitutions of Gln 61, 
are strongly activating.

We used receiver operating characteristic (ROC) curves to make a quantitative determination of 
which of the three different bacterial experiments [H-Ras2-166+GAP (Figure 2A), H-Ras2-166+GAP+GEF 
(Bandaru et al., 2017), or unregulated H-Ras2-166 (Figure 3A)] best matches the results of the Ba/F3 
screen (Figure 2B). To generate a ROC curve, the fitness data for individual mutations in a particular 
bacterial dataset (e.g. H-Ras2-166+GAP) are used to predict the fitness of mutations in the Ba/F3 
experiment. A variable threshold value of fitness is used, and for each threshold value, mutations 
in the bacterial dataset with a fitness value greater than that threshold are considered to predict 
activation in Ba/F3 data. Mutations with a fitness score greater than 1.5 times the standard devi-
ation in the Ba/F3 dataset are considered activating (i.e. true positives). For each of the bacterial 
datasets, an ROC curve is generated by graphing the fraction of true positives versus the fraction 
of false positives at various threshold settings, and the estimated area under the curve (AUC) gives 
a measure of the overall prediction accuracy. For a perfect correlation between the bacterial data 
and the Ba/F3 data, the AUC would be 1.0. The analysis shows that the Ras+GAP dataset most 
accurately predicts the H-Ras1-188 in Ba/F3 cells dataset. The AUC is 0.67 for the unregulated H-Ras2-

166 dataset (Figure 3—figure supplement 1) and 0.63 for H-Ras2-166+GAP+GEF (Figure 2—figure 
supplement 2B). For H-Ras2-166+GAP, the AUC is substantially higher at 0.84 (Figure 2B). Given that 
Ras is predominantly GDP-bound in vivo (Zhao et al., 2020), it is logical that the bacterial Ras+GAP 

https://doi.org/10.7554/eLife.76595
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Figure 2. Mutational tolerance of Ras in mammalian Ba/F3 cells and the bacterial Ras+GAP experiment. (A) The fitness data from saturation-
mutagenesis experiments are shown in the form of a matrix, where each row of the matrix represents one of the twenty natural amino acids, and each 
column displays a residue of the protein (Bandaru et al., 2017). Each entry in the matrix represents, in color-coded form, the relative enrichment score 
(‍∆Ei

x‍) for the corresponding variant (see Equation 1). The data are normalized using the distribution of enrichment scores of all the synonymous wild-

Figure 2 continued on next page
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experiment – where the GAP promotes a GDP-bound state – closely resembles the mammalian Ba/
F3 cell experiment.

Extension of the C-terminal helix in Ras improves the correlation of 
bacterial mutagenesis data with the Ba/F3 dataset
The Ba/F3 experiments use full-length H-Ras, including the lipid-modified C-terminal hypervariable 
region that confers membrane anchorage. The bacterial experiments use a construct of H-Ras that 
spans residues 2–166, corresponding to the core G domain of H-Ras (Pai et al., 1990). This construct 
lacks 22 C-terminal residues, including the CAAX motif, where post-translational modifications occur. 
Membrane-anchorage of Ras is not possible within the context of the bacterial assay because the 
two-hybrid readout of Ras activity relies on the interaction between fusion proteins containing Ras 
and Raf-RBD bound to DNA.

We tested the effects of extending the C-terminal boundary of the Ras construct by conducting 
saturation-mutagenesis experiments with the bacterial assay using an H-Ras construct spanning resi-
dues 2–180 (Figure 2A). Based on the crystal structure of the K-Ras isoform (Cruz-Migoni et  al., 
2019), we expect that extending the H-Ras construct in this way lengthens the C-terminal helix of 
H-Ras by two helical turns or more (Figure 1A). The H-Ras2-180+GAP dataset improves the ROC AUC 
score for predicting the Ba/F3 data to 0.95, compared to 0.84 for the shorter construct (Figure 2B). 
There are specific sites for which mutations in the bacterial H-Ras2-166+GAP experiment demonstrate 
a different activation profile than the H-Ras1-188 in Ba/F3 cells experiment (Figure 2A). For example, 
most mutations of Asp 119 are activating in Ba/F3 cells and H-Ras2-180+GAP, but these mutations are 
neutral or slightly inactivating in the bacterial assay with shorter H-Ras2-166+GAP. Mutations at the 
cancer hotspots are activating in all three datasets (Figure 2A and B).

We also performed saturation mutagenesis of K-Ras in the presence of a GAP in bacteria using 
two constructs, a shorter one spanning residues 2–165 (K-Ras2-165) and a longer one spanning residues 
2–173 (K-Ras2-173) (Figure 2A), corresponding to a construct used in recent crystallographic studies 
(Cruz-Migoni et al., 2019). The K-Ras datasets are similar to the H-Ras datasets (Figure 2A). The 
ROC AUC for predicting the Ba/F3 data for shorter K-Ras2-165+GAP is 0.75, and the AUC increases 
to 0.93 for longer K-Ras2-173+GAP (Figure 2B). These data indicate that K-Ras behaves similarly to 
H-Ras regarding mutational tolerance. This finding is clinically relevant because the ClinVar review 
panel categorizes new Ras variants found in genomic studies as disease-causing or not, based on the 
assumption that the pathogenicity of analogous variants in the H-Ras and K-Ras genes are correlated 
(Landrum et al., 2018).

We carried out saturation-mutagenesis screens in bacteria for unregulated H-Ras and K-Ras (i.e. 
no co-expression of GAP and GEF) for the longer and shorter constructs (Figure 3A). Wild-type Ras 
generates a signal in the absence of the GAP (Coyle and Lim, 2016), and substitution of residues 
in the hydrophobic core by polar residues results in measurable decreases in signaling, in contrast 
to the Ras+GAP experiments. The data show that the longer H-Ras2-180 and K-Ras2-173 constructs are 
less sensitive to mutations of residues in the hydrophobic core than the shorter constructs (e.g. see 
mutations of Phe 82, Figure 3B–C). We also conducted screens for K-Ras in the presence of a GAP 

type sequences, so the median of the distribution has a value of zero. Shades of red and blue indicate gain and loss-of-function, respectively, relative to 
wild-type. Green indicates variants that were not represented in the library. Stop codons are labeled as ‘*’, and the bottom strip displays the functional 
effect of all amino acid substitutions at each position (

‍

⟨
∆Ei

x

⟩
x‍
) – the average taken over each column. The relative enrichment values are provided 

in the GitHub repository. The secondary structural elements of Ras are displayed below each matrix. The top heatmap shows the data for saturation 
mutagenesis of H-Ras1-188 in mammalian Ba/F3 cells. Only the enrichment scores for variants within residues 2 and 160 are displayed in the heatmap, 
calculated as the mean of two biological replicates. The next four heatmaps show the data for H-Ras2-166, H-Ras2-180, K-Ras2-165, and K-Ras2-173 in the 
bacterial Ras+GAP experiments. The enrichment values shown are the mean of two, four, three, and four biological replicates, respectively. (B) The area 
under the curve (AUC) of receiver operating characteristic (ROC) graphs is used to determine which of the four Ras+GAP experiments better predicts 
the enrichment scores of mutations in the mammalian Ba/F3 cell experiment.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Mammalian Ba/F3 cell screen replicates and growth curves of wild-type H-Ras versus the G12V mutant.

Figure supplement 2. Mutational tolerance of Ras in the bacterial Ras+GAP+GEF experiment.

Figure 2 continued
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Figure 3 continued on next page
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and a GEF, and the mutational landscape presents the same patterns described for the unregulated 
experiments (Figure 2—figure supplement 2A).

Ras mutations and construct length impact fold stability
We measured the stability of two H-Ras constructs bound to GDP, one corresponding to the core 
G-domain (residues 1–166), and one in which the C-terminal end of the construct is extended by seven 
residues (residues 1–173) using two assays with purified Ras proteins. In the first assay, we carried out 
a urea titration and monitored the equilibrium unfolding transition by following the circular dichroism 
(CD) signal at 222 nm. In the second assay, we also monitored the urea-induced unfolding using pulse 
proteolysis. Under pulse conditions, all the unfolded protein is cleaved, and the native protein remains 
undigested (Kim et al., 2009; Park and Marqusee, 2005; Samelson et al., 2016). The fraction of 
folded protein can be estimated by measuring the intensity of the band corresponding to full-length 
Ras on an SDS/PAGE gel. The intensities of the bands at each urea concentration are then fit to a 
two-state denaturation model, with the urea-dependence (the m-values determined by CD) used to 
determine midpoint urea concentration (Cm).

The stabilities (ΔGunf) determined by pulse proteolysis are in close agreement with those deter-
mined by CD. When monitored by CD, the values of ΔGunf for the shorter and longer H-Ras constructs 
are 22.2 ± 1.6 ​kJ.​mol–1 and 29.9 ± 1.4 ​kJ.​mol–1, respectively (Figure 4A). When measured by pulse 
proteolysis, the shorter and longer constructs have values of ΔGunf of 24.3 ± 1.3 ​kJ.​mol–1 and 31.1 ± 
1.5 ​kJ.​mol–1, respectively (Figure 4A). Both assays indicate that truncating the C-terminal helix desta-
bilizes H-Ras by ~7 ​kJ.​mol–1. This effect is consistent with the known ability of terminal-helix stabiliza-
tion to help maintain the entire protein fold (Rosemond et al., 2018).

Using the pulse proteolysis assay, we measured the stability of three cancer hotspot mutants (Q61L, 
G12V, G13D), and two infrequent – or absent – mutants (K117N, and D119A) (Figure 4B). The stabil-
ities of the Q61L and G12V variants of H-Ras1-166 are indistinguishable from that of wild-type (ΔGunf 
of 28.3 ± 4.3 ​kJ.​mol–1 for G12V and 23.9 ± 1.0 ​kJ.​mol–1 for Q61L). For the G13D, K117N, and D119A 
variants of H-Ras1-173, the values of ΔGunf are 22.1 ± 1.5 ​kJ.​mol–1, 6.8 ± 0.5 ​kJ.​mol–1, and 6.2 ± 0.8 ​kJ.​
mol–1, respectively. G13D destabilizes Ras by a moderate amount, ~ 10 ​kJ.​mol–1, comparable to the 
effect of shortening the C-terminal tail. The K117N and D119A mutations destabilized Ras much more 
substantially, by ~25 ​kJ.​mol–1.

Mutations at Lys 117 and Asp 119 as well as mutations at other sites (e.g. Val 14, Phe 28, Leu 120, 
Ala 146, Lys 147, and Phe 156), increase the rate of intrinsic nucleotide release (Baker et al., 2013; 
Bandaru et al., 2017; Bera et al., 2019; Cirstea et al., 2013; Cool et al., 1999; Gelb and Tartaglia, 
2006; Poulin et al., 2019; Quilliam et al., 1995; Reinstein et al., 1991). Furthermore, two such muta-
tions – V14I and A146T – have been shown to facilitate nucleotide exchange by destabilization and 
opening of the GTP-binding site (Bera et al., 2019; Poulin et al., 2019). Hence, stability and nucleo-
tide affinity in Ras are coupled, consistent with Ras stability being dependent on nucleotide binding 
(Zhang and Matthews, 1998a; Zhang and Matthews, 1998b).

We use the term ‘stability-dependent gain-of-function’ mutations to denote the subset of muta-
tions that switch from an activating phenotype in the longer constructs to a neutral or deleterious 
phenotype in the shorter constructs or vice versa. We hypothesize that the same mutation may acti-
vate the longer Ras construct due to the compensating stability provided by the extra residues, but in 
the shorter and less stable construct, the decrease in stability due to the mutation leads to reduced 
levels of folded Ras. There are also a few mildly destabilizing mutations that display a stronger acti-
vating phenotype in the shorter Ras construct than in the longer one (e.g. some mutations at Tyr 157). 
In such cases, we speculate that the mild destabilization only leads to an observable phenotype in 
the context of the shorter, less-stable, Ras construct. We do not consider G13D a stability-dependent 
gain-of-function mutation even though it increases nucleotide exchange (Hunter et al., 2015; Smith 

constructs. The enrichment scores for the hydrophobic core residues are shown for the two K-Ras constructs in B, and mapped onto K-Ras structure in C. 
PDB ID: 4OBE (Hunter et al., 2015).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. ROC analysis between the mammalian Ba/F3 cell experiment and the unregulated bacterial H-Ras and K-Ras experiments.

Figure 3 continued
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Figure 4. Thermodynamic stability measurements. (A) The shorter H-Ras1-166 construct has an unfolding free-energy change (ΔGunf) of 22.2 ± 1.6 kJ⋅mol-1, 
and the longer H-Ras1-173 construct has a ΔGunf of 29.9 ± 1.4 kJ⋅mol-1 when measured by circular dichroism (left). When measured by pulse proteolysis 
(right), the shorter construct has a ΔGunf of 24.3 ± 1.3 kJ⋅mol-1, and the longer construct has a ΔGunf of 31.1 ± 1.5 kJ⋅mol-1. Both assays indicate that 
truncating the C-terminal helix destabilizes H-Ras by ~7 kJ⋅mol-1. The CD measurements were conducted at 25 °C, using 35.5 μM GDP and 0.5 μM 
Ras. CD signal error bars are ± two times the standard deviation of four 15 second reads. (B) Pulse proteolysis measurements of three cancer hotspots 
mutants (G12V, G13D, Q61L) and two stability-dependent gain-of-function mutants (K117N, D119A). The ΔGunf for G13D, K117N, and D119A mutants 
in the H-Ras1-173 construct are 22.1 ± 1.5 kJ⋅mol-1, 6.8 ± 0.5 kJ⋅mol-1, and 6.2 ± 0.8 kJ⋅mol-1, respectively. The G12V and Q61L variants were studied in 
the H-Ras1-166 construct. The ΔGunf for G12V, Q61L, and new replicates of wild-type are 28.3 ± 4.3 kJ⋅mol-1, 23.9 ± 1.0 kJ⋅mol-1, and 23.5 ± 1.0 kJ⋅mol-1, 
respectively. Hence, these cancer hotspot mutations are not destabilizing. (C) Pulse proteolysis measurements of H-Ras1-173 and K-Ras1-173. K-Ras1-173 has a 
ΔGunf of 24.2 ± 0.1 kJ⋅mol-1; hence, H-Ras1-173 is more stable than K-Ras1-173 by ~7 kJ⋅mol-1. The proteolysis experiments in A-C were conducted at 25 °C, 
using 100 μM GDP and 1.6 μM Ras. Midpoint marker error bars are ± the standard deviation of the estimated midpoint concentration (ΔGunf/m) across 
pulse proteolysis replicates.

https://doi.org/10.7554/eLife.76595
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et al., 2013) and destabilizes Ras (ΔGunf of 22.1 ± 1.5 ​kJ.​mol–1). H-Ras1-173 G13D can buffer the ~7 ​kJ.​
mol–1 destabilizing effect of the C-terminal helix truncation, and that is why G13D is activating in both 
shorter and longer Ras+GAP experiments.

