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Abstract Genome-wide association studies (GWASs) for bone mineral density (BMD) in humans 
have identified over 1100 associations to date. However, identifying causal genes implicated by 
such studies has been challenging. Recent advances in the development of transcriptome reference 
datasets and computational approaches such as transcriptome-wide association studies (TWASs) and 
expression quantitative trait loci (eQTL) colocalization have proven to be informative in identifying 
putatively causal genes underlying GWAS associations. Here, we used TWAS/eQTL colocalization in 
conjunction with transcriptomic data from the Genotype-Tissue Expression (GTEx) project to identify 
potentially causal genes for the largest BMD GWAS performed to date. Using this approach, we 
identified 512 genes as significant using both TWAS and eQTL colocalization. This set of genes was 
enriched for regulators of BMD and members of bone relevant biological processes. To investigate 
the significance of our findings, we selected PPP6R3, the gene with the strongest support from our 
analysis which was not previously implicated in the regulation of BMD, for further investigation. 
We observed that Ppp6r3 deletion in mice decreased BMD. In this work, we provide an updated 
resource of putatively causal BMD genes and demonstrate that PPP6R3 is a putatively causal BMD 
GWAS gene. These data increase our understanding of the genetics of BMD and provide further 
evidence for the utility of combined TWAS/colocalization approaches in untangling the genetics of 
complex traits.
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Many GWAS studies have been done to understand the genetic contributions to bone density, but 
very few have managed to pinpoint the gene affected by a polymorphism that caused an observed 
difference. In this paper, your team shows how scientists can identify causative variants from GWAS 
studies.

Introduction
Osteoporosis, a disease characterized by low bone mineral density (BMD), decreased bone strength, 
and an increased risk of fracture, affects over 10 million individuals in the United States (Black and 
Rosen, 2016; Burge et al., 2007). BMD is the single strongest predictor of fracture and a highly 
heritable quantitative trait (Miller et  al., 1999; Ralston and Uitterlinden, 2010; Peacock et  al., 
2002). Over the last decade, genome-wide association studies (GWASs) have identified over 1100 
independent associations for BMD (Morris et al., 2019; Estrada et al., 2012; Kemp et al., 2017). 
However, despite the success of GWAS, few of the underlying causal genes have been identified 
(Rocha-Braz and Ferraz-de-Souza, 2016; Sabik and Farber, 2017).

One of the main difficulties in GWAS gene discovery is that the vast majority (>90%) of associations 
are driven by non-coding variation (Giral et al., 2018; Edwards et al., 2013). Over the last decade, 
approaches such as transcriptome-wide association studies (TWASs) and expression quantitative 
trait locus (eQTL) colocalization have been developed which leverage transcriptomic data in order to 
inform gene discovery by connecting non-coding disease-associated variants to changes in transcript 
levels (Gusev et al., 2016; Barbeira et al., 2018; Pividori et al., 2020; Giambartolomei et al., 2014; 
Wen et al., 2017). These approaches have proven successful for a wide array of diseases and disease-
associated quantitative traits (Pividori et al., 2020; Bhattacharya et al., 2020; Thom and Voight, 
2020). However, the osteoporosis field has lagged behind such efforts, due to the limited number of 
large-scale bone-related transcriptomic datasets.

In a TWAS, genetic predictors of gene expression (e.g., local eQTL – sets of genetic variants that 
influence the expression of a gene in close proximity, Nica and Dermitzakis, 2013) identified in 
a reference population (e.g., the Genotype-Tissue Expression [GTEx] project, Consortium, 2013) 
are used to impute gene expression in a GWAS cohort. Components of gene expression due to 
genetic variation are then associated with a disease or disease-associated quantitative trait. Genes 
identified by TWAS are often located in GWAS associations, suggesting that the genetic regulation of 
their expression is the mechanism underlying such associations. Several tools, for example, FUSION, 
PrediXcan, and MultiXcan (Gusev et al., 2016; Gamazon et al., 2015; Barbeira et al., 2019) have 
been developed to perform TWASs. Most of these tools use GWAS summary statistics, making TWAS 
widely applicable to large GWAS datasets. In contrast, eQTL colocalization is a statistical approach 
that determines if there is a shared genetic basis for two associations (e.g., a local eQTL and BMD 
GWAS locus). Recently, it has been demonstrated that prioritizing genes using both TWAS and eQTL 
colocalization provides a way to identify genes with the strongest support for causality (Barbeira 
et al., 2018; Pividori et al., 2020).

