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Self-configuring feedback loops for 
sensorimotor control
Sergio Oscar Verduzco-Flores*, Erik De Schutter
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Okinawa, Japan

Abstract How dynamic interactions between nervous system regions in mammals performs 
online motor control remains an unsolved problem. In this paper, we show that feedback control is 
a simple, yet powerful way to understand the neural dynamics of sensorimotor control. We make 
our case using a minimal model comprising spinal cord, sensory and motor cortex, coupled by long 
connections that are plastic. It succeeds in learning how to perform reaching movements of a planar 
arm with 6 muscles in several directions from scratch. The model satisfies biological plausibility 
constraints, like neural implementation, transmission delays, local synaptic learning and contin-
uous online learning. Using differential Hebbian plasticity the model can go from motor babbling 
to reaching arbitrary targets in less than 10 min of in silico time. Moreover, independently of the 
learning mechanism, properly configured feedback control has many emergent properties: neural 
populations in motor cortex show directional tuning and oscillatory dynamics, the spinal cord creates 
convergent force fields that add linearly, and movements are ataxic (as in a motor system without a 
cerebellum).

Editor's evaluation
This solid modelling study presents a valuable contribution toward understanding the neural control 
of movement. The authors show that a minimal model comprising key sensorimotor cortical areas as 
well as a spinal circuits controlling a limb readily replicates landmark observations from behavioural 
and electrophysiological studies. This work will be of broad interest to motor control researchers, as 
well as to neurophysiologists interested in testing the predictions derived from this model.

Introduction
The challenge
Neuroscience has made great progress in decoding how cortical regions perform specific brain func-
tions like primate vision (Kaas and Collins, 2003; Ballard and Zhang, 2021 and rodent navigation 
Chersi and Burgess, 2015; Moser et  al., 2017). Conversely, the evolutionary much older motor 
control system still poses fundamental questions, despite a large body of experimental work. This is 
because, in mammals, in addition to areas in cortex like premotor and motor areas and to some degree 
sensory and parietal ones, many extracortical regions have important and unique functions: basal 
ganglia, thalamus, cerebellum, pons, brain stem nuclei like the red nucleus and spinal cord (Eccles, 
1981; Loeb and Tsianos, 2015). These structures are highly interconnected by fast conducting axons 
and all show strong dynamic activity changes, related to the ongoing dynamics of the performed 
motor act. Clinical and lesion studies have confirmed the necessity of each of these regions for normal 
smooth motor control of arm reaching (Shadmehr and Wise, 2005; Arber and Costa, 2018).

Fully understanding motor control will thus entail understanding the simultaneous function and 
interplay of all brain regions involved. Little by little, new experimental techniques will allow us to 
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monitor more neurons, in more regions, and for longer periods (Tanaka et al., 2018, e.g.). But to 
make sense of these data computational models must step up to the task of integrating all those 
regions to create a functional neuronal machine.

Finally, relatively little is known about the neural basis of motor development in infants (Hadders-
Algra, 2018). Nevertheless, a full understanding of primate motor control will not only require expla-
nation of how these brain regions complement and interact with each other but also how this can be 
learned during childhood.

With these challenges in mind we recently developed a motor control framework based on differ-
ential Hebbian learning (Verduzco-Flores et al., 2022). A common theme in physiology is the control 
of homeostatic variables (e.g. blood glucose levels, body temperature, etc.) using negative feedback 
mechanisms (Woods and Ramsay, 2007). From a broad perspective, our approach considers the 
musculoskeletal system as an extension of this homeostatic control system: movement aims to make 

Figure 1. Main components of the model. In the left panel, each box stands for a neural population, except for P, which represents the arm and the 
muscles. Arrows indicate static connections, open circles show input correlation synapses, and the two colored circles show possible locations of 
synapses with the learning rule in Verduzco-Flores et al., 2022. In the spinal learning model the green circle connections are plastic, and the red 
circle connections are static. In the cortical learning model the red circle connections are plastic, whereas the green circle connections are static. In the 
static network all connections are static. A : afferent population. ‍SA‍ : Somatosensory cortex, modulated by afferent input. ‍SP‍ : somatosensory cortex, 
prescribed pattern. ‍SPA‍ : population signaling the difference between ‍SP‍ and ‍SA‍ : primary motor cortex. ‍C‍ : spinal cord. Inside the ‍C‍ box the circles 
represent the excitatory (‍CE‍) and inhibitory (‍CI‍) interneurons, organized into six pairs. The interneurons in each pair innervate an alpha motoneuron (‍α‍), 
each of which stimulates one of the six muscles in the arm, numbered from 0 to 5. The trios consisting of ‍CE‍, ‍CI‍, ‍α‍ units are organized into agonists 
and antagonists, depending on whether their ‍α‍ motoneurons cause torques in similar or opposite directions. These relations are shown in the right-side 
panel.

https://doi.org/10.7554/eLife.77216
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the external environment conducive to the internal control of homeostatic variables (e.g. by finding 
food, or shelter from the sun).

Our working hypothesis (see Verduzco-Flores et al., 2022) is that control of homeostatic variables 
requires a feedback controller that uses the muscles to produce a desired set of sensory perceptions. 
The motosensory loop, minimally containing motor cortex, spinal cord, and sensory cortex may imple-
ment that feedback controller. To test this hypothesis we implemented a relatively complete model of 
the sensorimotor loop (Figure 1), using the learning rules in Verduzco-Flores et al., 2022 to produce 
2D arm reaching. The activity of the neural populations and the movements they produced showed 
remarkable consistency with the experimental observations that we describe next.

Relevant findings in motor control
Before describing our modeling approach, we summarize some of the relevant experimental data that 
will be important to understanding the results. We focus on three related issues: (1) the role of the 
spinal cord in movement, (2) the nature of representations in motor cortex, and (3) muscle synergies, 
and how the right pattern of muscle activity is produced.

For animals to move, spinal motoneurons must activate the skeletal muscles. In general, descending 
signals from the corticospinal tract do not activate the motoneurons directly, but instead provide input 
to a network of excitatory and inhibitory interneurons (Bizzi et al., 2000; Lemon, 2008; Arber, 2012; 
Asante and Martin, 2013; Alstermark and Isa, 2012; Jankowska, 2013; Wang et al., 2017; Ueno 
et al., 2018). Learning even simple behaviors involves long-term plasticity, both at the spinal cord 
(SC) circuit, and at higher regions of the motor hierarchy (Wolpaw et al., 1983; Grau, 2014; Meyer-
Lohmann et al., 1986; Wolpaw, 1997; Norton and Wolpaw, 2018). Despite its obvious importance, 
there are comparatively few attempts to elucidate the nature of the SC computations, and the role of 
synaptic plasticity.

The role ascribed to SC is closely related to the role assumed from motor cortex, particularly M1. 
One classic result is that M1 pyramidal neurons of macaques activate preferentially when the hand is 
moving in a particular direction. When the preferred directions of a large population of neurons are 
added as vectors, a population vector appears, which points close to the hand’s direction of motion 
(Georgopoulos et  al., 1982; Georgopoulos et  al., 1986). This launched the hypothesis that M1 
represents kinematic, or other high-level parameters of the movement, which are transformed into 
movements in concert with the SC. This hypothesis mainly competes with the view that M1 represents 
muscle forces. Much research has been devoted to this issue (Kakei et al., 1999; Truccolo et al., 
2008; Kalaska, 2009; Georgopoulos and Stefanis, 2007; Harrison and Murphy, 2012; Tanaka, 
2016; Morrow and Miller, 2003; Todorov, 2000, e.g.).

Another important observation is that the preferred directions of motor neurons cluster around 
one main axis. As shown in Scott et al., 2001, this suggests that M1 is mainly concerned with dynam-
ical aspects of the movement, rather than representing its kinematics.

A related observation is that the preferred directions in M1 neurons experience random drifts 
that overlap learned changes (Rokni et al., 2007; Padoa-Schioppa et al., 2004). This leads to the 
hypothesis that M1 is a redundant network that is constantly using feedback error signals to capture 
the task-relevant dimensions, placing the configuration of synaptic weights in an optimal manifold.

A different perspective for studying motor cortex is to focus on how it can produce movements, 
rather than describing its activity (Shenoy et al., 2013). One specific proposal is that motor cortex 
has a collection of pattern generators, and specific movements can be created by combining their 
activity (Shenoy et al., 2013; Sussillo et al., 2015). Experimental support for this hypothesis came 
through the surprising finding of rotational dynamics in motor cortex activity (Churchland et  al., 
2012), suggesting that oscillators with different frequencies are used to produce desired patterns. 
This begs the question of how the animal chooses its desired patterns of motion.

Selecting a given pattern of muscle activation requires planning. Motor units are the final actu-
ators in the motor system, but they number in the tens of thousands, so planning movements in 
this space is unfeasible. A low-dimensional representation of desired limb configurations (such as 
the location of the hand in Euclidean coordinates) is better. Movement generation likely involves a 
coordinate transformation, from the endpoint coordinates (e.g. hand coordinates) into actuator coor-
dinates (e.g. muscle lengths), from which motor unit activation follows directly. Even using pure engi-
neering methods, as for robot control, computing this coordinate transformation is very challenging. 

https://doi.org/10.7554/eLife.77216
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For example, this must overcome kinematic redundancies, as when many configurations of muscle 
lengths put the hand in the same location.

The issue of coordinate transformation is central for motor control (Shadmehr and Wise, 2005; 
Schöner et al., 2018; Valero-Cuevas, 2009; motor primitives and muscle synergies are key concepts 
in this discussion). Representing things as combinations of elementary components is a fundamental 
theme in applied mathematics. For example, linear combinations of basis vectors can represent any 
vector, and linear combinations of wavelets can approximate any smooth function (Keener, 1995). 
In motor control, this idea arises in the form of motor primitives. Motor primitives constitute a set of 
basic motions, such that that any movement can be decomposed into them (Giszter, 2015; Mussa–
Ivaldi and Bizzi, 2000; Bizzi et al., 1991). This is closely related to the concept of synergies. The term 
‘synergy’ may mean several things (Kelso, 2009; Bruton and O’Dwyer, 2018), but in this paper, we 
use it to denote a pattern of muscle activity arising as a coherent unit. Synergies may be composed of 
motor primitives, or they may be the motor primitives themselves.

A promising candidate for motor primitives comes in the form of convergent force fields, which 
have been observed for the hindlimbs of frogs and rats (Giszter et al., 1993; Mussa-Ivaldi et al., 
1994, or in the forelimbs of monkeys Yaron et al., 2020). In experiments where the limb is held at a 
particular location, local stimulation of the spinal cord will cause a force to the limb’s endpoint. The 
collection of these force vectors for all of the limb endpoint’s positions forms a force field, and these 
force fields have two important characteristics: (1) they have a unique fixed point and (2) simultaneous 
stimulation of two spinal cord locations produces a force field which is the sum of the force fields 
from stimulating the two locations independently. It is argued that movement planning may be done 
in terms of force fields, since they can produce movements that are resistant to perturbations, and 
also permit a solution to the problem of coordinate transformation with redundant actuators (Mussa–
Ivaldi and Bizzi, 2000).

The neural origin of synergies, and whether they are used by the motor system is a matter of 
ongoing debate (Tresch and Jarc, 2009; de Rugy et al., 2013; Bizzi and Cheung, 2013). To us, it is 
of interest that single spinal units found in the mouse (Levine et al., 2014 and monkey Takei et al., 
2017) spinal cord (sometimes called Motor Synergy Encoders, or MSEs) can reliably produce specific 
patterns of motoneuron activation.

Model concepts
We believe that it is impossible to understand the complex dynamical system in biological motor 
control without the help of computational modeling. Therefore, we set out to build a minimal 
model that could eventually control an autonomous agent, while still satisfying biological plausibility 
constraints.

Design principles and biological-plausibility constraints for neural network modeling have been 
proposed before (Pulvermüller et al., 2021; O’Reilly, 1998; Richards et al., 2019). Placing emphasis 
on the motor system, we compiled a set of characteristics that cover the majority of these constraints. 
Namely:

•	 Spanning the whole sensorimotor loop.
•	 Using only neural elements. Learning their connection strengths is part of the model.
•	 Learning does not rely on a training dataset. It is instead done by synaptic elements using local 

information.
•	 Learning arises from continuous-time interaction with a continuous-space environment.
•	 There is a clear vision on how the model integrates with the rest of the brain in order to enact 

more general behavior.

Our aim is hierarchical control of homeostatic variables, with the spinal cord and motor cortex at 
the bottom of this hierarchy. At first glance, spinal plasticity poses a conundrum, because it changes 
the effect of corticospinal inputs. Cortex is playing a piano that keeps changing its tuning. A solu-
tion comes when we consider the corticospinal loop (e.g. the long-loop reflex) as a negative control 
system, where the spinal cord activates the effectors to reduce an error. The role of cortex is to 
produce perceptual variables that are controllable, and can eventually improve homeostatic regula-
tion. In this regard, our model is a variation of Perceptual Control Theory (Powers, 1973; Powers, 
2005), but if the desired value of the controller is viewed as a prediction, then this approach resembles 

https://doi.org/10.7554/eLife.77216
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active inference models (Adams et al., 2013). Either way, the goal of the system is to reduce the 
difference between the desired and the perceived value of some variable.

If cortex creates representations for perceptual variables, the sensorimotor loop must be config-
ured so those variables can be controlled. This happens when the error in those variables activates 
the muscles in a way that brings the perceived value closer to the desired value. In other words, we 
must find the input-output structure of the feedback controller implicit in the long-loop reflex. We 
have found that this important problem can be solved by the differential Hebbian learning rules intro-
duced in Verduzco-Flores et al., 2022. We favor the hypothesis that this learning takes place is in 
the connections from motor cortex to interneurons and brainstem. Nevertheless, we show that all our 
results are valid if learning happens in the connections from sensory to motor cortex.

In the Results section we will describe our model, its variations, and how it can learn to reach. Next 
we will show that many phenomena described above are present in this model. These phenomena 
emerge from having a properly configured neural feedback controller with a sufficient degree of 
biological realism. This means that even if the synaptic weights of the connections are set by hand and 
are static, the phenomena still emerge, as long as the system is configured to reduce errors. In short, 
we show that a wealth of phenomena in motor control can be explained simply by feedback control 
in the sensorimotor loop, and that this feedback control can be configured in a flexible manner by the 
learning rules presented in Verduzco-Flores et al., 2022.

