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Abstract During severe infections, Staphylococcus aureus moves from its colonising sites to 
blood and tissues and is exposed to new selective pressures, thus, potentially driving adaptive 
evolution. Previous studies have shown the key role of the agr locus in S. aureus pathoadaptation; 
however, a more comprehensive characterisation of genetic signatures of bacterial adaptation may 
enable prediction of clinical outcomes and reveal new targets for treatment and prevention of these 
infections. Here, we measured adaptation using within-host evolution analysis of 2590 S. aureus 
genomes from 396 independent episodes of infection. By capturing a comprehensive repertoire of 
single nucleotide and structural genome variations, we found evidence of a distinctive evolutionary 
pattern within the infecting populations compared to colonising bacteria. These invasive strains had 
up to 20-fold enrichments for genome degradation signatures and displayed significantly conver-
gent mutations in a distinctive set of genes, linked to antibiotic response and pathogenesis. In addi-
tion to agr-mediated adaptation, we identified non-canonical, genome-wide significant loci including 
sucA-sucB and stp1. The prevalence of adaptive changes increased with infection extent, empha-
sising the clinical significance of these signatures. These findings provide a high-resolution picture 
of the molecular changes when S. aureus transitions from colonisation to severe infection and may 
inform correlation of infection outcomes with adaptation signatures.
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This study offers a comprehensive examination of Staphylococcus aureus evolution during infection. 
It provides a useful analysis of select genetic signatures during bacterial adaptation. A combination 
of multiple layers of genome annotation and point mutation variant detection compellingly supports 
the correlation of infection outcomes with adaptation signatures in S. aureus.

Introduction
While Staphylococcus aureus is one of the most important human pathogens (Tong et al., 2015), 
its common interaction with the human host is colonisation, usually of the anterior nares (Wertheim 
et al., 2005). Comparatively, severe, life-threatening infections such as bacteraemia or osteomyelitis 
occur very rarely. This suggests that at the macro-evolutionary level, S. aureus is primarily adapted to 
its natural ecological niche (the nasal cavity) and to specific selective pressures arising in this environ-
ment, such as competition with the resident microbiota (Krismer et al., 2017). By contrast, during 
invasive infection, a new fitness trade-off needs to be achieved to adjust to environmental challenges 
that include innate and acquired immune responses (Proctor, 2019), high-dose antibiotics (Kuehl 
et al., 2020), and nutrient starvation (Hood and Skaar, 2012). These trade-offs could occur across 
three potentially distinctive dynamics of micro-evolution during colonisation and infection (within 
the colonising population, from colonising to invasive, and within the invasive population), leading 
to nose-adapted, early infection-adapted, and late infection-adapted strains. Identifying infection-
adapted strains might assist precision medicine strategies for infection prevention and management 
and refine the understanding of S. aureus pathogenesis versatility, as mutational footprints of selec-
tion mirror functions that are critically important for bacterial survival during invasion.

Emerging genomic approaches for analysis of within-host evolution are among the most powerful 
means to study bacterial host adaptation (Marvig et al., 2015; Kennemann et al., 2011; Lieberman 
et al., 2016). Studies have shown the remarkable diversity and evolution of colonising populations of 
Streptococcus pneumoniae (Chaguza et al., 2020) and S. aureus (Paterson et al., 2015). In S. aureus, 
Enterococcus faecalis and Enterococcus faecium it has been shown that transition from colonisation to 
invasion favours strains with specific adaptive signatures (Young et al., 2017; Van Tyne et al., 2019; 
Chilambi et al., 2020), while evidence of niche adaptation was noted in a within-host study of bacte-
rial meningitis due to S. pneumoniae (Lees et al., 2017b). Furthermore, phenotypic and genomic 
adaptation (often in response to antibiotic pressure) has been investigated during selected episodes 
of persistent invasive infections due to S. aureus (Giulieri et al., 2020; Howden et al., 2006; Giulieri 
et al., 2018), Pseudomonas aeruginosa (Wheatley et al., 2021), Salmonella enterica (Klemm et al., 
2016), and Mycobacterium tuberculosis (Vargas et al., 2021). To increase power, bacterial within-
host evolution studies have leveraged on large collections of paired samples coupled with statistical 
models of genome-wide mutation rates (Marvig et al., 2015; Lees et al., 2017b; Gatt and Margalit, 
2021) and extended the analysis to include chromosomal structural variation (Giulieri et al., 2018; 
Lees et al., 2017a; Gao et al., 2015) as well as intergenic mutations (Lees et al., 2017a; Khademi 
et al., 2019).

Convergent evolution among separated (independent) episode of colonisation or infection is a 
key indication of adaptation in evolution analyses. However, with the notable exception of one study 
of cystic fibrosis (Long et al., 2020), the convergence has generally been weak in within-host studies 
of S. aureus infections, with no convergence at all (Giulieri et al., 2018) or significant enrichment 
limited to the S. aureus master regulator agr (Young et al., 2017). We hypothesised that in addition 
to the small sample size, the extended range of bacterial functions potentially under selective pres-
sure (each function being potentially targeted by diverse pathoadaptive mutations) has hampered the 
identification of important adaptation mechanisms. To overcome the limitations of studies to date, 
we have pooled all publicly available S. aureus within-host evolution studies, and complemented 
this with a new dataset from a recent S. aureus clinical trial (Tong et al., 2020), in a single large-scale 
analysis. Rather than focussing on point mutations and small insertions/deletions alone, we leveraged 
multiple layers of genome annotation (encompassing coding regions, operons, intergenic regions, 
and functional categories) and included chromosome structural variants to compile a comprehensive 
catalogue of bacterial genetic variation arising during host infection. This strategy enabled the detec-
tion of convergent adaptation patterns at an unprecedented resolution. We also outline distinctive 

https://doi.org/10.7554/eLife.77195
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signatures of adaptation during colonisation, upon transition from colonisation to infection and during 
invasive infection.

Results
The S. aureus within-host evolution analysis framework
We compiled a collection of 2251 S. aureus genomes from 267 independent episodes of colonisation 
and/or infection, reported in 24 genomic studies (Young et al., 2017; Giulieri et al., 2018; Gao et al., 
2015; Young et al., 2012; Wuthrich et al., 2019; Trouillet-Assant et al., 2016; Tan et al., 2019; 
Suligoy et al., 2018; Rouard et al., 2018; Rishishwar et al., 2016; Petrovic Fabijan et al., 2020; 
Miller et al., 2020; Loss et al., 2019; Liu et al., 2020; Langhanki et al., 2018; Kuroda et al., 2019; 
Ji et al., 2020; Howden et al., 2011; Harkins et al., 2018; Golubchik et al., 2013; Burd et al., 2014; 
Benoit et al., 2018; Azarian et al., 2019; Altman et al., 2018; Table 1; Table 1—source data 1). 
We supplemented this dataset of publicly available sequences with unpublished sequences from 603 
serial invasive isolates collected within the CAMERA-2 trial (Tong et al., 2020).

Using genetic distance and sequence type (ST) to define within-host lineages, we estimated that 
coinfection was present in 4/336 (1%) of invasive episodes and co-colonisation 11/167 (7%). We 
removed genetically unrelated strains within the same episode and included 2590 genomes (1397 
invasive and 1193 colonising) from 396 episodes in our within-host evolution analysis (Figure  1, 
Table 1, Supplementary files 1 and 2). The most prevalent lineages in the collection were ST 30 (342 
strains, 13%), ST 22 (277 strains, 11%), and ST 5 (271 strains, 11%); 1001 strains (39%) were mecA 
positive. The collection was representative of the global S. aureus diversity, with an even distribution 
of colonising and invasive strains across the major clades (Figure 2A). The most frequent infection 
syndrome was bacteraemia without focus (152 episodes, 38.4%), while nasal carriage (166 episodes, 
42%) was the most prevalent colonisation condition (Table 1).

Our within-host evolution analysis strategy identified 4556 genetic variants (median 3 per episode, 
range 0–237) (Supplementary file 3). Importantly, by investigating both point mutations and structural 
variation, we were able to uncover 214 large deletions (>500 bp), 160 new insertion sequences (IS) 

eLife digest The bacterium Staphylococcus aureus lives harmlessly on our skin and noses. 
However, occasionally, it gets into our blood and internal organs, such as our bones and joints, where 
it causes severe, long-lasting infections that are difficult to treat.

Over time, S. aureus acquire characteristics that help them to adapt to different locations, such as 
transitioning from the nose to the blood, and avoid being killed by antibiotics. Previous studies have 
identified changes, or ‘mutations’, in genes that are likely to play an important role in this evolutionary 
process. One of these genes, called accessory gene regulator (or agr for short), has been shown to 
control the mechanisms S. aureus use to infect cells and disseminate in the body. However, it is unclear 
if there are changes in other genes that also help S. aureus adapt to life inside the human body.

To help resolve this mystery, Giulieri et al. collected 2,500 samples of S. aureus from almost 400 
people. This included bacteria harmlessly living on the skin or in the nose, as well as strains that 
caused an infection. Gene sequencing revealed a small number of genes, referred to as ‘adaptive 
genes’, that often acquire mutations during infection. Of these, agr was the most commonly altered. 
However, mutations in less well-known genes were also identified: some of these genes are related 
to resistance to antibiotics, while others are involved in chemical processes that help the bacteria to 
process nutrients.

Most mutations were caused by random errors being introduced in to the bacteria’s genetic code 
which stopped genes from working. However, in some cases, genes were turned off by small frag-
ments of DNA moving around and inserting themselves into different parts of the genome.

This study highlights a group of genes that help S. aureus to thrive inside the body and cause 
severe and prolonged infections. If these results can be confirmed, it may help to guide which antibi-
otics are used to treat different infections. Furthermore, understanding which genes are important for 
infection could lead to new strategies for eliminating this dangerous bacterium.

https://doi.org/10.7554/eLife.77195
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insertions, and 609 copy number variants, underscoring the role of large chromosome structural vari-
ation in within-host evolution. To increase the evolutionary convergence signal by aggregating muta-
tions in functionally consistent categories, we annotated all genetic variants using multiple datasets, 
including coding sequences, regulatory intergenic regions, operons and gene ontologies (Figure 1C).