The GTEx project has generated RNA-seq data on over 50 tissues across hundreds of individuals 
(Consortium, 2020). Even though data on the tissues/cell types likely to be most relevant to BMD 
(bone or bone cells) were not included, the project demonstrated that many eQTL were shared across 
tissues (Consortium, 2020; Battle et al., 2017). Additionally, it is well known that effects in a wide-
array of non-bone cell types and tissues can impact bone and BMD (Fitzpatrick, 2002; Mirza and 
Canalis, 2015). As a result, we sought to use the GTEx resource in conjunction with TWAS and eQTL 
colocalization to leverage non-bone gene expression data to identify putatively causal genes under-
lying BMD GWAS.

Here, we performed TWAS and eQTL colocalization using the GTEx resource and the largest 
BMD GWAS performed to date to identify potentially causal genes (Morris et al., 2019). Using this 
approach, we identified 512 genes significantly associated via TWAS with a significant colocalizing 
eQTL. To investigate the significance of our findings we selected Protein Phosphatase 6 Regulatory 
Subunit 3 (PPP6R3), the gene with the strongest support not previously implicated in the regulation 
of BMD, for further investigation. We demonstrate using mutant mice that Ppp6r3 is a regulator of 
lumbar spine BMD. These results highlight the power of leveraging GTEx data, even in the absence 
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of data from the most relevant tissue/cell types, to increase our understanding of the genetic archi-
tecture of BMD.

Results
TWAS and eQTL colocalization identify potentially causal BMD GWAS 
genes
To identify potentially causal genes responsible for BMD GWAS associations, we combined TWAS and 
eQTL colocalization using GTEx data (Figure 1A). We began by performing a TWAS using reference 
gene expression predictions from GTEx (Version 8; 49 tissues) and the largest GWAS performed to 
date for heel estimated BMD (eBMD) (>1100 independent associations) (Morris et al., 2019; Consor-
tium, 2020). The analysis was performed using S-MultiXcan, which allowed us to leverage information 
across all 49 GTEx tissues (Barbeira et  al., 2019). Our analysis focused on protein-coding genes 
(excluded non-coding genes). A total of 2156 protein-coding genes were significantly (Bonferroni-
adjusted p value ≤0.05) associated with eBMD (Supplementary file 1a).

Next, we identified colocalizing eQTL from each of the 49 tissues in GTEx using fastENLOC (Pivi-
dori et  al., 2020; Wen et  al., 2017). We identified 1182 colocalizing protein-coding genes with 
a regional colocalization probability (RCP) of 0.1 or greater (Supplementary file 1b). In total, 512 
protein-coding genes were significant in both the TWAS and eQTL colocalization analyses (Table 1 
and Supplementary file 1c). Among the identified genes were many with well-known roles in the 
regulation of BMD, such as RUNX2 (Figure  1B), IGF1, and LRP6, as well as novel genes such as 
RERE (Figure 1C). Overall, the identified genes had significantly colocalizing eQTL in all 49 GTEx 
tissues, with eQTL from cultured fibroblasts (132 genes), subcutaneous adipose tissue (117 genes), 
tibial artery (115 genes), and tibial nerve (114 genes) exhibiting the highest number of significant colo-
calizations (Supplementary file 1d). TWAS predictors were only generated for genes on autosomes 
and of the 1103 independent associations identified by Morris et al., 2019, 1097 were autosomal. For 
each of these, we defined a locus as the region consisting of ±1 Mbp around each association. Of the 
1097 loci, almost half (542; 49%) of the loci contained at least one of the 512 prioritized genes. Most 
loci overlapped one gene (mean = 1.7, median = 1); however, 184 loci overlapped multiple genes, 
including a locus on Chromosome (Chr.) 20 (lead SNP rs6142137) which contained 9 prioritized genes 
(Figure 1D and Figure 1—figure supplement 1).