Results
A neural architecture for motor control
The model in this paper contains the main elements of the long-loop reflex, applied to the control of 
a planar arm using six muscles. The left panel of Figure 1 shows the architecture of the model, which 
contains 74 firing rate neurons organized in six populations. This architecture resembles a feedback 
controller that makes the activity in a neural population ‍SA‍ approach the activity in a different popu-
lation ‍SP‍.

The six firing-rate neurons (called units in this paper) in ‍SA‍ represent a region of somatosensory 
cortex, and its inputs consist of the static gamma (II) afferents. In steady state, activity of the II affer-
ents is monotonically related to muscle length (Mileusnic et al., 2006), which in turn can be used to 
prescribe hand location. Other afferent signals are not provided to ‍SA‍ in the interest of simplicity.

‍SP‍ represents a different cortical layer of the same somatosensory region as ‍SA‍, where a ‘desired’ 
or ‘predicted’ activity has been caused by brain regions not represented in the model. Each firing rate 
neuron in ‍SA‍ has a corresponding unit in ‍SP‍, and they represent the mean activity at different levels of 
the same microcolumn (Mountcastle, 1997). ‍SPA‍ is a region (either in sensory or motor cortex) that 
conveys the difference between activities in ‍SP‍ and ‍SA‍, which is the error signal to be minimized by 
negative feedback control.

Population ‍A‍ represents sensory thalamus and dorsal parts of the spinal cord. It contains 18 units 
with logarithmic activation functions, each receiving an input from a muscle afferent. Each muscle 
provides proprioceptive feedback from models of the Ia, Ib, and II afferents. In rough terms, Ia affer-
ents provide information about contraction velocity, and Ib afferents signal the amount of tension in 
the muscle and tendons.

Population ‍M ‍ represents motor cortex. Ascending inputs to ‍M ‍ arise from population ‍A‍, and use a 
variation of the input correlation learning rule (Porr and Wörgötter, 2006), where the ‍SPA‍ inputs act 
as a learning signal. The input correlation rule enhances the stability of the controller. More details are 
presented in Methods. The ‍SPA‍ inputs to ‍M ‍ can either be static, or use a learning rule to be described 
below.

To represent positive and negative values, both ‍M ‍ and ‍SPA‍ use a ‘dual representation’, where each 
error signal is represented by two units. Let ‍ei = si

P − si
A‍ be the error associated with the ‍i‍-th muscle. 

One of the two ‍SPA‍ units representing ei is a monotonic function of ‍max(ei, 0)‍, whereas the other unit 
increases according to ‍max(−ei, 0)‍. These opposing inputs, along with mutual inhibition between the 
two units creates dynamics where sensorimotor events cause both excitatory and inhibitory responses, 
which agrees with experimental observations (Shafi et al., 2007; Steinmetz et al., 2019; Najafi et al., 
2020), and allows transmitting ‘negative’ values using excitatory projections. Dual units in ‍M ‍ receive 
the same inputs, but with the opposite sign.

https://doi.org/10.7554/eLife.77216
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Plasticity mechanisms within the sensorimotor loop should specify which muscles contract in order 
to reduce an error signaled by ‍SPA‍. We suggest that this plasticity could take place in the spinal cord 
and/or motor cortex. To show that our learning mechanisms work regardless of where the learning 
takes place, we created two main configurations of the model. In the first configuration, called the 
‘spinal learning’ model, a ‘spinal’ network ‍C‍ transforms the ‍M ‍ outputs into muscle stimulation. ‍C‍ 
learns to transform sensory errors into appropriate motor commands using a differential Hebbian 
learning rule (Verduzco-Flores et  al., 2022). In this configuration, the error input to each ‍M ‍ unit 
comes from one of the ‍SPA‍ activities. A second configuration, called the ‘cortical learning’ model, has 
‘all-to-all’ connections from ‍SPA‍ to ‍M ‍ using the differential Hebbian rule, whereas the connections 
from ‍M ‍ to ‍C‍ use appropriately patterned static connections. Both configurations are basically the 
same model; the difference is that one configuration has our learning rule on the inputs to ‍C‍, whereas 
the other has it on the inputs to ‍M ‍ (Figure 1).

While analyzing our model we reproduced several experimental phenomena (described below). 
Interestingly, these phenomena did not arise because of the learning rules. To make this explicit, 
we created a third configuration of our model, called the ‘static network’. This configuration does 
not change the weight of any synaptic connection during the simulation. The initial weights were 
hand-set to approximate the optimal solution everywhere (see Methods). We will show that all emer-
gent phenomena in the paper are also present in the static network.

We explain the idea behind the differential Hebbian rule as applied in the connections from ‍M ‍ to 
‍C. C‍ contains ‍N ‍ interneurons, whose activity vector we denote as ‍c = [c1, . . . , cN]‍. The input to each of 

these units is an ‍M ‍ dimensional vector ‍e = [e1, . . . , eM]‍. Each unit in ‍C‍ has an output 
‍
ci = σ

(∑
j ωijej

)
‍
, 

where ‍σ(·)‍ is a positive sigmoidal function. The inputs are assumed to be errors, and to reduce them 
we want ej to activate ci when ci can reduce ej. One way this could happen is when the weight ‍ωij‍ from 
ej to ci is proportional to the negative of their sensitivity derivative:

	﻿‍
ωij ∝ −

∂ej
∂ci

.
‍�

(1)

Assuming a monotonic relation between the motor commands and the errors, relation 1 entails that 
errors will trigger an action to cancel them, with some caveats considered in Verduzco-Flores et al., 
2022. Synaptic weights akin to Equation 1 can be obtained using a learning rule that extracts correla-
tions between the derivatives of ci and ej (see Methods). Using this rule, the commands coming from 
population ‍C‍ can eventually move the arm so that ‍SA‍ activity resembles ‍SP‍ activity.

‍C‍ is organized to capture the most basic motifs of spinal cord connectivity using a network where 
balance between excitation and inhibition is crucial (Berg et al., 2007; Berg et al., 2019; Goulding 
et al., 2014). Each one of six ‍α‍ motoneurons stimulate one muscle, and is stimulated by one excit-
atory (‍CE‍), and one inhibitory (‍CI ‍) interneuron. ‍CE‍ and ‍CI ‍ stimulate one another, resembling the 
classic Wilson-Cowan model (Cowan et  al., 2016). The trios composed of ‍α, CE‍, and ‍CI ‍ neurons 
compose a group that controls the activation of one muscle, with ‍CE‍ and ‍CI ‍ receiving convergent 
inputs from ‍M ‍. This resembles the premotor network model in Petersen et al., 2014. (‍α, CE, CI ‍) trios 
are connected to other trios following the agonist-antagonist motif that is common in the spinal cord 
(Pierrot-Deseilligny and Burke, 2005). This means that ‍CE‍ units project to the ‍CE‍ units of agonists, 
and to the ‍CI ‍ units of antagonists (Figure 1, right panel). When the agonist/antagonist relation is not 
strongly defined, muscles can be ‘partial’aASaS agonists/antagonists, or unrelated.

Connections from ‍A‍ to ‍C‍ (the ‘short-loop reflex’) use the input correlation learning rule, analogous 
to the connections from ‍A‍ to ‍M ‍.

Direct connections from ‍M ‍ to alpha motoneurons are not necessary for the model to reach, but 
they were introduced in new versions because in higher primates these connections are present for 
distal joints (Lemon, 2008). Considering that bidirectional plasticity has been observed in corticomo-
toneural connections (Nishimura et al., 2013), we chose to endow them with the differential Hebbian 
rule of Verduzco-Flores et al., 2022.

Because timing is essential to support the conclusions of this paper, every connection has a trans-
mission delay, and all firing rate neurons are modeled with ordinary differential equations.

All the results in this paper apply to the three configurations described above (spinal learning, 
cortical learning, and static network). To emphasize the robustness and potential of the learning mech-
anisms, in the Appendix we introduce two variations of the spinal learning model (in the Variations of 

https://doi.org/10.7554/eLife.77216
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the spinal learning model section). All results in the paper also apply to those two variations. In one of 
the variations (the ‘synergistic’ network), each spinal motoneuron stimulates two muscles rather than 
one. In the second variation (the ‘mixed errors’ network), the inputs from ‍SPA‍ to ‍M ‍ are not one-to-one, 
but instead come from a matrix that combines multiple error signals as the input to each ‍M ‍ unit.

Since most results apply to all configurations, and since results could depend on the random 
initial weights, we report simulation results using three means and three standard deviations 

‍(m1 ± σ1|m2 ± σ2|m3 ± σ3)‍, with the understanding that these three value pairs correspond respec-
tively to the spinal learning, motor learning, and static network models. The statistics come from 20 
independent simulations with different initial conditions.

A reference section in the Appendix (the Comparison of the 5 configurations section) summarizes 
the basic traits of all different model configurations (including the two variations of the spinal learning 
model), and compiles all their numerical results.

For each configuration, a single simulation was used to produce all the representative plots in 
different sections of the paper.

The model can reach by matching perceived and desired sensory 
activity
Reaches are performed by specifying an ‍SP‍ pattern equal to the ‍SA‍ activity when the hand is at the 
target. The acquisition of these ‍SP‍ patterns is not in the scope of this paper (but see Verduzco-Flores 
et al., 2022).

We created a set of random targets by sampling uniformly from the space of joint angles. Using 
this to set a different pattern in ‍SP‍ every 40  s, we allowed the arm to move freely during 16 ‍SP‍ 
target presentations. To encourage exploratory movements we used noise and two additional units 
described in the Methods.

All model configurations were capable of reaching. To decide if reaching was learned in a trial we 
took the average distance between the hand and the target (the average error) during the last four 
target presentations. Learning was achieved when this error was smaller than 10 cm.

The system learned to reach in 99 out of 100 trials (20 for each configuration). One simulation with 
the spinal learning model had an average error of 14 cm during the last 4 reaches of training. To assess 
the speed of learning we recorded the average number of target presentations required before the 
error became less than 10 cm for the first time. This average number of failed reaches before the first 
success was: ‍(1.8 ± 2|1.2 ± .9|0 ± 0)‍.

Figure 2A shows the error through 16 successive reaches (640 s of in silico time) in a typical case 
for the spinal learning model. A supplementary video (Appendix 1—Video 1) shows the arm’s move-
ments during this simulation. Figures similar to Figure 2 can be seen for all configurations as figure 
supplements (Figure 2—figure supplement 1) (Figure 2—figure supplement 2).

In Figure 2A, the error increases each time a new target was presented (yellow vertical lines), but 
as learning continues it was consistently reduced below 10 cm.

Panel B also shows the effect of learning, as the hand’s Cartesian coordinates eventually track the 
target coordinates whenever they change. This is also reflected as the activity in ‍SA‍ becoming similar 
to the activity in ‍SP‍ (panel C).

Panels D and E of Figure  2 show the activity of a few units in population ‍M ‍ and population 
‍C‍ during the 640  s of this training phase. During the first few reaches, ‍M ‍ shows a large imbal-
ance between the activity of units and their duals, reflecting larger errors. Eventually these activities 
balance out, leading to a more homogeneous activity that may increase when a new target appears. 
M1 activation patterns that produce no movement are called the null-space activity (Kaufman et al., 
2014). In our case, this includes patterns where ‍M ‍ units have the same activity as their duals. This, 
together with the noise and oscillations intrinsic to the system cause the activity in ‍M ‍ and ‍C‍ to never 
disappear.

In panel E, the noise in the ‍C‍ units becomes evident. It can also be seen that inhibition dominates 
excitation (due to ‍CE‍ to ‍CI ‍ connections), which promotes stability in the circuit.

We tested whether any of the novel elements in the model were superfluous. To this end, we 
removed each of the elements individually and checked if the model could still learn to reach. In 
conclusion, removing individual elements generally deteriorated performance, but the factor that 
proved essential for all configurations with plasticity was the differential Hebbian learning in the 

https://doi.org/10.7554/eLife.77216
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Figure 2. Representative training phase of a simulation for the spinal learning model. (A) Distance between the target and the hand through 640 s of 
simulation, corresponding to 16 reaches to different targets. The horizontal dotted line corresponds to 10 cm. The times when ‍SP‍ changes are indicated 
with a vertical, dotted yellow line. Notice that the horizontal time axis is the same for all panels of this figure. The average error can be seen to decrease 
through the first two reaches. (B) Desired versus actual hand coordinates through the training phase. The straight lines denote the desired X (green) and 
Y (red) coordinates of the hand. The noisy orange and blue lines show the actual coordinates of the hand. (C) Activity of units 0 and 1 in ‍SP‍ and ‍SA‍. This 
panel shows that the desired values in the ‍SP‍ units (straight dotted lines) start to become tracked by the perceived values. (D) Activity of ‍M ‍ units 1, 2, 
and their duals. Notice that even when the error is close to zero the activity in the ‍M ‍ units does not disappear. E: Activity of the ‍CE, CI,α‍ trio for muscle 
0. The intrinsic noise in the units causes ongoing activity. Moreover, the inhibitory activity (orange line) dominates the excitatory activity (blue line).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Representative training phase of the simulation for the cortical learning configuration.

Figure supplement 2. Representative training phase of the simulation for the static network.

Figure 2 continued on next page

https://doi.org/10.7554/eLife.77216
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connections from ‍M ‍ to ‍C‍ or from ‍SPA‍ to ‍M ‍. For details, see the the Appendix section titled The model 
fails when elements are removed.

Center-out reaching 1: The reach trajectories present traits of 
cerebellar ataxia
In order to compare our model with experimental data, after the training phase we began a stan-
dard center-out reaching task. Switching to this task merely consisted of presenting the targets in a 
different way, but for the sake of smoother trajectories we removed the noise from the units in ‍C‍ or ‍M ‍.

Figure  3A shows the eight peripheral targets around a hand rest position. Before reaching a 
peripheral target, a reach to the center target was performed, so the whole experiment was a single 
continuous simulation controlled by the ‍SP‍ pattern.

