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Abstract Despite advances in high-dimensional cellular analysis, the molecular profiling of 
dynamic behaviors of cells in their native environment remains a major challenge. We present a 
method that allows us to couple the physiological behaviors of cells in an intact murine tissue to 
deep molecular profiling of individual cells. This method enabled us to establish a novel molecular 
signature for a striking migratory cellular behavior following injury in murine airways.

Editor's evaluation
This study presents a useful combination of live cell imaging with single-cell transcriptomic analyses. 
This is a first step to further expanding the description of cellular heterogeneity, including cellular 
behavior as well as gene expression profiles. The method, with more technical improvements, will be 
of interest to researchers who study dynamic changes in cell morphology and gene expression.

Introduction
Cells in a living organism are dynamic entities, changing their characteristics over space and time and 
constantly interacting with the host and pathogens. The ability to obtain such information and link it 
to detailed molecular phenotypes of the cells would be highly useful for biomedical investigations but 
has been underappreciated. Here, we present a method that allows us to characterize complex phys-
iologic behaviors of cells in an intact tissue and then perform live imaging-guided sequencing of the 
same cells. We validate this approach using a regeneration model of airway tissues and demonstrate 
how this method leads to new biological findings.

There is a pressing need for a comprehensive understanding of cellular behaviors in the lung, the 
site where aberrant cellular behavior has been linked to asthma (Kim et al., 2012; Park et al., 2015) 
pulmonary fibrosis (Fukumoto et  al., 2016), and viral infections including influenza and coronavi-
ruses (Kumar et al., 2011). Single-cell RNA-sequencing (scRNA-seq) has emerged as a precise way 
to define cell type and cell state, and new techniques are being developed to determine the spatial 
distribution of sequenced cells in tissues (Marx, 2021). However, the molecular pathways that drive 
the cellular behavior in situ continue to be inferred from time-lapse tissue sampling or transcriptional 
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kinetics (La Manno et al., 2018). Moving beyond inference requires coupling visualized in situ cell 
behavior with deep molecular profiling of visualized cells.

Live cell imaging is an established technique for capturing morphology and cellular dynamics 
such as cellular migration during skin regeneration (Park et  al., 2019; Park et  al., 2017), but 
imaging in the lung remains challenging due to difficult access and the constant motion of the respi-
ratory system. Additionally, molecular information that accompanies live imaging is largely limited 
to a few fluorescent reporters. Prior attempts to link deep molecular profiling with live imaging 
have relied on imaging dissociated cells (Lane et al., 2017; Yuan et al., 2018), cell monolayers 
(Hu et al., 2020), organoids (Konen et al., 2017) rather than on cell behaviors in their native tissue 
environment.

Our aim is to bridge the divide between two powerful methodologies - cell behavioral observation 
through live imaging and transcriptional profiling through single-cell sequencing, ultimately allowing 
the identification of a transcriptional signature that corresponds to that cell behavior. We present an 
important step forward toward linking dynamic cell behaviors with single-cell transcriptomics.

Figure 1. Platform for live imaging of airway tissue. (A) Behavioral transcriptomics workflow, starting with imaging, followed by image analysis to 
characterize cellular behavior over different time frames, leading to single-cell applications. (B) Airway tissue (trachea) is explanted from a mouse 
and affixed to a custom platform for long-term air-liquid-interface (ALI) culture and imaging. The platform enables both time-lapse microscopy and 
downstream single-cell applications. (C) Imaging and image analysis of ciliary beating and mucociliary transport 1 μm spherical beads. (D) Intraepithelial 
dendritic cells (CD11cCre-MTMG) grow and retract dendrites in real time; scale bar = 5 μm (E) Selected snapshots of cell division during regeneration 
post-sulfur dioxide (SO2) injury. Epithelial cell divides along its long axis during regeneration (Hertwig’s rule); scale bar = 5 μm. (F) Long-term ALI culture 
enables imaging of tissue regeneration post-SO2 injury over >12 days. ALI culture enables regeneration of entire epithelial thickness; scale bar = 20 μm. 
Green = membrane GFP; red = nuclear-tdTomato.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Platform for live imaging of airway tissue.