Characterization of genes identified by TWAS/eQTL colocalization
To evaluate the ability of the combined TWAS/colocalization approach to identify genes previously 
implicated in the regulation of BMD, other bone traits, or the activity of bone cells, we queried the 
presence of ‘known bone genes’ within the list of the 512 prioritized protein-coding genes. To do so, 
we created a database-curated set of genes previously implicated in the regulation of bone processes 
(henceforth referred to as our ‘known bone genes’ list, N = 1399, Supplementary file 1e). Of the 512 
genes identified above, 66 (12.9%) were known bone genes, representing a significant enrichment 
(odds ratio [OR] = 1.72; p = 1.0 × 10−4) over what would be expected by chance (Supplementary file 
1f).

We also performed a Gene Ontology (GO) enrichment analysis of the 512 prioritized genes. We 
observed enrichments in several bone-relevant ontologies, such as ‘ossification’ (p = 3.1 × 10−6), ‘skel-
etal system development’ (p = 2 × 10−5), and ‘regulation of osteoblast differentiation’ (p = 3.9 × 10−5) 
(Figure 2A and Supplementary file 1g).

To compare our approach with the approach of prioritizing the closest genes to GWAS associations 
as potentially causal, we quantified the number of genes that were both the closest genes to eBMD 
GWAS associations and were members of the ‘known bone gene’ list. Of the 863 genes that were 
the closest genes to eBMD GWAS associations (Supplementary file 1h), 139 were members of the 
‘known bone gene list’, representing a more significant enrichment of ‘known bone genes’ than our 
prioritization approach (OR = 2.56, p = 6.37 × 10−19). Of our 512 prioritized genes, 206 (40%) were also 
the closest genes to eBMD GWAS associations, with 27 of the remaining 306 prioritized genes (8.8%) 
being members of the ‘known bone gene’ list.

The International Mouse Phenotype Consortium (IMPC) has recently measured whole body BMD 
in hundreds of mouse knockouts (Dickinson et al., 2016; Swan et al., 2020). We searched the IMPC 
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Figure 1. Transcriptome-wide association study (TWAS) and expression quantitative trait loci (eQTL) colocalization 
identify potentially causal bone mineral density (BMD) genome-wide association study (GWAS) genes. (A) 
Overview of the analysis. The human image was obtained from BioRender.com. TWAS/colocalization plot for 
genes in the locus around RUNX2 (B) and RERE (C). The −log10 Bonferroni-adjusted p values from the TWAS 
analysis (top panel) and the maximum regional colocalization probabilities (RCPs) from the colocalization analyses 
(bottom panel). Genes alternate in color for visual clarity. Triangles represent RUNX2 (B) and RERE (C). (D) 
Distribution of prioritized genes within estimated BMD (eBMD) GWAS loci.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Chromosome 20 contains a locus with nine prioritzed genes.

https://doi.org/10.7554/eLife.77285
https://biorender.com/
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database for any of the 512 genes identified by TWAS and eQTL colocalization. Of the 512, 142 
(27.7%) had been tested by the IMPC and 64 (12.5% of the 512 prioritized genes, 45% of the 142 
IMPC-tested genes) had a nominally significant (p ≤ 0.05) alteration of whole-body BMD in knockout/
knockdown mice, compared to controls. Of the 64, 49 (76.5%) were not members of the ‘known bone 
gene’ list (Figure 2—figure supplement 1A, B).

An example of one of the 64 genes is GPATCH1, located within a GWAS association on human 
chromosome 19q13.11. GPATCH1 is part of the catalytic step 2 spliceosome, and may be involved 
in mRNA splicing, and is predicted to enable RNA-binding activity. It is also expressed in bone cells 
in mouse (Alliance of genome resources, 2022; Lattin et al., 2008). Of all the genes in the region, 
GPATCH1 had the strongest TWAS association (p = 3.44 × 10−226) (Figure 2B) and the strongest eQTL 
colocalization (whole blood, RCP = 0.36) (Figure 2B–D). The eQTL and BMD GWAS allele effects for 
the top SNPs were in the same direction, suggesting that decreasing the expression of GPATCH1 
would lead to decreased BMD. BMD data from the IMPC showed that female mice heterozygous for 
a Gpatch1 null allele had decreased BMD (p = 2.17 × 10−8) (Figure 2E). Together, these data suggest 
that many of the genes identified by the combined TWAS/colocalization approach are likely causal 
BMD GWAS genes.