Peripheral targets were selected at random, each appearing six times. This produced 48 reaches 
(without counting reaches to the center), each one lasting 5 s. Panels B through D of Figure 3 show 
the trajectories followed by the hand in the three configurations. During these 48 reaches the average 
distance between the hand and the target was ‍(3.3 ± .01|2.9 ± .001|2.9 ± .0003)‍ centimeters.

Currently our system has neither cerebellum nor visual information. Lacking a ‘healthy’ model to 
make quantitative comparisons, we analyzed and compared them to data from cerebellar patients.

For the sake of stability and simplicity, our system is configured to perform slow movements. Fast 
and slow reaches are different in cerebellar patients (Bastian et al., 1996). Slow reaches undershoot 
the target, follow longer hand paths, and show movement decomposition (joints appear to move one 
at a time). In Figure 3 the trajectories begin close to the 135 degree axis, indicating a slower response 
at the elbow joint. With the parameters used, the spinal learning and cortical learning models tend to 
undershoot the target, whereas in the static network the hand can oscillate around the target.

The traits of the trajectories can be affected by many hyperparameters in the model, but the domi-
nant factor seems to be the gain in the control loop. Our model involves delays, activation latencies, 
momentum, and interaction torques. Unsurprisingly, increasing the gain leads to oscillations along 
with faster reaching. On the other hand, low gain leads to slow, stable reaching that often under-
shoots the target. Since we do not have a cerebellum to overcome this trade off, the gain was the 
only hyperparameter that was manually adjusted for all configurations (See Methods). In particular, we 
adjusted the slope of the ‍M ‍ and ‍SA‍ units so the system was stable, but close to the onset of oscilla-
tions. Gain was allowed to be a bit larger in the static network so oscillations could be observed. The 
figure supplements for Figure 3 shows more examples of configurations with higher gain (See Gain 
and oscillations in Appendix 1 for details).

The shape of the trajectory also depends on the target. Different reach directions cause different 
interaction forces, and encounter different levels of viscoelastic resistance from the muscles.

Figure 4 reveals that the approach to the target is initially fast, but gradually slows down. Healthy 
subjects usually present a bell-shaped velocity profile, with some symmetry between acceleration and 
deceleration. This symmetry is lost with cerebellar ataxia (Becker et al., 1991; Gilman et al., 1976).

We are not aware of center-out reaching studies for cerebellar patients in the dark, but (Day et al., 
1998) does examine reaching in these conditions. Summarizing its findings:

1.	 Movements were slow.
2.	 The endpoints had small variation, but they had constant errors.
3.	 Longer, more circuitous trajectories, with most changes in direction during the last quarter.
4.	 Trajectories to the same target showed variations.

From Figures 3 and 4 we can observe constant endpoint errors when the gain is low, in the spinal 
and cortical learning models. Circuitous trajectories with a pronounced turn around the end of the 
third quarter are also observed. Individual trajectories can present variations. A higher gain, as in the 
static network on the right plots, can increase these variations, as illustrated in the figure supplements 
for Appendix 1.

Figure supplement 3. Representative training phase of the simulation for the synergistic network.

Figure supplement 4. Representative training phase of the simulation for the mixed errors network.

Figure 2 continued

https://doi.org/10.7554/eLife.77216
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Figure 3. Center-out reaching. (A) The arm at its resting position, with hand coordinates (0.3, 0.3) meters, where a center target is located. Eight 
peripheral targets (cyan dots) were located on a circle around the center target, with a 10 cm radius. The muscle lines, connecting the muscle insertion 
points, are shown in red. The shoulder is at the origin, whereas the elbow has coordinates (0.3, 0). Shoulder insertion points remain fixed. (B-F) Hand 
trajectories for all reaches in the three configurations. The trajectory’s color indicates the target. Dotted lines show individual reaches, whereas thick 
lines indicate the average of the 6 reaches. 

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Center-out reaching before the control loop gain was adjusted.

Figure supplement 2. Training phase of the simulation for the static network before gain was reduced.

Figure supplement 3. Training phase of the simulation for the synergistic network before gain was reduced.

https://doi.org/10.7554/eLife.77216
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Center-out reaching 2: Directional tuning and preferred directions
To find whether directional tuning could arise during learning, we analyzed the ‍M ‍ population activity 
for the 48 radial reaches described in the previous subsection.

For each of the 12 units in ‍M ‍, Figure 5A shows the mean firing rate of the unit when reaching 
each of the 8 targets. The red arrows show the Preferred Direction (PD) vectors that arise from these 
distributions of firing rates. For the sake of exposition, Figure 5 shows data for the simpler case of 
one-to-one connectivity between ‍SPA‍ and ‍M ‍ in the spinal learning model, but these results generalize 
to the case when each ‍M ‍ unit receives a linear combination of the ‍SPA‍ activities (the ‘mixed errors’ 
variation presented in the Variations of the spinal learning model section of the Appendix.)

We found that ‍(11.8 ± .4|12 ± 0|12 ± 0)‍ units were significantly tuned to reach direction (‍p < 0.001‍, 
bootstrap test), with PD vectors of various lengths. The direction of the PD vectors is not mysterious. 
Each ‍M ‍ unit controls the length error of one muscle. Figure 5B shows that the required contraction 
length depends on both the target and the muscle. The PD vectors of units 0–5 point to the targets 
that require the most contraction of their muscle. Units 6–11 are the duals of 0–5, and their PD is in 
the opposite direction. Figure 5C shows that the PD may also be inferred from the muscle activity, 
reflected as average tension.

In the case when each ‍M ‍ unit receives a linear combination of ‍SPA‍ errors, its PD can be predicted 
using a linear combination of the ‘directions of maximum contraction’ shown in Figure 5B, using the 
same weights as the ‍SPA‍ inputs. When accounting for the length of the PD vectors, this can predict the 
PD angle with a coefficient of determination ‍R2 ≈ (.74 ± .18|.88 ± .14|.86 ± .01)‍.

As mentioned in the Introduction, the PDs of motor cortex neurons tend to align in particular 
directions Scott et al., 2001. This is almost trivially true for this model, since the PD vectors are mainly 
produced by linear combinations of the vectors in Figure 5B.

Figure 6 shows the PD for all the ‍M ‍ units in a representative simulation for each of the configura-
tions. In every simulation, the PD distribution showed significant bimodality (‍p < 0.001‍). The main axis 
of the PD distribution (see Methods) was ‍(59 ± 7|52 ± 2|54 ± .5)‍ degrees.

To compare with (Scott et  al., 2001) we rotate this line 45  degrees so the targets are in the 
same position relative to the shoulder (e.g. Lillicrap and Scott, 2013 Figure 1, Kurtzer et al., 2006 
Figure 1). This places the average main axes above in a range between 99 and 104 degrees, compa-
rable to the 117 degrees in Scott et al., 2001.

The study in Lillicrap and Scott, 2013 suggested that a rudimentary spinal cord feedback system 
should be used to understand why the PD distribution arises. Our model is the first to achieve this.

The PD vectors are not stationary, but experience random fluctuations that become more 
pronounced in new environments (Rokni et al., 2007; Padoa-Schioppa et al., 2004). The brain is 
constantly remodeling itself, without losing the ability to perform its critical operations (Chambers 
and Rumpel, 2017). Our model is continuously learning, so we tested the change in the PDs by 

Figure 4. Distance to target and reach velocity through time for the three configurations. Thick lines show the average over 48 reaches (8 targets, 6 
repetitions). Filled stripes show standard deviation. For the spinal and cortical learning configurations (left and center plots) the hand initially moves 
quickly to the target, but the direction is biased, so it needs to gradually correct the error from this initial fast approach; most of the variance in error 
and velocity appears when these corrections cause small-amplitude oscillations. In the case of the static network (right plots) oscillations are ongoing, 
leading to a large variance in velocity.

https://doi.org/10.7554/eLife.77216
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setting 40 additional center-out reaches (no intrinsic noise) after the previous experiment, once for 
each configuration.

To encourage changes we set 10 different targets instead of 8. After a single trial for each 
configuration the change in angle for the 12 PD vectors had means and standard deviations of 

‍(3.3 ± 2.4|4.9 ± 2.1|.3 ± .2)‍ degrees. Larger changes (around 7  degrees) could be observed in the 
‘mixed errors’ variation of the model, presented in the Appendix (Variations of the spinal learning 
model section). We also measured the change in the preferred directions of the muscles, obtained 
as in Figure 5C. This yielded differences and standard deviations ‍(3.8 ± 2.1|6.4 ± 2.9|.2 ± .2)‍ degrees.

The average distance between hand and target during the 40 reaches was ‍(3|3.6|2.9)‍ cm, showing 
that the hand was still moving towards the targets, although with different errors due to their new 
locations.

Center-out reaching 3: Rotational dynamics
Using a dynamical systems perspective, (Shenoy et al., 2013) considers that the muscle activity ‍m(t)‍ 
(a vector function of time) arises from the cortical activity vector ‍r(t)‍ after it is transformed by the 
downstream circuitry:

Figure 5. Directional tuning of the units in ‍M ‍ for a simulation with the spinal learning model. (A) Average firing rate per target, and preferred direction 
(see Methods) for each of the 12 units in ‍M ‍. Each polar plot corresponds to a single unit, and each of the 8 purple wedges corresponds to one of the 
8 targets. The length of a wedge indicates the mean firing rate when the hand was reaching the corresponding target. The red arrow indicates the 
direction and relative magnitude of the PD vector. The black arrow shows the predicted PD vector, in this case just the corresponding arrows from panel 
B. (B) For each muscle and target, a wedge shows the muscle’s length at rest position minus the length at the target, divided by the rest position length. 
The red arrow comes from the sum of the wedges taken as vectors, and represents the muscle’s direction of maximum contraction. Plots corresponding 
to antagonist muscles are connected by red lines. (C) Average activity of the 6 ‍A‍ units indicating muscle tension. The black arrows come from the sum of 
wedges taken as vectors, showing the relation between muscle tension and preferred direction.

https://doi.org/10.7554/eLife.77216
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	﻿‍ m(t) = G[r(t)].‍� (2)

It is considered that the mapping ‍G[·]‍ may consist of sophisticated controllers, but for the sake of 
simplicity this mapping is considered static, omitting spinal cord plasticity. The cortical activity arises 
from a dynamical system:

	﻿‍ τ ṙ(t) = h(r(t)) + u(t),‍� (3)

where ‍u(t)‍ represents inputs to motor cortex from other areas, and ‍h(·)‍ is a function that describes how 
the state of the system evolves.

A difficulty associated with Equation 3 is explaining how ‍r(t)‍ generates a desired muscle pattern 

‍m(t)‍ when the function ‍h(·)‍ represents the dynamics of a recurrent neural network. One possibility is 
that M1 has intrinsic oscillators of various frequencies, and they combine their outputs to shape the 
desired pattern. This prompted the search for oscillatory activity in M1 while macaques performed 
center-out reaching motions. A brief oscillation (in the order of 200ms, or 5 Hz) was indeed found in 
the population activity (Churchland et al., 2012, and the model in Sussillo et al., 2015) was able to 
reproduce this result, although this was done in the open-loop version of Equations 2 and 3, where 

‍u(t)‍ contains no afferent feedback (this is further commented in the Supplemental Discussion).

Figure 7. Rotational dynamics in the M population in a representative simulation for all configurations. Each plot shows the first two jPCA components 
during 0.25 s, for each of the 8 conditions/targets. Traces are colored according to the magnitude of their initial ‍jPCA1‍ component, from smallest 
(green) to largest (red).

Figure 6. Preferred direction vectors for the 12 ‍M ‍ units. In all three plots the arrows denote the direction and magnitude of the preferred direction (PD) 
for an individual unit. The gray dotted lines shows the main axis of the distribution. The red dotted lines are a 45 degree rotation of the gray line, for 
comparison with Scott et al., 2001. It can be seen that all configurations display a strong bimodality, especially when considering the units with a larger 
PD vector. The axis where the PD vectors tend to aggregate is in roughly the same position for the three configurations.

https://doi.org/10.7554/eLife.77216
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Recently it was shown that the oscillations in motor cortex can arise when considering the full 
sensorimotor loop, without the need of recurrent connections in motor cortex (Kalidindi et al., 2021). 
A natural question is whether our model can also reproduce the oscillations in Churchland et al., 2012 
without requiring M1 oscillators or recurrent connections.

The analysis in Churchland et al., 2012 is centered around measuring the amount of rotation in the 
M1 population activity. The first step is to project the M1 activity vectors onto their first six principal 
components. These six components are then rotated so the evolution of the activity maximally resem-
bles a pure rotation. These rotated components are called the ‘jPCA vectors’. The amount of variance 
in the M1 activity explained by the first two jPCA vectors is a measure of rotation. The Methods 
section provides more details of this procedure.

Considering that we have a low-dimensional, non-spiking, slow-reaching model, we can only expect 
to qualitatively replicate the essential result in Churchland et al., 2012, which is most of the variance 
being contained in the first jPCA plane.

We replicated the jPCA analysis, with adjustments to account for the smaller number of neurons, the 
slower dynamics, and the fact that there is no delay period before the reach (See Methods). The result 
can be observed in Figure 7, where 8 trajectories are seen in the plots. Each trajectory is the average 
activity of the 12 ‍M ‍ units when reaching to one of the 8 targets, projected onto the jPCA plane. The 
signature of a rotational structure in these plots is that most trajectories circulate in a counterclockwise 
direction. Quantitatively, the first jPCA plane (out of six) captures ‍(.42 ± .04|.42 ± .04|.46 ± .03)‍ of the 
variance.

With this analysis we show that our model does not require intrinsic oscillations in motor cortex 
to produce rotational dynamics, in agreement with (Kalidindi et  al., 2021 and DeWolf et  al., 
2016).