We compared the stability of longer constructs of the two Ras isoforms: H-Ras1-173 and K-Ras1-173. 
Pulse proteolysis analyses indicate that H-Ras1-173 is more stable than K-Ras1-173 by ~7 ​kJ.​mol–1 (ΔGunf 
of 24.2 ± 0.1 ​kJ.​mol–1 for K-Ras1-173, Figure 4C). In the bacterial saturation-mutagenesis assays, acti-
vating mutations in all the H-Ras datasets have higher enrichment values on average than activating 
mutations in the corresponding assays with K-Ras (Figures 2A and 3A). We hypothesize that the lower 
stability of K-Ras reduces the activating effect of many mutations.

Mutations that activate Ras by increasing nucleotide exchange result in 
decreased conformational stability as measured by HDX
In our earlier study of the mutational fitness landscape of Ras, we identified several activating muta-
tions that increased nucleotide exchange or decreased the hydrolysis rate (Bandaru et al., 2017), but 
are either not found, or are not prominent, in cancer. We selected four such mutations in H-Ras1-166 
for analysis of protein dynamics by HDX: H27G, Q99A, L120A, and Y157Q (Figure 5B). Of the four 
analyzed mutants, L120A, H27G, and Y157Q are mildly activating in the unregulated and Ras+GAP 
experiments. Our new data, which are statistically more robust than those the previous analysis was 
based on, indicate that the Q99A mutation is neutral, or nearly so, rather than activating.

We measured amide HDX rates by NMR to probe the local conformational stability of the H-Ras 
variants in solution. 1H-15N Heteronuclear Single Quantum Coherence (HSQC) spectra were used to 
follow the exchange of backbone amides from hydrogen to deuterium over a 24-hr period (Figure 5A). 
In these experiments, assignments were based on previously obtained assignments of wild-type Ras 
bound to GMP-PNP, which were confirmed using an HNCA spectrum (O’Connor and Kovrigin, 2012). 
For the HDX analysis, an HSQC spectrum was recorded at each timepoint, and the volumes under 
all observable and assigned peaks were integrated. For each peak, the decay in the integrated peak 
volume with exchange time was fit to a single exponential (e.g. Lys 147 peak, see Figure 5C). In this 
way, the local hydrogen-exchange behavior was determined on a residue-by-residue basis. We used a 
conservative approach in which peaks where the decay process did not fit to a single exponential with 
R2 > 0.7 were excluded from the analysis. The time constants determined by this procedure were then 
used to compare the local conformational stability of each observable residue between the wild-type 
protein and the mutant proteins.

The exchange behavior of the residues (EX1 vs. EX2) was confirmed by HDX by mass spectrometry 
(MS) (Figure 5—figure supplement 3). When HDX is monitored by MS, EX1 behavior results in two 
peaks (so-called bimodal behavior). In contrast, EX2 behavior results in a single isotopic envelope 
that moves to larger m/z with time. Under EX1 conditions, the rate of labeling reports on the rate 
of the amide opening, and the bimodal behavior of a peptide arises from the cooperative behavior 
of amides next to each other. Except at the very N and C terminus of the protein, all peptides show 
EX2 behavior, confirming that the exchange rates measured by NMR report on the free energy of 
exchange and can be fit to a single exponential decay function.

The HDX rates measured for residues in the H27G, L120A, and Y157Q H-Ras variants have, on 
average, a twofold increase over the HDX rates of the same residues in wild-type H-Ras (Figure 5D 
and Figure 5—figure supplement 2). L120A and wild-type H-Ras have similar GTP-bound structures 
(Bandaru et al., 2017), yet the HDX measurements indicate that the conformational stability of the 
L120A structure has changed, and many residues show less protection in the presence of this muta-
tion. This is in marked contrast to the exchange rates observed for residues in the Q99A variant, which 
is not activating in the new saturation-mutagenesis experiments. As demonstrated in Figure 5D and 
Figure 5—figure supplement 2, the HDX rates for this variant are similar to wild-type H-Ras. The 
fold-change in the HDX rate averages around 1.0 for Q99A versus wild-type, with a maximal change 
being in the negative, rather than positive, direction (slower HDX rate). For example, the HDX rate 
measured for Asp 119 in Q99A is five-fold lower than wild-type. Using the pulse proteolysis assay, we 
measured the stability of L120A and Q99A in the H-Ras1-166 construct (Figure 5—figure supplement 
1). L120A is destabilizing by ~10 ​kJ.​mol–1 (ΔGunf of 14.0 ± 0.3 ​kJ.​mol–1), and Q99A has about the same 
ΔGunf as wild-type (ΔGunf of 23.0 ± 0.7 ​kJ.​mol–1). Both measured ΔGunf values are consistent with the 
measured HDX rates.

https://doi.org/10.7554/eLife.76595
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Figure 5. Hydrogen to deuterium exchange by NMR for activating H-Ras mutants. (A) Schematic of expected backbone hydrogen to deuterium 
exchange (HDX) over time when lyophilized protein is resolubilized in D2O. (B) Structure displaying the four H-Ras mutants analyzed by HDX and the 
residue measured in C. PDB ID: 5P21 (Pai et al., 1990). (C) Integrated peak volume change over time for the Lys 147 for wild-type H-Ras1-166 (WT), 
Y157Q, and Q99A samples. The line represents a single-exponential fit, from which the time-constant can be converted to exchange rate. (D) Fold 

Figure 5 continued on next page
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The largest changes in protection in the L120A, H27G, and Y157Q variants occur in the residues 
around the nucleotide-binding pocket of Ras (Figure 5D). Similar results have been reported for two 
activating mutations – V14I and A146T – that also increase nucleotide exchange and are found in 
cancer at a low frequency (Bera et al., 2019; Poulin et al., 2019). Taken together, our pulse prote-
olysis data and the HDX measurements indicate that many mutations in Ras achieve activation at the 
expense of destabilization and subsequent GDP release. Hence, the interplay between stability and 
activity in Ras may contribute towards explaining the low frequency of destabilizing mutants in cancer.

Saturation-mutagenesis datasets correctly predict the sites of cancer 
mutations
To compare the results of the saturation-mutagenesis experiments with Ras mutations found in cancer, 
we referred to the Catalogue of Somatic Mutations in Cancer (COSMIC) (Tate et al., 2019). Every 
specific mutation in any Ras isoform, for example, G12V, that appears in the COSMIC database more 
than five times is included in the set of cancer mutations that we analyze. There are at least 70 sites in 
Ras where mutations are found in the COSMIC database, and 28 of those fulfill the five-count cutoff 
(Figure 6A). Although each Ras isoform has a different mutational profile, Gly 12, Gly 13, and Gln 61 
are mutated with the greatest frequency: ~ 40,000 times, ~ 8000 times, and ~6500 times, respectively. 
Mutations at the remaining sites are observed far less frequently, with most mutations occurring only 
tens of times. For example, mutations at Asp 119 occur only seven times in the database (H-Ras).

To determine the strength of the correlation between the mutations in the saturation-mutagenesis 
datasets and the mutations in the cancer database, we determined ROC curves to predict cancer 
mutants based on the mutagenesis datasets (Figure 6B and Figure 6—figure supplement 1). This 
analysis ignores the relative frequencies of mutations in the COSMIC database. For a given threshold 
value of fitness, we consider a mutation to be activating if its fitness value is greater than the threshold. 
If an activating mutation is present in the filtered set of COSMIC database mutations, we regard the 
prediction to be a true positive, and if it is not present in the filtered set, it is scored as a false positive. 
Variants that are also present in an alternate database, gnomAD (Karczewski et al., 2020), which 
lists non-pathogenic mutations, are used to determine the true negatives. The fraction of true and 
false positive mutations is calculated for different threshold values, and the fraction of true positives is 
graphed as a function of the fraction of false positives to yield the ROC curve.

For predicting cancer mutations, the AUC for H-Ras1-188 in Ba/F3 cells is 0.89, the highest value 
among all of the mutagenesis datasets (Figure 6B). The AUC for the Ras+GAP bacterial datasets for 
H-Ras2-180 and K-Ras2-173 is 0.85, and for H-Ras2-166 and K-Ras2-165 (with GAP), it is 0.86 and 0.82, respec-
tively (Figure 6—figure supplement 1). Thus, the saturation-mutagenesis datasets are quite accurate 
at predicting cancer mutations. For the Ba/F3 dataset, for example, a threshold value that results in 
an ~80% successful prediction of the cancer mutations results in a false-positive fraction of ~30%. 
Using the dataset with the shorter H-Ras2-166 without a GAP or a GEF, a fitness-threshold value that 
yields a true positive fraction of 80% yields a false-negative fraction of  ~90% (Figure  6—figure 
supplement 1). This illustrates the predictive ability of the Ba/F3 dataset or the bacterial Ras+GAP 
datasets compared to the unregulated datasets. We conclude that the cancer mutations gain their 
power by evading GAP-mediated inactivation, unleashing the intrinsic capacity of Ras to generate 
signaling activity.

change in exchange time (kobs,mutant/kobs,WT) plotted onto the WT structure of H-Ras. The mutated sites are highlighted in yellow. Backbone is colored at 
positions where both WT and mutant exchange could be measured in order to determine fold change. This fold change is represented on the scale 
reflected at the bottom of the panel. Dark blue color represents a mutant exchange less than three times slower than WT, light blue color between a 
two and three times slower, white between two times slower and two times faster, light red color between two and three times faster, and dark red color 
greater than three times faster.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Thermodynamic stability measurements of L120A and Q99A.

Figure supplement 2. Relative change in hydrogen to deuterium exchange for each mutant.

Figure supplement 3. Wild-type H-Ras exhibits EX1 behavior at the N and C terminus.

Figure 5 continued
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We have repeated the ROC analysis using a second set of true positives derived from the onco-
genic mutations compiled in the cBioPortal database (AACR Project GENIE Consortium, 2017; 
Cerami et al., 2012; Gao et al., 2013). This database compiles data from different cancer studies 
from those used in the COSMIC database. While there is good agreement between the COSMIC and 
the cBioPortal databases for the most frequent mutations, this correlation diverges for the mutations 
with lower counts (Figure 6—figure supplement 2A). Using the cBioPortal database as the reference, 
the Ba/F3 and the bacterial Ras+GAP assays are still the most accurate predictors of cancer mutations 
(AUC values of 0.86 for the Ba/F3 dataset, 0.85 for H-Ras2-180+GAP, 0.85 for K-Ras2-173+GAP, 0.87 
H-Ras2-166+GAP, and 0.83 K-Ras2-165+GAP) (Figure 6—figure supplement 2B).

H-Ras LONG K-Ras LONGMAMMALIAN
Correlation between the COSMIC database and the mammalian and bacterial RAS+GAP experiments

Gln 61
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Gly 13
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Figure 6. Prediction of the cancer mutations by the mammalian Ba/F3 cell and Ras+GAP experiments. (A) Counts per residue of Ras variants that 
appear in the COSMIC v94 database and pass the five-count cutoff (Tate et al., 2019). There are twenty-eight residues where at least one mutation is 
present five or more times: residues 4, 5, 10, 12, 13, 14, 18, 19, 20, 22, 31, 33, 50, 57, 58, 59, 60, 61, 62, 63, 68, 72, 91, 92, 117, 119, 132, and 146. (B) ROC 
analysis of the H-Ras1-188 in mammalian Ba/F3 cells, H-Ras2−180+GAP, and K-Ras2−173+GAP datasets. For a given threshold enrichment value, we count a 
mutation as activating if its enrichment value is greater than the threshold. If an activating mutation is present in the COSMIC database five or more 
times, we count the prediction as a true positive. Mutations found in the gnomAD database are used as true negatives (Karczewski et al., 2020). The 
full list of mutations used in the analysis is provided in the Github repository.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Prediction of the cancer mutations by the bacterial experiments.

Figure supplement 2. Prediction of the cancer mutations using the cBioPortal dataset as true positives.

https://doi.org/10.7554/eLife.76595
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Stability-dependent gain-of-function mutations in Ras are less 
frequently found in the COSMIC database
Comparing the mutational profiles for the long and short Ras constructs in the bacterial Ras+GAP 
experiments (Figure  7A) identifies a feature that distinguishes the cancer hotspots from the less 
frequent sites: the activating effect of mutations at the less frequent sites, but not at the cancer 
hotspots, is contingent on the stability of the particular Ras construct. There are at least 24 sites in Ras 
where we identified activating mutations in the bacterial H-Ras+GAP mutational screens, and these 
are listed in Figure 7—figure supplement 4. We divide them into three groups: (i) the three cancer 
hotspots, (ii) Switch II sites, and (iii) stability-dependent gain-of-function sites.

The mutational-sensitivity profile for the three cancer hotspots is negligibly affected by the construct 
length in the Ras+GAP experiments (Figure 7B and D). Some mutations at Gly 12, Gly 13, and Gln 
61 activate Ras in the saturation-mutagenesis experiments but are not observed in the COSMIC data-
base. These mutations are all multiple-nucleotide variants (MNVs) that require more than one base-
pair change. Approximately 97% of cancer mutations are single-nucleotide variants (SNVs), due to the 
low likelihood of multiple-nucleotide variants. For instance, the codon that translates to residue Gly 
12 in wild-type Ras is GGC. The six single-nucleotide variant codons that translate to a different amino 
acid (AGC, CGC, TGC, GAC, GCC, and GTC) account for 99.7% of all the substitutions at Gly 12 found 
in the COSMIC database (Figure 1—figure supplement 1C).

The second group of residues is located in Switch II of Ras (Ala 59, Glu 62, Glu 63, Tyr 64, Met 67, 
and Arg 68). These residues show diminished sensitivity to mutations in the Ba/F3 assay compared 
to the bacterial assay (Figure 7B). The bacterial assay depends only on the interaction between the 
Raf-RBD and Ras, which in turn relies mainly on Switch I, rather than Switch II (Fetics et al., 2015). 
In the proper biological context, Ras GEFs (e.g. SOS and RasGRF1) utilize Switch II, as do effector 
proteins such as PI3K and RalGDS (Figure 7—figure supplement 1A-D; Huang et al., 1998; Margarit 
et al., 2003; Pacold et al., 2000; Quilliam et al., 1996). We surmise that Switch II mutations are 
less activating in the Ba/F3 dataset because disrupting Switch II function blocks the ability of Ras to 
signal properly, which also explains why mutations in this region are rarely seen in cancer databases. 
To verify this hypothesis, we measured SOS-stimulated nucleotide exchange rates for selected H-Ras 
mutants, using purified proteins and a fluorescent-nucleotide-release assay (Boriack-Sjodin et  al., 
1998; Figure 7—figure supplement 1E). Mutations of Gln 63, Tyr 64, Met 67, and a few substitu-
tions at Tyr 71 are activating in the bacterial Ras+GAP assay but not in the Ba/F3 assay. The in vitro 
measurements show that mutation of all four residues in the Switch II region, as well as for mutations 
in Switch I, lead to a reduction of SOS-catalyzed nucleotide exchange rates.