https://doi.org/10.7554/eLife.76645
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Results
We describe a novel approach to linking live tissue imaging with single-cell profiling (Figure 1a). In 
order to visualize the airway epithelium at high resolution over days, we explant a mouse trachea and 
secure it in a custom imaging platform without tissue submersion. This approach minimizes sample 
movement during imaging, maintains a constant supply of nutrients from below the explant, and 
preserves an air-liquid interface (ALI), which is required for the maintenance of the normal cellular 
architecture of the airway epithelium (You et al., 2002; Figure 1a and Figure 1—figure supplement 
1a). This platform allows imaging of common and rare cell types in the airway epithelium at high reso-
lution in their native environment (Figure 1—figure supplement 1b). The explant culture also allows 
an uninjured tracheal epithelium to survive with its native cellular anatomy for weeks with daily high-
resolution imaging (Figure 1—figure supplement 1c).

Discernable cell behaviors have a broad time scale, ranging from milliseconds to days. Thus, we 
imaged a wide range of cellular behaviors, from rapid fluctuations of ciliary beating and directional 
mucociliary transport over milliseconds to wholescale regeneration of the airway epithelium, which 
occurs over days after the injury (Figure 1, c to f, ). Furthermore, this method allows single-cell level 
registration within tissues that are live-imaged and subsequently fixed and stained, which enables a 
unique comparison between live fluorescence cellular patterns and immunostains that describe cell 
identity and function (Figure 1—figure supplement 1d).

Figure 2. Live imaging enables observation of the movement of regenerating airway epithelial cells. (A) Experimental design: tracheas are explanted 
24 hr post-sulfur dioxide (SO2) injury for continuous time-lapse imaging. (B) Two-photon imaging of trachea epithelium from membrane- GFP, KRT5-
H2B-mCherry transgenic mouse. Top image is a stitch of three areas. Bottom image shows displacement vectors over 10 min computed using 
particle imaging velocimetry (PIV). Scale bar = 50 μm. (C) Computed speed of epithelial cells measured at different time points post-SO2 injury in 22 
independent regions from a total of five mice at four different time points (mouse origin is color-coded). Box and whisker plots are superimposed. A 
two-way ANOVA was run to examine the effect of time post-SO2 injury and different mice on the mean speed determined by PIV. There were 22 ROIs 
analyzed from five mice over four time points. There was a significant interaction between time and the mean speed, F(2.219, 42.91) = 16.12, p<0.0001, 
but no significant difference between mouse and mean speed, F(4,17) = 2.193, p=0.113. A Tukey post-hoc test revealed significant pairwise differences 
between 26 and 50 hr, 26 and 62 hr, 38 and 50 hr, as well as 38 and 62 hr. **p<0.01. (D) Frequency distribution of injury-induced cell movements 
measured at 26- and 38 hr after injury identifies ‘mover’ and ‘non-mover’ regions.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Epithelial regeneration after sulfur dioxide injury ex vivo.

Figure supplement 2. Live imaging enables quantitative analysis of epithelial cell movement over time.

Figure supplement 3. Live imaging with high temporal resolution.

https://doi.org/10.7554/eLife.76645
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Remarkably, this airway imaging platform faith-
fully recapitulates and captures cellular dynamics 
of epithelial regeneration from native basal stem 
cells after an extensive epithelial injury induced 
by sulfur dioxide (SO2) (Figure 1f and Figure 2—
figure supplement 1). In the first 5 days, the basal cells divide, increasing cellular density and reforming 
the pseudostratified epithelium. In the next 5–10 days, the epithelium differentiates, leading to the 
restoration of the full epithelium, including the regeneration of ciliated cells. Complete regeneration 
requires an air-liquid interface (Figure 1f). Overall, this murine trachea explant ALI culture retains the 
nearly complete 3D organization and microenvironment of the basal progenitor cells and, therefore, 
offers a unique model to study organ physiology and regeneration outside of the body.