Figure 8. Hand trajectories with low mass (0.8 kg, top 3 plots) and high mass (1.2 kg, bottom 3 plots) for the 3 configurations. Plots are as in Figure 3. 
The spinal learning model and the static network show qualitatively similar trajectories compared to those in Figure 3. In contrast, the cortical learning 
model began to display considerable endpoint oscillations for several targets after its mass was reduced. These oscillations persist after the mass has 
been increased.

https://doi.org/10.7554/eLife.77216
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The effect of changing the mass
Physical properties of the arm can change, not only as the arm grows, but also when tools or new 
environments come into play. As a quick test of whether the properties in this paper are robust to 
moderate changes, we changed the mass of the arm and forearm from 1 to 0.8 kg and ran one simu-
lation for each of the five configurations.

With a lighter arm the average errors during center-out reaching were ‍(2.5|3.2|3)‍ cm. The hand 
trajectories with a reduced mass can be seen in the top 3 plots of Figure 8. We can observe that the 
spinal learning model slightly reduced its mean error, whereas the cortical learning model increased 
it. This can be understood by noticing that a reduction in mass is akin to an increase in gain. The 
spinal learning model with its original gain was below the threshold of oscillations at the endpoint, 
and a slight mass decrease did not change this. The cortical learning model with the original gain was 
already oscillating slightly, and an increase in gain increased the oscillations.

In the same simulation, after the center-out reaching was completed, we once more modified the 
mass of the arm and forearm, from 0.8 to 1.2 kg, after which we began the center-out reaching again. 
This time the center-out reaching errors were ‍(2.4|3.3|2.9)‍ cm. The hand trajectories for this high mass 
condition are in the bottom 3 plots in Figure 8. It can be seen that the spinal learning and cortical 
learning models retained their respectively improved and decreased performance, whereas the static 
network performed roughly the same for all mass conditions. A tentative explanation is that with 
reduced mass the synaptic learning rules tried to compensate for faster movements with weights that 
effectively increased the gain in the loop. After the mass was increased these weights did not imme-
diately revert, leading to similar trajectories after the increase in mass.

The results of the paper still held after our mass manipulations. For all configurations, PD vectors 
could be predicted with a coefficient of determination between.74 and.92; All units in ‍M ‍ were signifi-
cantly tuned to direction; the main axis of the PD distribution ranged between 56 and 61 degrees, and 
the first jPCA plane captured between 33% and 58% of the variance.

Spinal stimulation produces convergent direction fields
Due to the viscoelastic properties of the muscles, the mechanical system without active muscle 
contraction will have a fixed point with lowest potential energy at the arm’s rest position. Limited 
amounts of muscle contraction shift the position of that fixed point. This led us to question whether 
this could produce convergent force fields, which as discussed before are candidate motor primitives, 
and have been found experimentally.

To simulate local stimulation of an isolated spinal cord we removed all neuronal populations except 
for those in ‍C‍, and applied inputs to the individual pairs of ‍CE, CI ‍ units projecting to the same moto-
neuron. Doing this for different starting positions of the hand, and recording its initial direction of 
motion, produces a direction field. A direction field maps each initial hand location to a vector pointing 
in the average direction of the force that initially moves the hand.

The first two panels of Figure 9 show the result of stimulating individual E-I pairs in ‍C‍, which will 
indeed produce direction fields with different fixed points.

We found that these direction fields add approximately linearly (Figure 9D). More precisely, let 

‍D(a + b)‍ be the direction field from stimulating spinal locations ‍a‍ and ‍b‍ simultaneously, and ‍αa+b(x, y)‍ be 
the angle of ‍D(a + b)‍ at hand coordinates ‍(x, y)‍. Using similar definitions for ‍D(a), D(b),αa(x, y),αb(x, y)‍, 
we say the direction fields add linearly if ‍αa+b(x, y) = αa(x, y) + αb(x, y), ∀(x, y)‍.
We define the mean angle difference between ‍D(a + b)‍ and ‍D(a) + D(b)‍ as

	﻿‍
γa,b =

∑
x,y

αa+b(x, y) −
(
αa(x, y) + αb(x, y)

)

Ns
,
‍�

(4)

where ‍Ns‍ is the number of ‍(x, y)‍ sample points. We found that when averaged over the 15 (C1) or 144 
(C2) possible ‍(a, b)‍ pairs, the mean of ‍γa,b‍ was 13.5 degrees.

Randomly choosing two possibly different pairs ‍(a, b)‍ and ‍(c, d)‍ for the stimulation locations leads 
to a mean angle difference of 37.6 degrees between the fields ‍D(a + b)‍ and ‍D(c) + D(d)‍. A bootstrap 
test showed that these angles are significantly larger (‍p < 0.0001‍) than in the previous case where 

‍(a, b) = (c, d)‍.

https://doi.org/10.7554/eLife.77216
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The resting field is defined as the direction field when no units are stimulated. Removing the resting 
field from ‍D(a + b), D(a)‍, and ‍D(b)‍ does not alter these results.

Recent macaque forelimb experiments (Yaron et al., 2020) show that the magnitude of the vectors 
in the ‍D(a + b)‍ fields is larger than expected from ‍D(a) + D(b)‍ (supralinear summation). We found no 
evidence for this effect, suggesting that it depends on mechanisms beyond those present in our 
model.

Figure 9. Two sample direction fields and their linear addition for circuit C1. (A) Direction Field (DF) from stimulation of the interneurons for muscle 
0 (biarticular biceps). The approximate location of the fixed point is shown with a blue dot. (B) DF from stimulation of muscle 3 (biarticular triceps) 
interneurons. A red dot shows the fixed point. (C) Panels A and B overlapped. (D) In green, the DF from stimulating the interneurons for muscles 0 and 
3 together. In purple, the sum of the DFs from panels A and B. Dots show the fixed points. The average angle between the green and purple vectors is 
4 degrees.

https://doi.org/10.7554/eLife.77216
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Discussion
Summary of findings and predictions
We have presented a model of the long loop reflex with a main assumption: negative feedback config-
ured with two differential Hebbian learning rules. One novel rule sets the loop’s input-output struc-
ture, and the other rule (input correlation) promotes stability. We showed that this model can make 
arm reaches by trying to perceive a given afferent pattern.

Our study made two main points:

1.	 Many experimental phenomena emerge from a feedback controller with minimally-complete 
musculoskeletal and neural models (emphasis is placed on the balance between excitation and 
inhibition).

2.	 Even if the feedback controller has multiple inputs and outputs, its input-output structure can 
be flexibly configured by a differential Hebbian learning rule, as long as errors are monotonic.

The first main point above was made using a feedback control network with no learning (called 
the static network in the Results). We showed that in this static network: (1) reaching trajectories are 
similar to models of cerebellar ataxia, (2) motor cortex units are tuned to preferred directions, (3) those 
preferred directions follow a bimodal distribution, (4) motor cortex units present rotational dynamics, 
(5) reaching is still possible when mass is altered, and (6) spinal stimulation produces convergent 
direction fields.

The second main point was made using two separate models, both using the same differential 
Hebbian learning rules, but applied at different locations. The spinal learning model presents the 
hypothesis that the spinal cord learns to adaptively configure the input-output structure of the feed-
back controller. The cortical learning model posits that configuring this structure could instead be 
a function of motor cortex; this would not disrupt our central claims. These two models should not 
be considered as incompatible hypotheses. Different elements performing overlapping functions are 
common in biological systems (Edelman and Gally, 2001).

Two variations of the spinal learning model in the Appendix show that this learning mechanism is 
quite flexible, opening the doors for certain types of synergies, and for more complex errors (that still 
maintian the constraint of monotonicity).

We list some properties of the model, and possible implications:

•	 Basic arm reaching happens through negative feedback, trying to perceive a target value set in 
cortex. Learning the input-output structure of the feedback controller may require spinal cord 
plasticity.

•	 Cerebellar patients should not be able to adapt to tasks that require fast reactions, as nega-
tive feedback alone cannot compensate for delays in the system (Sanguineti et al., 2003). 
On the other hand, they should be able to learn tasks that require remapping afferent inputs 
to movements. One example is Richter et al., 2004, where cerebellar patients learned to 
move in a novel dynamic environment, but their movements were less precise than those of 
controls.

•	 The shape of reaches is dominated by mechanical and viscoelastic properties of the arm and 
muscles.

•	 Unfamiliar viscous forces as in Richter et al., 2004 should predictably alter the trajectory 
(Figure 3) for cerebellar patients, who should not be able to adapt unless they move slowly 
and are explicitly compensating.

•	 Preferred Directions (PDs) in motor cortex happen because muscles need to contract more 
when reaching in certain directions.
•	 The PD distribution should align with the directions where the muscles need to contract 

to reduce the error. These directions depend on which error is encoding. If the error is not 
related to reaching (e.g. related to haptic feedback), a different PD distribution may arise 
after overtraining.

•	 Drift in the PD vectors comes from the ongoing adaptation, and it should not disrupt 
performance.

•	 The oscillations intrinsic to delayed feedback control after the onset of a target are sufficient 
to explain the quasi-oscillations observed in motor cortex (Churchland et al., 2012; Kalidindi 
et al., 2021).

https://doi.org/10.7554/eLife.77216
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•	 Convergent force fields happen naturally in musculoskeletal systems when there is balance in 
the stimulation between agonists and antagonists. Linear addition of force fields is a result of 
forces/torques adding linearly.

Since our relatively simple model reproduces these phenomena, we believe it constitutes a good 
null hypothesis for them. But beyond explaining experimental observations, this model makes inroads 
into the hard problem of how the central nervous system (CNS) can generate effective control signals, 
recently dubbed the ‘supraspinal pattern formation’ problem (Bizzi and Ajemian, 2020). From our 
perspective, the CNS does not need to generate precise activation patterns for muscles and syner-
gies; it needs to figure out which perceptions need to change. It is subcortical structures that learn the 
movement details. The key to make such a model work is the differential Hebbian learning framework 
in Verduzco-Flores et al., 2022, which handles the final credit assignment problem.

We chose not to include a model of the cerebellum at this stage. Our model reflects the brain 
structure of an infant baby who can make clumsy reaching movements. At birth the cerebellum is 
incomplete and presumably not functional. It requires structured input from spinal cord and cortex to 
establish correct synaptic connections during postnatal development and will contribute to smooth 
reaching movements at a later age.

Encompassing function, learning, and experimental phenomena in a single simple model is a prom-
ising start towards a more integrated computational neuroscience. We consider that such models 
have the potential to steer complex large-scale models so they can also achieve learning and func-
tionality from scratch.

Methods
Simulations were run in the Draculab simulator (Verduzco-Flores and De Schutter, 2019). All the 
parameters from the equations in this paper are presented in the Appendix. Parameters not shown 
can be obtained from Python dictionaries in the source code. This code can be downloaded from: 
https://gitlab.com/sergio.verduzco/public_materials/-/tree/master/adaptive_plasticity.

Unit equations
With the exception of the ‍A‍ and ‍SP‍ populations, the activity ui of any unit in Figure 1 has dynamics:

	﻿‍ τuu̇i = σ(I) − ui,‍� (5)

	﻿‍
σ(I) = 1

1 + exp(β(I − η))
,
‍�

(6)

where ‍τ ‍ is a time constant, ‍β‍ is the slope of the sigmoidal function, ‍η‍ is its threshold, and 

‍I =
∑

j ωijuj(t −∆tj)‍ is the sum of delayed inputs times their synaptic weights.
Units in the ‍CE, CI ‍ populations (in the spinal learning model) or in ‍M ‍ (in the cortical learning model) 

had an additional noise term, which turned Equation 5 into this Langevin equation:

	﻿‍
dui(t) = 1

τu

(
σ(I) − ui(t)

)
+ ςdW(t),

‍�
(7)

where ‍W(t)‍ is a Wiener process with unit variance, and ‍ς ‍ is a parameter to control the noise amplitude. 
This equation was solved using the Euler-Maruyama method. All other unit equations were integrated 
using the forward Euler method. The equations for the plant and the muscles were integrated with 
SciPy’s (https://scipy.org/) explicit Runge-Kutta 5(4) method.

Units in the ‍A‍ population use a rectified logarithm activation function, leading to these dynamics 
for their activity:

	﻿‍ τaȧ = log([1 + I − T]+) − a,‍� (8)

where ‍τa‍ is a time constant, ‍I ‍ is the scaled sum of inputs, ‍T ‍ is a threshold, and ‍[x]+ = max(x, 0)‍ is the 
"positive part" function.

Learning rules
The learning rule for the connections from ‍M ‍ to ‍CE, CI ‍ units in the spinal learning model was first 
described in Verduzco-Flores et al., 2022. It has an equation:

https://doi.org/10.7554/eLife.77216
https://gitlab.com/sergio.verduzco/public_materials/-/tree/master/adaptive_plasticity
https://scipy.org/
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	﻿‍
ω̇ij(t) = −

(
ëj(t) − ⟨ë(t)⟩

)(
ċi(t −∆t) − ⟨ċ(t −∆t)⟩

)
.
‍� (9)

In this equation, ‍ej(t)‍ represents the activity of the ‍j‍-th unit in ‍M ‍ at time ‍t‍, and ‍̈ej(t)‍ is its second deriv-
ative. Angle brackets denote averages, so that ‍⟨ë⟩ ≡

1
NM

∑
k ëk‍, where ‍NM‍ is the number of ‍M ‍ units. 

‍̇ci(t)‍ is the derivative of the activity for the postsynaptic unit, and ‍∆t‍ is a time delay ensuring that the 
rule captures the proper temporal causality. In the Supplementary Discussion of the Appendix we 
elaborate on how such a learning rule could be present in the spinal cord.

The learning rule in 9 was also fitted with soft weight-bounding to prevent connections from 
changing sign, and multiplicative normalization was used to control the magnitude of the weights by 
ensuring two requirements: (1) all weights from projections of the same ‍M ‍ unit should add to ‍wsa‍, (2) 
all weights ending at the same ‍C‍ unit should add to ‍wsb‍. With this, the learning rule adopted the form:

	﻿‍
ω̇ij = −αωij

(
−∆ + λ

[
(0.5(ζsa + ζsb) − 1)

] )
,
‍� (10)

In this equation ‍α‍ is a constant learning rate, ‍∆‍ is the right-hand side expression of Equation 9, and ‍λ‍ 
is a scalar parameter. The value ‍ζsa‍ is ‍wsa‍ divided by the sum of outgoing weights from the ‍j‍-th ‍M ‍ unit, 
and ‍ζsb‍ is ‍wsb‍ divided by the sum of incoming ‍M ‍ weights on ci. This type of normalization is meant to 
reflect the competition for resources among synapses, both at the presynaptic and postsynaptic level.