The third group consists of 16 stability-dependent gain-of-function sites (Val 8, Val 14, Leu 19, Leu 
53, Gly 77, Gly 115, Asn 116, Lys 117, Asp 119, Thr 144, Ser 145, Ala 146, Lys 147, Val 152, Ala 155, 
and Phe 156). Mutations at these sites are infrequently found in the COSMIC database, and they are 
more activating in the longer Ras construct than in the shorter one (Figure 7A). We quantified this 
difference (Equation 2) as described in a previous saturation-mutagenesis epistatic study (McLaughlin 
et al., 2012):

	﻿‍

⟨
∆∆Ei

x

⟩
x

= 1
n
∑n

x=1 ∆Ei
x
(
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The equation calculates the pair-wise difference (‍∆∆Ei
x‍ , also named epistasis) of the enrichment of 

the same mutation x in the H-Ras+GAP experiments of shorter and longer constructs. Then, for each 

position i in Ras, the average epistatic effect (
‍

⟨
∆∆Ei

x

⟩
x‍
) of the 19 possible substitutions is calculated. 

Most stability-dependent gain-of-function sites cluster around the nucleotide (Figure 7C), and likely 
their mechanism of activation is to increase nucleotide exchange through destabilization.

The observation that the phenotype of mutations at the cancer hotspots remains unchanged 
between the longer and shorter constructs (Figure 7A, B and D) implies that the impact of these 
mutations on protein stability is mild and should not affect the mutational profile of Ras. We exam-
ined this question by fixing a mutation at one of these sites (Q61L) in K-Ras2-173 and conducting a 
saturation-mutagenesis experiment with this background in unregulated and Ras+GAP conditions 
(Figure 7—figure supplement 2). Our expectation was that if the Q61L mutation led to substan-
tial destabilization, then the mutational profile would resemble that of the shorter construct, rather 
than the longer construct. However, the observed loss-of-function patterns are similar to results for 
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unregulated K-Ras, using the longer (K-Ras2-173) rather than the shorter (K-Ras2-165) construct (Figure 3A 
and Figure  7—figure supplement 2B, C). This result is in agreement with the stability measure-
ment of Q61L in the H-Ras1-166 construct (Figure 4B). Furthermore, the catalytic activity impairment 
produced by Gln 61 (Hunter et al., 2015; Lu et al., 2016) renders the GAP ineffective and the muta-
tional sensitivity of the Ras+GAP condition looks identical to the unregulated condition. In conclusion, 
mutations at the cancer hotspots increase Ras signaling by breaking a regulatory mechanism rather 
than through destabilization.

Gly 12, Gly 13, and Gln 61 are less conserved in the Ras superfamily 
than residues at stability-dependent gain-of-function sites
The nine most-activating sites of mutations in H-Ras1-188 in the mammalian Ba/F3 cell experiment 
(Figure 2A) are Gly 12, Gly 13, Gln 61, and six stability-dependent gain-of-function sites (Val 14, Lys 
117, Asp 119, Ser 145, Ala 146, and Phe 156). The locations of these nine sites in the Ras structure 
are shown in Figure 7—figure supplement 3A. We calculated the sequence diversity, measured as 
the Shannon entropy, of these nine sites in two different protein alignments: (i) the ~150 proteins that 
belong to the human Ras superfamily (Rojas et al., 2012), which includes a diverse set of proteins 
(e.g. Rap1B, Ral, Rab29) that share the same protein fold, and (ii) the proteins found in the alignment 
of metazoan Ras sequences used in our previous evolutionary study (Bandaru et al., 2017).

These nine sites are highly conserved across Ras orthologs in the metazoan Ras protein alignment 
(Figure 7E). However, in the Ras superfamily alignment, the six stability-dependent gain-of-function 
sites are more conserved than the cancer hotspots. Lys 117 and Asp 119 present the highest degree 
of sequence conservation, which we attribute to their critical role in nucleotide binding and stabiliza-
tion. In contrast, Gly 12, Gly 13, and Gln 61 are replaced by other residues in many proteins of the Ras 
superfamily, such as Rab29, which has Ala instead of Gly at positions corresponding to residues 12 and 
13 of human Ras, and Rap1B, which has Thr instead of Gln at position 61. The G-domains of Rab29 
and Rap1B have sequence identities with H-Ras of ~27% and ~ 56%, respectively, and they maintain 
a similar three-dimensional structure (Figure 7—figure supplement 3B).

Our results are in agreement with the sequence conservation analysis conducted by Rojas and 
coworkers (Rojas et al., 2012), where they report that the sequence diversity of Gly 12, Gly 13, and 
Gln 61 within the Ras subfamily is high compared to other sites of biological relevance for Ras. The 
G12V, G13D, and Q61L variants of Ras are more stable than the K117N and D119A variants, which 
is consistent with the lower sequence conservation at the three cancer hotspots compared to the 
stability-dependent gain-of-function sites (Figure 4C and Figure 7—figure supplement 2D). Overall, 
these findings indicate that Gly 12, Gly 13, and Gln 61 residues are not structurally essential (Buhrman 
et al., 2010; Franken et al., 1993; Khrenova et al., 2014). Thus, given that GAP surveillance is the 
dominant layer of regulation in mammalian cells, the ability of mutations at these three residues to 
block the action of the GAP without seriously compromising the integrity of the protein fold makes 
them the perfect cancer hotspots.

mammalian Ba/F3 cell experiments. Substitutions at the cancer hotspots are activating, whereas substitutions at other sites (e.g.,Val 14 or Asp 119) 
are gain-of-function only in the longer constructs. (C) The stability-dependent gain-of-function sites are mapped onto Ras structure. PDB ID: 2MSD 
(Mazhab-Jafari et al., 2015). (D) Comparison of the pairwise difference (‍∆∆Ei

x‍) for activating mutations at the stability-dependent gain-of-function 
sites and at the cancer hotspots in long and short H-Ras+GAP datasets. Only mutations that are activating in the longer construct ( > 1.5 times the 
standard deviation) are considered in this analysis. (E) Sequence diversity analysis of the top-nine gain-of-function mutations found in the H-Ras1-188 in 
mammalian Ba/F3 cells. Two separate multiple sequence alignments (MSAs) were used in the analysis: a MSA of the ~150 proteins in the human Ras 
superfamily (Rojas et al., 2012), and a MSA of the Ras ortholog sequences found in an evolutionary analysis of metazoan Ras (Bandaru et al., 2017).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Structures of C-Raf-RBD, PI3K, p120GAP, and SOScat in complex with H-Ras, and SOScat-stimulated GTP release measurements of 
selected mutants.

Figure supplement 2. Mutational tolerance of K-Ras2-173 with a Q61L background mutation.

Figure supplement 3. Location of top-activating sites in the mammalian Ba/F3 cell experiment and structure of H-Ras, Rap1B, and Rab29.

Figure supplement 4. Sites of H-Ras where mutations have a different phenotype in the mammalian Ba/F3 cell and H-Ras+GAP experiments.

Figure 7 continued
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Concluding remarks
In our previous Ras study, we developed a bacterial two-hybrid assay to probe the mutational land-
scape of Ras in the presence and absence of its regulators (Bandaru et al., 2017). Here, we analyze 
the mutational profile of H-Ras in mammalian Ba/F3 cells and show that it resembles the mutational 
profile of Ras in the bacterial assay when a GAP is co-expressed. These results demonstrate that Ras 
is under constitutive surveillance by a GAP in Ba/F3 cells, although the identity of the specific GAP 
is unknown. Importantly, these experiments show that the bacterial experiments provide a generally 
reliable platform for the study of the mutational landscape of Ras, one that allows more rapid testing 
of different constructs and regulators than is practical with the mammalian system. We exploited the 
ease of experimentation in the bacterial system to reveal a link between the stability of Ras and the 
fitness profile of different mutations.

The variants that escape GAP surveillance and undergo activation in deep mutagenesis assays 
correlate well with variants found in cancer databases. However, the mammalian and bacterial muta-
genesis data do not explain the predominance of mutations at Gly 12, Gly 13, and Gln 61 – the three 
cancer hotspots – in cancer databases. We determined that truncation of the C-terminal helix of 
Ras destabilizes H-Ras by ~7 ​kJ.​mol–1, and this destabilization alters the mutational sensitivity of the 
protein. Comparison of the mutational profiles of Ras constructs of different stabilities identifies a 
distinguishing feature between the three cancer hotspots and other sites where activating mutations 
are found in either the mutational screens or the cancer databases. The phenotype of mutations at 
the cancer hotspots remains virtually unaltered in different constructs, while other mutations that are 
activating in the context of the longer construct have a reduced level of activation or even a loss-of-
function phenotype in the context of the shorter construct.

We purified and characterized three cancer hotspots variants – G12V, G13D, and Q61L – and two 
Ras variants found infrequently in cancer – K117N and D119A. We found that the G12V and Q61L 
mutations are not destabilizing, and G13D destabilizes H-Ras by just ~10 ​kJ.​mol–1, whereas the K117N 
and D119A mutations destabilize H-Ras by ~25 ​kJ.​mol–1. A mutation that decreases the stability of Ras 
can lead to activation by weakening nucleotide binding, thereby permitting spontaneous nucleotide 
exchange to reactivate Ras in the presence of the GAP. A reduction in nucleotide affinity further desta-
bilizes Ras, since Ras is dependent on ligand coordination to maintain stability (Zhang and Matthews, 
1998a; Zhang and Matthews, 1998b). When the shorter, less stable construct is used, the decrease 
in stability presumably leads to reduced levels of folded Ras. The same mutation may activate the 
longer Ras construct due to a higher stability threshold – the compensating stability being provided 
by the extension of the C-terminal helix of Ras (Bershtein et al., 2006).

Our findings regarding the coupling between C-terminal helix truncation and Ras stability allows 
a conceptual connection to be made with the mechanism of activation of heterotrimeric G proteins 
via G-protein-coupled receptors (GPCRs). Ras and the heterotrimeric G proteins share a similar G-do-
main architecture (Flock et  al., 2015), act as molecular switches, bind to the membrane via lipid 
anchors (N-terminal in G-α and C-terminal in H-Ras), and bind the nucleotide through conserved 
motifs (15GKS/T17 and 116NKXDL120 in H-Ras). The activation of heterotrimeric G proteins by GPCRs 
involves allosteric release of GDP by modulation of the C-terminal helix of the G domain (Bos et al., 
2007; Flock et al., 2015). Given the structural and functional similarities between the two proteins, 
we suspect that nucleotide binding in Ras is also coupled to its C-terminal helix. The changes in 
stability and mutational sensitivity of Ras constructs in which the length of the C-terminal helix is 
varied are a manifestation of such coupling.

Conservation analysis of the Ras superfamily revealed that sites where mutations are activating in 
the Ba/F3 assay but infrequent in cancer (e.g. Val 14, Lys 117, and Asp 119) have higher sequence 
conservation than cancer hotspots. The conservation of the residues at the sites of stability-dependent 
activating mutations across the Ras superfamily indicates that the wild-type versions of these residues 
play essential roles in maintaining the Ras fold and coordinating the nucleotide. In contrast, Gly 12, 
Gly 13, and Gln 61 play roles specialized for interaction with Ras-GAP and catalyzing nucleotide 
hydrolysis, enabling mutations at these three sites to activate Ras without severe consequences for 
the stability of the Ras fold or nucleotide coordination.

Another connection between Ras activation and stability emerges from our analysis of hydrogen-
deuterium exchange rates by NMR for three activating H-Ras variants (H27G, L120A, and Y157Q). 
These variants display increased nucleotide exchange rates (Bandaru et  al., 2017) and exhibit 
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increased HDX, consistent with the destabilization of the structure. These three residues appear to 
occupy important positions that ‘lock down’ the structure and enhance coupling across the protein 
(Bandaru et al., 2017). We surmise that the release of this coupling affects the nucleotide-binding 
site, resulting in increased HDX.

Activating mutations that decrease conformational stability and accelerate GDP dissociation have 
been reported for Rac1a and G-α GTPases (Toyama et al., 2019a; Toyama et al., 2019b; Toyama 
et  al., 2017). The high affinity of GTPases for GDP prevents GEF-independent activation in the 
absence of appropriate cellular stimuli. However, destabilizing mutations that loosen the grip on the 
nucleotide increase nucleotide turnover, and our results indicate that Ras has a substantial innate 
capacity to be activated by such mutations. The overall stability of the Ras fold determines the balance 
between increases in signal output and decreases in signaling capacity due to the unfolding of the 
protein (Figure 8).

This interplay between stability and activity is also observed in other types of signaling proteins. 
For example, protein kinases are activated by mutations that destabilize them and thereby break regu-
latory mechanisms, as seen for the V600E cancer mutation in B-Raf (White et al., 2018). The action 
of the chaperone HSP90 protects the destabilized kinases from unfolding and subsequent protea-
somal degradation, allowing the mutant kinases to promote hyperactivation (Taipale et al., 2012). Ras 
proteins do not appear to be protected by such chaperones, allowing differences in non-specific chap-
erone activity between cell types to determine the extent to which destabilizing mutations promote 
activation. The stability of Ras can also be impacted by factors such as post-translation modifica-
tions and membrane-induced mechanical stress (Campbell and Philips, 2021; Gavrilov et al., 2015; 
Kapoor et al., 2013; Zhang and Matthews, 1998a; Zhang and Matthews, 1998b). A combination of 
these effects might explain why destabilizing mutations are less frequent in cancer and why there are 
tissue-specific patterns of activating mutations in Ras (Cook et al., 2021; Li et al., 2018).