Continuous time-lapse imaging of the airway epithelium for up to 80 hr after injury (Figure 2a and 
Figure 2—figure supplement 2a and Video 1) demonstrated changes in cellular architecture over 
time, including an increase in the average cellular density and epithelial thickness, without apparent 
phototoxicity (Figure 2—figure supplement 2a). Imaging of trachea explant controls from uninjured 
mice over 19 hr revealed no cellular displacement in the airway epithelium (Video 2). We examined 
cell movement using single-cell tracking following segmentation of cell nuclei and particle image 
velocimetry (PIV) of non-segmented images (Figure  2—figure supplement 2b,c). These analyses 
revealed a variety of regeneration cellular dynamics inaccessible without live imaging. For example, 
Hertwig’s Rule predicts that a cell division plane is perpendicular to the long axis of the cell during 
the preceding interphase (Minc and Piel, 2012). This was established in plants (Besson and Dumais, 
2011) and developing simple model organisms (Aigouy et al., 2010; Concha and Adams, 1998; Tsou 
et al., 2003) but has never been probed in an adult regenerating tissue. We found that the long axis in 
most cells predicts the cell division axis, while the axis of cellular movement prior to cell division does 

not (Figure 1e and Figure 2—figure supplement 
3a,b).

We also found a surprising degree of hetero-
geneity of collective cellular migration during 
regeneration throughout the injured airways. In 
regions that demonstrated rapid cellular move-
ment after an injury, the movement peaked at 
26–38 hr after SO2 injury and the speed declined 
significantly in most regions by 50 hr after injury 
(Figure  2c). There was a significant interaction 
between time and the mean speed, but no signif-
icant difference between the mouse and mean 
speed (Figure 2c). Variable migratory behavior of 
airway epithelial cells has been observed in cell 
culture models (Kim et  al., 2020; Park et  al., 
2015) but not previously in an intact regener-
ating airway tissue. We found that the frequency 

Video 1. Timelapse two-photon imaging at 20 min 
intervals of a regenerating airway epithelium starting 
at 24 hr after sulfur dioxide injury of a KRT5-H2B-
mCherry transgenic mouse. The video was composed 
by stitching maximum intensity projections of the H2B-
mCherry signal from three adjacent areas.

https://elifesciences.org/articles/76645/figures#video1

Video 2. Timelapse two-photon imaging at 40 min 
intervals of an uninjured airway epithelium of a ROSA-
nuclear-tdTomato (nT-nG) transgenic mouse. The 
video is composed of maximum-intensity projections 
of the nuclear tdTomato signal from optical sectioning 
through the airway epithelium.

https://elifesciences.org/articles/76645/figures#video2

Video 3. Timelapse two-photon imaging at 10 min 
intervals of a regenerating airway epithelium starting 
at 24 hr after sulfur dioxide injury of a Membrane-GFP/
CAGs-H2B-mCherry transgenic mouse. The video 
was composed of single optical sections through the 
epithelium at 5 μm above the basement membrane 
(left) and through the mesenchyme at 5 μm below the 
basement membrane (right).

https://elifesciences.org/articles/76645/figures#video3

https://doi.org/10.7554/eLife.76645
https://elifesciences.org/articles/76645/figures#video1
https://elifesciences.org/articles/76645/figures#video2
https://elifesciences.org/articles/76645/figures#video3
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distribution of cellular speed in different regions at 26–38 hr demonstrated large variability ranging 
from ‘non-mover’ regions (<1.5 μm/hr) to ‘mover’ regions (>4 μm/hr) (Figure 2d). Furthermore, videos 
with higher temporal resolution revealed that the cells with much slower movements in the ‘non-
mover’ regions had no directional preference and oscillated in place, whereas the ‘mover’ regions with 
faster cellular movements were more uni-directional with packs of cells migrating in waves (Figure 2—
figure supplement 3c,d and Video 3).

Distinct subsets of cells have been theorized to contribute to the regeneration process (Pardo-
Saganta et al., 2015; Tadokoro et al., 2014), but it is unclear whether these heterogeneous tran-
scriptional cell states reflect gene expression stochasticity or correlate with unique cell behaviors. To 
determine the molecular signatures of cells with directional movement compared to regenerating 
non-moving cells, we marked epithelial regions by photoconversion using the Kaede transgenic mouse 
model, in which cells change from green to red after exposure to violet light (Tomura et al., 2008). 
We photoconverted cells at 24 hr after injury, imaged every 6 hr, screened for ‘movers’ with >50 μm 
displacement (>3 μm/hr) at 18 hr after photoconversion, and then isolated photoconverted epithelial 
cells by FACS for plate-based scRNA-seq (Figure  3a and Materials and methods). Dimensionality 
reduction revealed that cells from a ‘moving’ region (M) and a ‘non-moving’ (NM) region cluster sepa-
rately (Figure 3b). Using unsupervised clustering and cell identity signatures (Methods, Figure 3—
figure supplement 1), we found that nearly all the cells in the M region are basal cells, whereas the 
NM region contains basal and club cells (Figure 3c). We identified the differences in gene expression 
between the M basal cells and NM basal cells and identified gene signatures that are enriched (FDR 
<0.05, likelihood-ratio test) either in the M or the NM basal cells (Figure 3c and Figure 3—figure 
supplement 2).