The synapses in the connections from ‍A‍ to ‍M ‍ and from ‍A‍ to ‍C‍ used the input correlation rule (Porr 
and Wörgötter, 2006):

	﻿‍ ẇ = αICwIAİPA,‍� (11)

where ‍IA‍ is the scaled sum of inputs from the ‍A‍ population, ‍αIC‍ is the learning rate, ‍IPA‍ is the scaled 
sum of inputs from ‍SPA‍ or ‍M ‍, and ‍̇IPA‍ is its derivative. Unlike the original input correlation rule, this 
rule uses soft weight bounding to avoid weights changing signs. Moreover, the sum of the weights 
was kept close to a ‍ωs‍ value. In practice this meant dividing the each individual ‍w‍ value by the sum of 
weights from ‍A‍-to-‍M ‍ (or ‍A‍-to-‍C‍) connections, and multiplying times ‍ωs‍ at each update. In addition, 
weight clipping was used to keep individual weights below a value ‍ωmax‍.

The learning rule in the cortical learning model was the same, but the presynaptic units were in ‍SPA‍, 
and the postsynaptic units in ‍M ‍.

Exploratory mechanism
Without any additional mechanisms the model risked getting stuck in a fixed arm position before it 
could learn. We included two mechanisms to permit exploration in the system. We describe these two 
mechanisms as they were applied to the spinal learning model and its two variations. The description 
below also applies to the case of the cortical learning model, with the ‍M ‍ units (instead of the ‍C‍ units) 
receiving the noise and extra connections.

The first exploratory mechanism consists of intrinsic noise in the ‍CE‍ and ‍CI ‍ interneurons, which 
causes low-amplitude oscillations in the arm. We have observed that intrinsic oscillations in the ‍CE, CI ‍ 
units are also effective to allow learning (data not shown), but the option of intrinsic noise permits 
the use of simple sigmoidal units in ‍C‍, and contributes to the discussion regarding the role of noise 
in neural computation.

The second mechanism for exploration consists of an additional unit, called ‍ACT ‍. This unit acted 
similarly to a leaky integrator of the total activity in ‍SPA‍, reflecting the total error. If the leaky integral of 
the ‍SPA‍ activity crossed a threshold, then ‍ACT ‍ would send a signal to all the ‍CE‍ and ‍CI ‍ units, causing 
adaptation. The adaptation consisted of an inhibitory current that grew depending on the accumu-
lated previous activity.

To model this, ‍CE‍ and ‍CI ‍ units received an extra input ‍Iadapt‍. When the input from the ‍ACT ‍ unit 
was larger than 0.8, and ‍Iadapt < 0.2‍, the value of ‍Iadapt‍ would be set to ‍(u

slow
i )2

‍. This is the square of a 
low-passed filtered version of ui. More explicitly,

	﻿‍ τslowu̇slow
i = ui − uslow

i .‍� (12)

If the input from ‍ACT ‍ was smaller than 0.8, or ‍Iadapt‍ became larger than 0.2, then ‍Iadapt‍ would decay 
towards zero:

https://doi.org/10.7554/eLife.77216
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	﻿‍ τslowİadapt = −Iadapt.‍� (13)

With this mechanism, if the arm got stuck then error would accumulate, leading to adaptation in the 
spinal interneurons. This would cause the most active interneurons to receive the most inhibition, 
shifting the ‘dominant’ activities, and producing larger amplitude exploratory oscillations.

When a new target is presented, ‍ACT ‍ must reset its own activity back to a low value. Given our 
requirement to fully implement the controller using neural elements, we needed a way to detect 
changes in ‍SP‍. A unit denominated ‍CHG‍ can detect these changes using synapses that react to the 
derivative of the activity in ‍SP‍ units. ‍CHG‍ was connected to ‍ACT ‍ in order to reset its activity.

More precisely, when inputs from ‍CHG‍ were larger than 0.1, the activity of ‍ACT ‍ had dynamics:

	﻿‍ ȧ(t) = −40a(t).‍� (14)

Otherwise it had these dynamics:

	﻿‍ ȧ(t) = a(t)
(
σ(I) − θACT

)
, if σ(I) < θACT,‍� (15)

	﻿‍ τACTȧ(t) =
(
σ(I) − θACT

)[
1 − a(t) + γσ̇(I)

]
, otherwise.‍� (16)

As before, ‍σ(·)‍ is a sigmoidal function, and ‍I ‍ is the scaled sum of inputs other than ‍CHG‍. When ‍σ(I)‍ is 
smaller than a threshold ‍θACT ‍ the value of ‍a‍ actually decreases, as this error is deemed small enough. 
When ‍σ(I) > θACT ‍ the activity increases, but the rate of increase is modulated by a rate of increase 

‍̇σ(I) ≡ σ(I) − σ(̃I)‍, where ‍̃I ‍ is a low-pass filtered version of ‍I ‍ is a constant parameter.
‍CHG‍ was a standard sigmoidal unit receiving inputs from ‍SP‍, with each synaptic weight obeying 

this equation:

	﻿‍ ωj(t) = α|ṡj(t)| − ωj(t),‍� (17)

where sj represents the synapse’s presynaptic input.

Plant, muscles, afferents
The planar arm was modeled as a compound double pendulum, where both the arm and forearm 
were cylinders with 1 kg. of mass. No gravity was present, and a moderate amount of viscous friction 
was added at each joint (3 ‍

N m s
rad ‍). The derivation and validation of the double pendulum’s equations 

can be consulted in a Jupyter notebook included with Draculab’s source code (in the tests folder).
The muscles used a standard Hill-type model, as described in Shadmehr and Wise, 2005, Pg. 99. 

The muscle’s tension ‍T ‍ obeys:

	﻿‍
Ṫ = KSE

b

[
g · I + KPE∆x + bẋ −

(
1 + KPE

KSE

)
T
]

,
‍�

(18)

where ‍I ‍ is the input, ‍g‍ an input gain, ‍KPE‍ the parallel elasticity constant, ‍KSE‍ the series elasticity 
constant, ‍b‍ is the damping constant for the parallel element, ‍x‍ is the length of the muscle, and 

‍∆x = x − x∗1 − x∗2‍. In here, ‍x
∗
1‍ is the resting length of the series element, whereas ‍x

∗
2‍ is the resting length 

of the parallel element. All resting lengths were calculated from the steady state when the hand was 
located at coordinates (0.3, 0.3).

We created a model of the Ia and II afferents using simple structural elements. This model includes, 
for each muscle one dynamic nuclear bag fiber, and one static bag fiber. Both of these fibers use the 
same tension equation as the muscle, but with different parameters. For the static bag fiber:

	﻿‍
Ṫs =

Ks
SE

bs

[
Ks

PE∆x + bsẋ −
(

1 + Ks
PE

Ks
SE

)
Ts
]

.
‍�

(19)

The dynamic bag fiber uses the same equation, with the ‍s‍ superscript replaced by ‍d‍. No inputs were 
applied to the static or dynamic bag fibers, so they were removed from these equations. The rest 
lengths of the static and dynamic bag fibers where those of their corresponding muscles times factors 

‍l
s
0, ld0‍, respectively.

The Ia afferent output is proportional to a linear combination of the lengths for the serial elements 
in both dynamic and static bag fibers. The II output has two components, one proportional to the 

https://doi.org/10.7554/eLife.77216
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length of the serial element, and one approximately proportional to the length of the parallel element, 
both in the static bag fiber. In practice this was implemented through the following equations:

	﻿‍
Ia = gIa

[(
fIa
s

Ks
SE

)
Ts +

(
1 − fIa

s
Kd

SE

)
Td

]
,
‍�

(20)

	﻿‍
II = gII

[(
fIIs

Ks
SE

)
Ts +

(
1 − fIIs
Ks

PE

)(
Ts − bsẋ

)]
.
‍�

(21)

In here, ‍gIa‍ and ‍gII ‍ are gain factors. ‍f
Ia
s ‍ and ‍fIIs ‍ are constants determining the fraction of ‍Ia‍ and ‍II ‍ 

output that comes from the serial element.
The model of the Golgi tendon organ producing the Ib outputs was taken from Lin and Crago, 

2002. First, a rectified tension was obtained as:

	﻿‍ r = gIb log(T+/T0 + 1).‍� (22)

‍gIb‍ is a gain factor, T0 is a constant that can further alter the slope of the tension, and ‍T+ = max(T, 0)‍ is 
the tension, half-rectified. The ‍Ib‍ afferent output followed dynamics:

	﻿‍ τIb İb = r − Ib.‍� (23)

Static connections
In all cases, the connections to ‍SA‍ used one-to-one connectivity with the ‍A‍ units driven by the II affer-
ents, whereas connections from ‍A‍ to ‍M ‍ and ‍C‍ used all-to-all projections from the units driven by the 
Ia and Ib afferents. Projections from ‍SA‍ to ‍SPA‍ used one-to-one excitatory connections to the first 6 
units, and inhibitory projections to the next six units. Projections from ‍SP‍ to ‍SPA‍ used the opposite 
sign from this.

Connections from ‍SPA‍ to ‍M ‍ were one-to-one, so the ‍j‍-th unit in ‍SPA‍ only sent a projection to unit ‍j‍ 
in ‍M ‍. A variation of this connectivity is presented in the Appendix (See Variations of the spinal learning 
model).

We now explain how we adjusted the synaptic weights of the static network. To understand the 
projections from ‍M ‍ to ‍C‍ and to the alpha motoneurons it is useful to remember that each ‍CE, CI,α‍ trio 
is associated with one muscle, and the ‍M ‍ units also control the error of a single muscle. This error indi-
cates that the muscle is longer than desired. Thus, the ‍M ‍ unit associated with muscle ‍i‍ sent excitatory 
projections to the ‍CE‍ and ‍α‍ units associated with muscle ‍i‍, and to the ‍CI ‍ units of the antagonists of 
‍i‍. Additionally, weaker projections were sent to the ‍CE,α‍ units of muscle ‍i‍’s agonists. Notice that only 
excitatory connections were used.

The reverse logic was used to set the connections from ‍A‍ to ‍C‍ and ‍M ‍. If muscle ‍i‍ is tensing or 
elongating, this can predict an increase in the error for its antagonists, which is the kind of signal that 
the input correlation rule is meant to detect. Therefore, the ‍Ib‍ afferent (signaling tension) of muscle ‍i‍ 
sent an excitatory signal to the ‍CI ‍ unit associated with muscle ‍i‍, and to the ‍CE,α‍ units associated with 
‍i‍’s antagonists. Moreover, this ‍Ib‍ afferent also sent an excitatory projection to the dual of the ‍M ‍ unit 
associated with muscle ‍i‍. Connections from ‍Ia‍ afferents (roughly signaling elongation speed) followed 
the same pattern, but with slightly smaller connection strengths.

Rotational dynamics
We explain the method to project the activity of ‍M ‍ onto the jPCA plane. For all units in ‍M ‍ we consid-
ered the activity during a 0.5 s sample beginning 50 ms after the target onset. Unlike (Churchland 
et  al., 2012), we did not apply PCA preprocessing, since we only have 12 units in ‍M ‍. Let ‍mi,j,k,t‍ 
be the activity at time ‍t‍ of the unit ‍i‍ in ‍M ‍, when reaching at target ‍j‍ for the ‍k‍-th repetition. By 

‍mi,j,⟨k⟩,t‍ we denote the average over all repeated reaches to the same target, and by ‍mi,⟨j⟩,⟨k⟩,t‍ we 
indicate averaging over both targets and repetitions. The normalized average trace per condition is 
defined as: ‍mi,j(t) ≡ mi,j,⟨k⟩,t − mi,⟨j⟩,⟨k⟩,t‍. Let ‍I ‍ stand for the number of units in ‍M ‍, ‍T ‍ for the number 
of time points, and ‍J ‍ for the number of targets. Following (Churchland et al., 2012), we unroll the 
set of ‍mi,j(t)‍ values into a matrix ‍X ∈ RJT×I ‍, so we may represent the data through a matrix ‍M ‍ that 
provides the least-squares solution to the problem ‍Ẋ = XM ‍. This solution comes from the equation 

‍̂M = (XTX)−1XTẊ ‍. Furthermore, this matrix can be decomposed into symmetric and anti-symmetric 

https://doi.org/10.7554/eLife.77216
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components ‍Msymm = (M̂ + M̂T)/2, Mskew = (M̂ − M̂T)/2‍. The jPCA plane comes from the complex conju-
gate eigenvalues of ‍Mskew‍.

In practice, our source code follows the detailed explanation provided in the Supplementary Infor-
mation of Churchland et al., 2012, which reformulates this matrix problem as a vector problem.

Parameter search
We kept all parameter values in a range where they still made biological sense. Parameter values 
that were not constrained by biological data were adjusted using a genetic algorithm, and particle 
swarm optimization (PSO). We used a separate optimization run for each one of the configurations, 
consisting of roughly 30 iterations of the genetic and PSO algorithms, with populations sizes of 90 and 
45 individuals respectively. After this we manually adjusted the gain of the control loop by increasing 
or decreasing the slope of the sigmoidal units in the ‍M ‍ and ‍SA‍ populations. This is further described 
in the Appendix (Gain and oscillations section).

The parameters used can affect the results in the paper. We chose parameters that minimized 
either the error during the second half of the learning phase, or the error during center-out reaching. 
Both of these measures are agnostic to the other results.

Preferred direction vectors
Next we describe how PD vectors were obtained for the ‍M ‍ units.

Let ‍mjk‍ denote the firing rate of the ‍j‍-th ‍M ‍ unit when reaching for the ‍k‍-th target, averaged over 
4 s, and across reaches to the same target. We created a function ‍hj : R2 → R‍ that mapped the X,Y 
coordinates of each target to its corresponding ‍mjk‍ value, but in the domain of hj the coordinates were 
shifted so the center location was at the origin.