Figure 8. Signaling activity versus thermodynamic stability. A conceptual relationship between the thermodynamic stability and signaling activity of 
Ras variants is shown. A decrease in stability can increase signaling activity by enhancing nucleotide-exchange rates or compromising catalytic activity. 
However, further stability reduction reaches the stability threshold. The stability threshold buffers the deleterious effects of mutations (Bershtein et al., 
2006), and is epistatic in nature; once exhausted, the deleterious effects of mutations become fully pronounced. Hence, signaling activity decreases. 
The closer a mutant is to the stability threshold, the narrower the window where the mutant can promote hyperactivation in vivo.
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 Research advance﻿﻿﻿﻿﻿﻿ Structural Biology and Molecular Biophysics

Hidalgo, Nocka, et al. eLife 2022;11:e76595. DOI: https://doi.org/10.7554/eLife.76595 � 20 of 31

Materials and methods
Construction of the Ras variant DNA libraries
Ras libraries for four constructs (H-Ras with residues 2–166, H-Ras with residues 2–180, K-Ras with 
residues 2–165, and K-Ras with residues 2–173) containing every possible amino acid substitution 
mutant were generated by using oligonucleotide-directed mutagenesis as described in Bandaru 
et al., 2017. First, two mutagenic primers with 15 base pair sequence complementarity on each side 
of the targeted codon were generated. The primers contain random codons for each of the residues 
in the respective constructs, allowing all 20 amino acids to be represented in each position (Bandaru 
et al., 2017). Library generation required two sets of polymerase chain reactions (PCRs) to produce 
the full-length double-stranded product containing a single degenerate codon (Bandaru et al., 2017). 
Each PCR product was then run on an agarose gel and purified using a gel extraction protocol (NEB). 
The purified PCR product concentrations were measured using the Picogreen assay (Thermo Fisher), 
pooled in equimolar concentrations, digested with HindIII (NEB) and Bsu36I (NEB), and ligated with 
T4 DNA ligase (Invitrogen) into RNA-α vector. The ligated product was then transformed into NEB 
10-beta E. coli cells through heat shock transformation. The NEB 10-beta cells were then grown on 
Kan + LB agarose plates to assess the efficiency of the transformation. The rest of the cells were grown 
in a 5 ml overnight culture in LB and Kanamycin. The DNA from these cells was extracted using Qiagen 
miniprep kit and sequenced with Illumina sequencing to ensure that every Ras variant was equally 
represented. We limited the Illumina sequencing to 500 base paired-end reads to ensure high-quality 
base calls. Thus, each Ras library was generated as two or three separate sub-libraries. Variants for 
H-Ras2-166 were divided into residues 2–56, 57–111, and 112–166. Variants for K-Ras2-165, K-Ras2-173, and 
H-Ras2-180 were divided into residues 2–88 and 89-end.

Ba/F3 cell culture and retroviral transduction
Ba/F3 cells (a generous gift from Neil Shah, UCSF) were maintained in complete RPMI 1640 medium 
(Gibco) with glutamine supplemented with 10% fetal bovine serum (VWR), 100 units/mL penicillin-
streptomycin (Gibco), and 2 ng/mL recombinant murine interleukin-3 (IL-3) (Gibco). Cells were grown 
in a humidified incubator at 37 °C and 6% atmospheric CO2. Cells were examined for IL-3 dependence 
regularly, ensuring that cells cultured without IL-3 died within 24 hr. Mutant H-Ras libraries used for 
the bacterial-two-hybrid assay (Bandaru et  al., 2017) were subcloned into pMIG, a murine stem 
cell virus retroviral transfer vector harboring an internal ribosome entry site, and a green fluorescent 
protein cassette (IRES-GFP). The resulting libraries were transfected with pCL-Eco (Addgene #12371) 
into HEK 293T cells with Lipofectamine 2000 (Gibco). Media was harvested after 48 hr, applied to a 
0.45 μM syringe-driven filter, and used to transduce Ba/F3 cells at a multiplicity of infection (MOI) of 
0.1. After confirming GFP expression by flow cytometry, cells were grown for 1 day in the presence of 
IL-3. Then, a fraction of the cells were used as the ‘nselected’ population. The remainder of the cells 
(‘selected’ population) was washed thoroughly with PBS and grown for 7 days in media without IL-3. 
Both unselected and selected cells were harvested by centrifugation and resuspended into 200 μL of 
PBS and processed with a DNeasy Blood and Tissue kit (Qiagen) per the manufacturer’s instructions 
to obtain genomic DNA. The extracted DNA was used to generate libraries for Illumina sequencing 
as described below.

Bacterial two-hybrid selection assay
We adopted the protocol described in Bandaru et  al., 2017. Electrocompetent MC4100-Z1 cells 
containing both the pZS22 and pZERM1-CAT plasmids were transformed with 100 ng of the pZA31 
plasmids containing the libraries for H-Ras (construct length 2–166), H-Ras (construct length 2–180), 
K-Ras (construct length 2–165), and K-Ras (construct length 2–173), cultured for one hour in LB media. 
Small aliquots were plated LB-agarose plates with kanamycin, ampicillin, and trimethoprim to test for 
transformation validity. The remainder of each culture was grown overnight in LB media containing 
20 μg/mL trimethoprim, 50 μg/mL kanamycin, and 100 μg/mL ampicillin. The following morning, 30 μL 
of each culture was diluted to an optical density (OD) at 600 nm of 0.001. The diluted cultures were 
grown for 2 hr in 10 mL of LB at the same antibiotic concentrations. Next, cells were diluted to an OD 
of 0.0001 and induced with 50 ng/μL doxycycline and 100 μM IPTG for 3 hr in 60 mL of LB + antibi-
otics. After induction, 50 mL of culture was reserved for the Illumina sequencing of the pre-selection 
population (Bandaru et al., 2017). Selection cultures were started with the remainder of the induction 
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cultures at an OD of 0.001 in 60 mL of LB + antibiotics + inducer with 75 μg/mL chloramphenicol for 
5 hr. Then, the second set of selection cultures was started by diluting the previous selection cultures 
to an OD of 0.001 in a new batch of 60 mL of LB + antibiotics + inducer with 75 μg/mL chloramphen-
icol for 4 hr. Two selection steps were used to ensure that the OD remained below 0.1 throughout the 
experiment. Both pre- and post-selection cultures were spun down and stored frozen at –80 °C. The 
bacterial datasets were obtained from new experiments conducted for this work, except for H-Ras2-

166+GAP, where the raw data from our earlier work was reprocessed (Bandaru et al., 2017).

Next-generation sequencing using the Illumina MiSeq platform
Next-generation sequencing was used to determine the frequencies of each variant in the experiments. 
For using the MiSeq instrument (Illumina), we followed the recommended protocols described in the 
MiSeq system guide (Document # 1000000061014 v00, July 2018, and Document # 15039740 v10, 
February 2019). Pre- and post-selection cultures of each library were then miniprepped using Qiagen’s 
standard protocol. The extracted DNA was then amplified by PCR and attached to barcode oligonu-
cleotides compatible with the MiSeq sequencing platform (Illumina, index1: i7 primers, and index: i5 
primers). The barcoded samples were then pooled together at equimolar concentrations and diluted 
to 4 nM. 5 µL of the 4 nM pooled sample were then combined with 5 µL of 0.2 N NaOH, centrifuged, 
and combined with 990 µL of prechilled HT1 (hybridization buffer, Illumina) to create 1 ml of a 20 pM 
denatured DNA sample (Illumina). PhiX control library (Illumina) was added until the concentration was 
20 pM. The sample was diluted to 12 pM by adding more HT1, then loaded onto a reagent cartridge 
(MiSeq Reagent kit v2 300-cycles or 500 cycles) and sequenced. Raw DNA reads were assembled 
using PEAR (Paired-End reAd mergeR) version 0.9.6 (Zhang et al., 2014), with a minimum quality 
threshold of 30. Then, the barcode adapters were trimmed using cutadapt version 1.7.1 (Martin, 
2011).

Calculation of enrichment scores using mutagenesis-visualization 
software
Data processing, statistical analysis, and visualization were conducted using ‘mutagenesis-visualization’ 
version 1.0, an open-source Python package that can analyze saturation-mutagenesis datasets (Hidalgo 
et al., 2021a). The documentation can be found at readthedocs, the source code on GitHub (Hidalgo 
et al., 2021b), and the software can be used without previous Python knowledge. The graphs in this 
work have been generated using mutagenesis-visualization. The raw data generated in this work can 
be found on GitHub (copy archived at swh:1:rev:66bd65d37428007210fe07da83369a566c6cb18b, 
Hidalgo, 2022).

First, the trimmed DNA reads of each pre- and post-selection cultures of each library for H-Ras 
(construct length 2–166), H-Ras (construct length 2–180), K-Ras (construct length 2–165), and K-Ras 
(construct length 2–173) were counted. Then, a baseline count correction step was conducted on the 
post-selection samples (except in Ras+GAP experiments, see the section below). Next, the relative 
enrichment (‍Ei

x‍) was calculated using Equation 1.
The first term of Equation 1 is the logarithm of the ratio of counts (c) of observing codons repre-

senting each amino acid x at each position i in the selected and unselected samples. The second term 
of Equation 1 is the median of the ordered list of logarithms of the elements of the vector obtained 
by conducting pair-wise division, denoted ⊘, between the selected and unselected counts (Cwt,selected 
and Cwt,unselected, respectively) for the variants that are synonymous with the wild-type (wt) allele. A Ras 
variant with an enrichment score of zero propagates in the assay at the same rate as the wild-type 
variants. Variants with scores of ±1 propagate tenfold faster or slower than wild-type variants, respec-
tively. This form of calculating the enrichment scores is an improvement over the traditional calcula-
tion, where only the counts for the wild-type reference DNA sequence were used to center the data 
(Equation 3a and 3b).

	﻿‍
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x = log10
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i
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In saturation-mutagenesis experiments, there are different sources of error, such as from the next-
generation sequencing procedure, PCR amplification steps, counting statistics, or experimental condi-
tions during the selection process (e.g. changes in antibiotic concentration from replicate to replicate). 
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Hence, relying on a single data point to center the data makes enrichment scores calculated using 
Equation 3a and 3b more sensitive to outliers. To overcome this limitation, we use the synonymous 
wild-type alleles to obtain more data points (Equation 1). These alleles comprise all the sequences in 
the DNA library that differ in DNA sequence to the wild-type gene used as the template to create the 
library, yet they translate to the same protein. In the Ras libraries used in this paper, there are more 
than a hundred synonymous wild-type alleles. Scatter plots of the wild-type allele enrichment scores 
for the pair-wise combinations of replicates show low R2 values (see documentation). The absence of 
correlation between the enrichment values of wild-type alleles in replicates rules out the possibility 
that any particular wild-type DNA sequences is more enriched than another wild-type sequence due to 
expression level differences. This topic is covered in the documentation of mutagenesis-visualization 
(Hidalgo et al., 2021a).

Afterward, synonymous variants were combined using the mean enrichment score. The result is 
a unimodal Gaussian distribution of enrichment scores with a left/right shoulder (depending on the 
sample). The data were centered at zero using the mode of the enrichment scores of each DNA 
sequence that translates to wild-type Ras. The last step in the data processing was a scaling step, 
where we set the standard deviation of each distribution to be constant, thus allowing for comparison 
between different datasets.

Baseline correction step in enrichment score calculation
We introduce a correction to account for cells that do not express functional Ras molecules but grow 
at some non-zero rate in the bacterial assay. That is, there is some leaky expression of the antibiotic 
resistance gene. In order to obtain growth rates for variants between the limits of 0 the growth rate of 
the organism without antibiotic exposure, we perform a baseline correction.

Mutagenesis-visualization performs a baseline correction by using the counts of the stop codons 
present in the selected library. First, the counts of each amino acid x at each position i in the unse-
lected sample (‍c

x,unsel
i ‍), multiplied by the median of the stop codon frequencies (x̃f*) are subtracted 

from the counts in the selected sample (‍c
x,sel
i ‍) (Equation 3a and 3b). Then, the ‘corrected’ selected 

counts (‍c
x,sel
I,corrected‍) are used to calculate the enrichment scores (‍Ei

x‍) using Equation 1.

	﻿‍
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)
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While the correction does not affect the relative order of the variants with respect to the popula-
tion, it changes the shape of the enrichment score distribution (see documentation of mutagenesis-
visualization). Before the baseline correction, the enrichment scores distribution is bimodal, and the 
new distribution is unimodal. This baseline correction cannot be applied if the growth rate of the stop 
codon variants is the same as most of the other variants (i.e. Ras+GAP datasets).

Calculation of receiver operator characteristic (ROC) curves
Receiver operating characteristic (ROC) curves were used to make quantitative comparisons between 
the saturation-mutagenesis datasets and the COSMIC (https://cancer.sanger.ac.uk/cosmic) and 
gnomAD (https://gnomad.broadinstitute.org/) databases or between two saturation-mutagenesis 
datasets. When using the COSMIC database v94 as the reference, each variant with five or more 
counts in at least one isoform dataset was considered a true positive. Because we set a minimum of 
five counts to consider a mutation in the COSMIC database, we eliminate low-frequency mutations 
present in the COSMIC database that may not be pathogenic. The variants found in the gnomAD 
were considered true negatives (Livesey and Marsh, 2020). For gnomAD, we used the H-Ras, N-Ras, 
and K-Ras non-cancer datasets versions 2.1.1 and 3.1.2 and filtered out any mutation labeled as 
‘pathogenic’. When a variant is found in gnomAD and COSMIC datasets, it is considered a true posi-
tive. Some pathogenic mutations may be present in the individuals screened for the gnomAD data-
base, and the pathogenic label has not been added.

We had a total of 59 true positives and 152 true negatives. We do not use mutations absent in the 
COSMIC database as true negatives to prevent misclassifying mutations that can activate Ras and 
activate cell senescence (Li et al., 2018). Furthermore, some mutations may not yet be seen in the 
COSMIC database because they require more than one base-pair change. We performed the ROC 
analysis in two ways: using K-Ras counts, and combining the counts for the three isoforms, so we had 
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more data points. The results were unaffected. We include the list of variants used for this analysis in 
the supplementary data and the scripts used.

We repeated the ROC analysis using the oncogenic mutations found in the cBioPortal (http://www.​
cbioportal.org/) as the true positives (Cerami et al., 2012; Gao et al., 2013). This portal hosts many 
cancer studies, including the AACR GENIE Project Data version 10.1, with 123736 samples (AACR 
Project GENIE Consortium, 2017). It also hosts several other studies, from where we obtained 
more Ras variant frequencies in cancer. We entered the cBioPortal ‘data sets’ tab to obtain the data 
and selected the ‘curated set of non-redundant studies’. This curated set contains 178 studies and 
57,523 samples. We submitted a query with the genes ‘KRAS, HRAS, NRAS’ and downloaded the list 
of mutations for all the studies combined. Then, we used the five counts cutoff to consider mutations 
for the true positive list. The rest of the ROC analysis was done as described above, replacing the list 
of true positives from COSMIC with the new list derived from cBioPortal. The gnomAD mutations list 
was used as the true negatives.

When using a second saturation-mutagenesis dataset as the reference, mutations with a score 
of >1.5 times the standard deviation are considered true positives, and the rest as true negatives. The 
ROC curve is generated by graphing the fraction of true positives versus the fraction of false positives 
at various threshold settings, and the estimated area under the curve (AUC) gives a measure of the 
overall accuracy of the predictions.

The COSMIC database includes a FATHMM (Functional Analysis through Hidden Markov Models) 
pathogenicity score for each variant. We have scored the variants present in the COSMIC database 
using our best-predicting dataset, that is, H-Ras1-188 in Ba/F3 cells, so the scores can become a new 
metric used to score the pathogenicity of oncogenic mutations analogous to FATHMM (fhidalgor/
ras_cancer_hidalgoetal).