Distinctive evolutionary patterns define nose-adapted, early infection-
adapted, and late infection-adapted strains
Based on the working hypothesis that S. aureus host adaptation patterns differ according to whether 
the strains are nose-colonising, collected at an early stage of infection (i.e. within the first 3 days) or 
at a late infection stage (i.e. associated with persistence beyond the first 3 days or recurrence), we 
assessed whether it was possible to define (i) general paradigms of genetic variation and (ii) specific 
convergence signatures. Thus, we classified within-host acquired variants into three groups according 
to their most likely location in the within-host phylogeny: (i) between colonising strains (colonising-
colonising [type C>C]); (ii) between colonising and early infection adapted strains (colonising-invasive 
[type C>I]); and (iii) between invasive strains (invasive-invasive [type I>I]). Overall, the 396 infection 
episodes included in the analysis allowed us to independently assess 166 type C>C, 118 type C>I, and 

Table 1. Microbiological and clinical characteristics of the colonisation and infection episodes 
included in the within-host evolution analysis.
Table 1—source data 1 provides a list of the within-host studies included in the analysis.

Strains
(n=2590)

Episodes
(n=396)

Sequence type

30 342 (13.2%) 43 (10.9%)

22 277 (10.7%) 44 (11.1%)

5 271 (10.5%) 42 (10.6%)

45 198 (7.6%) 38 (9.6%)

15 156 (6.0%) 4 (3.5%)

1 133 (5.1%) 14 (3.5%)

93 110 (4.2%) 29 (7.3%)

8 107 (4.1%) 18 (4.5%)

239 100 (3.9%) 29 (7.3%)

Other 896 (34.6%) 125 (31.6%)

mecA positive 1001 (38.6%) 207 (52.3%)

Infection syndrome

Skin infection 204 (7.9%) 32 (8.1%)

Osteoarticular infection 77 (3.0%) 17 (4.3%)

Bacteraemia without focus 588 (22.7%) 152 (38.4%)

Bacteraemia with focus 331 (12.8%) 85 (21.5%)

Endocarditis 197 (7.6%) 44 (11.1%)

No invasive strains 66 (16.7%)

Colonisation syndrome

Nasal carriage 974 (37.6%) 166 (42%)

Cystic fibrosis 57 (2.2%) 9 (2%)

Atopic dermatitis 162 (6.3%) 9 (2%)

No colonising strains 212 (54%)

The online version of this article includes the following source data for table 1:

Source data 1. List of within-host studies included in the analysis.

https://doi.org/10.7554/eLife.77195
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Figure 1. Overview of the S. aureus within-host evolution analysis framework. (A) Simulated phylogenetic tree illustrating within-host evolution of S. 
aureus colonisation and infection. This model assumes two genetic bottlenecks (dotted lines); upon transmission and upon transition from colonisation 
to invasive infection. (B) Sites and timing of within-host samples and number of genomes per sample define five prototypes of within-host evolution 
studies, each with colonising-colonising (C>C), colonising-invasive (C>I), or invasive-invasive (I>I) comparisons in different combinations: from top to 
the bottom: multiple colonising samples and one invasive samples; one colonising and one invasive sample; multiple colonising samples; multiple 
invasive samples; multiple colonising and invasive samples. (C) Approach to capture signals of adaptation across multiple independent episodes of 
colonisation/infection through detection of multiple genetic mechanisms of adaptation from short reads data and multi-layered functional annotation of 
the genetic variants using multiple databases including characterisation of intergenic regions (promoters), operon prediction, and gene ontology (GO). 
Statistical framework for the gene, operon, and gene set enrichment anlaysis (GSEA). Counts of independent mutations with likely impact on the protein 
sequence (non-synonymous substitutions, frameshifts, stop codon mutations, and insertion sequences [IS] insertions) were computed for each genes 
with a FPR3757 homologue. Gene counts (with the addition of intergenic mutations in promoter regions) were aggregated in operons and GOs. Gene 
and operon counts were used to fit Poisson regression models to infer mutation enrichment and significance of the enrichment. GOs counts and gene 
enrichment significance were used to run a gene-set-enrichment analysis. To illustrate the approach, the example of the gene walR is provided in italic.

https://doi.org/10.7554/eLife.77195
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Figure 2. (A) Maximum-likelihood phylogenetic tree of 2590 S. aureus sequences included in the study. The tree is annotated (starting from the inner 
circle) with the most prevalent sequence types (ST), presence/absence of the mecA gene, compartment of isolation (colonising or invasive), and year of 
publication. (B) Summary of 396 independent episodes of S. aureus colonisation or infection categorised according to whether they allowed comparing 
colonising-colonising (C>C), colonising-invasive (C>I), or invasive-invasive (I>I) strains, or a combination of them. (C) Evidence of a distinctive pattern 
of adaptation in late infection-adapted strains (type I>I variants). For each type of comparison (type C>C, colonising-colonising; type C>I, colonising-
invasive; type I>I, invasive-invasive), the cumulative curves display the accrued number of intergenic mutations, truncating mutations, insertion 
sequences (IS) insertions, and large deletions as a function of the total number of mutations. Genetic events were counted once per episode, regardless 
of the number of strains with the mutation. The sequence of mutations events in the cumulative curves is random.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Number of episode-specific variants in same-episode strains having the same sequence type (ST) as the internal reference vs. 
isolates with a different ST.

Figure supplement 2. Correlation between number of samples per episode and mean mutation counts.

Figure supplement 3. Within-host mutation rates within the colonising and invasive populations.

Figure supplement 4. Regression diagnostics to assess linear regressions sampling time after the internal reference and number of mutations.

Figure supplement 5. Distribution of new IS insertions by classification of the transposase and by major sequence types (ST).

https://doi.org/10.7554/eLife.77195
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312 type I>I within-host variants. In 95 cases, there were sufficient samples to assess all three types 
within the same episode (Figure 2B). Across colonisation/infection stages, sampling frequency did not 
seem to affect the number of variants identified with the exception of early adapted invasive strains 
(Figure 2—figure supplement 2).

We first sought to explore whether the rate of mutations over time differs between colonising and 
invasive populations. To estimate within-host mutation rates, we fitted linear regressions using data 
from a subset of 109 episodes that had at least two colonising or invasive isolates collected at two 
different timepoints (total 701 strains). The regressions suggested that mutation rates were higher in 
the invasive population; however, this analysis was limited by the heterogeneity of sampling strategies 
and by evidence of heteroskedasticity and non-linear distribution (Figure 2—figure supplements 3 
and 4).

We have previously shown that invasive strains from persistent or relapsing infections exhibit a high 
proportion of protein-truncating mutations (Giulieri et al., 2018). A similar enrichment of protein-
truncating variants was identified within invasive strains as compared to strains from asymptomatically 
colonised individuals (Young et al., 2017; Young et al., 2012). We reasoned that if this indicates 
genome degradation during infection, infecting strains might also be enriched for other loss of func-
tion (LOF) mutations caused by structural variants, such as movement of IS (Hawkey et al., 2020) and 
large deletions, leading to complete or partial gene loss (Toft and Andersson, 2010). In addition, 
we hypothesised that mutations and IS insertions in intergenic regions might contribute to altering 
gene expression or activity by interfering with the expression of key genes or operons (McEvoy et al., 
2013).

Therefore, we calculated the prevalence of intergenic mutations, protein-truncating mutations, IS 
insertions, and large deletions among all variants and compared it between type C>C, type C>I, and 
type I>I variants. Strikingly, the distribution of mutations according to the predicted effect differed 
substantially in I>I pairs when compared to mutations identified between nose-colonising and inva-
sive strains and within colonising strains (Figure 2). This can be expressed using the neutrality index 
(NI), which tests deviation from neutral evolution and is comparable to an odds ratio (Stoletzki and 
Eyre-Walker, 2011). Relative to type C>C variants, variants emerging within the infecting strains were 
enriched for intergenic mutations (NI 2.5; p=1.8 × 10–16) and protein-truncating mutations (NI 2.4; 
p=4.8 × 10–10) (Table 2). In contrast, no significant enrichment was observed among type C>I variants.

While large deletions were significantly more enriched in type I>I variants (NI 4.0, p=1.1 × 10–15), 
the strongest evidence for enrichment (NI 19.9, p=1.6 × 10–42) was found for IS insertions. We and 
others have previously shown that new insertions of IS256 may provide an efficient mechanism of 
genomic plasticity in invasive S. aureus strains (Giulieri et al., 2018; Kuroda et al., 2019; McEvoy 
et al., 2013). Here, we expand this observation in a larger dataset and show that this mechanism is not 
limited to IS256 (Figure 2—figure supplement 5). As shown in Figure 2C, two invasive strains exhib-
ited a burst of >10 new IS insertions (IS3 and IS256, respectively). It has been shown that IS activation 
occurs under stress conditions, such as antibiotic exposure and oxidative stress (Schreiber et  al., 

Table 2. Modified McDonald-Kreitman table displaying counts of variants (point mutations and 
structural variants) and the neutrality index for colonising-invasive (type C>I) and invasive-invasive 
(type I>I) variants (both compared to colonising-colonising [type C>C] variants).

Classification of variant

Number of variants (Neutrality index)

Type C>C Type C>I Type I>I

Synonymous 381 130 155

Non-synonymous 978 300 (0.9) 503 (1.3)*

Intergenic 544 197 (1.1) 549 (2.5)**

Truncating 197 58 (0.9) 190 (2.4)**

Insertion sequences insertion 17 6 (1.0) 137 (19.8)**

Large deletion 76 17 (0.6)* 122 (3.9)**

Values are counts of independent mutations. The neutrality index is shown in brackets in italic.
Significance testing Fisher’s Exact Test: p<0.05; ** p<0.005.

https://doi.org/10.7554/eLife.77195
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2013), which is consistent with the selection environment encountered by invasive strains. However, 
these bursts occurred only in 2/1068 adapted invasive strains.

Overall, these data support a model, where late infection-adapted strains show an enrichment 
for variants that are predicted to exert a stronger functional impact, either by producing a truncated 
protein or by potentially interfering with intergenic regulatory regions, through point mutations or IS 
insertions. This strong genome degradation signature appears to be specific to type I>I variants and 
was absent in type C>I variants, suggesting that the bottleneck effect upon blood or tissue invasion 
does not explain it. To assess whether this general enrichment of non-silent evolution represented 
a signature of positive selection or derived from within-host gene obsolescence occurring during 
invasive infection, we further investigated signals of gene, operon, and pathway specific enrichment 
across independent episodes of infection.