We hypothesized that the identified phenotypes are a common feature of injury-induced epithelial 
regeneration. We examined published data of an independent injury model (Plasschaert et al., 2018) 
and analyzed the prevalence of these signatures during repair after polidocanol injury. As predicted, 

Figure 3. Transcriptionally distinct moving (M) and non-moving (NM) cells coordinate early airway epithelial regeneration across multiple injury types. 
(a) Experimental design: tracheas are explanted 24 hr post-sulfur dioxide (SO2) injury (24 hpi) for continuous time-lapse two-photon imaging. Distinct 
cellular phenotypes are observed and labeled by photo-conversion for subsequent isolation and transcriptional analysis by full-length single-cell RNA-
sequencing. Scale bar = 100 μm (b) Unsupervised clustering of regenerating cells partitions mover and non-mover cell phenotypes. (c) Heatmap of 
transcriptional signatures of mover and non-mover cells.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Unsupervised clustering of single-cell RNA-sequencing (scRNA-seq) data identifies club and basal cells.

Figure supplement 2. Transcriptional programs distinguish moving (M) and non-moving (NM) basal cells.

https://doi.org/10.7554/eLife.76645


 Short report﻿﻿﻿﻿﻿﻿ Developmental Biology | Stem Cells and Regenerative Medicine

Kwok, Montoro, Haber et al. eLife 2023;12:e76645. DOI: https://doi.org/10.7554/eLife.76645 � 6 of 14

the M basal cell signature is strongly enriched 24 hr post injury (hpi), declines at 48 hpi and 72 hpi, 
and returns to baseline at 1 week after injury (all p<10–16, Mann-Whitney U test, Figure 4a). Similarly, 
the NM signature is decreased at 24 hpi when cell migration is presumed to be active, increases at 48 
hpi and 72 hpi when cell migration is presumed to be diminished, and returns to baseline at 1 week 
post-injury when regeneration is complete (Figure 4a). Furthermore, at 24 hpi we found that scoring 
basal cells using M and NM signatures segregated basal cells into two statistically distinct cell popu-
lations (Figure 4b), indicating that polidocanol regeneration is likely also characterized by these cell 
phenotypes. To test this possibility, we used unsupervised clustering (Methods) to define two groups 
of basal cells at 24 hpi and found that these two populations were indeed separately enriched for 
the M and NM basal cell signatures (Figure 4c), confirming the presence of distinct M and NM basal 
cells during polidocanol regeneration. Taken together, these findings suggest that distinct M and NM 
cell behaviors are conserved features of early epithelial regeneration and demonstrate that our live 
imaging-guided single-cell profiling approach can discover generalizable principles of tissue biology.

Discussion
The rapid progress in single-cell analysis is enabling the discovery and characterization of transcrip-
tionally heterogeneous cells in diverse tissue contexts (Lee et al., 2021; Ståhl et al., 2016). However, 
these methods do not capture the dynamics of cell behaviors that often define the unique biological 
processes that occur in the tissues. To address this gap, we developed an approach to examine the 
association of molecular and behavioral phenotypes of cells in their native tissues. We established 

Figure 4. Transcriptionally distinct moving (M) and non-moving (NM) cells coordinate early airway epithelial regeneration across multiple injury types. 
(A) Mover and non-mover transcriptional signatures are also enriched in early airway epithelial regeneration 24hours post-injury of an independent 
murine airway injury induced by polidocanol administration. (B) Scoring for mover and non-mover transcriptional signatures in 24hpi regenerating cells 
following polidocanol treatment partitions cells into two populations. (C) Unsupervised clustering of 24hpi regenerating cells yields two cell populations 
enriched in the expression of mover (cluster 0) or non-mover (cluster 1) signatures. P values from Mann-Whitney U test. 

https://doi.org/10.7554/eLife.76645
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an airway organ explant culture that maintains tissue dynamics for an extended length of time and 
combined this platform with live imaging in order to observe distinct airway cellular behaviors at a 
broad time scale, spanning cell migration, cell division, and ciliary beating.