Protein expression and purification for stability measurements
Wild-type H-Ras of construct lengths 1–166 and 1–173, wild-type K-Ras of construct length 1–173, and 
H-Ras variants K117N and D119A (both of construct lengths 1–173), were all tagged at the N-terminus 
with a hexahistidine tag, and transformed into 100 µL Escherichia coli (BL21 (DE3)) in the pProEX expres-
sion vector. A starter culture of 50 mL Terrific Broth (TB) with 100 μg/mL ampicillin was grown, with 
220 rpm shaking, at 37 °C overnight. After bacterial growth to an OD600 of 0.5 in TB containing ampi-
cillin at 37 °C, induction was carried out at 18 °C with 0.4 mM IPTG. The bacteria were further allowed to 
grow, shaking at 220 rpm, at 18 °C for 18 hr. The bacteria were pelleted by centrifugation, and the pellets 
were resuspended in Ni-A buffer (20 mM tris, 1 M NaCl, 1 M urea, 3 mM MgCl2, 0.5 mM TCEP, pH 8, 
filter sterilized) on ice and either stored at –80 °C or used immediately for subsequent purification steps.

A protease inhibitor cocktail (Roche) was added to resuspended protein pellets. The bacteria 
were lysed through sonication, and cell debris was removed by centrifugation. The supernatant was 
applied to a 5 mL nickel column (HisTrap FF columns, GE Healthcare). The column was washed with 
15 mL of W1 buffer (Ni-A + 20 mM imidazole), 15 mL of W2 buffer (Ni-A + 40 mM imidazole), and 
15 mL W3 buffer (Ni-A + 60 mM imidazole). The protein was then eluted from the nickel column with 
elution buffer (Ni-A + 400 mM imidazole). The protein was concentrated to ~1.5 mL in Ni-A buffer, 
then diluted into Ni-A to remove imidazole. The hexahistidine tag was then cleaved overnight using 
hexahistidine-tagged TEV protease (1 mg TEV per 25 mg crude Ras) to leave a single N-terminal 
glycine scar. After cleavage for 48 hr, the protein solution was run over a 5 mL nickel column equili-
brated with 20 mL Ni-A buffer, and the flow-through was collected.

For CD spectroscopy measurements, the flow-through was concentrated to 1 mL and further puri-
fied using a pre-equilibrated Superdex 75 10/300 GL column in 20 mM HEPES, 150 mM NaCl, 5 mM 
MgCl2, 0.5 mM TCEP, pH 7.2. Collected fractions were concentrated, and concentration was esti-
mated using absorbance at 280 nm.

For pulse proteolysis experiments, the flow-through was concentrated to 1.5 mL in assay buffer 
with GDP (20 mM tris, 5 mM MgCl2, 140 mM NaCl, 0.5 mM TCEP, 100 µM GDP, pH 7.2, filter ster-
ilized). 10  µL of 12  x and 120  x diluted protein prep was then loaded into a 15% SDS-PAGE gel 
(BioRad) with BioRad Precision Plus unstained standard for comparison. After running at 200 V for 
30 min, the gel was stained with SYPRO Red (50 mL 7.5% v/v acetic acid, 5000 x SYPRO Red stock) 
and shaken overnight. Finally, the gel was imaged with the UV transilluminator to quantify the total 
protein concentration.

https://doi.org/10.7554/eLife.76595
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CD measurements
Fresh assay buffer with 10 M urea was used to set up 8 M and 0 M urea stocks with 35.5 μM GDP and 
0.5 μM Ras. 2.7 mL samples with urea concentrations ranging from 0 to 8 M were set up by mixing 
these stocks, then incubated overnight at 25 °C. Spectra of the 0 M and 8 M samples showed the 
greatest ratio of signal-to-noise change at 228 nm, so this wavelength was used for all urea titrations, 
with a bandwidth of 2.5 nm. Each sample was stirred as four 15-s measurements were taken on an Aviv 
410 CD spectrometer in a 1 cm cuvette at 25 °C. The refractive index of each sample was measured 
with a refractometer (Zeiss), and the difference in refractive index from the no-urea sample was used 
to estimate the urea concentration (Pace, 1986). Each titration yielded a maximum likelihood fit to 
a model with linear unfolded and folded baselines and normal noise, where the scale parameter is a 
linear function of urea concentration (Equation 4; Carpenter et al., 2017):
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Proteolysis measurements
In order to be able to measure the unfolding of unstable Ras mutants, we increased the GDP concen-
tration from 36 to 100 μM, adding ~2.53 ​kJ.​mol–1 to the value of ΔGunf. For this reason, the reported 
ΔGunf values for H-Ras1-166 and H-Ras1-173 are slightly higher in the proteolysis measurements than in the 
CD measurements (Figure 4A). The change in ligand contribution to the stability is shown in Equation 
5.
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In Equation 5, KD represents the dissociation constant of GDP, and [GDP]new and [GDP]old represent 
the GDP concentrations used in the proteolysis and CD measurements, respectively. Ligand contribu-
tion remains roughly independent of decreased mutant affinity even up to a KD of 3 μM, where there 
is a 5%, or 0.13 ​kJ.​mol–1 deviation from this ideal behavior. Hence, we can continue to compare the 
stability of mutants even with the drastically reduced nucleotide affinities we expect of some point 
mutants.

Fresh assay buffer with 10 M urea was used to prepare 8 M and 0 M urea stocks with 100 μM GDP 
and 1.6 μM Ras. In a 96-well plate, twelve 100 μL urea concentrations were created by mixing these 
stocks, increasing from 0 M urea to 8 M urea. The well plate was sealed with parafilm and incubated 
overnight at 25 °C. Next, 1 μL of 1 M CaCl2 was added to each well, followed immediately by 2 μL ther-
molysin stock (10 mg/mL lyophilized thermolysin by absorbance at 280 nm, Sigma Aldrich, in 2.5 M 
NaCl, 10 mM CaCl2, 0.2 μm, filtered) and incubated for 60 s (Park and Marqusee, 2006). The reaction 
was quenched by addition to 50 mM EDTA (pH 8, filter sterilized). Next, 6 x SDS-PAGE loading buffer 
was added to each quenched solution, and the proteolysis samples were denatured in the 96-well 
thermocycler at 98 °C for 5 min. Next, 10 µL of each quenched solution was loaded into 15%, 15-well 
4–20 x SDS-PAGE gels (BioRad), and the system was run on ice at 60 V for 35 minutes, then at 100 V 
for 1.5 hr. Gels were stained with 5000 x SYPRO Red for 1 hr, incubated in H2O overnight to eliminate 
background signal, and then imaged with a UV transilluminator. Urea concentrations were estimated 
from each quenched sample as for CD. The proteolysis sample band intensities were quantified with 
ImageJ. Each titration yielded a maximum likelihood fit to a model with constant unfolded and folded 
baselines, an m-value constrained to its CD-estimated value, and normal noise with constant scale 
parameter (equivalent to nonlinear least squares), that is Equation 6:
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In vitro nucleotide exchange assay
GDP release assays were performed with Ras bound to mant-GDP (Axxora Biosciences), loaded with 
the protocol described in our previous Ras study, and the purified H-Ras mutants and SOScat were 
used from that previous study (Bandaru et al., 2017). Each H-Ras mutant was loaded with mant-GDP 
by incubating the protein with a ten-fold molar excess of EDTA in the presence of a ten-fold molar 
excess of GTP. Next, the loading reaction was performed on ice for one hour, and the reaction was 
quenched by adding a 20-fold molar excess of MgCl2. Then, the reaction was buffer exchanged using 
a NAP-5 column (GE Healthcare) to remove excess nucleotide and salt. Then, 1.5 μM H-Ras was mixed 
with 2.5 μM SOScat and 3.5 mM GDP in solution in the following buffer: 150 mM NaCl, 40 mM HEPES, 
4 mM MgCl2, 1 mM TCEP, and 5% glycerol. Nucleotide exchange rates were monitored on a Tecan 
fluorescence plate reader, taking measurements every 15 s. Data were fit to a single exponential decay 
curve for quantification of GDP exchange rates.

Protein preparation for hydrogen-deuterium exchange experiments
Wild-type H-Ras and four mutants (H27G, Q99A, L120A, and Y157Q), all with construct length 1–166, 
were expressed and purified as follows. Each construct was transformed into BL21(DE3) E. coli and 
plated on kanamycin-containing plates. These cultures were then used to inoculate a liquid culture 
containing 100 µg/mL kanamycin in either Terrific Broth (TB) or minimal media containing either an 
N15 source or N15 and C13 sources, depending on the experiment. These cultures were grown at 37 °C 
to an optical density of 0.8–1 and then were induced with 1 mM Isopropyl β-D-thiogalactopyranoside 
(IPTG). Growth continued overnight at 18 °C. The next day, the bacteria were pelleted and resus-
pended in a small volume of Ni-NTA buffer (500 mM NaCl, 20 mM Tris-HCl pH 8.5, 20 mM Imidazole, 
5% Glycerol) and flash frozen.

To begin the protein preparation, cell pellets were thawed and lysed by sonication or homogeniza-
tion at 4 °C, depending on the cell pellet volume. This lysate was then spun for an hour at 16,500 rpm 
to separate soluble and insoluble fractions. The soluble fraction was collected and flowed through a 
HisTrap FF column (GE Healthcare). The column was washed with 10 column volumes (CV) Ni-NTA, 
followed by 10 CV low-salt Ni-NTA (50 mM NaCl, 20 mM Tris-HCl pH 8.5, 20 mM Imidazole, 5% Glyc-
erol). This column was then attached directly to a HiTrap Q FF column (GE Healthcare) equilibrated in 
low-salt Ni-NTA elute buffer (50 mM NaCl, 20 mM Tris-HCl pH 8.5, 500 mM Imidazole, 5% Glycerol). 
Protein was eluted onto the Q column with 10 CV low-salt Ni-NTA elute. The Q column was then 
washed with a salt gradient in Q buffer (50 mM – 1 M NaCl, 20 mM Tris-HCl pH 8.5, 5% Glycerol) over 
10 CV, and then 5 CV of the high-salt Q buffer. The protein eluted in a single peak during gradient. 
This sample was collected and incubated at 4 °C overnight with TEV protease to remove the TEV-
linked His-tag.

After overnight incubation, the sample was run through a HisTrap column, this time only using 
high-salt Ni-NTA buffer, and flow through and wash were collected. This sample was concentrated 
to less than 1 mL. The sample was incubated at room temperature for 2 hr with 3 x molar excess 
GMP-PNP, 1 mM ZnCl2, and 10 U bovine alkaline phosphatase. This sample was further purified by gel 
filtration over a Superdex 75 column (10/300 GL, GE Healthcare) in gel filtration buffer (40 mM HEPES, 
150 mM NaCl, 4 mM MgCl2, 1 mM TCEP, and 5% glycerol at pH 7.4).

Hydrogen-deuterium exchange experiments
N15 labeled protein was prepared at 500 µM in gel filtration buffer and divided into 500 µL aliquots. 
These aliquots were flash-frozen, lyophilized, and then stored at –80 °C. Just before beginning the 
experiment, the sample was dissolved in 500 µL D2O. The sample was then loaded into an 800 MHz 
NMR at 25 °C, and the first HSQC was taken immediately. This HSQC was repeated six times, with no 
delay between spectra, followed by six more spectra with a delay of 3 hr between the start of each 
experiment.

Each spectrum was baseline corrected and phased. Peaks were assigned based on BMRB 17678. 
Assignments were validated by HNCA carried out with C13/N15 labeled WT protein. Each peak was fit 
and integrated. The volume decay was fit to a single exponential, if possible. Fits with R2 >0.7 were 
kept for analysis.

We also carried out HDX by mass spectrometry. Deuterated buffer was prepared by lyophilizing 
Ras gel filtration buffer (40 mM Hepes pH 7.4, 150 mM NaCl, 4 mM MgCl2, 5% Glycerol) overnight 

https://doi.org/10.7554/eLife.76595
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and resuspending in equivolume D2O (Sigma-Aldrich 151882). This process was repeated twice before 
storing the lyophilized buffer at –80°C. Lyophilized buffer was resuspended in equivolume D2O before 
use.

Aliquots of WT Ras were thawed on ice and diluted to a final concentration of 10 µM. To initiate 
hydrogen exchange, 10 µM WT Ras was diluted into deuterated buffer to a final concentration of 1 µM. 
Exchanging samples were kept in a temperature-controlled block maintained at 25°C. At various time 
points, 30 µL of the exchanging reaction were added in a 1:1 ratio to quench buffer (1.5 M glycine, 
3.5 M GdmCl, pH 2.5) on ice before flash freezing samples in liquid N2. Samples were stored at –80°C 
for subsequent LC/MS analysis.

LC/MS was performed as described in previous work (Costello et al., 2021). Briefly, samples were 
thawed and then injected into a valve system (Trajan LEAP) coupled to an LC (Thermo Ultimate 3000). 
Sample time points were injected in a non-consecutive order. The valve chamber, trap column, and 
analytical column were kept at 2°C, and the protease chamber at 4°C. Upon injection, samples under-
went proteolysis using two in-line columns manually packed with aspergillopepsin (Sigma-Aldrich 
P2143) or porcine pepsin (Sigma Aldrich P6887) with buffer A (1% formic acid) flowing at a rate 
of 200 µL/min. Peptides were desalted for 4 min on a trap column (1 mM ID x 2 cm, IDEX C-128) 
manually packed with POROS R2 reversed-phase resin (Thermo Scientific 1112906). Peptides were 
separated on a C8 analytical column (Thermo Scientific BioBasic-8 5 μm particle size 0.5 mM ID x 
50 mM 72205–050565) with buffer B (90% acetonitrile, 0.1% formic acid) flowing at a rate of 40 µL/
min and increasing from 10% to 45% for the first 14 min, and then from 45% to 100% over 30 s. Eluted 
peptides were then identified via MS, and analytical and trap columns were washed using a sawtooth 
gradient. Protease columns were washed twice with 100 µL of 1.6 M GdmCl, 0.1% formic acid prior 
to each subsequent injection.

Exchange for WT Ras was performed in duplicate to verify that the EX1 behavior in the N terminus 
was reproducible. Two MS/MS experiments were carried out on undeuterated samples to generate 
peptide lists with the MS settings described in Costello et al., 2021, using Byonic (Protein Metrics) 
software. Peptide isotope distributions were fit using HDExaminer 3. The centroids of the observed 
distributions for each time point and each peptide were then exported for plotting and figure gener-
ation in Jupyter python notebooks.