Gene enrichment analysis identifies significant hotspots of adaptation
To identify signatures of adaptation, we first counted how many times each coding sequence was 
mutated independently across distinct colonisation/infection episodes (Figure 3, Table 3, Table 4, 
Supplementary file 3). We considered all protein-modifying mutations either predicted to cause a 
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Figure 3. Top 20 genes with the most significant mutation enrichment across the entire dataset. (A) Significance of the enrichment for protein-altering 
mutations. The dashed line depicts the Bonferroni-corrected significance threshold, and red circles and blue circles represent genes with p values below 
and above the Bonferroni threshold, respectively. (B) Bar plots of independent mutations separated in three panels according to the type of variant (type 
C>C: colonising-colonising; type C>I: colonising-invasive; type I>I: invasive-invasive) and coloured according to the class of mutation. (C) Gene maps 
with type and positions of mutations.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Mapping of mutations in the 10 most significantly enriched mutated genes across the entire dataset.

Figure supplement 2. dN/dS values for non-synonymous mutations (A), indels (B), and non-sense mutations (stop codons) (B) for FPR3757 genes.

Figure supplement 3. Scatter plot representing in silico inferred functional impact of variants in the 20 most convergent loci.

Figure supplement 4. Most frequently deleted genes in large deletions.

Figure supplement 5. Most frequently enriched genes in copy number variations.

Figure supplement 6. Gene convergence analysis of all mutated genes (i.e. including both genes with FPR3757 homologue and no FPR3757 
homologue).

Figure supplement 7. Gene convergence analysis after removing variants in strains included in Young et al., 2017, the largest collection of this 
analysis (1078 strains and 105 episodes).
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gain or LOF to the locus: non-synonymous substitutions, truncations, IS insertions, or deletions. To 
ensure consistency across the dataset, we restricted our analysis to 1736 (74%) genes with a homo-
logue in reference strain FPR3757 (excluding plasmid genes and phage genes). Mutations were 
considered independent if they arose in distinct colonisation/infection episodes. To assess whether 
the convergent signals were a reliable indication of adaptation, we applied a gene enrichment analysis 
for protein-altering mutations which computes a length-corrected gene-level enrichment of protein-
modifying mutations. The significance of the enrichment for each gene was estimated by comparing 
gene-specific Poisson models of mutation counts with the null hypothesis, which indicates neutrality 
and assumes a constant mutation rate across all genes (Young et al., 2017).

When applying a Bonferroni-corrected significance threshold (4.6 × 10–5), mutations in agrA were 
highly significantly enriched across the entire dataset (45-fold enrichment, p=7.0 × 10–28). Other signifi-
cantly enriched genes were agrC (13-fold enrichment, p=2.8 × 10–10), stp1 (14-fold enrichment, p=1.1 
× 10–7), and mprF (sixfold enrichment, p=4.6 × 10–6). The gene sucA reached near-significance (fivefold 
enrichment, p=6.8 × 10–5). Mutations in genes most significantly targeted by convergent evolution 
were evenly distributed across the S. aureus phylogeny, indicating that these adaptative mechanisms 
were not specific to selected lineages (Figure 3—figure supplement 1). Using dN/dS analysis, we 
confirmed signatures of positive selection in the most significantly enriched genes, although only agrA 
reached statistical significance (Figure 3—figure supplement 2 and Supplementary file 4).

We found that several genes with the most significant enrichment (agrA, agrC, stp1, and sucA) 
were recurrently mutated across all three within-host evolutionary scenarios, implying a global role in 
S. aureus adaptation during colonisation and invasion. This suggests partial adaptation of S. aureus 
strains upon invasion. It has been previously shown that adaptive mutations, particularly within the 
quorum sensing accessory gene regulator (agr), are enriched in invasive S. aureus strains, suggesting 
that adapted strains are more prone to be involved in invasive disease (Young et al., 2017; Young 
et  al., 2012; Altman et  al., 2018; Smyth et  al., 2012). While the key role of agr was consistent 
with previous evidence from clinical and experimental studies, the high number of recurrent sucA 
mutations was surprising. This metabolic gene encodes for the α-ketoglutarate dehydrogenase of 
the tricarboxylic acid cycle, and recent work has revealed the functional basis of its potential role in 
adaptation. Its inactivation was found to lead to a persister phenotypye (Wang et al., 2018), and sucA 
was a hotspot of metabolic adaptation to antibiotics in a recent in vitro evolution study (Lopatkin 
et al., 2021).

Adaptive mutations can cause both loss or gain of function of the gene affected; however, LOF is 
thought to be most frequent consequence of adaptation (Behe, 2010). We inferred LOF when vari-
ants lead to protein truncation (including intragenic IS insertions) or non-synonymous substitutions 
were expected to be deleterious based on the degree of divergence in conserved sites of the protein 

Table 3. Genome-wide significant gene signatures of within-host evolution.
The genes shown reached genome-wide significance in the entire dataset or in either colonising-colonising (type C>C), colonising-
invasive (type C>I), or invasive-invasive (type I>I) variants.

Gene

p value
(whole 
dataset) Description

N independent mutations

SignificanceType 
C>C

Type 
C>I

Type 
I>I

agrA* 7.04 × 10–28
Accessory gene regulator 
protein A 5** 9** 8**

Part of the agr quorum sensing system, which is the master regulator of virulence 
factors expression in S. aureus. Recurrent mutations associated with invasive 
disease.

agrC** 2.84 × 10–10
Accessory gene regulator 
protein C 4 2 6**

Histidine kinase, receptor for extracellular autoactivating peptide. Phosphorylates 
agrA.

stp1** 1.13 × 10–7
Protein phosphatase 2 C 
domain-containing protein 3 2 3 Associated with vancomycin resistance.

mprF** 4.55 × 10–6
Oxacillin resistance-related 
FmtC protein 2 0 9**

Main determinant of daptomycin resistance. Association with persistence and 
immune evasion.

rpoB 7.24 × 10–3
DNA-directed RNA 
polymerase subunit beta 1 1 7**

Association with rifampicin resistance, but selection in the absence of rifampicin 
exposure can happen (R503H). Co-resistance to vancomycin, daptomycin, and 
oxacillin. Association with persistence.

*Significant enrichment (above the Bonferroni-corrected cut-off, see methods).

https://doi.org/10.7554/eLife.77195
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Choi et al., 2012. The majority (63%) of aggregated variants in adaptive loci were predicted to lead 
to LOF (Figure 3—figure supplement 3), either because of accumulation of truncating mutations 
(agrA and agrC) or exclusively because of deleterious substitutions (walR and vraG). Because only LOF 
is inferred from the sequence, gain of function variants might be miss-classified as neutral (or even 
deleterious). We considered this hypothesis for genes with low frequency of truncations and expected 
adaptive advantage of gain of function mutations based on the literature. For example, mprF muta-
tions associated with vancomycin or daptomycin resistance have been shown to be associated with 
increased enzymatic activity of the protein leading to decreased negative charge of the membrane 
(Ernst and Peschel, 2019). Among within-host acquired mprF mutations in our dataset, we found that 
four of them were previously described and associated with antibiotic resistance through a gain of 
function mechanism (Ernst and Peschel, 2019). A distinctive sign of these variants was convergence 
at position or mutation level, which has been described as a potential hallmark of gain of function 
mutations (Gerasimavicius et al., 2021). Further supporting the evidence for gain of function, mprF 
was duplicated in one of the episodes, as reported previously (Gao et  al., 2015), while no other 
convergent gene was affected by within-host copy number variants. We also assessed accB because 
no variant in this genes was classified as deleterious; however, accB mutations have been previously 
described as LOF in strains that are auxotroph for fatty acids (Morvan et al., 2016). Thus, based on 
in silico prediction and previous data, we hypothesise that variants in convergent loci were mostly 
expected to be LOF with the exception of mprF.

Table 4. Gene signatures of within-host evolution with suggestive significant enrichment.
The genes shown reached the suggestive significance threshold in the entire dataset or in either type C>C, type C>I, or type I>I 
variants.

Gene

p value
(whole 
dataset) Description

N independent mutations

SignificanceType C>C Type C>I Type I>I

sucA* 6.82 × 10–5
2-oxoglutarate dehydrogenase E1 
component 6 2 2

Encodes a subunit of the α-ketoglutarate dehydrogenase of the 
tricarboxylic acid cycle.

saeR* 1.83 × 10–4
DNA-binding response regulator 
SaeR 2 1 2

Regulator component of the saeRS two-component system. 
Virulence regulation.

accB 4.27 × 10–4
Biotin carboxyl carrier protein of 
acetyl-CoA carboxylase 3* 1 0 Part of the fatty acid synthesis pathway of S. aureus.

SAUSA300_1856 6.41 × 10–4 Hypothetical protein 4* 0 0 Intracellular cysteine peptidase. Putative chaperone in S. aureus.

xpaC 1.38 × 10–3 Hypothetical protein 4* 0 0
Predicted 5-bromo-4-chloroindolyl phosphate hydrolysis protein, 
no data on S. aureus.

rpsJ 1.58 × 10–3 30S ribosomal protein S10 3* 0 0
Mutations at residues 53–60 are associated with tigecycline 
resistance, at no apparent fitness cost.

SAUSA300_2399 1.68 × 10–3
ABC transporter ATP-binding 
protein 4* 0 0 Downregulated in the presence of fusidic acid

walR 2.10 × 10–3 DNA-binding response regulator 1 0 3*
Part of walKR two-component response regulator. Associated 
with vancomycin resistance.

yjbH 3.55 × 10–3 Dsba-family protein 1 0 3*

Negative regulator of spx (directs its ClpXP-dependent 
degradation). Association with antibiotic resistance, virulence 
regulation, and oxidative stress resistance.

purR 3.86 × 10–3 Pur operon repressor 0 1 3*
purR mutants: increased biofilm formation and virulence in 
animal model; higher capacity to invave epithelial cells.

era 5.34 × 10–3 GTP-binding protein Era 0 1 3* Involved in ribosome assembly and stringent response.

pbp2 7.75 × 10–3 Penicillin-binding protein 2 6* 0 0
Role in methicillin resistance (PBP2a synergism). Increased 
expression after oxacillin exposure.

fakA 9.90 × 10–3 Hypothetical protein 5* 0 0
Fatty acid kinase. Deletion mutant displayed increased virulence 
in a murine model of skin infection.

sgtB 2.65 × 10–2 Glycosyltransferase 0 0 3*
sgtB mutations in adaptive laboratory evolution experiments 
upon vancomycin exposure.