PPP6R3 is a candidate causal gene for a GWAS association on Chr. 11
To identify novel candidate genes for functional validation, we focused on genes with the strongest 
evidence of being causal. To do so, we increased the colocalization RCP threshold to 0.5, and then 
sorted genes based on TWAS Bonferroni-adjusted p values. Furthermore, we constrained the list of 
candidates for functional validation to genes which were not members of the ‘known bone gene’ list 
or genes with a nominal (p ≤ 0.05) alteration in whole-body BMD as determined by the IMPC. This 
yielded 137 putatively causal BMD genes (Table  2, Supplementary file 1i, and Figure  2—figure 
supplement 1C).

Though it was not on the ‘known bone gene’ list, the first gene ranked by TWAS p value, SPTBN1, 
has been demonstrated to play a role in the regulation of BMD (Calabrese et al., 2017). The second, 
PPP6R3, has not been previously implicated in the regulation of BMD. PPP6R3, a regulatory subunit 
of protein phosphatase 6, which shows ubiquitous expression across tissues in humans (Cristiano, 
2020), is located on human Chr. 11 within 1 Mbp of seven independent eBMD GWAS SNPs identified 
by Morris et al., 2019 (subsequently referred to as ‘eBMD lead SNPs’) (Figure 3A). Of all the protein-
coding genes (N = 29) in the ~1.8 Mbp region surrounding PPP6R3, its expression was the most signifi-
cantly associated with eBMD by TWAS (Bonferroni = 5.7 × 10−93) (Figure 3B). Furthermore, PPP6R3 
was the only gene in the region with eQTL (in four GTEx tissues, thyroid, ovary, brain_putamen_basal_
ganglia, and stomach with RCPs = 0.53, 0.50, 0.28, and 0.14, respectively) that colocalized with at 
least one of the eBMD associations (Figure 3B). Based on these data, we chose to further investigate 
PPP6R3 as a potentially causal BMD gene.

Table 1. Top 10 protein-coding genes significant by colocalization (RCP ≥0.1) and TWAS, sorted by 
TWAS p value.

Gene Tissue with greatest RCP Max. RCP TWAS p value (Bonferroni)

SPTBN1 Cells_Cultured_Fibroblasts 0.9469 <5 × 10−324

CCDC170 Spleen 0.6582 <5 × 10−324

FAM3C Artery_Tibial 0.4917 <5 × 10−324

SEPT5 Skin_Sun_Exposed 0.4868 2.26 × 10−286

FGFRL1 Cells_Cultured_Fibroblasts 0.1611 5.31 × 10−272

GREM2 Cells_Cultured_Fibroblasts 0.9998 4.31 × 10−257

GPATCH1 Whole_Blood 0.3564 3.44 × 10−226

RHPN2 Pituitary 0.2181 8.71 × 10−221

BMP4 Brain_Cortex 0.5468 5.49 × 10−169

RUNX2 Esophagus_Gastroesophageal_Junction 0.2372 1.99 × 10−146

https://doi.org/10.7554/eLife.77285
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Figure 2. Transcriptome-wide association study (TWAS) and expression quantitative trait loci (eQTL) colocalization 
identify Gpatch1 a potentially causal bone mineral density (BMD) genome-wide association study (GWAS) gene. 
(A) The top 40 terms from a Gene Ontology analysis of the 512 potentially causal BMD genes identified by our 
analysis. Terms with clear relevance to bone are highlighted in red. Only terms from the ‘Biological Process’ (BP) 
subontology are listed, and similar terms were removed for clarity. (B) TWAS/colocalization plot for genes in the 
locus around GPATCH1 (±1.5 Mbp). The −log10 Bonferroni-adjusted p values from the TWAS analysis (top panel) 
and the maximum regional colocalization probabilities (RCPs) from the colocalization analyses (bottom panel). 
Genes alternate in color for visual clarity. Triangles represent GPATCH1. (C) Mirrorplot showing estimated BMD 
(eBMD) GWAS locus (top panel) and colocalizing GPATCH1 eQTL in whole blood (bottom panel). SNPs are 
colored by their linkage disequilibrium (LD) with rs11881367 (purple), the most significant GWAS SNP in the locus. 
(D) Scatterplot of −log10 p values for GPATCH1 eQTL versus eBMD GWAS SNPs. SNPs are colored by their LD with 
rs11881367 (purple). (E) BMD in Gpatch1 knockdown mice. N = 7 females and N = 4 males for Gpatch1+/− mice, N 