Acknowledgements
We thank members of the Kuriyan lab for helpful discussions. We thank Subu Subramanian for helpful 
discussions regarding the data processing and analysis, and Kendra Marcus for insightful discussions 
about Ras biology. We also thank Joseph Paul and Tim Eisen for helping to review the manuscript. 
We thank Rama Ranganathan for helping us adapt the bacterial-two-hybrid system to study the Ras 
cycle. This work was supported in part by NIH grant P01AI091580-09 awarded to John Kuriyan. The 
authors would like to acknowledge the American Association for Cancer Research and its financial 
and material support in the development of the AACR Project GENIE registry, as well as members of 
the consortium for their commitment to data sharing. Interpretations are the responsibility of study 
authors.

Additional information

Competing interests
Deepti Karandur: Early Career Reviewer, eLife. The other authors declare that no competing interests 
exist.

Funding

Funder Grant reference number Author

National Institutes of 
Health

P01AI091580-09 John Kuriyan

https://doi.org/10.7554/eLife.76595


 Research advance﻿﻿﻿﻿﻿﻿ Structural Biology and Molecular Biophysics

Hidalgo, Nocka, et al. eLife 2022;11:e76595. DOI: https://doi.org/10.7554/eLife.76595 � 27 of 31

Funder Grant reference number Author

The funders had no role in study design, data collection and interpretation, or the 
decision to submit the work for publication.

Author contributions
Frank Hidalgo, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Soft-
ware, Validation, Visualization, Writing – original draft, Writing – review and editing; Laura M Nocka, 
Data curation, Formal analysis, Investigation, Methodology, NMR mutants, NMR mutants, NMR 
mutants, Visualization; Neel H Shah, Conceptualization, Investigation, Methodology, Writing – review 
and editing; Kent Gorday, Data curation, Methodology, Software, Visualization; Naomi R Latorraca, 
Data curation, MS, MS, Methodology; Pradeep Bandaru, Methodology; Sage Templeton, Data 
curation, Formal analysis, Methodology; David Lee, Investigation, Methodology; Deepti Karandur, 
Conceptualization, Supervision, Writing – original draft; Jeffrey G Pelton, Methodology, NMR mutants, 
NMR mutants, NMR mutants, Resources; Susan Marqusee, MS, MS, Methodology, Supervision; David 
Wemmer, Conceptualization, Methodology, NMR mutants, NMR mutants, NMR mutants, Resources; 
John Kuriyan, Conceptualization, Funding acquisition, Investigation, Project administration, Supervi-
sion, Writing – original draft, Writing – review and editing

Author ORCIDs
Frank Hidalgo ‍ ‍ http://orcid.org/0000-0003-1700-2697
Neel H Shah ‍ ‍ http://orcid.org/0000-0002-1186-0626
Pradeep Bandaru ‍ ‍ http://orcid.org/0000-0002-9354-3340
Deepti Karandur ‍ ‍ http://orcid.org/0000-0002-6949-6337
Susan Marqusee ‍ ‍ http://orcid.org/0000-0001-7648-2163
David Wemmer ‍ ‍ http://orcid.org/0000-0001-6252-3390
John Kuriyan ‍ ‍ http://orcid.org/0000-0002-4414-5477

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.76595.sa1
Author response https://doi.org/10.7554/eLife.76595.sa2

Additional files
Supplementary files
•  Transparent reporting form 

Data availability
All data generated or analyzed during this study are included in a GitHub repository named "https://github.​
com/fhidalgor/ras_cancer_hidalgoetal", (copy archived at swh:1:rev:66bd65d37428007210fe07d-
a83369a566c6cb18b). The dataset was also uploaded to zenodo (DOI: https://doi.org/10.5281/​
zenodo.6131510).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Hidalgo F, Nocka LM, 
Shah NH, Gorday 
K, Latorraca NR, 
Bandaru P, Templeton 
S, Lee D, Karandur D, 
Pelton JG, Marqusee 
S, Wemmer D, 
Kuriyan J

2022 A saturation-mutagenesis 
analysis of the interplay 
between stability and 
activation in Ras

https://​doi.​org/​10.​
5281/​zenodo.​6131510

Zenodo, 10.5281/
zenodo.6131510

https://doi.org/10.7554/eLife.76595
http://orcid.org/0000-0003-1700-2697
http://orcid.org/0000-0002-1186-0626
http://orcid.org/0000-0002-9354-3340
http://orcid.org/0000-0002-6949-6337
http://orcid.org/0000-0001-7648-2163
http://orcid.org/0000-0001-6252-3390
http://orcid.org/0000-0002-4414-5477
https://doi.org/10.7554/eLife.76595.sa1
https://doi.org/10.7554/eLife.76595.sa2
https://github.com/fhidalgor/ras_cancer_hidalgoetal
https://github.com/fhidalgor/ras_cancer_hidalgoetal
https://archive.softwareheritage.org/swh:1:dir:3d33cf44e79a307f23e051c97632342d784696ba;origin=https://github.com/fhidalgor/ras_cancer_hidalgoetal;visit=swh:1:snp:e3218a0ca200a04ef69a4bdc283929abc97cf4f9;anchor=swh:1:rev:66bd65d37428007210fe07da83369a566c6cb18b
https://archive.softwareheritage.org/swh:1:dir:3d33cf44e79a307f23e051c97632342d784696ba;origin=https://github.com/fhidalgor/ras_cancer_hidalgoetal;visit=swh:1:snp:e3218a0ca200a04ef69a4bdc283929abc97cf4f9;anchor=swh:1:rev:66bd65d37428007210fe07da83369a566c6cb18b
https://doi.org/10.5281/zenodo.6131510
https://doi.org/10.5281/zenodo.6131510
https://github.com/fhidalgor/ras_cancer_hidalgoetal
https://github.com/fhidalgor/ras_cancer_hidalgoetal


 Research advance﻿﻿﻿﻿﻿﻿ Structural Biology and Molecular Biophysics

Hidalgo, Nocka, et al. eLife 2022;11:e76595. DOI: https://doi.org/10.7554/eLife.76595 � 28 of 31

References
AACR Project GENIE Consortium. 2017. AACR Project GENIE: Powering Precision Medicine through an 

International Consortium. Cancer Discovery 7:818–831. DOI: https://doi.org/10.1158/2159-8290.CD-17-0151, 
PMID: 28572459

Ahmadian MR, Stege P, Scheffzek K, Wittinghofer A. 1997. Confirmation of the arginine-finger hypothesis for the 
GAP-stimulated GTP-hydrolysis reaction of Ras. Nature Structural Biology 4:686–689. DOI: https://doi.org/10.​
1038/nsb0997-686, PMID: 9302992

Awad MM. 2021. Acquired resistance to KRASG12C inhibition in cancer. The New England Journal of Medicine 
384:2382–2393. DOI: https://doi.org/10.1056/NEJMoa2105281, PMID: 34161704

Baker R, Lewis SM, Sasaki AT, Wilkerson EM, Locasale JW, Cantley LC, Kuhlman B, Dohlman HG, 
Campbell SL. 2013. Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein 
function. Nature Structural & Molecular Biology 20:46–52. DOI: https://doi.org/10.1038/nsmb.2430, PMID: 
23178454

Bandaru P, Shah NH, Bhattacharyya M, Barton JP, Kondo Y, Cofsky JC, Gee CL, Chakraborty AK, Kortemme T, 
Ranganathan R, Kuriyan J. 2017. Deconstruction of the Ras switching cycle through saturation mutagenesis. 
eLife 6:e27810. DOI: https://doi.org/10.7554/eLife.27810, PMID: 28686159

Bandaru P, Kondo Y, Kuriyan J. 2019. The Interdependent Activation of Son-of-Sevenless and Ras. Cold Spring 
Harbor Perspectives in Medicine 9:a031534. DOI: https://doi.org/10.1101/cshperspect.a031534, PMID: 
29610148

Bera AK, Lu J, Wales TE, Gondi S, Gurbani D, Nelson A, Engen JR, Westover KD. 2019. Structural basis of the 
atypical activation mechanism of KRASV14I. The Journal of Biological Chemistry 294:13964–13972. DOI: 
https://doi.org/10.1074/jbc.RA119.009131, PMID: 31341022

Bershtein S, Segal M, Bekerman R, Tokuriki N, Tawfik DS. 2006. Robustness-epistasis link shapes the fitness 
landscape of a randomly drifting protein. Nature 444:929–932. DOI: https://doi.org/10.1038/nature05385, 
PMID: 17122770

Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, Kuriyan J. 1998. The structural basis of the activation of Ras by Sos. 
Nature 394:337–343. DOI: https://doi.org/10.1038/28548, PMID: 9690470

Bos JL, Rehmann H, Wittinghofer A. 2007. GEFs and GAPs: critical elements in the control of small G proteins. 
Cell 129:865–877. DOI: https://doi.org/10.1016/j.cell.2007.05.018, PMID: 17540168

Buhrman G, Holzapfel G, Fetics S, Mattos C. 2010. Allosteric modulation of Ras positions Q61 for a direct role in 
catalysis. PNAS 107:4931–4936. DOI: https://doi.org/10.1073/pnas.0912226107, PMID: 20194776

Campbell SL, Philips MR. 2021. Post-translational modification of RAS proteins. Current Opinion in Structural 
Biology 71:180–192. DOI: https://doi.org/10.1016/j.sbi.2021.06.015, PMID: 34365229

Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P, Riddell A. 
2017. stan: A probabilistic programming language. Journal of Statistical Software 76:1–32. DOI: https://doi.​
org/10.18637/jss.v076.i01

Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, 
Antipin Y, Reva B, Goldberg AP, Sander C, Schultz N. 2012. The cBio cancer genomics portal: an open platform 
for exploring multidimensional cancer genomics data. Cancer Discovery 2:401–404. DOI: https://doi.org/10.​
1158/2159-8290.CD-12-0095, PMID: 22588877

Cirstea IC, Gremer L, Dvorsky R, Zhang SC, Piekorz RP, Zenker M, Ahmadian MR. 2013. Diverging gain-of-
function mechanisms of two novel KRAS mutations associated with Noonan and cardio-facio-cutaneous 
syndromes. Human Molecular Genetics 22:262–270. DOI: https://doi.org/10.1093/hmg/dds426, PMID: 
23059812

Cook JH, Melloni GEM, Gulhan DC, Park PJ, Haigis KM. 2021. The origins and genetic interactions of KRAS 
mutations are allele- and tissue-specific. Nature Communications 12:1808. DOI: https://doi.org/10.1038/​
s41467-021-22125-z, PMID: 33753749

Cool RH, Schmidt G, Lenzen CU, Prinz H, Vogt D, Wittinghofer A. 1999. The Ras mutant D119N is both 
dominant negative and activated. Molecular and Cellular Biology 19:6297–6305. DOI: https://doi.org/10.1128/​
MCB.19.9.6297, PMID: 10454576

Costello SM, Shoemaker SR, Hobbs HT, Nguyen AW, Hsieh CL, Maynard JA, McLellan JS, Pak JE, Marqusee S. 
2021. The SARS-CoV-2 Spike Reversibly Samples an Open-Trimer Conformation Exposing Novel Epitopes. 
bioRxiv. DOI: https://doi.org/10.1101/2021.07.11.451855

Coyle SM, Lim WA. 2016. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through 
in vitro network reconstitution. eLife 5:e12435. DOI: https://doi.org/10.7554/eLife.12435, PMID: 26765565

Cruz-Migoni A, Canning P, Quevedo CE, Bataille CJR, Bery N, Miller A, Russell AJ, Phillips SEV, Carr SB, 
Rabbitts TH. 2019. Structure-based development of new RAS-effector inhibitors from a combination of active 
and inactive RAS-binding compounds. PNAS 116:2545–2550. DOI: https://doi.org/10.1073/pnas.1811360116, 
PMID: 30683716

Daley GQ, Baltimore D. 1988. Transformation of an interleukin 3-dependent hematopoietic cell line by the 
chronic myelogenous leukemia-specific P210bcr/abl protein. PNAS 85:9312–9316. DOI: https://doi.org/10.​
1073/pnas.85.23.9312, PMID: 3143116

Ehrhardt A, Ehrhardt GRA, Guo X, Schrader JW. 2002. Ras and relatives--job sharing and networking keep an 
old family together. Experimental Hematology 30:1089–1106. DOI: https://doi.org/10.1016/s0301-472x(02)​
00904-9, PMID: 12384139

https://doi.org/10.7554/eLife.76595
https://doi.org/10.1158/2159-8290.CD-17-0151
http://www.ncbi.nlm.nih.gov/pubmed/28572459
https://doi.org/10.1038/nsb0997-686
https://doi.org/10.1038/nsb0997-686
http://www.ncbi.nlm.nih.gov/pubmed/9302992
https://doi.org/10.1056/NEJMoa2105281
http://www.ncbi.nlm.nih.gov/pubmed/34161704
https://doi.org/10.1038/nsmb.2430
http://www.ncbi.nlm.nih.gov/pubmed/23178454
https://doi.org/10.7554/eLife.27810
http://www.ncbi.nlm.nih.gov/pubmed/28686159
https://doi.org/10.1101/cshperspect.a031534
http://www.ncbi.nlm.nih.gov/pubmed/29610148
https://doi.org/10.1074/jbc.RA119.009131
31341022
https://doi.org/10.1038/nature05385
http://www.ncbi.nlm.nih.gov/pubmed/17122770
https://doi.org/10.1038/28548
http://www.ncbi.nlm.nih.gov/pubmed/9690470
https://doi.org/10.1016/j.cell.2007.05.018
http://www.ncbi.nlm.nih.gov/pubmed/17540168
https://doi.org/10.1073/pnas.0912226107
http://www.ncbi.nlm.nih.gov/pubmed/20194776
https://doi.org/10.1016/j.sbi.2021.06.015
http://www.ncbi.nlm.nih.gov/pubmed/34365229
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1158/2159-8290.CD-12-0095
http://www.ncbi.nlm.nih.gov/pubmed/22588877
https://doi.org/10.1093/hmg/dds426
http://www.ncbi.nlm.nih.gov/pubmed/23059812
https://doi.org/10.1038/s41467-021-22125-z
https://doi.org/10.1038/s41467-021-22125-z
http://www.ncbi.nlm.nih.gov/pubmed/33753749
https://doi.org/10.1128/MCB.19.9.6297
https://doi.org/10.1128/MCB.19.9.6297
http://www.ncbi.nlm.nih.gov/pubmed/10454576
https://doi.org/10.1101/2021.07.11.451855
https://doi.org/10.7554/eLife.12435
http://www.ncbi.nlm.nih.gov/pubmed/26765565
https://doi.org/10.1073/pnas.1811360116
http://www.ncbi.nlm.nih.gov/pubmed/30683716
https://doi.org/10.1073/pnas.85.23.9312
https://doi.org/10.1073/pnas.85.23.9312
http://www.ncbi.nlm.nih.gov/pubmed/3143116
https://doi.org/10.1016/s0301-472x(02)00904-9
https://doi.org/10.1016/s0301-472x(02)00904-9
http://www.ncbi.nlm.nih.gov/pubmed/12384139