*suggestive significant enrichment (above the suggestive significance cut-off, adjusted for false-discovery, see methods).

https://doi.org/10.7554/eLife.77195
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To confirm that our gene enrichment analysis (focused on point mutations and IS insertions and 
limited to genes with FPR3757 homologues) captured the large part of adaptation, we analysed vari-
ation due to large deletions and copy number variation, which were not included in the gene enrich-
ment analysis. We observed multiple independent deletions and amplifications mainly in phage genes 
(Figure 3—figure supplement 4 and Figure 3—figure supplement 5). We also repeated the gene 
enrichment analysis with all mutated genes (with and without FPR3757 homologues) and found very 
similar results, with only two hypothetical proteins with no FPR3757 homologue among the genes 
with most significant enrichment (Figure 3—figure supplement 6).

Combining multiple mechanisms of adaptation and multi-layered 
annotation increases the signal of convergent evolution
To increase our ability to capture signatures of adaptation from convergent evolution, we extended 
our analysis beyond coding sequences, to integrate the genetic variation signals issued from inter-
genic mutations and IS insertions in intergenic regions. This multi-layered annotation of mutated 
regions was shown to increase the amount of information gained from in vitro adaptive evolution 
experiments (Phaneuf et al., 2020). Such methodology allows for an advanced classification of inter-
genic mutations based on regulatory sequences including promoters and transcription units based on 
data acquired from RNAseq experiments (Mäder et al., 2016; Prados et al., 2016).

Using this approach, we were able to assign 150/1237 (11%) of all intergenic mutations and IS 
insertions to a predicted regulatory region. We found that the agr, sucAB, and walKR operons had 
the strongest convergent evolution signal with 28, 13, and 13 independent mutations (Supplemen-
tary file 5). Mutations within these loci were significantly (agr, 12-fold enrichment, p=1.1e-21; sucAB, 
fourfold enrichment, p=4.5e-5) or near-significantly enriched (walKR, threefold enrichment, p=1.7e-4) 
(Figure  4). Interestingly, promoter mutations represented 2/13 (15%) of the walKR operon muta-
tions, indicating that potentially impactful intergenic variants may be missed when considering only 
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Figure 4. Top 20 operons with the most significant mutation enrichment across all dataset. (A) Significance of the enrichment for protein-altering 
mutations. The dashed line depicts the Bonferroni-corrected significance threshold, and red circles and blue circles represent operons with p values 
below and above the Bonferroni threshold, respectively. (B) Bar plots of independent mutations separated in three panels according to the type of 
variant (type C>C: colonising-colonising; type C>I: colonising-invasive; type I>I: invasive-invasive) and coloured according to the class of mutation. 
Mutations were considered independent if they occurred in separate episodes of either colonisation or invasive infection. (C) Operon maps with 
positions of the mutations (relative to the start of the first gene of the operon). Operons are labelled with the names of the genes included, and longer 
labels were shorted for clarity (see Supplementary file 5 for details).
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coding regions. Furthermore, new IS insertions were found within type I>I variants: three insertions 
into agrC (predicted to inactivate the gene, as shown previously in staphylococci [Both et al., 2021; 
Suligoy et al., 2020]) and an insertion 159 bp upstream of walR, in a region encompassing its cognate 
promoter. Together with the strong enrichment for IS insertions within type I>I variants, the location of 
these insertions in recurrently mutated operons suggests that IS insertions contribute to the adaptive 
evolution of S. aureus during invasive infection.

Adaptation within the invasive population is distinctive and strongly 
driven by antibiotics
The excess of non-silent evolution (and potentially function-altering) within invasive strains suggested 
that strong, specific selection pressure occurs within the invasive populations (type I>I variants). We 
therefore assessed genes that appeared to be specifically mutated or inactivated during infection. We 
performed our gene- and operon-enrichment analysis for each type of within-host variants separately 
(i.e. within the colonising population, between colonising and invasive strains, and within the invasive 
population) (Figure 5). We found that agrA mutations were highly enriched in any group of variants, 
and particularly prevalent between colonising and invasive strains (type C>I variants), consistent with a 
previous study that is included in this analysis (Young et al., 2017). Among type I>I variants (between 
invasive strains), a significant enrichment was observed in mprF (18-fold enrichment, p=2.8 × 10–9), 
agrC (24-fold enrichment, p=2.1 × 10–7), and rpoB (10-fold enrichment, p=8.8 × 10–6). Other genes 
that were strongly enriched in type I>I variants (below the Bonferroni-corrected threshold, but above 
the suggestive significance threshold, Figure 5) included walR (22-fold enrichment, p=3.5 × 10–4), stp1 
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Figure 5. Modified volcano plot displaying enrichment (x-axis) and significance of enrichment (y-axis) within colonising-colonising (type C>C), 
colonising-invasive (type C>I), and invasive-invasive (type I>I) variants. The horizontal dashed line depicts the Bonferroni-corrected significance 
threshold and dotted line shows the suggestive significance threshold. Labels indicate genes with significance of enrichment below the suggestive 
threshold. Genes are coloured in red if the p value is below the Bonferroni-corrected threshold and in blue otherwise.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Modified volcano plot displaying enrichment (x-axis) and significance of enrichment (y-axis) for FPR3757 operons across the 
entire dataset, colonising-colonising (type CC), colonising-invasive (type CI), and invasive-invasive (type II) variants.

Figure supplement 2. Gene set enrichment analysis (GSEA) for protein-modifying mutations in colonising-colonising (type CC), colonising-invasive 
(type CI), and invasive-invasive (type II) variants.
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(20-fold enrichment, p=4.2 × 10–4), yjbH (19-fold enrichment, p=5.4 × 10–4), sgtB (19-fold enrichment, 
p=5.5 × 10–4), and purR (18-fold enrichment, p=5.8 × 10–4).

The enrichment for mutations in mprF, rpoB, stp1, sgtB, and in the walKR/yycH operon (11-fold 
enrichment, p=9 × 10–9, see Figure  5—figure supplement 1 for the operon enrichment analysis) 
highlights the role of antibiotic pressure in shaping adaptation within the invasive population, since 
these loci are hotspots of adaptation to key anti-staphylococcal antibiotics that are often used in inva-
sive infections (rifampicin, daptomycin, and vancomycin). For example, the essential two-component 
regulator walKR/yycFG (and its associated genes walH/yycH) have been shown to have a key role in 
vancomycin resistance in one of the within-host evolution studies included in this analysis (Howden 
et  al., 2011), while mutations in both stp1 and sgtB have been observed in vancomycin-adapted 
strains (Machado et al., 2021).

Notably, the most significant gene signatures in invasive strains might have been selected in 
response to other selective pressures, including the host immune response during infection. For 
example, rpoB mutations have been associated with pleiotropic effects, including co-resistance to 
vancomycin, daptomycin, and oxacillin and immune evasion, suggesting a potential role in adaptation 
beyond the response to the selective pressure from rifampicin (Guérillot et al., 2018). This hypothesis 
is supported by the presence of mutations (such as the rpoB R503H substitution and N405 inframe 
deletion) outside the rifampicin-resistance determining region.

Pleiotropic phenotypes are also likely to underlie the enrichment of yjbH with invasive strains, 
which was mutated four times (of which three were truncations), yet only one mutation was found 
in colonising strains or early infection-adapted strains. This gene has a cysteine-rich domain that 
is homologous to dsbA in Escherichia coli. One of its roles in S. aureus is to facilitate the ClpXP-
dependent degradation of the transcriptional regulator Spx (Austin et al., 2019). Inactivation of yjbH 
has been associated with oxacillin (Göhring et al., 2011) and vancomyin (Renzoni et al., 2011) resis-
tance, impaired growth (Engman et al., 2012), and reduced virulence in animal models (Paudel et al., 
2021), indicating that yjbH mutations may influence both host-pathogen interaction and antibiotic 
resistance. Finally, purR, a purine biosynthesis repressor, has been recently characterised beyond its 
metabolic function: interestingly, it was shown to be a virulence regulator (Sause et al., 2019), where 
purR mutants displayed higher bacterial counts following mice infection, increased biofilm formation 
(Goncheva et al., 2019), and higher capacity to invade epithelial cells (Goncheva et al., 2020).

We performed a gene set enrichment analysis (GSEA), using gene ontology and antibiotic resis-
tance gene annotations (Feldgarden et  al., 2019). The GSEA, stratified by variant type, showed 
significant enrichment only in type I>I variants, further underscoring the higher level of adaptation 
in this group (Figure 5—figure supplement 2 and Supplementary file 6) and confirmed the broad 
functional implications of the most enriched genes and operons with the invasive populations, since 
among the ontologies that were significantly enriched within the invasive population, we found the 
categories ‘DNA binding’ (normalised enrichment score [NES]=1.6, false discovery rate [FDR]-ad-
justed p=9 × 10–4), ‘pathogenesis’ (NES = 1.7, adjusted p=4 × 10–3), and ‘antibiotic response’ (NES = 
1.8, adjusted p=7 × 10–3).

Taken together, these findings point to six key genetic loci that appear to have an important role in 
S. aureus adaptation during invasive infections. These loci are associated with either antibiotic resis-
tance (mprF, rpoB, stp1, sgtB, and walKR), pathogenesis (agrAC and purR), or both (yjbH).