Figure 2 continued on next page

https://doi.org/10.7554/eLife.77285
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We first determined which of the seven associations colocalized with the PPP6R3 eQTL (Figure 3C). 
The most significant PPP6R3 eQTL SNP in thyroid tissue (the tissue with the highest RCP) was 
rs10047483 (Chr. 11, 68.464237 Mbp) (PPP6R3 eQTL p = 6.99 × 10−8, eBMD GWAS p = 1.2 × 10−100) 
located in intron 1 of PPP6R3. The most significant eBMD lead SNP in the locus was rs11228240 (Chr. 
11, 68.450822 Mbp, eBMD GWAS p = 6.6 × 10−101, PPP6R3 eQTL p = 3.7 × 10−6), located upstream 
of PPP6R3. Consistent with the colocalization analysis, these two variants are in high LD (r2 = 0.941) 
and rs10047483 does not exhibit strong LD (r2 < 0.104) with any of the other six eBMD lead SNPs in 
the locus. The eQTL and BMD GWAS allele effects for rs10047483 were opposing, suggesting that a 
decrease in the expression of PPP6R3 would lead to an increase in BMD.

A recent fracture GWAS identified 14 significant associations, one of which was located in the 
PPP6R3 region (rs35989399, Chr. 11, 68.622433 Mbp) (Morris et al., 2019). We analyzed the frac-
ture GWAS in the same manner as we did above for eBMD. We found that PPP6R3 expression when 
analyzed by TWAS was significant for fracture (TWAS Bonferroni-pval = 6.0 × 10−3) and the same 
PPP6R3 eQTL colocalized with the fracture association (RCP = 0.49 in ovary, RCP = 0.36 in thyroid) 
(Figure 3D). Together, these data highlight PPP6R3 as a strong candidate for one of the seven eBMD/
fracture associations in this region.

PPP6R3 is a regulator of femoral geometry, BMD, and vertebral 
microarchitecture
To assess the effects of PPP6R3 expression on bone phenotypes, we characterized mice harboring a 
gene-trap allele (Ppp6r3tm1a(KOMP)Wtsi) (Figure 4A). We intercrossed mice heterozygous for the mutant 
allele to generate mice of all three genotypes (wild-type (WT, N = 26 females, 21 males), heterozy-
gous (HET, N = 33 females, 36 males), and mutant (MUT, N = 20 females, 21 males)). The absence 
of PPP6R3 protein in MUT mice was confirmed through western blotting (Figure 4B). Furthermore, 
we sequenced RNA extracted from the L5 vertebrae of wild-type and mutant mice, and found that 
PPP6R3 was differentially expressed between the mutant and wild-type mice (padj = 3.67 × 10−104, 
log2 fold change = −1.63). We did not observe changes in gene expression for any other gene in the 
locus, including Lrp5 (padj = 0.99, log2 fold change = −0.068), a well-known regulator of bone mass just 
upstream of Ppp6r3 (Supplementary file 1j).

= 880 females and N = 906 males for Gpatch1+/+ mice. Boxplots indicate the median (middle line), the 25th and 
75th percentiles (box) and the whiskers extend to 1.5 * IQR.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Schematic of prioritization pipeline.

Figure 2 continued

Table 2. Top 10 novel protein-coding genes significant by colocalization (RCP ≥0.5) and TWAS, 
sorted by TWAS p value.

Gene Tissue with greatest RCP Max. RCP
TWAS p value 
(Bonferroni)