Next we approximated hj with a plane, using the least squares method, and obtained a unit vector 
uj normal to that plane, starting at the intersection of the ‍z‍-axis and the plane, and pointing towards 
the XY plane. The PD vector was defined as the projection of uj on the XY plane.

In order to predict the PD vectors, we first obtained for each muscle the ‘direction of maximum 
contraction’, verbally described in panel B of Figure 5. More formally, let ‍lik‍ denote the length of the 
‍i‍-th muscle when the hand is at target ‍k‍, and let ‍l

0
i ‍ denote its length when the hand is at the center 

location. With ‍̄rk‍ we denote the unit vector with base at the center location, pointing in the direc-
tion of the ‍k‍-th target. The direction of maximum length change for the ‍i‍-th muscle comes from the 
following vector sum:

	﻿‍
v̄i =

8∑
k=1

[
l0i − lik

l0i

]

+

r̄k,
‍�

(24)

where ‍[x]+ = max(x, 0)‍.
For the ‍j‍-th unit in ‍M ‍, its predicted PD vector comes from a linear combination of the ‍̄vi‍ vectors. 

Let the input to this unit be ‍
∑

i wjiei‍, where ei is the output of the ‍i‍-th SPF unit (representing the error 
in the ‍i‍-th muscle). The predicted PD vector is:

	﻿‍
d̄j =

5∑
i=0

wjiv̄i
‍�

(25)

To obtain the main axis of the PD distribution, the ‍i‍-th PD vector was obtained in the polar form ‍(ri, θi)‍, 
with ‍θ ∈ [−π,π]‍. We reflected vectors in the lower half using the rule: ‍θ

∗
i = θi + π‍ if ‍θi < 0, θ∗i = θi‍ other-

wise. The angle of the main axis was the angle of the average PD vector using these modified angles: 

‍
θmain = arctan

(∑
i ri sin θ∗

i∑
i ri cos θ∗

i

)
‍
.

Statistical tests
To find whether ‍M ‍ units were significantly tuned to the reach direction we used a bootstrap proce-
dure. For each unit we obtained the length of its PD vector 10,000 times when the identity of the 
target for each reach was randomly shuffled. We considered there was significant tuning when the 
length of the true PD vector was longer than 99.9% of these random samples.

https://doi.org/10.7554/eLife.77216
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To obtain the coefficient of determination for the predicted PD angles, let ‍θ
j
true‍ denote the angle 

of the true PD for the ‍j‍-th ‍M ‍ unit, and ‍θ
j
pred‍ be the angle of its predicted PD. We obtained residuals 

for the angles as ‍ϵj = θ
j
true − θ

j
pred‍, where this difference is actually the angle of the smallest rotation 

that turns one angle into the other. Each residual was then scaled by the norm of its corresponding PD 
vector, to account for the fact that these were not homogeneous. Denoting these scaled residuals as 

‍ϵ
∗
j ‍ the residual sum of squares is ‍SSres =

∑
j(ϵ

∗
j )2

‍. The total sum of squares was: ‍SStot =
∑

j(θ
j
true − θ̄true)2

‍, 

where ‍̄θtrue‍ is the mean of the ‍θ
j
true‍ angles. The coefficient of determination comes from the usual 

formula ‍R
2 = 1 − SSres

SStot ‍.
To assess bimodality of the PD distribution we used a version of the Rayleigh statistic adapted to 

look for bimodal distributions where the two modes are oriented at 180 degrees from each other, 
introduced in Lillicrap and Scott, 2013. This test consists of finding an modified Rayleigh ‍r‍ statistic 
defined as:

	﻿‍

r = 1
N



( N∑

i=1
cos(2ϕi)

)2

+

( N∑
i=1

cos(2ϕi)

)2
 ,

‍�
(26)

where the ‍ϕi‍ angles are the angles for the PDs. A bootstrap procedure is then used, where this ‍r‍ 
statistic is produced 100,000 times by sampling from the uniform distribution on the ‍(0,π)‍ interval. 
The PD distribution was deemed significantly bimodal if its ‍r‍ value was larger than 99.9% of the 
random ‍r‍ values.

We used a bootstrap test to find whether there was statistical significance to the linear addition of 
direction fields. To make this independent of the individual pair of locations stimulated, we obtained 
the direction fields for all 15 possible pairs of locations, and for each pair calculated the mean angle 
difference between ‍D(a + b)‍ and ‍D(a) + D(b)‍ as described in the main text. We next obtained the 
mean of these 15 average angle deviations, to obtain a global average angle deviation ‍γglobal‍.

We then repeated this procedure 400 times when the identities of the stimulation sites ‍a, b‍ were 
shuffled, to obtain 400 global average angle deviations ‍γ

j
global‍. We declared statistical significance if 

‍γglobal‍ was smaller than 99% of the ‍γ
j
global‍ values.
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Appendix 1
Supplementary discussion
Comparison with previous models
There are many other models of reaching and motor control. Most of them have one or more of the 
following limitations:

1.	 They use non-neural systems to produce motor commands.
2.	 They control a single degree of freedom, sidestepping the problem of controller configuration, 

since the error is one-dimensional.
3.	 They do not model a biologically plausible form of synaptic learning.

We will contrast our model with some of the work that does not strongly present these limitations, 
and with a few others. Due to space constraints the contributions of many models will not be 
addressed, and for those mentioned we will limit ourselves to explain some of their limitations.

The model in DeWolf et al., 2016 is similar has similar goals to our model, but with very different 
assumptions. In their model, motor cortex receives a location error vector ‍x‍, and transforms it 
into a vector of joint torques. So that this transformation implements adaptive kinematics, it must 
approximate a Jacobian matrix that includes the effects of the arm’s inertia matrix, using location 
errors and joint velocities as training signals. This is accomplished by adapting an algorithm taken 
from the robotics literature (Cheah et  al., 2006), implementing it in a spiking neural network. 
Additionally a second algorithm from robotics (Sanner and Slotine, 1992) is used to provide an 
adaptive dynamics component, which is interpreted as the cerebellar contributions.

In order to implement vector functions in spiking neural networks, DeWolf et al., 2016 uses the 
Neural Engineering Framework (Bekolay et al., 2014). The essence of this approach is to represent 
values in populations of neurons with cosine-like tuning functions. These populations implement 
expansive recoding, becoming a massively overcomplete basis of the input space. Implementing a 
function using this population as the input is akin to using a linear decoder to extract the desired 
function values from the population activity. This can be done through standard methods, such as 
least-squares minimization, or random gradient descent. The parameters of the linear decoder then 
become weights of a feedforward neural layer implementing the function.

The model in DeWolf et al., 2016 has therefore a rather different approach. They use engineering 
techniques to create a powerful motor control system, using algorithms from robotics, and 30,000 
neurons to approximate their computations, which are then ascribed to sensory, motor, and premotor 
cortices, as well as the cerebellum. In contrast, we use 74 firing rate units, and unlike (DeWolf et al., 
2016) we include muscles, muscle afferents, transmission delays, and a spinal cord.

There is nothing intrinsically wrong with using an engineering approach to try to understand a 
biological function. The crucial part is which model will be experimentally validated. Some differences 
between the models that may be able to separate them experimentally are: (1) In DeWolf et al., 
2016 premotor cortex is required to produce the error signal, whereas we ascribed this to sensory 
cortex. (2) In DeWolf et al., 2016 direct afferent connections to motor cortex are not considered, 
whereas in our model they are important to maintain stability during learning (in the absence of 
a cerebellum). (3) In DeWolf et  al., 2016 spinal cord adaptation is not necessary to implement 
adaptive kinematics. In contrast, spinal cord adaptation is important in one of the interpretations of 
our model.

The model in Dura-Bernal et al., 2015 uses spiking neurons, and a realistic neuromechanical 
model in order to perform 2D reaching. The feedback is in term of muscle lengths, rather than muscle 
afferent signals. There is no mechanism to stop the arm, or hold it on target. Most importantly, 
learning relies on a critic, sending rewarding or punishing signals depending on whether the hand 
was approaching or getting away from the target. This is implicitly reducing the error dimension 
using a hidden mechanism. Furthermore, each single target must be trained individually, and it is not 
discussed how this can lead to a flexible reaching mechanism without suffering from catastrophic 
interference.

The model in Todorov, 2000 is used to obtain characteristics of M1 activity given the required 
muscle forces to produce a movement. It is an open-loop, locally-linear model, where all connections 
from M1 directly stimulate a linear motoneuron. Among other things, it showed that representations 

https://doi.org/10.7554/eLife.77216
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of kinematic parameters can appear when the viscoelastic properties of the muscles are taken into 
account, giving credence to the hypothesis that M1 directly activates muscle groups. Outside of its 
scope are neural implementation, learning, or the role of spinal cord.

Li et al., 2005 proposes a 2-level hierarchical controller for a 2-DOF arm. Since this model is 
based on optimal control theory, it is given a cost function, and proceeds by iteratively approaching 
a solution of the associated Jacobi-Bellman equation. There is no neural implementation of these 
computations, nor a description of learning.

Martin et al., 2009 is not properly a neural model, but it is rooted in Dynamic Field Theory, which 
assumes that the population of neuronal activities encodes "activation variables". For this model 
activation variables represent kinematic parameters as a virtual joint location vector ‍λ(t)‍, which is an 
internal representation of the arm’s configuration.

The innovative part of Martin et  al., 2009 is in describing how ‍λ(t)‍ is updated and used to 
control a redundant manipulator. In particular, the kinematic Jacobian, its null-space matrix, their 
derivatives, and the Moore-Penrose pseudoinverse are all computed analytically in order to obtain 
differential equations where the joint motions that move the end effector decouple from those 
which don’t.

Encapsulating the muscle commands into a virtual joint location whose dynamics are decoupled 
for motions that don’t affect the end-effector location is a very interesting concept. Still, this is far 
from a neural implementation, and learning is not considered.

The model in Caligiore et al., 2014 studies the long-term development of infant reaching using 
a PD controller, and an actor critic mechanism implementing a neural version of TD-learning (Sutton 
and Barto, 2018). The 2-dimensional PD controller receives two desired joint angles (interpreted 
as an equilibrium position), producing appropriate torques. Since it uses the Equilibrium Point 
(EP) Hypothesis (Feldman, 1986), the reaching portion of this model is tantamount to associating 
states with equilibrium positions. This model thus performs at a higher level of analysis. Our model 
could operate at the same level if we added a reinforcement learning component to learn ‍SP‍ values 
allowing the hand to touch a target whose distance is known. (Caligiore et  al., 2014) does not 
consider separate neuronal populations (e.g. spinal cord, sensory cortex), propagation delays, or 
low-level learning.

The model in Izawa et al., 2004 shows how reinforcement learning can be applied to redundant 
actuators, such as biological arms. It is, however, not a neural model.

In Mici et al., 2018, a neural network produces predictions of visual input in order to deal with 
temporal delays in a sensorimotor system. The network used for this study uses non-local learning, 
and adds or destroys nodes as required during its operation. It is thus not biologically-plausible.

Tsianos et al., 2014 is a reaching model that also considers the spinal cord as a highly-configurable 
controller. Corticospinal inputs are assumed to be step commands, which means that motor cortex 
operates in an open-loop configuration. In order to produce reaching based on these constant 
commands, a biologically-implausible gradient descent mechanism is required, where the same 
reach is performed for various values of a synaptic weight, keeping the value that led to the best 
performance. Furthermore, the model learns to reach one target at a time, which would require 
learning anew when the new target is more than 45 degrees apart.

As mentioned in the main text, in the context of rotational dynamics, the model in Sussillo et al., 
2015 was used to produce desired muscle forces using a recurrent neural network. This model 
uses the FORCE algorithm (Sussillo and Abbott, 2009) to adjust the weights of a neural network 
with activity vector ‍r(t)‍ so it can produce experimentally observed muscle activity ‍m(t)‍. Oscillatory 
dynamics arise when the model is constrained to be simple.

Although very insightful, this model is limited by the fact that Equations 2 and 3 represent an 
open-loop configuration, where only the M1 dynamics are considered. In essence, the model is 
doing a function approximation with the FORCE algorithm. The question of how the training data 

‍m(t)‍ is produced is not addressed, nor is the role of spinal cord or sensory cortex (but see their 
Supplementary Figure 1).

Other than the aforementioned model in Tsianos et al., 2014, we are unaware of spinal cord 
models addressing arm reaching. When these models are coupled with a musculoskeletal system, 
it is usually for the control of one degree of freedom using antagonistic neural populations. We 
mention some examples next.

https://doi.org/10.7554/eLife.77216
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The spinal cord model in Bashor, 1998 inspired much of the subsequent work, organizing the 
spinal circuit into six pairs of populations controlling two antagonistic muscle groups at one joint. 
With this model, the effect of Ia and Ib afferent input was studied in various neuronal populations.

Stienen et al., 2007 used a model similar to that in Bashor, 1998 in conjunction with a one DOF 
musculoskeletal model to study the effect of Ia afferents in the modulation of reflexes. Cutsuridis, 
2007 also adapted a similar model, and used it to inquire whether Parkinsonian rigidity arose from 
alterations in reciprocal inhibition mediated by reduced dopamine.

The model in Cisi and Kohn, 2008 has several features not found in Bashor, 1998, including a 
heterogeneous motoneuron population, and a mechanism to generate electromyograms. This was 
used to study the generation of the H-reflex, and response properties of the motor neuron pool 
(Farina et al., 2014).

The model in Shevtsova et  al., 2015 goes beyond models such as Bashor, 1998 by using 
populations of genetically-identified interneurons. This model is used to study rhythm generating 
abilities of the spinal circuit, as well as coordination between flexors and extensors (Shevtsova 
and Rybak, 2016; Danner et  al., 2017). Knowledge regarding the role of genetically identified 
spinal interneurons in movement generation is still evolving (Zelenin et al., 2021; Stachowski and 
Dougherty, 2021, e.g.).

This paper focuses on mammals, but the spinal cord of simpler organisms is better characterized 
(Borisyuk et al., 2011; Cangiano and Grillner, 2005, e.g.), and may lead to the first realistic models 
producing ethological behavior.