A mutation’s co-occurrence network defines loci under within-host co-
evolutionary pressure
Epistasis, defined as the interaction of multiple mutations on a given phenotype (Levin-Reisman 
et al., 2019), plays a role in adaptive evolution in bacteria, particularly in antibiotic resistance (Skwark 
et al., 2017; Wadsworth et al., 2018; Yokoyama et al., 2018). Whether epistatic interactions could 
promote S. aureus adaptation during infection remains unknown. Identifying these interactions would 
enable identification of combinations of mutations underlying bacterial adaption during infection 
and refine the prediction of infection outcomes. Here, we assessed co-occurrence of mutations and 
mutated genes across independent episodes of colonisation/infection. While co-occurrence may 
simply result from co-selection (e.g. simultaneous exposure to two different antibiotics), it may also 
indicate putative epistatic interactions that could be explored in terms of potential impact on adaptive 
phenotypes (Phillips, 2008).

https://doi.org/10.7554/eLife.77195
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First, we explored co-occurrence of mutations and found only one case where the same muta-
tions co-occurred in more than one independent episode. The two mutations were an inframe dele-
tion within hypothetical protein SAUSA300_2068 and a A60D substitution of the gene ywlC. These 
genes are closely located in FPR3757. While the co-occurrence could be explained by recombination, 
recombination is expected to be rare amongst within-host S. aureus populations in general (Golub-
chik et al., 2013) and even rarer within invasive strains. YwlC is a threonylcarbamoyl-AMP synthase 
in E. coli, thus it is possible that SAUSA300_2068 is also a ribosomal protein. Ribosomal proteins can 
display regulatory activity (Aseev and Boni, 2011) and could plausibly be targets of adaptation to 
both antibiotics and the host/intracellular survival. This specific case of convergent co-occurrence of 
mutations was detected within type I>I variants.

When assessing interactions at gene level (i.e. co-occurrence of the same altered protein 
sequences across independent episodes), we found the strongest interaction between the agrA 
and agrC genes (Figure 6). While this is consistent with the high convergence of mutations in the 
agr locus, this suggests that strains acquire multiple mutations within the locus, possibly further 
impacting agr activity. Interestingly, no convergent co-occurrence signature compatible with 
possible epistasis was observed within the walKR locus, the other operon with a high number of 
independent mutations; which could be due to the essentiality of walKR in S. aureus (Monk et al., 
2019). Collectively, agr locus mutations interacted with 17 other mutated genes, the strongest 
interaction being with stp1. Since stp1 (a serine/threonine phosphatase) has been previously associ-
ated with virulence regulation (Cameron et al., 2012), this interaction potentially indicates another 
mechanism by which adapted strains fine-tune the gene expression profile that is already altered 
by agr mutations.

Another moderately strong interaction was observed between rpoB and parC, which were co-mu-
tated in three independent episodes. Given the association of parC mutations with fluoroquinolone 
resistance (Trong et al., 2005), this interaction is likely to be an example of co-selection due to co-ex-
posure to fluoroquinolones and rifampicin.
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Clinical correlates of adaptive signatures within colonising and invasive 
populations
Genetic signatures of bacterial adaptation have been associated with infection extent, for example, 
enabling the prediction of extraintestinal infection with S. enterica (Wheeler et al., 2018). We have 
previously shown that adaptive mutations are enriched in invasive infections; however, it is unclear 
whether bacterial adaptation is more likely to be associated with distinctive clinical syndromes. To 
identify clinical correlates of adaptive signatures, we classified colonisation and infection episodes 
based on the sites of collection and on clinical data obtained from the publications (Table 1 and 
Figure 7—figure supplement 1). We then used the Jaccard index and network analysis to compute 
node centrality as a global measure of adaptation for each independent episode. The Jaccard index 
can be used as a simple marker of the proportion of shared mutated genes between pairs of coloni-
sation or infection episodes (Bailey et al., 2017). Node centrality allows to similtuaneously take into 
account the strength of similarity between independent episodes (Jaccard index) and the number of 
pairs with shared mutated genes (number of connections). Hence, a node centrality of 0, indicates 
that the episode does not share any mutated genes with other episodes and appears as isolates node 
on the adaptation network (Figure 7—figure supplement 2). Here, we limited the analysis to the 20 
most significantly enriched genes with each type of variant.

Our network analysis showed that adaptation was present in only a minority of episodes within 
each type of variant (Figure  7—figure supplement 2). With a definition of adaptation based on 
a centrality value of more than 0, we found that the proportion of adaptive episodes was 43, 20, 
and 22% with type C>C, C>I, and I>I variants, respectively. In addition, certain clinical syndromes 
were more strongly associated with adaptation. Within the colonising population (type C>C variants), 
almost 80% of cystic fibrosis episodes were adaptive, as opposed to one third of episodes of skin 
colonisation in atopic dermatitis (Figure 7AB). This is consistent with within-host evolution studies 
showing strong convergent evolution signals among bacterial populations colonising individuals with 
cystic fibrosis, not only in case of S. aureus colonisation (Long et al., 2020) but also P. aeruginosa 
(Marvig et al., 2015) and Mycobacterium abscessus (Bryant et al., 2021); however, one study found 
adaptive evolution signals in atopic dermatitis (Key et  al., 2021). We also observed that adapta-
tion among infection episodes correlated with infection extent. Episodes of infective endocarditis 
episodes displayed higher adaptation metrics (46% with centrality >0) than bacteraemia with addi-
tional infection foci (28%) and bacteraemia without focus (17%) (Figure 7D–E).

To explore the syndrome-specificity of adaptation signatures, we mapped mutations in the most 
significantly enriched adaptive genes to clinical syndromes of colonisation and infection (Figure 7 
panels C and F). As expected, syndromes with high prevalence of adaptation had higher numbers 
of episodes with adaptive mutations; however, some genes appeared to be preferentially mutated. 
For example, rpsJ, stp1, and SAUSA300_1230 were over-represented in cystic fibrosis, while no clear 
pattern of mutations was discernible for nasal carriage episodes. Within infection syndromes, mprF 
and purR mutations were more prevalent in endocarditis, and yjbH mutations were only found in 
severe infections (bacteraemias with additional foci and endocarditis). Some genes appeared to be 
distinctive for low adaptation groups (atopic dermatitis and skin infections); however, the low number 
of adaptative mutations prevented an accurate assessment of these profiles.

Discussion
Within-host evolution of bacterial pathogens such as S. aureus is thought to be governed by a combi-
nation of positive selection for variants that confers an advantage within the host and random fixa-
tion of mutations (genetic drift) (Klemm et al., 2016; Didelot et al., 2016). Sudden changes in the 
effective population size (bottlenecks) can cause genetic drift, for example, when a single or few 
bacterial cells invade the bloodstream or when a secondary infection foci is established in tissues 
and organs. Consistent with this view, animal studies have shown that after infecting the blood with a 
polyclonal population, bacteraemic infection is established stochastically by a single clone (McVicker 
et al., 2014; Guerillot et al., 2018), although estimating the bottleneck size at invasion from clin-
ical sequences has been more challenging (Abel et al., 2015). On the other hand, several lines of 
evidence support the role of positive selection and adaptive evolution during S. aureus infection. First, 
adaptive phenotypic features appear to be acquired during infection. The most obvious adaptative 

https://doi.org/10.7554/eLife.77195
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Figure 7. Clinical correlates of adaptive signatures within colonising (colonising-colonising [type C>C,] panels A–C) and invasive (invasive-invasive 
[type I>I], panels D–F) bacterial populations. Adaptation was inferred by computing the Jaccard index of shared mutated genes between independent 
episodes, followed by network analysis of infection episodes pairs. The node centrality measure was used as an indicator of adaptation. To avoid 
overinflation of mutated genes, the calculation was limited to the 20 most significantly enriched genes within each group of mutations. (A, D) Density 
of centrality values across colonisation (panel A) and infection categories (panel D). (B, E) Number and proportion of adaptive episodes. An adaptive 
episode was defined by a centrality >0. (C, F) Distribution of mutations in the 20 most significantly enriched genes across categories of colonisation 
(panel C) and infection (panel F).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Clinical manifestations and infection sites of invasive episodes, grouped by the infection syndromes classification used for the 
adaptation analysis.

Figure supplement 2. Network of colonisation/infection episodes for colonising-colonising (type CC) (panel A), colonising-invasive (type CI) (panel B), 
and invasive-invasive (type II) variants (panel C).
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phenotype is secondary resistance to antistaphylococcal antibiotics such as rifampicin, vancomycin 
(Howden et al., 2006), daptomycin (Peleg et al., 2012), and oxacillin (Giulieri et al., 2020). Crucially, 
these resistance phenotypes can be associated with pleiotropic, pathoadaptative phenotypes such as 
small colony variant and immune evasion (Guérillot et al., 2018; Jiang et al., 2019; Guérillot et al., 
2019). Furthermore, phenotypic adaptation (e.g. loss of toxicity) has been observed upon transition 
from colonisation to infection (Laabei et al., 2015), supporting the concept that invasive infection 
is linked to pathoadapted strains. At the molecular level, an excess of protein-truncating mutations 
in invasive strains (Giulieri et  al., 2018) and in late colonising strains leading to infection (Young 
et al., 2012) have been noted. While this observation alone could be explained by relaxed constraint 
resulting from reduced population size (Didelot et al., 2016), it has been suggested that loss of gene 
function might be a common adaptation mechanism of within-host evolution (Gatt and Margalit, 
2021), as supported by evidence of gene- or pathway-specific enrichment of mutations across inde-
pendent infection episodes (Young et al., 2017).

Despite support for adaptive evolution from previous studies, it has been difficult to identify 
specific molecular signatures of adaptation during infection, due to the limited power of previous 
within-host studies of bacteraemia and other serious S. aureus infections that were often limited to 
a restricted number of episodes. To increase our ability to identify signatures of adaptation and find 
significantly enriched loci, we analysed multiple sources of genetic variation (point mutations, large 
deletions, IS insertions, and copy number variants) in a large collection of independent episodes of 
S. aureus colonisation and infection from 25 studies. We predicted that the main advantage of our 
approach would be to increase the ability of detecting convergence of genetic variants arising during 
invasive infections as opposed to those detected during the colonisation and upon transition from 
colonisation to infection. To test this hypothesis, we classified within-host variants based on their likely 
position in the within-host phylogeny (Figure 1D).

Bacterial adaptation is promoted by genomic plasticity; however, within-host evolution is char-
acterised by low genetic variation (Giulieri et al., 2018). Based on our previous genomic studies of 
S. aureus bacteraemia, we reasoned that chromosome structural variants may provide an additional 
mechanism to increase genetic variation during infection. Here, we found that new insertions of IS are 
strongly enriched during invasive infection. However, despite this 20-fold enrichment, IS insertions 
remained a rare source of variation even within invasive strains and appeared to have a selective 
contribution to adaptation (i.e. limited to specific loci such as agrC). Similarly, large deletions and copy 
number variants appeared to play a less prominent role in adaptation, although we did not include 
them in our enrichment analysis.