To link cell behavior to molecular analysis, we used photoconversion to mark cells for subsequent 
single-cell genomics analysis. We found that a subpopulation of basal stem cells migrates within the 
lung during early regeneration. We used recently developed single-cell RNA-sequencing approaches 
to establish molecular signatures for moving and nonmoving basal cells. These distinct cell signatures 
were identified across independent lung regeneration models, suggesting that M and NM cell behav-
iors are conserved cellular features of early epithelial regeneration.

There are important limitations to this approach. For example, the optical requirements of the 
Kaede photoconversion model limit its application for single cell photoconversion. However, a similar 
approach can take advantage of different methods of cell labeling and live imaging, including genetic 
labeling of single cells with fluorescent reporters (Figure 1—figure supplement 1b). The requirement 
for fluorescence is another constraint of this approach, although label-free imaging approaches may 
be used to visualize the behavior of individual cells in native tissues (Shah et  al., 2022). Another 
consideration is that long-term live imaging itself can influence gene expression and cell behavior. 
Although phototoxicity that leads to photobleaching or dramatic changes in cell integrity can be 
avoided, subtle changes to gene expression or cell behavior due to live imaging may be difficult to 
detect (Magidson and Khodjakov, 2013).

This report focuses on cellular behavior in response to injury in the airway epithelium. Other epithe-
lial organs such as the cornea (Park et al., 2019) and esophagus Doupé et al., 2012; Yokobori et al., 
2016 have been cultured on similar platforms, and we anticipate this live imaging-guided single-cell 
profiling approach can be extended to other tissues to discover underlying principles of heteroge-
neous cellular behaviors at homeostasis and in disease. Although the explant platform lacks some 
elements of the in vivo microenvironment of these organs, live imaging of the explant followed by 
molecular analysis overcomes the costly constraints of spatial and temporal resolution during in vivo 
live imaging (Haase et al., 2022), the type of resolution required to link dynamic cell behaviors with 
single cell transcriptomics.

Materials and methods
Mice
mT-mG (stock no. 007676), nT-nG (stock no. 023035), CAGs-LSL-rtTA3 (stock no. 029617), and Col1a1-
tetO-H2B-mCherry (stock no. 014602), CD11cCre (stock no. 007567), and Ascl1nGFP (stock no 
012881) mice were purchased from the Jackson Laboratory. Foxj1Cre (Zhang et al., 2007), KRT5rtTA 
(Diamond et  al., 2000), B1EGFP (Miller et  al., 2005), Foxj1CreER (Rawlins and Hogan, 2008), 
CC10CreER (Rawlins et al., 2009), and Kaede (Tomura et al., 2008) lines were previously described. 
A line of Membrane-GFP (mG) mice was generated by selecting GFP-positive pups of a Foxj1Cre-
mTmG male parent (with mT to mG recombination in the sperm) and backcrossing to WT background 
to eliminate the Cre allele. The mG line without Cre was crossed to nT-nG to generate the ‘nT-mG’ 
strain. Mice were maintained in an Association for Assessment and Accreditation of Laboratory 
Animal Care-accredited animal facility at the Massachusetts General Hospital, and procedures were 
performed with Institutional Animal Care and Use Committee (IACUC)-approved protocols. Mice of all 
strains were housed in an environment with controlled temperature and humidity, on 12 hr light-dark 
cycles, and fed with regular rodent’s chow.

SO2 injury
SO2 injury model was performed as previously described (Kim et al., 2012; Pardo-Saganta et al., 
2015). In brief, mice were exposed to 500  p.p.m. of SO2 for 3  hr 40  min and the trachea was collected 
16–24 hr after injury for imaging and explant culture.

Tracheal explant and tissue ALI culture
Tracheas were dissected, cleared of connective tissue and adjacent organs, and opened longitudinally 
along the anterior tracheal wall. The tracheas were placed on ice in DMEM/F-12 Media with Primocin 
(InVivoGen) and 15 mM HEPES until culture. Trachea explants were then sutured onto a silicone o-ring 

https://doi.org/10.7554/eLife.76645
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and placed in a custom-made tissue culture dish over an inverted ALI insert secured in a 60 mm tissue 
culture dish by PDMS. This approach ensured stability during high-resolution imaging. The media 
contacted the explant from below through the ALI membrane. The dish was placed in a physiological 
live imaging chamber (CO2 and temperature-controlled, TokaiHit) on the stage of the two-photon 
microscope.