Possible implementations of the learning rule
The learning rule in Equation 9 is a Hebbian rule that also presents derivatives, heterosynaptic 
competition, and normalization (e.g. removing the mean) of its terms. None of these is new in a 
model claiming biological plausibility (Porr and Wörgötter, 2006; Zappacosta et al., 2018; Fiete 
et al., 2010; Kaleb et al., 2021, e.g.). We nevertheless mention possible ways for derivatives and 
normalized terms to appear.

Formally, the time derivative of a function ‍f : R → R‍ evaluated at time ‍t‍ is the limit ‍
f(t+∆t)−f(t)

∆t ‍ as 
‍∆t → 0‍. If ‍f ‍ represents the firing rate of a cell, a measure of change roughly proportional to the 
derivative can come from ‍f(t) − f(t −∆t)‍ for some small value ‍∆t‍. The most obvious way that such 
a difference may arise is through feedforward inhibition (for the ej signal), and feedback inhibition 
(for the ci signal). Feedforward and feedback inhibition are common motifs in spinal circuits (Pierrot-
Deseilligny and Burke, 2005).

A somewhat different way to approach a time derivative is by using two low-pass filters with 
different time constants:

	﻿‍
df
dt

≈ ffast(t) − fslow(t),
‍�

where

	﻿‍ τ1 ḟfast(t) = f(t) − ffast(t), τ2 ḟslow(t) = f(t) − fslow(t), τ2 ≫ τ1.‍�

These principles are illustrated in Lim and Goldman, 2013, where they are used to explain 
negative-derivative feedback.

Low-pass filtering can also arise in the biochemical cascades following synaptic depolarization. 
The most salient case is intracellular calcium concentration, which has been described as an indicator 
of firing rate with leaky integrator dynamics (Helmchen, 1999). Although the physiology of spinal 
interneurons has not been characterized with sufficient detail to make specific hypotheses, it is 
clearly possible that feedback inhibition and low-pass filtering are enough to approximate a second-
order derivative.

The ‍ej, ci‍ terms in our learning rule are mean-centered. The most straightforward way to subtract 
a mean is to have inhibitory units with converging inputs (e.g. receiving all the ej signals) providing 
input to the ci units. The Ib interneurons (Pierrot-Deseilligny and Burke, 2005) are one possibility 
for mediating this. Another possibility is that the mean-subtraction happens at the single unit level 
when the input (ej) and lateral (ci) connections are located at different parts of the dendritic tree. 
In particular, a larger level of overall input activation ‍⟨ë⟩‍ could produce a scarcity of postsynaptic 

https://doi.org/10.7554/eLife.77216
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resources flowing from the main branches of the dendritic tree into the individual dendritic spines, 
resulting in reduced plasticity.

Limitations of the model
A model as simple as ours will undoubtedly be wrong in many details. The main simplifying 
assumptions of our model are:

•	 Firing rate encoding. Each unit in this model captures the mean-field activity of a neuronal 
population. This may occlude computations depending on spike timing, as well as fine-grained 
computations at the neuronal and dendritic level.

•	 Trivial sensory cortex. We assumed that sensory cortex conveyed errors directly based on 
static gamma afferent activity. Sensory cortex may instead build complex representations of 
afferent activity. It would be interesting to test how the requirement of controllability could 
guide learning of these representations.

•	 No visual information. Should a visual error be available, it could be treated by ‍M ‍ in a 
similar way to somatosensory errors. If the visual error holds a monotonic relation with the 
afferent signals, then it should be possible to adjust the long-loop reflex in order to reduce 
it. When the relation between the visual error and the afferent signals is not monotonic 
(e.g. in some context the afferent signals correlate positively, and in other negatively), an 
alternative approach involving reinforcement learning can be pursued (Verduzco-Flores 
et al., 2022).

•	 Very gross anatomical detail. The detailed anatomical organization of cortex and spinal cord 
is not considered. Moreover, the proportions for different types of cells are not considered.

•	 Errors must be monotonic. Muscle activation may not monotonically reduce visual errors. 
Moreover, the haptic perception of contact is dependent on the environment, so it would not 
make an appropriate error signal.

•	 No cerebellum, basal ganglia, brainstem, or premotor cortex.

Each of these omissions is also a possible route for improving the model. We aim to grow a more 
sophisticated model, but each new component must integrate with the rest, improve functionality 
and agree with biological literature.

A final limitation concerns proofs of convergence. Many factors complicate them for this model: 
transmission delays, noise, synaptic learning, fully neural implementation, as well as complex muscle 
and afferent models. We tested our results for many initial conditions, but this of course is no 
guarantee.

50 years ago Marr’s model of the cerebellum became a stepping stone to further theoretical and 
experimental progress, despite all its shortcomings (Kawato et al., 2021). We aspire our model to 
be the next step towards a complete model of motor control.

Variations of the spinal learning model
The main text mentions two variations of the spinal learning network that emphasize the robustness 
and potential of the learning mechanism. We will explain the rationale behind those two variations.

There is evidence for interneurons that drive a set of muscles, possibly setting the circuit 
foundation for motor synergies (Giszter, 2015; Levine et al., 2014; Bizzi and Cheung, 2013). 
To explore whether our ideas were compatible with interneurons activating multiple muscles, we 
explored whether reaching can be learned when the ‍CE ‍ and ‍CI ‍ units send projections to more 
than one motoneuron. To achieve this we modified the architecture of Figure 1 so that for every 
combination of two different muscles there was a pair of ‍CE, CI ‍ units that stimulated both of 
them.

As illustrated in the Appendix 1—figure 1, from the set of 6 muscles there are 15 combinations 
of 2 muscles, but 3 of them consist of antagonist pairs. Removing these we are left with 12 pairs of 
muscles, and for each muscle pair we had a Wilson-Cowan-like ‍CE, CI ‍ pair sending projections to the 
alpha motoneurons of both muscles. Furthermore, for each pair of muscles, there is another pair that 
contains both their antagonists, and we can use this fact to generalize the concept of antagonists 
when interneurons project to several motoneurons. The ‍CE‍ units sent projections to the ‍CI ‍ units 
of their antagonists. This organization allowed us to maintain the balance between excitation and 
inhibition in the network, along with the connectivity motifs used previously.

https://doi.org/10.7554/eLife.77216
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Appendix 1—figure 1. Modified architecture of the ‍C‍ population. Each pair of ‍CE, CI ‍ units projects to two 
‍α‍ motoneurons (top). There are 15 possible pairs of muscles, corresponding to the blue lines for each arm in 
the figure. Three of the pairs (marked with red crosses) contain antagonist muscles, and are not included. The 
remaining 12 pairs can be arranged into 2 groups of 6 units each. The units in the group marked with green circles 
are the antagonists of the units with the same number, marked with pink circles.

Because this model could be considered a proof-of-concept for the compatibility of our learning 
mechanisms with this particular type of synergies, we refer to this model as the “synergistic” network.

To introduce the second variation of the spinal learning network, we may notice that in all 
configurations so far the projections from ‍SPA‍ to ‍M ‍ use one-to-one connectivity (each ‍M ‍ unit controls 
the length error of one muscle). Interestingly, this is not necessary. In a second variation of the spinal 
learning network, dubbed the “mixed errors” network, each unit in ‍M ‍ can be driven by a linear 
combination of ‍SPA‍ errors.

To ensure that the information about the ‍SPA‍ activity was transmitted to ‍M ‍, we based our ‍SPA‍ to 
‍M ‍ connections on the following 6-dimensional orthogonal matrix:

https://doi.org/10.7554/eLife.77216
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	﻿‍

R=




1 1 1 1 1 1

1 1 1 −1 −1 −1

1 −2 1 −1 2 −1

−1 −1 2 2 −1 −1

−1 1 0 0 1 −1

−1 0 1 −1 0 1




.

‍�

(A1)

The rows of this matrix form an orthogonal basis in ‍R6‍, and normalizing each row we obtain a matrix 
‍R∗‍ whose rows form an orthonormal basis. Connections from the 12 ‍SPA‍ units to the 12 ‍M ‍ units used 
this 12 × 12 matrix:

	﻿‍


 R∗ −R∗

−R∗ R∗


.

‍�
(A2)

The one-to-one connections from ‍SPA‍ to ‍M ‍ used in our models are unrealistic, but the mixed errors 
network shows that this simplification can be overcome, since all the results of the paper also apply 
to this variation.

All numerical tests applied to the 3 configurations in the main text of the paper were also applied 
to the two variations of the spinal learning model. Results can be seen in this Appendix, in the 
Comparison of the 5 configurations. Figure 2—figure supplements 3 and 4 illustrate the training 
phase for the synergistic and mixed error networks.

We also tested whether the stimulation of an isolated spinal cord produced convergent direction 
fields in the synergistic network, as was done in the main text for the spinal network ‍C‍ common to 
the other four configurations. We found that the mean angle difference ‍γa,b‍ between the direction 
fields ‍D(a + b)‍ and ‍D(a) + D(b)‍, averaged over the 144 possible ‍(a, b)‍ pairs, was 19.8 degrees.

Randomly choosing pairs ‍(a, b)‍ and ‍(c, d)‍ for the stimulation locations lead to a ‍γa,b‍ angle 
of 72.3 degrees. As before, a bootstrap test showed that this ‍γa,b‍ value is significantly different 
(‍p < 0.0001‍). Removing the resting field does not alter this result. Moreover, we found no evidence 
for supralinear summation of force fields in the synergistic network.

The model fails when elements are removed
Due to the larger number of tests, we only used 5 trials for each configuration in this section. The p 
values reported in this section come from the one-sided t-test. For brevity, the different configurations 
of the model will be denoted by numbers in the rest of this Appendix: 1=spinal learning, 2=cortical 
learning, 3=static network, 4=synergistic network, 5=mixed errors network.

A model with fully random connectivity and no plasticity has an exceedingly low probability of 
having an input-output structure leading it to reduce errors. The configurations of the model with 
plasticity (configurations 1,2,4,5), however, only have random connections at one of the projections 
in the sensorimotor loop (either from ‍M ‍ to ‍C‍, or from ‍SPA‍ to ‍M ‍). This may increase the chance of 
randomly obtaining a good input-output structure, which could throw the usefulness of the learning 
rules into question.

Removing both types of plasticity in configurations 1,2,4,5 impaired reaching in all 5 tests for 
each configuration, as reflected by the inability to reduce the average error below 10 centimeters in 
any of the last 4 reaches of the learning phase. This was also true when removing only the plasticity 
in the connections from ‍M ‍ to ‍C‍ (configurations 1, 4, 5) or from ‍SPA‍ to ‍M ‍ (configuration 2). In each 
one of the plastic configurations (1,2,4,5) the average error for the last 4 training targets was 

‍(22 ± 10|22 ± 4|24 ± 9|22 ± 5)‍ centimeters, which was significantly higher than the case with normal 
plasticity (‍p < 0.001‍ for configurations 2,4,5, ‍p = 0.028‍ for configuration 1, where the failed trials were 
not discarded).

Removing plasticity in the connections from ‍A‍ to ‍C‍ or from ‍A‍ to ‍M ‍ individually had for the 
most part no statistically significant effects. Removing plasticity in both connections simultaneously, 
however, roughly duplicated the error in configurations 2 and 4 during center-out reaching (one-
sided t-test, ‍p < 0.001‍). Error may be slightly increased for configuration 1 (the small sample size 
allowed no strong conclusions), whereas configuration 5 was seemingly unaffected.

https://doi.org/10.7554/eLife.77216
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Configurations (1,2,4,5) could still learn to reach after removing the ‍ACT ‍ unit. Configuration 4 
roughly duplicated its center-out reaching error (‍p < 0.001‍) and its time to initially reach (‍p = .016‍). 
Configuration 1 increased its time to initially reach about 3 times (‍p < 0.001‍), and the other two 
configurations were seemingly unaffected. The ‍ACT ‍ unit was essential for previous, less robust 
versions of the model.

Removing noise made learning too slow, to the point where mean error in the last 4 training 
reaches could not be reduced below 10 cm in any trial for configurations 4, and 5. It was reduced 
below 10 cm in a single trial for configuration 2. Configuration 1 managed t learn normally. Center-
out reaches were not possible in configurations 2, 4, and 5 with mean errors of ‍(15 ± 8|17 ± 11|9 ± 3)‍ 
centimeters respectively, at least 3 times larger than the models with noise (‍p < 0.001‍). Center-out 
reaches were normal in configuration 1, but the first reach with mean error below 10 centimeters 
took significantly longer to happen (from 2.5 to 6.4 attempts in average, ‍p = 0.001‍).

Removing Ia and Ib afferents, and instead sending the output of II afferents to ‍C‍, ‍M ‍, and ‍SA‍ 
prevented reaching in configurations 1, 2, 3, and 4 (except for a single trial in configuration 1). 
Configuration 5 could still learn to reach, but the mean error in the last 4 training reaches and during 
the center-out reaching was significantly higher (‍p < 0.001‍).

Removing the agonist-antagonist connections in ‍C‍ prevented reaching in (5| 0| 0| 3| 2) trials for 
configurations (1,2,3,4,5) respectively. Error in center-out reaching was significantly increased for 
configurations 4 and 5, and it did not increase significantly for configurations 2 and 3.

Appendix 1—figure 2 is the same as Figure 2 of the main text, but in this case the noise and the 
ACT units were both removed. The average distance from the hand to the target was roughly 18 cm. 
A video illustrating this failure to learn is included with the supplementary videos.

https://doi.org/10.7554/eLife.77216
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Appendix 1—figure 2. A failure to learn for a simulation of configuration 1 (spinal learning) with no noise and no 
ACT unit. Captions are as in Figure 2 of the main text.

Configuration 1 was resilient to removal of noise and the ACT unit individually. The simulation of 
Appendix 1—figure 2 suggests that removing more than one element will have larger consequences 
on the performance of the model.