Together with the enrichment for LOF mutations, which is another feature of evolution within the 
invasive population in our analysis, these IS movements suggest that a pattern of reductive evolu-
tion (genome degradation through loss of genes or accumulation of LOF mutations) emerges during 
within-host evolution of invasive S. aureus. This genome degradation might be related to less effective 
purifying selection (loss of deleterious alleles) in the invasive population due to a decrease in effective 
population size and a shorter evolutionary timescale (Didelot et al., 2016). However, our data indicate 
that these changes converge to specific genes, operons, and pathways, suggesting an adaptative 
benefit. Reductive evolution has been described in several ‘commensal-to-pathogen’ settings (Toft 
and Andersson, 2010). Although niche adaptation through reductive evolution has been described 
in extracellular pathogens (Stinear et al., 2007), a smaller (reduced) genome is a hallmark of obligate 
intracellular endosymbiotic bacteria (Batut et al., 2014). Since it appears that invasive S. aureus is able 
to reside intracellularly (promoting dissemination through mobile phagocytes during S. aureus sepsis 
[Thwaites and Gant, 2011; Surewaard et al., 2016], and immune evasion), it is plausible that this 
pattern of reductive evolution reflects an adaptation of invasive S. aureus to an invasive and intracel-
lular lifestyle, as it has been shown for other facultative intracellular pathogens such as non-typhoidal 
Salmonella (Klemm et al., 2016). However, it is possible that these signatures of reductive evolution 
might be only temporary, as genome degradation might be present only in a minority of strains or be 
reversible; moreover, LOF mutations are expected to be more likely than gain of function mutations.

Beside reductive evolution, another distinctive feature of within-host evolution during invasive 
infection was intergenic mutations (both point mutations and IS insertions). In a within-host evolu-
tion study of S. pneumoniae colonisation, it was shown that intergenic sites were under convergent 
evolution (Chaguza et al., 2020). Mutations in promoter sequences of some core genes can play an 

https://doi.org/10.7554/eLife.77195


 Research article﻿﻿﻿﻿﻿﻿ Genetics and Genomics | Microbiology and Infectious Disease

Giulieri et al. eLife 2022;11:e77195. DOI: https://doi.org/10.7554/eLife.77195 � 18 of 33

important role in antibiotic resistance as it was repeatedly shown for pbp4 and resistance to beta-
lactam antibiotics (Basuino et al., 2018). The role of intergenic mutations in within-host evolution was 
shown in a study of P. aeruginosa infection, where convergent evolution targeted several intergenic 
regulatory regions including upstream of antibiotic resistance genes (Khademi et al., 2019).

Previous work on within-host evolution by our group (included in this analysis) has established that 
agrA mutations are significantly enriched upon transition from colonisation to infection (Young et al., 
2017). In addition, we have shown through genomics and targeted mutagenesis that mutations in 
key genes such as walKR (Howden et al., 2011) and rpoB (Gao et al., 2013) play a key pathoadap-
tive role in selected cases of persistent S. aureus infections. In this study, we increased our ability to 
discover potential targets of adaptation by analysing several mechanisms of genetic variation and 
applying several layers of annotation. As compared to previous work on S. aureus, this approach 
provides a higher-resolution picture of within-host evolution and adaptation. Importantly, this anal-
ysis remains robust after removing more than 1000 sequences from the largest within-host study 
included (Figure 3—figure supplement 7). We increase here the generalisability of our findings. We 
expand the list of genes targeted by convergent evolution and show that there are distinctive adap-
tation pathways in colonising and invasive populations. We confirm that the dominantly mutated loci 
belonged to the agr locus, in particular agrA and agrC. This finding is consistent with a large body 
of literature that predated the genomic era (Novick and Geisinger, 2008) that supports the role of 
the agr locus as the master regulator of gene expression in S. aureus. Agr-mediated adaptation was 
so important that we found a highly significant enrichment of agr mutations arros all type variants, 
including within colonising strains (type C>C variants). Shopsin et al. showed that ~10% of healthy S. 
aureus carriers held an agr-defective strain and that prior hospitalisation was significantly associated 
with agr-defective status, suggesting prior adaptive pressures (Shopsin et al., 2008).

Consistent with the distinctive general patterns of evolution displayed during invasive infection, 
some genes and loci were specifically mutated within invasive strains. Some of these genes were 
emerging targets of S. aureus pathogenesis in vivo, such as purR and yjbH that were not singled out 
in previous within-host evolution investigations. Others were known determinants of antibiotic resis-
tance, including mprF, rpoB, and the walKR operon. This underscores the crucial role of antibiotic 
exposure in shaping adaptive evolution during invasive infection. A recent study of within-host evolu-
tion during cystic fibrosis found that resistance genes were hotspots of convergent evolution in this 
population, which is frequently treated with antibiotics and shows features of phenotypic adaptation 
(Long et al., 2020).

While most mutations in adaptive loci were substitutions within the coding sequence, about 40% 
of walKR operon mutations were located outside of the coding regions of walR and walk, emphasising 
the need to study intergenic mutations and mutations throughout an operon to capture adaptive 
signatures. This observation highlights the importance of expanding the analysis of intergenic muta-
tions for the detection of adaptive mutations, in particular those linked to antibiotic resistance.

If within-host evolution represents adaptative evolution, it is possible that adaptation involved an 
accumulation of mutations and possibly epistatic mechanisms. Our data show that some mutations 
are specific for invasive strains; these mutations may reflect late adaptation, occurring after evolution 
during colonisation in the nose and upon transition from colonisation to infection, and thus occurring 
after adaptive mutations were acquired during earlier stages. This evolutionary pattern of stepwise 
adaptation (or adaptive continuum) encompassing the entire within-host evolutionary arch has been 
well described for cancer (Abbosh et al., 2017) and has been also investigated in a study of transition 
from colonisation to infection (Young et al., 2012). One way to capture this is mutation co-occurrence 
analysis. Here, we show mutation co-occurrence within the agr operon but also co-occurrence of the 
same mutations in two uncharacterised proteins in S. aureus. Our network of mutation co-occurrence 
linked to agrAC mutations might suggest a potential pathway of stepwise adaptation following initial 
mutations acquisition in the agr locus, an hypothesis that has been explored in one of studies included 
in our analysis (Altman et al., 2018).

While combining multiple studies allowed us to increase statistical power in order to detect 
genome-wide convergent signals of adaptation, this approach has some limitations. The quality of the 
publicly available sequences and metadata can be heterogeneous, despite performing quality control 
assessment, for example, due to different read coverage across studies. Lack of consistent meta-
data might have impacted the clinical categorisations used here, including the distinction between 
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colonising and invasive strains (however, 83% of the strains could be classified unambiguously based 
on the site of collection). In addition, detection of structural variants from short reads is not as accu-
rate as from long reads; for example, chromosomal inversions can be missed if their inversion site span 
is larger than the insert site of the paired-end reads (Guérillot et al., 2019). Furthermore, the majority 
of the episodes included had low sampling density. More contemporary strategies leverage a multi-
plicity of samples and deep sequencing strategies to capture within-host diversity, allowing to detect 
minority variants that could be relevant for adaptation and to obtain a more accurate understanding 
of evolutionary dynamics within the host, including estimating bottlenecks (Hall et  al., 2019) and 
tracking the fall and rise of within-host lineages (Bryant et al., 2021). Finally, while several adaptive 
loci identified here have been previously assessed experimentally, the functional impact of adap-
tive variants in less characterised genes and intergenic mutations warrants further exploration using 
targeted mutagenesis (Monk et al., 2015).

Ultimately, the goal of detecting adaptive signals is to identify new mechanisms of pathogenesis 
or resistance to therapeutic targets and to inform prediction of clinical outcomes. So far, studies 
have failed to show consistent associations between specific clinical outcomes and genetic features 
of infecting (or colonising) S. aureus strains. This might be related to the dominance of host/envi-
ronmental factors, but it could also be linked to the limited power of studies performed so far. By 
contrast, within-host evolution studies are an elegant approach to identify signatures of adaptation 
that might be candidate markers of important clinical outcomes, such as infection risk in case of 
colonisation or treatment failure in case of infection. Here, we show that adaptation signatures are at 
least partially specific to colonisation, infection, and upon transition from colonisation to infection and 
that adaptive changes are more frequent in distinctive infection episodes (complicated bacteraemia 
and endocarditis). These findings suggest that adaptive signatures might be indicative of important 
clinical outcomes. In the future, precision medicine in infectious diseases could follow the lead of 
cancer genomics, where within-host evolution studies have tracked the evolution of cancer clones and 
enabled the detection of high risk mutations early.

Materials and methods
Literature search
We conducted a search of articles indexed in PubMed before the 11 August 2020 using the keyword 
‘aureus’ in combination with either ‘genomics’ or ‘whole genome sequencing’ and with either ‘within-
host evolution’, ‘in vivo evolution’, ‘adaptation’, or ‘bacteraemia’. The records retrieved through this 
search were combined with additional citations identified through other sources. After removing 
duplicates, this resulted in 815 citations that were screened based on following inclusion criteria: (i) 
whole-genome sequencing of human S. aureus isolates; (ii) >1 S. aureus isolates sequenced per indi-
vidual; (iii) sequences (reads or assemblies) publicly available; and (iv) minimum sequences metadata 
available (either with the manuscript or linked to the sequences): patient ID, date of collection (or 
collection interval in reference to a baseline isolate), and source of the sample. After excluding studies 
not satisfying the inclusion criteria (730 based on the title, 46 based on the abstract, and 15 after 
reviewing the full text), we kept 24 within-host evolution studies.

Extraction of sequence metadata
For each of the included studies, the following variables were extracted either from reads, metadata 
(when available) or from the publication/supplementary data: identifier linking the sequences to a 
patient or an episode of infection, date of collection (when available) or collection interval in refer-
ence to a baseline isolate, and site of collection of the isolate. Isolates were broadly categorised in 
‘colonising’ and ‘invasive’ based on the site of collection, when the information was unambiguous 
(e.g. ‘nose’ for ‘colonising’ or ‘blood’ for ‘invasive’). When the information on the body site was not 
sufficient (e.g. ‘skin’ or ‘lung’), the categorisation was based on further details provided in the publi-
cation. When available, phenotypic metadata and antibiotic treatments were also extracted from the 
publication. We used clinical and site data to classify colonisation episodes in ‘nasal carriage’, ‘atopic 
dermatitis’, and ‘cystic fibrosis’ and infection episodes in ‘skin infection’ (skin infection site surgical site 
infection without other foci), ‘osteoarticular infection’ (bone/join infection without other foci), ‘bacte-
raemia without focus’ (bloodstream infection, no other foci, and expect for vascular catheter or skin), 
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‘bacteraemia with focus’ (bloodstream infection with other focus involving the lung, nervous system, 
bone and joints, or internal organs), and ‘endocarditis’ (based on diagnosis reported in the publication 
or in the clinical metadata).