# GTEx tissues 
with RCP ≥0.5

SPTBN1 Cells_Cultured_fibroblasts 0.9469 <5 × 10−324 2

PPP6R3 Thyroid 0.5291 5.7 × 10−93 1

BARX1 Colon_Transverse 0.7764 6.36 × 10−63 1

MEOX2 Brain_Nucleus_accumbens_basal_ganglia 0.6286 3.21 × 10−53 3

RERE Adipose_Subcutaneous 0.6431 6.95 × 10−46 4

SIPA1 Nerve_Tibial 0.9981 4.26 × 10−41 1

CAPZB Testis 0.6716 3.64 × 10−33 1

B4GALNT3 Artery_Aorta 0.9241 2.67 × 10−33 4

TRPC4AP Breast_Mammary_Tissue 0.5577 8.62 × 10−31 3

AXL Minor_Salivary_Gland 0.6205 9.74 × 10−31 3

https://doi.org/10.7554/eLife.77285
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Figure 3. PPP6R3 is a top 10 novel estimated bone mineral density (eBMD) gene. (A) eBMD genome-wide 
association study (GWAS) SNPs around the PPP6R3 locus (±1 Mbp). The y-axis represents −log10 eBMD GWAS 
p values. Highlighted SNPs (black) are the seven lead eBMD GWAS SNPs in the locus. (B) Transcriptome-
wide association study (TWAS)/colocalization plot for genes in the locus around PPP6R3 (±1 Mbp). The −log10 
Bonferroni-adjusted p values from the TWAS analysis (top panel) and the maximum regional colocalization 
probabilities (RCPs) from the colocalization analyses (bottom panel). Genes alternate in color for visual clarity. 
Triangles represent PPP6R3. Mirrorplot of the eBMD locus (C) and PPP6R3 expression quantitative trait loci (eQTL) 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.77285
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The BMD analyses presented above used heel eBMD GWAS data. We used these data because 
they represent the largest, most well-powered BMD GWAS to date (Estrada et al., 2012). However, 
to determine whether perturbation of Ppp6r3 would be expected to impact femoral or lumbar spine 
BMD in a similar manner, we turned to a smaller GWAS to look at both of these traits. In a GWAS by 
Estrada et al., 2012, a total of 56 loci were identified for femoral neck (FNBMD) and lumbar spine 
(LSBMD) BMD. One of the 56 loci corresponded to the same SNPs associated with the PPP6R3 eQTL. 
The locus was significant for LSBMD; however, it did not reach genome-wide significance for FNBMD 
(Figure 4—figure supplement 1).

We evaluated BMD at both the femur and the lumbar spine in Ppp6r3tm1a(KOMP)Wtsi mice, with the 
expectation, based on the above data, that perturbation of Ppp6r3 would have a stronger impact 
on BMD at the lumbar spine. At approximately 9 weeks of age, we measured areal BMD (aBMD) at 
the femur and lumbar spine using dual X-ray absorptiometry (DXA). First, we observed no change in 
body weight at 9 weeks that might impact bone phenotypes (Figure 4—figure supplement 2A). As 
the above analysis predicted, we observed a significant effect of Ppp6r3 genotype on aBMD at the 
lumbar spine (WT vs. MUT p = 0.01, Figure 4—figure supplement 2C), but not the femur (WT vs. 
MUT p = 0.26, Figure 4—figure supplement 2D). It should also be noted, however, that we observed 
significantly decreased femoral width, but not length, in Ppp6r3 mutant mice (anterior–posterior [AP] 
femoral width, WT vs. MUT p = 0.02; medial–lateral [ML] femoral width, WT vs. MUT p = 2.2 × 10−6, 
Figure 4—figure supplement 2B–D).

We further characterized the effects of Ppp6r3 genotype on microarchitectural phenotypes, in 
spine and femur, via micro-computed tomography (μCT). We observed significant (p ≤ 0.05) decreases 
in trabecular bone volume fraction (BV/TV, WT vs. MUT p = 0.015, Figure 4—figure supplement 2E, 
F) and volumetric BMD (vBMD, WT vs. MUT p = 0.015, Figure 4—figure supplement 2G) of the 
lumbar spine as a function of Ppp6r3 genotype, but found no significant changes in tissue mineral 
density (TMD, Figure 4—figure supplement 2E), trabecular separation (TbSp), trabecular thickness 
(TbTh), or trabecular number (TbN) (Figure 4—figure supplement 2F–H). In the femoral midshaft, 
we observed significant decreases in total area (Tot.Ar, WT vs. MUT p = 0.00724, Figure 4—figure 
supplement 2H) and medullary area (Ma.Ar, WT vs. MUT p = 0.00903, Figure 4—figure supplement 
2I), which are concordant with the aforementioned observed decreases in femoral width in Ppp6r3 
mutant mice. We did not observe any changes in trabecular bone parameters in the distal femur.