Comparison of the 5 configurations
Once again, the 5 configurations in this paper are represented by a number: 1=spinal learning, 
2=cortical learning, 3=static network, 4=synergistic network, 5=mixed errors network. The following 
table shows the connectivity in each one. Abbreviations: A2A: all-to-all, O2O: one-to-one, DH: 
the differential Hebbian learning rule from Verduzco-Flores et al., 2022, IC: the Input Correlation 
learning rule, S: static connections (see section for details on the weights of static connections).

https://doi.org/10.7554/eLife.77216
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Configuration
‍SPA‍ 
to‍M ‍

‍M ‍ 
to‍C‍

‍A‍ 
to‍C‍
,‍M ‍

1 O2O, S A2A, DH A2A, IC

2 A2A, DH S A2A, IC

3 O2O, S S S

4 O2O, S A2A, DH A2A, IC

5 S A2A, DH A2A, IC

•	 The spinal learning model (configuration 1) is a “basic” network where the input-output struc-
ture of the control loop happens in the spinal cord, in the connections from M to C.

•	 The cortical learning model (configuration 2) is also a “basic” network, but the input-output 
structure is resolved in the intracortical connections from ‍SPA to M ‍.

•	 The static network (configuration 3) uses only static connections, and is meant to show that the 
results in the paper appear in a close to optimal configuration of feedback control, rather than 
being some sophisticated product of the plasticity rules.

•	 The synergistic network (configuration 4) is an extension of configuration 1, where the spinal 
cord has 12 CE, CI pairs rather than 6, and each pair stimulates 2α motoneurons.

•	 The mixed errors network (configuration 5) is a different variation of configuration 1, where 
the connections from ‍SPA to M ‍ are not one-to-one, but instead come from an orthogonal 
matrix.

The following table summarizes the numerical results for the 5 configurations.

Measurement 1 2 3 4 5

Failed reaches1 ‍1.8 ± 2‍ ‍1.2 ± .9‍ ‍0 ± 0‍ ‍1.6 ± 1.3‍ ‍4 ± 2.5‍

Center-out error2 ‍3.3 ± .01‍ ‍2.9 ± .001‍ ‍2.9 ± .0003‍ ‍3 ± .008‍ ‍2.8 ± .0007‍

‍M ‍ units tuned

to direction ‍11.8 ± .4‍ ‍12 ± 0‍ ‍12 ± 0‍ ‍12 ± 0‍ ‍12 ± 0‍

‍R2‍ forfor

predicted PD ‍.74 ± .18‍ ‍.88 ± .14‍ ‍.86 ± .01‍ ‍.89 ± .06‍ ‍.82 ± .03‍

PD distribution

main axis (deg) ‍59 ± 7‍ ‍52 ± 2‍ ‍54 ± .5‍ ‍60 ± 3‍ ‍58 ± 1‍

PD drift

angle (deg) ‍3.3 ± 2.4‍ ‍4.9 ± 2.1‍ ‍.3 ± .2‍ ‍1.8 ± 1.3‍ ‍7 ± 6‍

Muscle PD

drift angle (deg) ‍3.8 ± 2.1‍ ‍6.4 ± 2.9‍ ‍.2 ± .2‍ ‍11.4 ± 15.2‍ ‍27.7 ± 34.5‍

Center-out error

(10 targets) 3 3.6 2.9 2.6 4.5

Variance in

first jPCA ‍.42 ± .04‍ ‍.42 ± .04‍ ‍.46 ± .03‍ ‍.45 ± .04‍ ‍.47 ± .07‍

Center-out error

(light arm) 2.5 3.2 3 6.1 2.9

Center-out error

(heavy arm) 2.4 3.3 2.9 5.6 3.2

Average number of reaches before the first reach when the mean error was below 10  cm. 2 
Average distance (in centimeters) between the hand and the target during center-out reaching.

https://doi.org/10.7554/eLife.77216
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Gain and oscillations
The gain of a feedback loop describes how the amplitude of the error signal increases as it gets 
transformed into a control signal sent to the plant. As described in the Methods (section), we used 
a relatively low number of iterations of an optimization algorithm to find suitable parameters for 
each configuration of the model. This led to configurations with gains that were coarsely tuned. 
Figure 3—figure supplement 1 is analogous to Figure 3, and shows the hand trajectories right 
after the optimization algorithm was finished. It can be observed that configurations 2 and 3 were 
particularly prone to oscillations, and configuration 1 would undershoot many targets.

To improve performance, as well as to facilitate comparison of the 5 configurations, we adjusted 
their gains. This involved manually adjusting the slope of the sigmoidal units in populations ‍M ‍ and 

‍SA‍, until they appeared stable, but on the verge of oscillating (so reaching would be faster). This 
required from 1 to 3 attempts. The gain of configuration 1 was slightly increased, whereas the gain 
of configurations 2,3,4 was reduced. Configuration 5 was left with the same parameters.

The trajectories in panels C and D of Figure 3—figure supplement 1 are reminiscent of terminal 
tremors in cerebellar ataxia. An animation showing the movement of the arm for the 5 configurations 
before gain adjustment is included among the Supplementary Videos. In addition, Figure 3—figure 
supplements 2 and 3 show the error and activity of several units during the training reaches for 
configurations 3 and 4, analogous to Figure 2. It can be observed that the oscillations are present 
in the whole network, suggesting that the control signals are trying to catch up with an error that 
keeps reversing direction.

Supplementary videos
To help visualization of the arm’s learning and performance under different conditions, 4 videos were 
produced. The videos indicate the model configuration using the enumeration from this Appendix: 
1=spinal learning, 2=cortical learning, 3=static network, 4=synergistic network, 5=mixed errors 
network.

To download these videos, please visit https://gitlab.com/sergio.verduzco/public_materials/-/​
tree/master/adaptive_plasticity

The videos’ content is as follows:

https://doi.org/10.7554/eLife.77216
https://gitlab.com/sergio.verduzco/public_materials/-/tree/master/adaptive_plasticity
https://gitlab.com/sergio.verduzco/public_materials/-/tree/master/adaptive_plasticity
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Appendix 1—video 1. Visualization of the arm and the muscles during the learning phase for configuration 1. 
Data comes from the simulation shown in Figure 2. Speed is roughly 4 X.

https://​elifesciences.​org/​articles/​77216/​figures#​video1

https://doi.org/10.7554/eLife.77216
https://elifesciences.org/articles/77216/figures#video1
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Appendix 1—video 2. Arm animation of the first 180 seconds of center-out reaching for the 5 configurations. 
Speed is roughly 4 X.

https://​elifesciences.​org/​articles/​77216/​figures#​video2

https://doi.org/10.7554/eLife.77216
https://elifesciences.org/articles/77216/figures#video2
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Appendix 1—video 3. The learning phase for a simulation with configuration 1. Both noise and the unit were 
removed, reducing exploration and disrupting learning. Data comes from the same simulation in Appendix 1—
figure 2. Speed is 4 X.

https://​elifesciences.​org/​articles/​77216/​figures#​video3

https://doi.org/10.7554/eLife.77216
https://elifesciences.org/articles/77216/figures#video3
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Appendix 1—video 4. The first 180 seconds of center-out reaching for the 5 configurations before the gains were 
adjusted. Speed is roughly 4 X. Configuration 2 shows target-dependent oscillations after 70 seconds.

https://​elifesciences.​org/​articles/​77216/​figures#​video4

Parameter values
Values appear in order for configurations 1–5. A single number means that all configurations use that 
same value.

Unit parameters
The superscript ‍x‍ on a population name indicates that a parameter has heterogeneous values. 
This means that a random value was added to the parameter for each individual unit. This random 
value comes from a uniform distribution centered at zero, with a width equal to 1% of the reported 
parameter value.

Parameter Equation Population Value

‍τu‍ 5 ‍CHG, A, ACT ‍ 10 [ms]

‍α, SA, Sx
PA, CI ‍ 20 [ms]

‍CE ‍ 140, 70, 150, 180, 110 [ms]

 Continued on next page
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Parameter Equation Population Value

‍Mx‍ 50 [ms]

‍β‍ 6 ‍α
x, ACT ‍ 2

‍CE ‍ 1.63, 1.72, 1.70, 3.38, 1.44

‍CI ‍ 4.0, 3.38, 3.44, 2.46, 3.63

‍Mx‍ 1.5, 1.5, 2.0, 2.0, 1.17

‍SA‍ 3.0, 2.2, 2.0, 2.3, 3.0

‍CHG, Sx
PA‍ 9

‍η‍ 6 ‍αx‍ 1.1

‍CE ‍ 2.0, 1.93, 2.13, 2.31, 1.67

‍CI ‍ 1.5, 1.41, 1.63, 1.72, 1.7

‍Mx‍ 1.3, 1.96, 0.68, 1.19, 1.38

‍ACT ‍ 1

‍SA‍ 0.75

units 0,3

‍SA‍ .4

units 1,2,5

‍SA‍ .3

unit 4

‍CHG‍ .25

‍S
x
PA‍ .1

‍ς ‍ 7 ‍CE, CI ‍ 0.63, 0, 0, 0.69, 0.72

‍M ‍ 0, 0.62, 0, 0, 0

‍τa‍ 8 ‍A‍ 10 [ms]

‍T ‍ 8 ‍A‍ .2

‍Ib, II ‍ afferents

‍A‍ 0

‍Ia‍ afferents

‍τslow‍ 12, 13 ‍CE, CI ‍ 11 [s]

‍θACT ‍ 15, 16 ‍ACT ‍ .31

‍τACT ‍ 16 ‍ACT ‍ 10 [ms]

‍γ ‍ 16 ‍ACT ‍ 8

‍α‍ 17 ‍CHG‍ (synapse) 20

Learning rules

Parameter Equation Value

‍∆t‍ 9 0.33, 0.37, 0.15, 0.36, 0.32 [s]

‍α(M to C)‍ 10 500, 0, 0, 500, 500

 Continued

 Continued on next page
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Parameter Equation Value

‍α(SPA to M)‍ 10 0, 527, 0, 0, 0

‍α(M toα)‍ 10 300, 0, 0, 300, 300

‍λ‍ 10 .03

‍ωsa(M to C,α)1
‍ 10 2.52

‍ωsa(SPA to M)‍ 10 3.23, 3.19, 2.98, 3.23, 3.23

‍ωsb(M to C)‍ 10 3.29, 2.14, 1.50, 3.69, 0.57

‍ωsb(M toα)‍ 10 2.86, 2.86, 1.50, 2.86, 2.86

‍αIC(A to M)‍ 11 26.17

‍αIC(A to C)‍ 11 22.5

‍ωs(A to M)‍ 11 0.85, 1.14, 1, 0.53, 0.53

‍ωs(A to C)‍ 11 1.68, 2, 2, 1.55, 2.88

‍ωmax(A to M)‍ 11 .48,.22,.2,.25,.33

‍ωmax(A to C)‍ 11 .3,.64,.64,.28,.59

1 Constraints in the sum of weights are also used with static connections

Muscles and afferents

Parameter Equation Value

‍KSE‍ 18 20 [N/m]

‍KPE‍ 18 20 [N/m]

‍b‍ 18 1 [N.s / m]

‍g‍ 18 67.11 [N]

muscles 0,3

‍g‍ 18 .75 [N]

muscles 1,2,4,5

‍K
s
SE‍ 19,20,21 2 [N/m]

‍K
s
PE‍ 19,20,21 2 [N/m]

‍bs‍ 19, 21 .5[Ns / m]

‍K
d
SE‍ 19,20,21 1 [N/m]

‍K
d
PE‍ 19 .2 [N/m]

‍bd ‍ 19 2[N. s / m]

‍l
s
0‍ 19 .7

‍l
d
0 ‍ 19 .8

‍gIa‍ 20 [7.5, 25, 25, 7.5, 25, 25]‍[m−1]‍
muscles 0–5

 Continued
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Parameter Equation Value

‍f
Ia
s ‍ 20 0.1

‍gII ‍ 21 ‍[5.46, 8, 8, 5.46, 8, 8]∗‍,

muscles 0–5
‍[5.8, 8, 8, 5.8, 8, 8]∗∗‍
‍[m−1]‍

‍fIIs ‍ 21 0.5

‍gIb‍ 22 1

T0 22 10 [N]

‍τg‍ 23 50 [ms]

Connection delays and weights
Connections considered "local" used a delay of 10 [ms], unless those those connections implied a 
not-modeled disynaptic inhibition. All other connections had a delay of 20 [ms].

Source Target Delay

‍A‍ ‍M, SA‍ 20 [ms]

‍ACT ‍ ‍CE, CI ‍

‍α‍ muscle

‍M ‍ ‍CE, CI,α‍

‍M ‍ ‍M ‍

afferents ‍A‍

‍CHG, SPA‍ ‍ACT ‍

‍SPA‍ ‍M, SPA‍

‍A‍ ‍M ‍ 10 [ms]

‍CE, CI ‍ ‍α‍

‍CE, CI ‍ ‍CE, CI ‍

‍CI ‍ ‍CE ‍

‍SA, SP‍ ‍SPA‍

‍SP‍ ‍CHG‍

The next table shows the value of fixed synaptic weights not specified in section. Columns 
indicate the source of the connection, rows indicate the target. "Aff" stands for the muscle afferents. 
Potentially plastic connections are marked as "+". If a connection marked “+” is static in one of the 
configurations, its weight is determined by the ‍ωsa,ωsb,ωs‍ parameters of Equations 10, 11.

‍α‍ ‍A‍ ‍CE ‍ ‍CI ‍ ‍M ‍ Aff. ‍SA‍ ‍SP‍ ‍SPA‍

‍α‍ 1 -1 +

‍A‍ 2 (‍Ia, Ib‍),

4 (‍II ‍)

‍ACT ‍ 1

‍CE ‍ + ‍.5a, .18b
‍ ‍−1.8c‍ +

‍CHG‍ +

 Continued
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‍α‍ ‍A‍ ‍CE ‍ ‍CI ‍ ‍M ‍ Aff. ‍SA‍ ‍SP‍ ‍SPA‍

‍CI ‍ + ‍.5c‍ +

‍1.83d, .16e
‍

‍M ‍ + * +

muscles 1

‍SA‍ 1

‍SPA‍ 1 or –1 1 or –1 –1.77

a Agonist connections, b Partial agonist connections. c Withing the same triplet. d Antagonist connections. e Partial antagonist 
connections.
units inhibited their duals with weights that depended on the configuration: −0.93,–0.74, −1.00,–1.14, 0.0.

All connections whose source is ‍CHG‍ or ‍ACT ‍ have a weight of 1.

 Continued
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