Sequence processing
Sequences (reads and assemblies) and metadata were downloaded from the European Nucleo-
tide Archive and the National Center for Biotechnology Information (NCBI), respectively using the 
BioProject accession or the genome accession. Quality assessment of the reads was performed by 
calculating mean read depth and the fraction of S. aureus reads using Kraken 2, v2.0.9-beta (Wood 
et al., 2019) and by extracting metrics from reads assemblies constructed using Shovill, v1.1.0 (https://​
github.com/tseemann/shovill, Seemann, 2022c) and annotated using Prokka, v1.14.6 Seemann, 
2014 . ST was inferred from the assembly using Mlst, v2.19.0 (https://github.com/tseemann/mlst, 
Seemann, 2022b), and resistance genes were detected using Abricate, v1.0.1 (https://github.com/​
tseemann/abricate, Seemann, 2022a). Reads were discarded if the mean coverage depth was below 
35, the majority of reads were not S. aureus, or the size of the assembly was below 2.6 megabases. 
Assemblies downloaded from the NCBI repository were discarded if the genome size was below 2.6 
megabases.

Sequences from the CAMERA2 trial
We collected S. aureus strains from bacteraemia episodes included in the CAMERA2 trial (Combi-
nation Antibiotics for Methicillin Resistant S. aureus), where at least two strains per episode were 
available. The CAMERA2 trial was performed between 2015 and 2018 in Australia, New Zealand, 
Singapore, and Israel and randomised participants with methicillin-resistant S. aureus bacteraemia 
to either monotherapy with vancomycin or daptomycin or combination therapy with vancomycin or 
daptomycin plus an antistaphylococcal beta-lactam (flucloxacillin, cloxacillin, or cefazolin) (Tong et al., 
2020). Strains were isolated from –80C glycerol onto horse-blood agar. Species were confirmed using 
matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Bacterial whole-genome 
sequencing was performed from single colonies on the Illumnina NextSeq platform. Reads were 
checked for quality, assembled, and annotated as described above.

Global phylogeny
To generate a global alignment of all sequences, reads and shredded assemblies were mapped to 
reference genome USA300 FPR3757 (assembly accession: GCF_000013465.1) (using Snippy, v4.6.0) 
(https://github.com/tseemann/snippy; Seemann, 2022d). The core genome alignment was obtained 
using Snippy; sites with >10% gaps were removed using Goalign (Lemoine and Gascuel, 2021) and 
constant sites were removed using SNP-sites (Page et al., 2016), for a final length of 186,825 bp. A 
maximum-likelihood phylogenetic tree of 2590 sequences (those kept in the analysis after excluding 
genetically unrelated strains, see below) was inferred using IQ-TREE, v2.0.3 Minh et al., 2020.

Variant calling
We have previously shown that the accuracy of variant calling in within-host evolution analyses is 
improved when mapping reads to an internal draft assembly as opposed to a closely related closed 
genome (Giulieri et al., 2018). Here, we applied the same approach, where we selected the internal 
reference among the sequences from the same patient or episode. When available, the oldest colo-
nising strain was selected. When only sequences from invasive strains were available, the oldest strain 
(baseline strain) was selected. When multiple sequences were available per sample (e.g. multiple 
colonies sequenced per plate) or at the same date, the reference was randomly selected among them. 
Snippy with default parameters (minimum reads coverage 10, minimum read mapping quality 60, and 
minimum base quality 13) was used for variant calling. To further improve the accuracy of the calls, 
we masked variants called from reference reads and those at positions where reference reads had a 
coverage below 10 (using the BEDTools suite [Quinlan and Hall, 2010]).
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Filtering of genetically unrelated sequences
The threshold for removing genetically unrelated sequences was set empirically at 100 episode-
specific variants based on the upper Tukey’s fence of the distribution of the number of variants in 
same-episode isolates belonging to the same ST (Figure 2—figure supplement 1).

Estimation of within-host mutation rates
To estimate within-host mutation rates within colonising and invasive populations, a linear regression 
was fitted to model the relationship between sampling time (in years after the first isolate) and number 
of mutations relative to the internal reference. Only episodes with at least two strains collected at 
least one day apart were included in this analysis. The mutation rate μ was computed as follows μ = 
β/g, where β is the regression parameter and g is the mean genome size of the internal references 
(2.79 Mb). Regression diagnostics were performed using the R package performance (Lüdecke et al., 
2021).

Detection of chromosome structural variants
Using BWA-MEM (Li, 2013), reads and shredded contigs were aligned to the closest available 
complete genome (either internal to the dataset or selected from the NCBI repository based on the 
mash distance). To detect large deletions ( ≥ 500 bp), reads coverage was computed using BEDTools, 
as described in Giulieri et al., 2018. To detect new IS insertions, split reads were extracted, filtered, 
and annotated as described in Giulieri et al., 2018. We used the R package CNOGpro (Brynildsrud 
et al., 2015) to detect 1000 bp windows with an estimated copy number above one as compared to 
the internal reference. The package calculates the reads coverage per sliding windows of the chro-
mosome, performs a G+C bias normalisation, and infers copy number state using a Hidden Markow 
Model. We ran the package with default parameters, with the exception of the length of the sliding 
window that was set at 1000 bp. For each class of structural variant and within each episode, we used 
BEDTools to mask regions where the variant was already present in internal reference.

Prediction of functional impact of variants
Functional impact of variants was extracted from the Snippy output, which uses SnpEff to infer the 
functional effect of the detected mutations (Cingolani et  al., 2012). SnpEff categories for coding 
regions were aggregated in ‘truncating’ (frameshift, stop codons, and start codons), ‘non-synonymous 
substitutions’, and ‘synonymous substitutions’. Non-synonymous substitutions were further investi-
gated using PROVEAN, v1.1.5 (58) using the non-redundant protein database provides on the 
PROVEAN repository (ftp://ftp.jcvi.org/pub/data/provean/nr_Aug_2011/). Substitutions were classi-
fied as ‘deleterious’ if the PROVEAN score was –2.5 or less and ‘neutral’ otherwise.

Internal variant annotation
To ensure a consistent annotation of mutated genes across independent episodes, we clustered 
amino-acid sequences using CD-HIT, v4.8.1 with an identity threshold of 0.9. The BEDTools suite was 
used to annotate mutated intergenic regions with upstream and downstream coding regions and 
the distance separating the mutation from the start or the end of the gene. For the operon analysis, 
intergenic mutations were classified according to their location within a presumed promoter based 
on blasting the sequence of unique promoters (as determined in [Prados et al., 2016]) on the draft 
assembly of the internal reference. Phage genes were annotated using blastp and the PhageWeb 
database (http://computationalbiology.ufpa.br/phageweb/).

Variant annotation using reference strain FPR3757
To compare mutated genes across separated episodes, we used blastp to identify homologues of 
each CD-HIT cluster of mutated genes in USA300 FPR3757. Genes in FPR3757 were further annotated 
using the database provided in the AureoWiki repository (Fuchs et al., 2018), and operon annotations 
of FPR3757 were retrieved from Microbes Online (Dehal et al., 2010). In addition, we used the text 
mining tool PaperBLAST to search for publications containing data on homologues of uncharacterised 
FPR3757 proteins (Price et al., 2017). Only protein-altering variants in genes with FPR3757 homo-
logues (excluding plasmid genes and phage genes) were kept for the analysis of convergence at gene 
and operon level and the gene enrichment analysis.
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Classification of variants
Mutational and structural variants were classified in to type C>C (within colonising strains), type C>I 
(between colonising and invasive strains), and type I>I (within invasive strains) as follows: all variants 
arising in colonising strains were classified as type C>C, while variants among invasive strains were 
classified as type C>I if they were found in a baseline invasive strain (defined as the oldest invasive 
strain; when multiple sequences were available at same time, the baseline invasive strain was selected 
randomly), and as type I>I if they were found between invasive strains but not on the baseline invasive 
strain. This approach is based on the assumption that co-infection or superinfection is rare, as we have 
shown previously for bacteraemia (Giulieri et al., 2018).

Calculation of the Neutrality Index (NI)
A modified McDonald-Kreitman table was compiled a described in Stoletzki and Eyre-Walker, 2011, 
where a ratio was calculated between non-synonymous, protein-truncating, IS insertions, intergenic 
and deletion variants, and synonymous variants. The NI was obtained by dividing the ratio calculated 
above for type C>I and type I>I by the ratio for type C>C variants that were used as reference group. 
Significance was tested by Fisher’s Exact test.

dN/dS analysis
We used the R package dNdScv (Martincorena et  al., 2017) to obtain dN/dS ratios for non-
synonymous mutations, indels, and missense mutations (stop codons) for all FPR3757 genes, based 
on variants called when mapping all reads on FPR3757 and after subtracting variants from the internal 
reference reads and variants in positive where internal reference reads had a low coverage. Since this 
analysis could be hampered by potential false-positive variants resulting from mapping reads on a 
single reference (Giulieri et al., 2018), we also used our curated list of within-host mutations obtained 
from episode-specific variant calling to calculate crude dN/dS ratios by dividing the number of protein 
modifying mutations by the number non-synonymous mutations and computed p values by Fisher 
exact test as in Long et al., 2020.

Gene and operon enrichment analysis
We calculated the enrichment of protein-altering mutations across all coding regions of FPR3757 
(excluding plasmid genes and phage genes) using the approach described in Young et al., 2017. 
The variant enrichment per gene i was calculated as follows: (Ni/Li)/(Σn/Σl), where Ni is the number 
of variants per gene i, Li is the length of gene i, Σn is the total number of variants, and Σl is the total 
length of the genes. We used Poisson regression to model the number of variants per gene j under the 
null hypothesis (no enrichment), as defined by the equation λ0Lj, where λ0 is the expected number of 
variants in any gene and Lj is the gene length. Under the alternative hypothesis (enrichment of variant 
in gene i), the estimated number of variants is λiLi for gene i, and λ1Lj for any other gene j. The model 
parameters λ0, λ1, and λI were obtained using maximum likelihood and tested for significance using 
the likelihood ratio test. The genome-wide significance cut-off was calculated using the Bonferroni 
correction (0.05 divided by the number of unique genes or operons) and the suggestive significance 
cut-off (1 divided by the number of unique genes or operons), as implemented for bacterial genome-
wide associated studies in Lees et al., 2017a.