We also measured Procollagen 1 Intact N-Terminal Propeptide P1NP levels in plasma, and observed 
a significant increase in P1NP levels in mutant mice (p = 0.00422), suggesting that the observed 
decrease in bone mass is due to increased bone turnover (Figure  4—figure supplement 2I–K). 
Finally, to assess the effects of Ppp6r3 genotype on bone matrix composition, we performed perios-
teal Raman spectroscopy on both the lumbar spines and femurs. We did not observe any significant (p 
≤ 0.05) effects of Ppp6r3 genotype on bone matrix composition (Figure 4—figure supplements 3–6).

Discussion
BMD GWASs have identified over 1100 associations to date. However, identifying causal genes 
remains a challenge. To aid researchers in further dissecting the genetics of complex traits, reference 
transcriptomic datasets and computational methods have been developed for the prioritization and 
identification of causal genes underlying GWAS associations. In this work, our goal was to utilize these 
data and tools to prioritize putatively causal genes underlying BMD GWAS associations. Specifically, 
we used the GTEx eQTL reference dataset in 49 tissues to perform TWAS and eQTL colocalization 
on the largest BMD GWAS. Using this approach, we identified 512 putatively causal protein-coding 
genes that were significant in both the TWAS and colocalization approaches.

Our approach was inspired by a recent study that used the GTEx resource and a TWAS/eQTL 
colocalization approach similar to the one we employed. Pividori et  al., 2020 recently combined 

in thyroid, and fracture locus and PPP6R3 eQTL in thyroid (D). The panels on the right are scatterplots of −log10 
p values for PPP6R3 eQTL and eBMD GWAS SNPs (C) and the PPP6R3 eQTL and fracture GWAS SNPs (D). SNPs 
are colored by their linkage disequilibrium (LD) with rs10047483 (purple), the most significant PPP6R3 eQTL in the 
locus. Not all genes are shown.

Figure 3 continued
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Figure 4. Ppp6r3 functional validation shows an effect of genotype on bone mass. (A) Schematic of the Ppp6r3 
gene-trap allele (Ppp6r3tm1a(KOMP)Wtsi). Image obtained from the International Mouse Phenotype Consortium 
(IMPC). (B) Western blot of Ppp6r3 in experimental mouse spleens. Top left panel shows that PPP6R1 protein 
(control) levels are not affected by the Ppp6r3 gene-trap allele. Top right panel shows the effect of the gene-
trap allele on PPP6R3 protein levels. The two bands are ostensibly due to different PPP6R3 isoforms. Bottom 
panel shows that PP6C protein (control) levels are not affected by the Ppp6r3 gene-trap allele. For raw blots, 
refer to Figure 4—source data 1. Least-squares means for spinal (C) and femoral (D) areal BMD (aBMD) dual 
X-ray absorptiometry (DXA) in Ppp6r3 wild-type (WT), heterozygous (HET), and mutant (MUT) mice. Contrast p 
values, adjusted for multiple comparisons are presented. *p ≤ 0.05. (E) Representative images of vertebrae for the 
Ppp6r3 experimental mice. Scale is shown on the bottom right. (F, G) Least-squares means for micro-computed 
tomography (μCT) measurements in the lumbar spines of Ppp6r3 WT, HET, and MUT mice. Contrast p values, 
adjusted for multiple comparisons are presented. *p ≤ 0.05. (H, I) Least-squares means for μCT measurements in 
the femoral midshaft of Ppp6r3 WT, HET, and MUT mice. Contrast p values, adjusted for multiple comparisons 
are presented. *p ≤ 0.05. Abbreviations: BV/TV – bone volume fraction, vBMD – volumetric bone mineral density, 
Tot.Ar – total area, Ma.Ar – medullary area. In panels (C, D and F–I), the center points represent the least-square 

Figure 4 continued on next page
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TWAS and eQTL colocalization to GTEx and GWAS data on 4091 traits, including BMD, from the 
UK Biobank data. A total of 76 protein-coding genes were identified and of the 76, we identified 55 
(72.4%) of the same genes in our implementation. There are several reasons for this discrepancy in 
the number of prioritized genes. First, both studies used a GWAS based on the UK Biobank (Bycroft 
et al., 2018); however, sample sizes were different. The PhenomeXcan project utilized GWAS data 
based on the analysis of ~207,000 individuals, whereas we used GWAS data based on the analysis 
of ~426,000 individuals (Morris et al., 2019; Pividori et al., 2020). Second, the two GWAS studies 
utilized different association models. Finally, due to the breadth of the PhenomeXcan project, they 
had a higher multiple-testing burden than we did, which led to different Bonferroni-adjusted p value 
thresholds (p < 5.49 × 10−10 vs. p ≤ 2.38 × 10−6).