Physiological two-photon imaging
Trachea explant imaging was performed on an Olympus FVMPE-RS multiphoton laser scanning micro-
scope equipped with a MaiTai HPDS-O IR pulsed laser (900 nm for GFP and SHG) and INSIGHT X3-OL 
IR pulsed laser (1100 nm for tdTomato), using a 25 X water immersion lens (NA 1.05). Explants were 
imaged at time points as indicated in the Figures. For orthogonal view reconstruction, we scanned the 
trachea with 0.75 µm Z steps. To reimage the same trachea at high resolution at different time points, 
landmarks such as cartilage rings and vascularity patterns were used as fiducial marks. These fiducial 
marks were also used for 2D and 3D registration of different time points.

Image analysis
4D images (x, y, z, t) were imported into MATLAB and/or ImageJ for image processing and analysis. 
Because the curvature of the tissue changes over time, we first normalized each 3D image to generate 
a flat basement membrane. As the SHG signal is maximal at the basement membrane, we computed 
the z height of the basement membrane across the image after applying a Gaussian blur (typical σ 
values: 10–25 μm in xy, 1–4 μm in z). This height was subtracted from the original 3D data to level 
the basement membrane. MATLAB code for flattening the 3D images is publicly available on Github 
at https://github.com/sheldonjjlase/matlab/, (copy archived at swh:1:rev:230ca1a3c03039ae553d-
88c3d3f1286404a34a85) (Kwok, 2022). Other image processing steps including brightness and 
contrast adjustments, background subtraction, photobleaching correction, pseudocoloring, 3D time-
lapse registration, and stitching were performed using built-in functions in ImageJ.

Cilia beating was recorded by acquiring time-lapse two-photon images of the epithelial surface at 
150 Hz over 200 frames using a resonant galvanometer scanner. To estimate the cilia beat frequency 
(CBF), we estimated the power spectral density of the fluorescence intensity fluctuations across the 
image using Welch’s method in MATLAB. The peak fluctuation frequency was computed for each pixel 
across the image corresponding to bright cilia. Mucociliary transport was measured by applying 1 μm 
fluorescent spherical beads to the epithelial surface and recording their displacement over time after 
equilibration.

To track individual cells over time-lapse imaging, images were imported into ilastik for segmentation 
and cell tracking (Berg et al., 2019). Briefly, pixels corresponding to nuclei were first classified using 
manual training and machine learning. Next, individual cells were similarly identified through manual 
training and machine learning algorithms to classify objects. Finally, classified cells were tracked over 
time using a conservation tracking algorithm. Segmented and tracked cells were then imported into 
MATLAB for quantitative analysis, including the computation of individual cell speeds over time.

For the automated estimation of cell speed from time-lapse imaging, we performed automated 
particle imaging velocimetry (PIV). Image sequences were imported into MATLAB and analyzed using 
the PIVlab plugin (Thielicke and Stamhuis, 2014). A direct Fourier transforms correlation with multiple 
passes of sizes consisting of 24 μm, 16 μm, and 10 μm was used. This generated displacement vectors 
arranged in a grid with 10 μm spacing for each sequential pair of images. The average cell speed for 
each time-point was estimated by computing the average absolute displacement estimated by PIV in 
each (10 × 10) μm2 region divided by the time between images. To quantify the directionality of cell 
movement, we computed the circular variance of the displacement vectors generated by PIV analysis.

Kaede photoconversion
Trachea from Kaede mice (Tomura et  al., 2008) were explanted 20 hr after SO2 inhalation injury, 
sutured onto a silicone O-ring, and secured on an inverted ALI insert in media on ice, and placed on 
the imaging platform of a FV3000 Olympus Laser Scanning confocal microscope. Selected regions 
were outlined and photoconverted using the 405 nm laser for 2 min, while both disappearances of 
KaedeGreen and the appearance of KaedeRed were simultaneously visualized using the 488 nm and 
the 561 nm lasers, respectively.