Gene set enrichment analysis
We used the PANNZER platform (Törönen et al., 2018), to retrieve a gene ontology annotation of 
FPR3757 based on the GO terms. We modified the ‘antibiotic response’ category by adding a curated 
list of antibiotic resistance genes downloaded from the NCBI Anti-Microbial Resistance (AMR) gene 
reference database (Feldgarden et al., 2019). The GSEA was performed as implemented in the R 
package clusterProfile (Yu et al., 2012). Genes with a FPR3757 homologue were ranked according 
to the significance of the enrichment of protein-modifying mutations (gene enrichment analysis, see 
above), and the GSEA was carried out with a minimum gene set size of 10 and using the FDR method 
for adjustment for multiple testing.

Mutation co-occurrence analysis
To detect co-occurrence of mutations and mutated genes across independent episodes, we 
constructed a co-occurrence matrix using the R package co-occur (Griffith et  al., 2016). A 

https://doi.org/10.7554/eLife.77195
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co-occurrence of mutations or mutated genes in at least two independent episodes was interpreted 
as convergent and as a sign of potential epistatic interaction. The network of co-occurrence of 
mutated genes was visualised using the R package ggraph (https://cran.r-project.org/web/packages/​
ggraph/index.html).

Network analysis of adaptation signatures
The pairwise calculation of the Jaccard index between set of mutated genes was performed in R. The 
calculations were performed both with the entire set of mutated FPR3757 genes and with the 20 most 
significantly enriched genes in each group of variants. A network of shared mutated genes between 
independent episodes was constructed using ggraph, where edges represented episode connections 
based on the Jaccard index. We used the R package tidygraph to extract the node centrality (function 
centrality_degree) as a summary measure of the degree of adaptation of the episodes. The network 
graph and analysis were performed for each group of variants separately.
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Tong SYC, Stinear TP, 
Howden BP
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analysis of S. aureus 
bacteraemias included in 
the CAMERA-2 trial
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Stinear TP, Howden 
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2015 Large tandem chromosome 
duplications facilitate 
niche adaptation during 
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with drug-resistant 
Staphylococcus aureus

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJEB9193

NCBI BioProject, 
PRJEB9193

Howden BP 2011 Evolution of Multidrug 
Resistance during 
Staphylococcus aureus 
Infection Involves Mutation 
of the Essential Two 
Component Regulator 
WalKR

https://www.​ncbi.​nlm.​
nih.​gov/​sra/?​term=​
SRA027352

NCBI Sequence Read 
Archive, SRA027352

Howden BP 2011 Evolution of Multidrug 
Resistance during 
Staphylococcus aureus 
Infection Involves Mutation 
of the Essential Two 
Component Regulator 
WalKR
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nih.​gov/​bioproject/​
PRJNA29567

NCBI BioProject, 
PRJNA29567

Howden BP, McEvoy 
CR, Allen DL, Chua 
K, Gao W, Harrison 
PF, Bell J, Coombs 
G, Bennett-Wood 
V, Porter JL, Robins-
Browne R, Davies JK, 
Seemann T, Stinear 
TP

2011 Evolution of Multidrug 
Resistance during 
Staphylococcus aureus 
Infection Involves Mutation 
of the Essential Two 
Component Regulator 
WalKR
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nih.​gov/​bioproject/​
PRJNA29569

NCBI BioProject, 
PRJNA29569
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K, Everitt RG, Iqbal 
Z, Rimmer AJ, Cule 
M, Ip CLC, Didelot X, 
Harding RM, Donnelly 
P, Peto TE, Crook DW, 
Bowden R, Wilson DJ

2012 Evolutionary dynamics of 
Staphylococcus aureus 
during progression from 
carriage to disease
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PRJEB2862

Golubchik T, Batty 
EM, Miller RR, Farr 
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Svensson H, Fung R, 
Godwin H, Knox K, 
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Peto TE, Harding RM, 
Wilson DJ, Crook 
DW, Bowden R

2013 Within-host evolution of 
Staphylococcus aureus 
during asymptomatic 
carriage
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PRJEB2881

NCBI BioProject, 
PRJEB2881
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recurrent Staphylococcus 
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Susceptibility in 
Staphylococcus aureus
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nih.​gov/​bioproject/​
PRJNA259799

NCBI BioProject, 
PRJNA259799

Trouillet-Assant S, 
Lelièvre L, Martins-
Simões P, Gonzaga 
L, Tasse J, Valour 
F, Rasigade JP, 
Vandenesch F, Muniz 
Guedes RL, Ribeiro 
de Vasconcelos AT, 
Caillon J, Lustig S, 
Ferry T, Jacqueline 
C, Loss de Morais G, 
Laurent F

2016 Adaptive processes of 
Staphylococcus aureus 
isolates during the 
progression from acute 
to chronic bone and joint 
infections in patients

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA298748

NCBI BioProject, 
PRJNA298748

Rouard C, Garnier F, 
Leraut J, Lepainteur 
M, Rahajamananav 
L, Languepin J, Ploy 
MC, Bourgeois-
Nicolaos N, Doucet-
Populaire F

2018 Emergence and Within-
Host Genetic Evolution 
of Methicillin-Resistant 
Staphylococcus aureus 
Resistant to Linezolid in a 
Cystic Fibrosis Patient

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA434495

NCBI BioProject, 
PRJNA434495

Langhanki L, Berger 
P, Treffon J, Catania F, 
Kahl BC, Mellmann A

2018 In vivo competition 
and horizontal gene 
transfer among distinct 
Staphylococcus aureus 
lineages as major 
drivers for adaptational 
changes during long-term 
persistence in humans

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJEB22600

NCBI BioProject, 
PRJEB22600

Altman DR 2018 Genome Plasticity of agr-
Defective Staphylococcus 
aureus during Clinical 
Infection

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA393749

NCBI BioProject, 
PRJNA393749

Giulieri SG 2018 Genomic exploration of 
sequential clinical isolates 
reveals a distinctive 
molecular signature of 
persistent Staphylococcus 
aureus bacteraemia

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJEB27932

NCBI BioProject, 
PRJEB27932

Benoit JB, Frank DN, 
Bessesen MT

2018 Genomic evolution of 
Staphylococcus aureus 
isolates colonizing the 
nares and progressing to 
bacteremia
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nih.​gov/​bioproject/​
PRJNA414752

NCBI BioProject, 
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SM, Noto Llana M, 
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LP, Robinson DA, 
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FR, Sordelli DO

2018 Mutation of Agr 
Is Associated with 
the Adaptation of 
Staphylococcus aureus to 
the Host during Chronic 
Osteomyelitis

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA414566

NCBI BioProject, 
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Harkins CP, Pettigrew 
KA, Oravcová K, 
Gardner J, Hearn 
RMR, Rice D, Mather 
AE, Parkhill J, Brown 
SJ, Proby CM, Holden 
MTG

2018 The Microevolution 
and Epidemiology of 
Staphylococcus aureus 
Colonization during Atopic 
Eczema Disease Flare

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJEB20148

NCBI BioProject, 
PRJEB20148

Tan X 2019 Chronic Staphylococcus 
aureus Lung Infection 
Correlates With 
Proteogenomic and 
Metabolic Adaptations 
Leading to an Increased 
Intracellular Persistence

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA446073

NCBI BioProject, 
PRJNA446073

Loss G, Simões PM, 
Valour F, Cortês MF, 
Gonzaga L, Bergot 
M, Trouillet-Assant S, 
Josse J, Diot A, Ricci 
E, Vasconcelos AT, 
Laurent F

2019 Staphylococcus aureus 
Small Colony Variants 
(SCVs): News From a 
Chronic Prosthetic Joint 
Infection

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA497214

NCBI BioProject, 
PRJNA497214

Kuroda M, Sekizuka T, 
Matsui H, Ohsuga J, 
Ohshima T, Hanaki H

2019 IS256-Mediated 
Overexpression of the 
WalKR Two-Component 
System Regulon 
Contributes to Reduced 
Vancomycin Susceptibility 
in a Staphylococcus aureus 
Clinical Isolate

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJDB8056

NCBI BioProject, 
PRJDB8056

Azarian T, Ridgway JP, 
Yin Z, David MZ

2019 Long-Term Intrahost 
Evolution of Methicillin 
Resistant Staphylococcus 
aureus Among Cystic 
Fibrosis Patients With 
Respiratory Carriage

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA527261

NCBI BioProject, 
PRJNA527261

Wüthrich D, 
Cuénod A, Hinic 
V, Morgenstern M, 
Khanna N, Egli A, 
Kuehl R

2019 Genomic characterization 
of inpatient evolution 
of MRSA resistant to 
daptomycin, vancomycin 
and ceftaroline

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA488707

NCBI BioProject, 
PRJNA488707

Ji S, Jiang S, Wei X, 
Sun L, Wang H, Zhao 
F, Chen Y, Yu Y

2020 In-Host Evolution of 
Daptomycin Resistance 
and Heteroresistance 
in Methicillin-Resistant 
Staphylococcus aureus 
Strains From Three 
Endocarditis Patients

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA577181

NCBI BioProject, 
PRJNA577181

Miller CR, Dey S, 
Smolenski PD, 
Kulkarni PS, Monk 
JM, Szubin R, 
Sakoulas G, Berti AD

2020 Distinct Subpopulations 
of Intravalvular Methicillin-
Resistant Staphylococcus 
aureus with Variable 
Susceptibility to 
Daptomycin in Tricuspid 
Valve Endocarditis

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA544229

NCBI BioProject, 
PRJNA544229

Petrovic Fabijan A, Lin 
RCY, Ho J, Maddocks 
S, Ben Zakour NL, 
Iredell JR

2020 Safety of bacteriophage 
therapy in severe 
Staphylococcus aureus 
infection

https://www.​ncbi.​nlm.​
nih.​gov/​bioproject/​
PRJNA541589

NCBI BioProject, 
PRJNA541589
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