 Research advance﻿﻿﻿﻿﻿﻿ Structural Biology and Molecular Biophysics

Hidalgo, Nocka, et al. eLife 2022;11:e76595. DOI: https://doi.org/10.7554/eLife.76595 � 29 of 31

Fetics SK, Guterres H, Kearney BM, Buhrman G, Ma B, Nussinov R, Mattos C. 2015. Allosteric effects of the 
oncogenic RasQ61L mutant on Raf-RBD. Structure (London, England 23:505–516. DOI: https://doi.org/10.​
1016/j.str.2014.12.017, PMID: 25684575

Flock T, Ravarani CNJ, Sun D, Venkatakrishnan AJ, Kayikci M, Tate CG, Veprintsev DB, Babu MM. 2015. Universal 
allosteric mechanism for Gα activation by GPCRs. Nature 524:173–179. DOI: https://doi.org/10.1038/​
nature14663, PMID: 26147082

Franken SM, Scheidig AJ, Krengel U, Rensland H, Lautwein A, Geyer M, Scheffzek K, Goody RS, Kalbitzer HR, 
Pai EF. 1993. Three-dimensional structures and properties of a transforming and a nontransforming glycine-12 
mutant of p21H-ras. Biochemistry 32:8411–8420. DOI: https://doi.org/10.1021/bi00084a005, PMID: 8357792

Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, 
Sander C, Schultz N. 2013. Integrative analysis of complex cancer genomics and clinical profiles using the 
cBioPortal. Science Signaling 6:pl1. DOI: https://doi.org/10.1126/scisignal.2004088, PMID: 23550210

Gavrilov Y, Hagai T, Levy Y. 2015. Nonspecific yet decisive: Ubiquitination can affect the native-state dynamics of 
the modified protein. Protein Science 24:1580–1592. DOI: https://doi.org/10.1002/pro.2688, PMID: 25970168

Gelb BD, Tartaglia M. 2006. Noonan syndrome and related disorders: dysregulated RAS-mitogen activated 
protein kinase signal transduction. Human Molecular Genetics 15 Spec No 2:R220–R226. DOI: https://doi.org/​
10.1093/hmg/ddl197, PMID: 16987887

Harrison RA, Lu J, Carrasco M, Hunter J, Manandhar A, Gondi S, Westover KD, Engen JR. 2016. Structural 
Dynamics in Ras and Related Proteins upon Nucleotide Switching. Journal of Molecular Biology 428:4723–
4735. DOI: https://doi.org/10.1016/j.jmb.2016.10.017, PMID: 27751724

Hidalgo F, Templeton S, Olavaria Gallegos C, Wang J. 2021a. Mutagenesis-Visualization: Analysis of Site-
Saturation Mutagenesis Datasets in Python. bioRxiv. DOI: https://doi.org/10.1101/2021.10.08.463725

Hidalgo F, Templeton S, Olavaria Gallegos C, Wang J. 2021b. Mutagenesis Visualization. 1.0. GitHub. https://​
github.com/fhidalgor/mutagenesis_visualization

Hidalgo F. 2022. ras_cancer_hidalgoetal. swh:1:rev:66bd65d37428007210fe07da83369a566c6cb18b. Software 
Heritage. https://archive.softwareheritage.org/swh:1:dir:3d33cf44e79a307f23e051c97632342d784696ba;​
origin=https://github.com/fhidalgor/ras_cancer_hidalgoetal;visit=swh:1:snp:e3218a0ca200a04ef69a4bdc2839​
29abc97cf4f9;anchor=swh:1:rev:66bd65d37428007210fe07da83369a566c6cb18b

Hoover RR, Gerlach MJ, Koh EY, Daley GQ. 2001. Cooperative and redundant effects of STAT5 and Ras signaling 
in BCR/ABL transformed hematopoietic cells. Oncogene 20:5826–5835. DOI: https://doi.org/10.1038/sj.onc.​
1204549, PMID: 11593388

Huang L, Hofer F, Martin GS, Kim SH. 1998. Structural basis for the interaction of Ras with RalGDS. Nature 
Structural Biology 5:422–426. DOI: https://doi.org/10.1038/nsb0698-422, PMID: 9628477

Hunter JC, Manandhar A, Carrasco MA, Gurbani D, Gondi S, Westover KD. 2015. Biochemical and Structural 
Analysis of Common Cancer-Associated KRAS Mutations. Molecular Cancer Research 13:1325–1335. DOI: 
https://doi.org/10.1158/1541-7786.MCR-15-0203, PMID: 26037647

Kapoor S, Werkmüller A, Goody RS, Waldmann H, Winter R. 2013. Pressure modulation of Ras-membrane 
interactions and intervesicle transfer. Journal of the American Chemical Society 135:6149–6156. DOI: https://​
doi.org/10.1021/ja312671j, PMID: 23560466

Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, 
Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, 
Seaby EG, Kosmicki JA, Walters RK, et al. 2020. The mutational constraint spectrum quantified from 
variation in 141,456 humans. Nature 581:434–443. DOI: https://doi.org/10.1038/s41586-020-2308-7, PMID: 
32461654

Khrenova MG, Mironov VA, Grigorenko BL, Nemukhin AV. 2014. Modeling the role of G12V and G13V Ras 
mutations in the Ras-GAP-catalyzed hydrolysis reaction of guanosine triphosphate. Biochemistry 53:7093–
7099. DOI: https://doi.org/10.1021/bi5011333, PMID: 25339142

Kim MS, Song J, Park C. 2009. Determining protein stability in cell lysates by pulse proteolysis and Western 
blotting. Protein Science 18:1051–1059. DOI: https://doi.org/10.1002/pro.115, PMID: 19388050

Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Jang W, 
Karapetyan K, Katz K, Liu C, Maddipatla Z, Malheiro A, McDaniel K, Ovetsky M, Riley G, Zhou G, Holmes JB, 
et al. 2018. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids 
Research 46:D1062–D1067. DOI: https://doi.org/10.1093/nar/gkx1153, PMID: 29165669

Lee BJ, Shah NP. 2015. Identification of TKI-Sensitive Point Mutations That Activate c-ABL Kinase Activity and 
Transformation Potential and Confer in Vitro Resistance to the Allosteric ABL Inhibitor GNF-5. Blood 126:17. 
DOI: https://doi.org/10.1182/blood.V126.23.17.17

Li S, Balmain A, Counter CM. 2018. A model for RAS mutation patterns in cancers: finding the sweet spot. 
Nature Reviews. Cancer 18:767–777. DOI: https://doi.org/10.1038/s41568-018-0076-6, PMID: 30420765

Livesey BJ, Marsh JA. 2020. Using deep mutational scanning to benchmark variant effect predictors and identify 
disease mutations. Molecular Systems Biology 16:e9380. DOI: https://doi.org/10.15252/msb.20199380, PMID: 
32627955

Lu S, Jang H, Nussinov R, Zhang J. 2016. The Structural Basis of Oncogenic Mutations G12, G13 and Q61 in 
Small GTPase K-Ras4B. Scientific Reports 6:21949. DOI: https://doi.org/10.1038/srep21949, PMID: 26902995

Mandanas RA, Leibowitz DS, Gharehbaghi K, Tauchi T, Burgess GS, Miyazawa K, Jayaram HN, Boswell HS. 1993. 
Role of p21 RAS in p210 bcr-abl transformation of murine myeloid cells. Blood 82:1838–1847. DOI: https://doi.​
org/10.1182/blood.V82.6.1838.1838, PMID: 7691239

https://doi.org/10.7554/eLife.76595
https://doi.org/10.1016/j.str.2014.12.017
https://doi.org/10.1016/j.str.2014.12.017
http://www.ncbi.nlm.nih.gov/pubmed/25684575
https://doi.org/10.1038/nature14663
https://doi.org/10.1038/nature14663
http://www.ncbi.nlm.nih.gov/pubmed/26147082
https://doi.org/10.1021/bi00084a005
http://www.ncbi.nlm.nih.gov/pubmed/8357792
https://doi.org/10.1126/scisignal.2004088
http://www.ncbi.nlm.nih.gov/pubmed/23550210
https://doi.org/10.1002/pro.2688
http://www.ncbi.nlm.nih.gov/pubmed/25970168
https://doi.org/10.1093/hmg/ddl197
https://doi.org/10.1093/hmg/ddl197
http://www.ncbi.nlm.nih.gov/pubmed/16987887
https://doi.org/10.1016/j.jmb.2016.10.017
http://www.ncbi.nlm.nih.gov/pubmed/27751724
https://doi.org/10.1101/2021.10.08.463725
https://github.com/fhidalgor/mutagenesis_visualization
https://github.com/fhidalgor/mutagenesis_visualization
https://archive.softwareheritage.org/swh:1:dir:3d33cf44e79a307f23e051c97632342d784696ba;origin=https://github.com/fhidalgor/ras_cancer_hidalgoetal;visit=swh:1:snp:e3218a0ca200a04ef69a4bdc283929abc97cf4f9;anchor=swh:1:rev:66bd65d37428007210fe07da83369a566c6cb18b
https://archive.softwareheritage.org/swh:1:dir:3d33cf44e79a307f23e051c97632342d784696ba;origin=https://github.com/fhidalgor/ras_cancer_hidalgoetal;visit=swh:1:snp:e3218a0ca200a04ef69a4bdc283929abc97cf4f9;anchor=swh:1:rev:66bd65d37428007210fe07da83369a566c6cb18b
https://archive.softwareheritage.org/swh:1:dir:3d33cf44e79a307f23e051c97632342d784696ba;origin=https://github.com/fhidalgor/ras_cancer_hidalgoetal;visit=swh:1:snp:e3218a0ca200a04ef69a4bdc283929abc97cf4f9;anchor=swh:1:rev:66bd65d37428007210fe07da83369a566c6cb18b
https://doi.org/10.1038/sj.onc.1204549
https://doi.org/10.1038/sj.onc.1204549
http://www.ncbi.nlm.nih.gov/pubmed/11593388
https://doi.org/10.1038/nsb0698-422
http://www.ncbi.nlm.nih.gov/pubmed/9628477
https://doi.org/10.1158/1541-7786.MCR-15-0203
http://www.ncbi.nlm.nih.gov/pubmed/26037647
https://doi.org/10.1021/ja312671j
https://doi.org/10.1021/ja312671j
http://www.ncbi.nlm.nih.gov/pubmed/23560466
https://doi.org/10.1038/s41586-020-2308-7
http://www.ncbi.nlm.nih.gov/pubmed/32461654
https://doi.org/10.1021/bi5011333
http://www.ncbi.nlm.nih.gov/pubmed/25339142
https://doi.org/10.1002/pro.115
http://www.ncbi.nlm.nih.gov/pubmed/19388050
https://doi.org/10.1093/nar/gkx1153
http://www.ncbi.nlm.nih.gov/pubmed/29165669
https://doi.org/10.1182/blood.V126.23.17.17
https://doi.org/10.1038/s41568-018-0076-6
http://www.ncbi.nlm.nih.gov/pubmed/30420765
https://doi.org/10.15252/msb.20199380
http://www.ncbi.nlm.nih.gov/pubmed/32627955
https://doi.org/10.1038/srep21949
http://www.ncbi.nlm.nih.gov/pubmed/26902995
https://doi.org/10.1182/blood.V82.6.1838.1838
https://doi.org/10.1182/blood.V82.6.1838.1838
http://www.ncbi.nlm.nih.gov/pubmed/7691239


 Research advance﻿﻿﻿﻿﻿﻿ Structural Biology and Molecular Biophysics

Hidalgo, Nocka, et al. eLife 2022;11:e76595. DOI: https://doi.org/10.7554/eLife.76595 � 30 of 31

Margarit SM, Sondermann H, Hall BE, Nagar B, Hoelz A, Pirruccello M, Bar-Sagi D, Kuriyan J. 2003. Structural 
evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS. Cell 
112:685–695. DOI: https://doi.org/10.1016/s0092-8674(03)00149-1, PMID: 12628188

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal 
17:10. DOI: https://doi.org/10.14806/ej.17.1.200

Mazhab-Jafari MT, Marshall CB, Smith MJ, Gasmi-Seabrook GMC, Stathopulos PB, Inagaki F, Kay LE, 
Neel BG, Ikura M. 2015. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-
dependent occlusion of the effector-binding site. PNAS 112:6625–6630. DOI: https://doi.org/10.1073/pnas.​
1419895112

McGrath E, Waschbüsch D, Baker BM, Khan AR. 2021. LRRK2 binds to the Rab32 subfamily in a GTP-dependent 
manner via its armadillo domain. Small GTPases 12:133–146. DOI: https://doi.org/10.1080/21541248.2019.​
1666623

McLaughlin RN, Poelwijk FJ, Raman A, Gosal WS, Ranganathan R. 2012. The spatial architecture of protein 
function and adaptation. Nature 491:138–142. DOI: https://doi.org/10.1038/nature11500, PMID: 23041932

Noguchi H, Ikegami T, Nagadoi A, Kamatari YO, Park SY, Tame JRH, Unzai S. 2015. The structure and 
conformational switching of Rap1B. Biochemical and Biophysical Research Communications 462:46–51. DOI: 
https://doi.org/10.1016/j.bbrc.2015.04.103

O’Connor C, Kovrigin EL. 2012. N resonances in H-Ras (1-166) complexed with GppNHp at physiological pH. 
Biomolecular NMR Assignments 6:91–93. DOI: https://doi.org/10.1007/s12104-011-9332-3, PMID: 21814767

Pace CN. 1986. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods 
in Enzymology 131:266–280. DOI: https://doi.org/10.1016/0076-6879(86)31045-0, PMID: 3773761

Pacold ME, Suire S, Perisic O, Lara-Gonzalez S, Davis CT, Walker EH, Hawkins PT, Stephens L, Eccleston JF, 
Williams RL. 2000. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 
3-kinase gamma. Cell 103:931–943. DOI: https://doi.org/10.1016/s0092-8674(00)00196-3, PMID: 11136978

Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A. 1990. Refined crystal structure of the 
triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. 
The EMBO Journal 9:2351–2359. DOI: https://doi.org/10.1002/j.1460-2075.1990.tb07409.x, PMID: 2196171

Park C, Marqusee S. 2005. Pulse proteolysis: a simple method for quantitative determination of protein stability 
and ligand binding. Nature Methods 2:207–212. DOI: https://doi.org/10.1038/nmeth740, PMID: 15782190

Park C, Marqusee S. 2006. Quantitative determination of protein stability and ligand binding by pulse 
proteolysis. Current Protocols in Protein Science Chapter 20:ps2011s46. DOI: https://doi.org/10.1002/​
0471140864.ps2011s46, PMID: 18429306