https://doi.org/10.7554/eLife.76645
https://github.com/sheldonjjlase/matlab/
https://archive.softwareheritage.org/swh:1:dir:5a129f0085012fb27086c5cc7a134984f59c3eb6;origin=https://github.com/sheldonjjlase/matlab;visit=swh:1:snp:0a3d2d6966d82c52f1b495bca902ba61cd2d18a1;anchor=swh:1:rev:230ca1a3c03039ae553d88c3d3f1286404a34a85
https://archive.softwareheritage.org/swh:1:dir:5a129f0085012fb27086c5cc7a134984f59c3eb6;origin=https://github.com/sheldonjjlase/matlab;visit=swh:1:snp:0a3d2d6966d82c52f1b495bca902ba61cd2d18a1;anchor=swh:1:rev:230ca1a3c03039ae553d88c3d3f1286404a34a85
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To identify regions of movement and no movement, we explanted Kaede tracheas 20  hr after 
SO2 injury, photoconverted distinct regions with a specific shape, and proceeded with timelapse live 
imaging, screening for regions with significant shape displacement over time (from epithelial move-
ment) (Figure 3a). After defining whether a region moved or remained non-moving, we excised a 
trachea fragment, dissociated the fragment into single cells, and used flow-activated cell sorting 
(FACS) to isolate photoconverted (KaedeRed) epithelial cells. We then proceeded to single-cell RNA 
sequencing of cells isolated from moving and non-moving regions.

Cell dissociation and FACS
Airway epithelial cells were dissociated using papain solution. Tracheal fragments with photocon-
verted regions were trimmed and incubated in papain dissociation solution and incubated at 37 °C 
for 2  hr. After incubation, dissociated tissues were passed through a cell strainer and centrifuged, and 
pelleted at 500 g for 5  min. Cell pellets were dispersed and incubated with Ovo-mucoid protease 
inhibitor (Worthington Biochemical, cat. no. LK003182) to inactivate residual papain activity by incu-
bating on a rocker at 4 °C for 20  min. Cells were then pelleted and stained with EpCAM–BV421 (1:50; 
BD Bioscience, #563214) for 30  min in 2.5% FBS in PBS on ice. After washing, cells were sorted by 
fluorescence (antibody staining, Kaede-Green, and Kaede-Red) on a BD FACS Aria (BD Biosciences) 
using FACS Diva software, and analysis was performed using FlowJo (version 10) software.

Single cells were sorted into each well of a 96-well PCR plate containing 5 μl buffer. After sorting, 
the plate was sealed with a Microseal F, centrifuged at 800 g for 1 min and immediately frozen on dry 
ice. Plates were stored at −80°C and submitted to a core facility for cDNA library generation, ampli-
fication, and sequencing.

Single-cell sequencing and sequence analysis
cDNA was generated from single cells in the 96-well plate using the SmartSeq v4 kits (Takara Bio) 
using 1/4th volume reactions dispensed using a Mantis dispenser (Formulatrix). Samples were ampli-
fied using 18 cycles of PCR. Resulting cDNA was then made into Illumina-compatible libraries using 
the Nextera XT kit (Illumina Inc). Libraries were sequenced on a NextSeq using a Mid Output 150 cycle 
kit (Illumina Inc) using 75 bp paired-end reads.

Pre-processing of plate-based scRNA-seq data
BCL files were converted to merged, de-multiplexed FASTQ files using the Illumina Bcl2Fastq soft-
ware package v.2.17.1.14. Paired-end reads were mapped to the UCSC mm10 mouse transcriptome 
using Bowtie (Langmead et al., 2009) with parameters ‘-q–phred33-quals -n 1 -e 99999999 l 25 -I 1 X 
2000 a -m 15 S -p 6’, which allows alignment of sequences with one mismatch. Expression levels of 
genes were quantified as transcript-per-million (TPM) values by RSEM (Li and Dewey, 2011) v.1.2.3 in 
paired-end mode. For each cell, we determined the number of genes for which at least one read was 
mapped, and then excluded all cells with fewer than 1,000 or more than 10,000 detected genes, or 
less than 25% of reads mapping to the transcriptome.

To identify variable genes a logistic regression was fit to the cellular detection fraction, using 
the total number of transcripts per cell as a predictor. Outliers from this curve are genes that are 
expressed in a lower fraction of cells than would be expected given the total number of transcripts 
mapping to that gene, that is, cell-type or state-specific genes. We used a threshold of deviance 
<−0.15, producing a set of 1910 variable genes.