Poulin EJ, Bera AK, Lu J, Lin YJ, Strasser SD, Paulo JA, Huang TQ, Morales C, Yan W, Cook J, Nowak JA, 
Brubaker DK, Joughin BA, Johnson CW, DeStefanis RA, Ghazi PC, Gondi S, Wales TE, Iacob RE, Bogdanova L, 
et al. 2019. Tissue-Specific Oncogenic Activity of KRASA146T. Cancer Discovery 9:738–755. DOI: https://doi.​
org/10.1158/2159-8290.CD-18-1220

Prior IA, Lewis PD, Mattos C. 2012. A comprehensive survey of Ras mutations in cancer. Cancer Research 
72:2457–2467. DOI: https://doi.org/10.1158/0008-5472.CAN-11-2612, PMID: 22589270

Prior IA, Hood FE, Hartley JL. 2020. The Frequency of Ras Mutations in Cancer. Cancer Research 80:2969–2974. 
DOI: https://doi.org/10.1158/0008-5472.CAN-19-3682, PMID: 32209560

Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. 2011. RAS oncogenes: weaving a tumorigenic web. Nature Reviews. 
Cancer 11:761–774. DOI: https://doi.org/10.1038/nrc3106, PMID: 21993244

Quilliam LA, Zhong S, Rabun KM, Carpenter JW, South TL, Der CJ, Campbell-Burk S. 1995. Biological and 
structural characterization of a Ras transforming mutation at the phenylalanine-156 residue, which is conserved 
in all members of the Ras superfamily. PNAS 92:1272–1276. DOI: https://doi.org/10.1073/pnas.92.5.1272, 
PMID: 7877967

Quilliam LA, Hisaka MM, Zhong S, Lowry A, Mosteller RD, Han J, Drugan JK, Broek D, Campbell SL, Der CJ. 
1996. Involvement of the switch 2 domain of Ras in its interaction with guanine nucleotide exchange factors. 
The Journal of Biological Chemistry 271:11076–11082. DOI: https://doi.org/10.1074/jbc.271.19.11076, PMID: 
8626650

Reinstein J, Schlichting I, Frech M, Goody RS, Wittinghofer A. 1991. p21 with a phenylalanine 28----leucine 
mutation reacts normally with the GTPase activating protein GAP but nevertheless has transforming properties. 
The Journal of Biological Chemistry 266:17700–17706 PMID: 1894650., 

Rojas AM, Fuentes G, Rausell A, Valencia A. 2012. The Ras protein superfamily: evolutionary tree and role of 
conserved amino acids. The Journal of Cell Biology 196:189–201. DOI: https://doi.org/10.1083/jcb.201103008, 
PMID: 22270915

Rosemond SN, Hamadani KM, Cate JHD, Marqusee S. 2018. Modulating long-range energetics via helix 
stabilization: A case study using T4 lysozyme. Protein Science 27:2084–2093. DOI: https://doi.org/10.1002/pro.​
3521, PMID: 30284332

Samelson AJ, Jensen MK, Soto RA, Cate JHD, Marqusee S. 2016. Quantitative determination of ribosome 
nascent chain stability. PNAS 113:13402–13407. DOI: https://doi.org/10.1073/pnas.1610272113, PMID: 
27821780

Schubbert S, Shannon K, Bollag G. 2007. Hyperactive Ras in developmental disorders and cancer. Nature 
Reviews. Cancer 7:295–308. DOI: https://doi.org/10.1038/nrc2109, PMID: 17384584

Smith MJ, Neel BG, Ikura M. 2013. NMR-based functional profiling of RASopathies and oncogenic RAS 
mutations. PNAS 110:4574–4579. DOI: https://doi.org/10.1073/pnas.1218173110, PMID: 23487764

https://doi.org/10.7554/eLife.76595
https://doi.org/10.1016/s0092-8674(03)00149-1
http://www.ncbi.nlm.nih.gov/pubmed/12628188
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1073/pnas.1419895112
https://doi.org/10.1073/pnas.1419895112
https://doi.org/10.1080/21541248.2019.1666623
https://doi.org/10.1080/21541248.2019.1666623
https://doi.org/10.1038/nature11500
http://www.ncbi.nlm.nih.gov/pubmed/23041932
https://doi.org/10.1016/j.bbrc.2015.04.103
https://doi.org/10.1007/s12104-011-9332-3
http://www.ncbi.nlm.nih.gov/pubmed/21814767
https://doi.org/10.1016/0076-6879(86)31045-0
http://www.ncbi.nlm.nih.gov/pubmed/3773761
https://doi.org/10.1016/s0092-8674(00)00196-3
http://www.ncbi.nlm.nih.gov/pubmed/11136978
https://doi.org/10.1002/j.1460-2075.1990.tb07409.x
http://www.ncbi.nlm.nih.gov/pubmed/2196171
https://doi.org/10.1038/nmeth740
http://www.ncbi.nlm.nih.gov/pubmed/15782190
https://doi.org/10.1002/0471140864.ps2011s46
https://doi.org/10.1002/0471140864.ps2011s46
http://www.ncbi.nlm.nih.gov/pubmed/18429306
https://doi.org/10.1158/2159-8290.CD-18-1220
https://doi.org/10.1158/2159-8290.CD-18-1220
https://doi.org/10.1158/0008-5472.CAN-11-2612
http://www.ncbi.nlm.nih.gov/pubmed/22589270
https://doi.org/10.1158/0008-5472.CAN-19-3682
http://www.ncbi.nlm.nih.gov/pubmed/32209560
https://doi.org/10.1038/nrc3106
http://www.ncbi.nlm.nih.gov/pubmed/21993244
https://doi.org/10.1073/pnas.92.5.1272
http://www.ncbi.nlm.nih.gov/pubmed/7877967
https://doi.org/10.1074/jbc.271.19.11076
http://www.ncbi.nlm.nih.gov/pubmed/8626650
http://www.ncbi.nlm.nih.gov/pubmed/1894650
https://doi.org/10.1083/jcb.201103008
http://www.ncbi.nlm.nih.gov/pubmed/22270915
https://doi.org/10.1002/pro.3521
https://doi.org/10.1002/pro.3521
http://www.ncbi.nlm.nih.gov/pubmed/30284332
https://doi.org/10.1073/pnas.1610272113
http://www.ncbi.nlm.nih.gov/pubmed/27821780
https://doi.org/10.1038/nrc2109
http://www.ncbi.nlm.nih.gov/pubmed/17384584
https://doi.org/10.1073/pnas.1218173110
http://www.ncbi.nlm.nih.gov/pubmed/23487764


 Research advance﻿﻿﻿﻿﻿﻿ Structural Biology and Molecular Biophysics

Hidalgo, Nocka, et al. eLife 2022;11:e76595. DOI: https://doi.org/10.7554/eLife.76595 � 31 of 31

Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, Lindquist S. 2012. Quantitative analysis 
of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001. DOI: https://doi.​
org/10.1016/j.cell.2012.06.047, PMID: 22939624

Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E, 
Fish P, Harsha B, Hathaway C, Jupe SC, Kok CY, Noble K, Ponting L, Ramshaw CC, Rye CE, Speedy HE, et al. 
2019. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Research 47:D941–D947. DOI: 
https://doi.org/10.1093/nar/gky1015, PMID: 30371878

Toyama Y, Kano H, Mase Y, Yokogawa M, Osawa M, Shimada I. 2017. Dynamic regulation of GDP binding to G 
proteins revealed by magnetic field-dependent NMR relaxation analyses. Nature Communications 8:14523. 
DOI: https://doi.org/10.1038/ncomms14523, PMID: 28223697

Toyama Y, Kontani K, Katada T, Shimada I. 2019a. Decreased conformational stability in the oncogenic N92I 
mutant of Ras-related C3 botulinum toxin substrate 1. Science Advances 5:eaax1595. DOI: https://doi.org/10.​
1126/sciadv.aax1595, PMID: 31457101

Toyama Y, Kontani K, Katada T, Shimada I. 2019b. Conformational landscape alternations promote oncogenic 
activities of Ras-related C3 botulinum toxin substrate 1 as revealed by NMR. Science Advances 5:eaav8945. 
DOI: https://doi.org/10.1126/sciadv.aav8945, PMID: 30891502

Vetter IR, Wittinghofer A. 2001. The guanine nucleotide-binding switch in three dimensions. Science (New York, 
N.Y.) 294:1299–1304. DOI: https://doi.org/10.1126/science.1062023, PMID: 11701921

Warmuth M, Kim S, Gu X, Xia G, Adrián F. 2007. Ba/F3 cells and their use in kinase drug discovery. Current 
Opinion in Oncology 19:55–60. DOI: https://doi.org/10.1097/CCO.0b013e328011a25f, PMID: 17133113

Watanabe-Smith K, Godil J, Agarwal A, Tognon C, Druker B. 2017. Analysis of acquired mutations in transgenes 
arising in Ba/F3 transformation assays: findings and recommendations. Oncotarget 8:12596–12606. DOI: 
https://doi.org/10.18632/oncotarget.15392, PMID: 28208123

White Y, Bagchi A, Van Ziffle J, Inguva A, Bollag G, Zhang C, Carias H, Dickens D, Loh M, Shannon K, 
Firestone AJ. 2016. KRAS insertion mutations are oncogenic and exhibit distinct functional properties. Nature 
Communications 7:10647. DOI: https://doi.org/10.1038/ncomms10647, PMID: 26854029

White R, Otaibi Z, Rao R, Finley G. 2018. BRAF V600E Mutation in Multiple Primary Malignancies: A Hairy Affair. 
Cureus 10:e3600. DOI: https://doi.org/10.7759/cureus.3600, PMID: 30680261

Wittinghofer A, Vetter IR. 2011. Structure-function relationships of the G domain, a canonical switch motif. 
Annual Review of Biochemistry 80:943–971. DOI: https://doi.org/10.1146/annurev-biochem-062708-134043, 
PMID: 21675921

Young A, Lyons J, Miller AL, Phan VT, Alarcón IR, McCormick F. 2009. Ras signaling and therapies. Advances in 
Cancer Research 102:1–17. DOI: https://doi.org/10.1016/S0065-230X(09)02001-6, PMID: 19595305

Zhang J, Matthews CR. 1998a. The role of ligand binding in the kinetic folding mechanism of human p21(H-ras) 
protein. Biochemistry 37:14891–14899. DOI: https://doi.org/10.1021/bi981116z, PMID: 9778365

Zhang J, Matthews CR. 1998b. Ligand binding is the principal determinant of stability for the p21(H)-ras protein. 
Biochemistry 37:14881–14890. DOI: https://doi.org/10.1021/bi9811157, PMID: 9778364

Zhang J, Kobert K, Flouri T, Stamatakis A. 2014. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. 
Bioinformatics (Oxford, England) 30:614–620. DOI: https://doi.org/10.1093/bioinformatics/btt593, PMID: 
24142950

Zhao Q, Fujimiya R, Kubo S, Marshall CB, Ikura M, Shimada I, Nishida N. 2020. Real-Time In-Cell NMR Reveals 
the Intracellular Modulation of GTP-Bound Levels of RAS. Cell Reports 32:108074. DOI: https://doi.org/10.​
1016/j.celrep.2020.108074, PMID: 32846131

https://doi.org/10.7554/eLife.76595
https://doi.org/10.1016/j.cell.2012.06.047
https://doi.org/10.1016/j.cell.2012.06.047
http://www.ncbi.nlm.nih.gov/pubmed/22939624
https://doi.org/10.1093/nar/gky1015
http://www.ncbi.nlm.nih.gov/pubmed/30371878
https://doi.org/10.1038/ncomms14523
http://www.ncbi.nlm.nih.gov/pubmed/28223697
https://doi.org/10.1126/sciadv.aax1595
https://doi.org/10.1126/sciadv.aax1595
http://www.ncbi.nlm.nih.gov/pubmed/31457101
https://doi.org/10.1126/sciadv.aav8945
http://www.ncbi.nlm.nih.gov/pubmed/30891502
https://doi.org/10.1126/science.1062023
http://www.ncbi.nlm.nih.gov/pubmed/11701921
https://doi.org/10.1097/CCO.0b013e328011a25f
http://www.ncbi.nlm.nih.gov/pubmed/17133113
https://doi.org/10.18632/oncotarget.15392
http://www.ncbi.nlm.nih.gov/pubmed/28208123
https://doi.org/10.1038/ncomms10647
http://www.ncbi.nlm.nih.gov/pubmed/26854029
https://doi.org/10.7759/cureus.3600
http://www.ncbi.nlm.nih.gov/pubmed/30680261
https://doi.org/10.1146/annurev-biochem-062708-134043
http://www.ncbi.nlm.nih.gov/pubmed/21675921
https://doi.org/10.1016/S0065-230X(09)02001-6
http://www.ncbi.nlm.nih.gov/pubmed/19595305
https://doi.org/10.1021/bi981116z
http://www.ncbi.nlm.nih.gov/pubmed/9778365
https://doi.org/10.1021/bi9811157
http://www.ncbi.nlm.nih.gov/pubmed/9778364
https://doi.org/10.1093/bioinformatics/btt593
http://www.ncbi.nlm.nih.gov/pubmed/24142950
https://doi.org/10.1016/j.celrep.2020.108074
https://doi.org/10.1016/j.celrep.2020.108074
http://www.ncbi.nlm.nih.gov/pubmed/32846131

	A saturation-­mutagenesis analysis of the interplay between stability and activation in Ras
	Editor's evaluation
	Introduction
	Results and discussion
	Saturation-mutagenesis of H-Ras in mammalian Ba/F3 Cells
	The mutational profile for Ras in Ba/F3 cells resembles that for Ras co-expressed with a GAP in the bacterial assay
	Extension of the C-terminal helix in Ras improves the correlation of bacterial mutagenesis data with the Ba/F3 dataset
	Ras mutations and construct length impact fold stability
	Mutations that activate Ras by increasing nucleotide exchange result in decreased conformational stability as measured by HDX
	Saturation-mutagenesis datasets correctly predict the sites of cancer mutations
	Stability-dependent gain-of-function mutations in Ras are less frequently found in the COSMIC database
	Gly 12, Gly 13, and Gln 61 are less conserved in the Ras superfamily than residues at stability-dependent gain-of-function sites
	Concluding remarks

	Materials and methods
	Construction of the Ras variant DNA libraries
	Ba/F3 cell culture and retroviral transduction
	Bacterial two-hybrid selection assay
	Next-generation sequencing using the Illumina MiSeq platform
	Calculation of enrichment scores using mutagenesis-visualization software
	Baseline correction step in enrichment score calculation
	Calculation of receiver operator characteristic (ROC) curves
	Protein expression and purification for stability measurements
	CD measurements
	Proteolysis measurements
	﻿In﻿ ﻿v﻿﻿itro﻿ nucleotide exchange assay
	Protein preparation for hydrogen-deuterium exchange experiments
	Hydrogen-deuterium exchange experiments

	Acknowledgements
	Additional information
	﻿Competing interests
	﻿Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References