Dimensionality reduction by PCA and t-SNE
We restricted the expression matrix to the subsets of variable genes and high-quality cells noted 
above, and values were log2-transformed, and then centered and scaled before input to PCA, which 
was implemented using the R function ‘prcomp’ from the ‘stats’ package. After PCA, significant prin-
cipal components were identified by inspection of the scree plot. Only scores from the first 20 PCs 
were used as the input to further analysis.

For visualization purposes only (and not for clustering), dimensionality was further reduced using 
the Barnes–Hut approximate version of t-SNE (Van Der Maaten, 2014; Figure 3b). This was imple-
mented using the ‘Rtsne’ function from the ‘Rtsne’ R package.

https://doi.org/10.7554/eLife.76645
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To identify cell types within the data, hierarchical clustering was used using the ‘Ward.D2’ metric in 
the ‘hclust’ R package. Genes were filtered to epithelial cell type marker genes (Montoro et al., 2018) 
before input to the clustering algorithm. Pearson’s correlation was used as a distance metric. This 
produced three clusters, two were clearly identifiable as Basal and Club cells, based on the disjoint 
expression of known markers Krt5 and Scgb1a1, respectively, while the third was distinguished by 
much lower technical quality (an average of 2373 genes detected per cell compared to 5193 for the 
Basal and 5480 for the club clusters, respectively, p=0.0004, Mann-Whitney U-test). These low-quality 
cells were not used for DE testing.

To identify the signature of moving vs non-moving basal cells (Figure 3c) we ran differential expres-
sion tests between cells in the Basal cluster between the two conditions (moving and non-moving), 
and selected genes that were differentially expressed (FDR <0.05). Differential expression tests were 
carried out using a two-part ‘hurdle’ model to control for both technical quality and mouse-to-mouse 
variation. This was implemented using the R package MAST (Finak et al., 2015), and p values for 
differential expression were computed using the likelihood-ratio test. Multiple hypothesis testing 
corrections was performed by controlling the false discovery rate using the R function ‘p.adjust.’.

Re-analysis of polidocanol injury dataset
Previously published single-cell RNA sequencing data from mouse trachea injured using polidocanol 
(Plasschaert et al., 2018) was downloaded from the NCBI GEO (GSE102580). All available unique 
molecular identifier (UMI) counts tables from mice at 24, 48, 72, and 168 hr after injury along with 
uninjured controls were downloaded. Cell types were determined using the authors provided anno-
tations. To determine the expression of migration-associated genes in the injury response, we scored 
the Basal cells for the set of genes (Figure 3c) both significantly up- (‘mover’) and down-regulated 
(‘non-mover’) (Figure 3d). Scoring cells was computed as described previously (Montoro et al., 2018). 
To obtain a score for a specific set of n genes in a given cell, a ‘background’ gene set was defined to 
control for differences in sequencing coverage and library complexity. The background gene set was 
selected for similarity to the genes of interest in terms of expression level. Specifically, the 10 n nearest 
neighbors in the 2D space defined by mean expression and detection frequency across all cells were 
selected. The signature score for that cell was then defined as the mean expression of the n signature 
genes in that cell, minus the mean expression of the 10 n background genes in that cell.

Unsupervised cluster analysis of polidocanol-injured basal cells 24 hr after injury was computed 
using default settings in Seurat. Briefly, variable genes were selected using the method ‘vst,’ and 
then PCA was computed using only these genes. Shared-nearest neighbor (SNN)-based clustering 
was implemented using the ‘FindClusters’ function (resolution parameter = 0.25) using the first 25 
principal components as input, resulting in two clusters (Figure 4b).

Statistical analysis
Data were compared among groups using the Student’s t-test (unpaired, two-tailed) unless otherwise 
specified in the Figure legends. Analysis was performed with GraphPad Prism software (version 9.1.0).
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The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Kwok SJ, Montoro 
DT, Haber AL, Yun S, 
Vinarsky V

2022 Single-cell transcriptomics 
of dynamic cell behaviors

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE193954

NCBI Gene Expression 
Omnibus, GSE193954

The following previously published dataset was used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Plasschaert LW, 
Zilionis R, Choo-Wing 
R, Savova V, Knehr J, 
Roma G, Klein AM, 
Jaffe AB

2018 A single cell atlas of the 
airway epithelium reveals 
the CFTR-rich pulmonary 
ionocyte

https://www.​ncbi.​
nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​
GSE102580

NCBI Gene Expression 
Omnibus, GSE102580
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