One of many novel genes identified in our study was PPP6R3, which was also identified in the 
PhenomeXcan project (Pividori et al., 2020). PPP6R3 is a regulatory subunit of protein phosphatase 
6 and has been implicated in several cancers (Cristiano, 2020; Stefansson and Brautigan, 2006). In 
humans, the PPP6R3 protein shows ubiquitous expression across tissues, and may have an important 
role in maintaining immune self-tolerance (Cristiano, 2020). It is unclear how PPP6R3 may be influ-
encing BMD. However, protein phosphatase 6 has been shown to oppose activation of the nuclear 
factor kappa-light-chain enhancer of activated B cells (NF-κB) pathway in lymphocytes (Ziembik et al., 
2017). Since the NF-κB signaling pathway is highly involved in osteoclastogenesis and bone resorp-
tion, it is possible that PPP6R3 may be involved in the regulation of this pathway in osteoclasts (Abu-
Amer, 2013). Further studies that characterize the role of PPP6R3, and the effects of its deletion, in 
bone cells are required to further elucidate its effect on BMD.

The PPP6R3 locus demonstrated a high level of complexity, containing seven independent GWAS 
associations, at least one of which was also associated with fracture. Interestingly, just upstream of 
PPP6R3 is LRP5, a WNT signaling co-receptor (Mao et al., 2001). LRP5 is a well-known regulator of 
BMD and gain and loss of function mutations lead to high bone mass syndrome and osteoporosis 
pseudoglioma, respectively (Mizuguchi et al., 2004; Boyden et al., 2002; Marques-Pinheiro et al., 
2010; Gong et  al., 2001). LRP5 expression was not significantly associated with eBMD by TWAS 
(Bonferroni p = 1), nor did it have a colocalizing eQTL in GTEx tissues (most significant RCP = 1.6 × 
10−2 in pancreas). However, another eBMD lead SNP in the region, rs4988321, is a missense mutation 
in LRP5 (Val667Met) that has been associated with BMD in multiple studies (van Meurs et al., 2008; 
Brixen et al., 2007; Giroux et al., 2007). While this variant represents an association that is indepen-
dent of the rs10047483 association (r2 = 0.104), it further highlights the complexity of this locus both 
in terms of the number of associations and target genes. We believe these data support a model of 
allelic heterogeneity involving multiple genes (at least LRP5 and PPP6R3) at this locus, similar to other 
BMD loci identified by GWAS such as the ‘Wnt16’ locus (Chesi et al., 2019).

To determine the effect of Ppp6r3 expression on bone, we characterized bone phenotypes in mice 
harboring a gene-trap allele (Ppp6r3tm1a(KOMP)Wtsi). Consistent with the observation that the PPP6R3 
eQTL SNPs were significantly associated with lumbar spine, but not femoral neck BMD, we observed 
that Ppp6r3 deletion had a significant effect on lumbar spine BMD, but not femoral BMD. Using μCT, 
we further characterized the effect of Ppp6r3 deletion on lumbar spine and femoral microarchitec-
ture. We observed significant decreases in trabecular bone volume fraction (BV/TV) and vBMD of the 
lumbar spine as a function of PPP6R3 genotype. While we did not observe significant effects of Ppp6r3 

means, and the error bars represent confidence intervals at a confidence level of 0.9. Data presented here are from 
both male and female mice.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Raw, unedited, PPP6R3 western blots.

Figure supplement 1. LSBMD and FNBMD genome-wide association study (GWAS) SNPs in the PPP6R3 locus.

Figure supplement 2. Ppp6r3 functional validation.

Figure supplement 3. Raman spectroscopy in femur, means.

Figure supplement 4. Raman spectroscopy in spines, means.

Figure supplement 5. Raman spectroscopy in femurs, standard deviation.

Figure supplement 6. Raman spectroscopy in spines, standard deviation.

Figure 4 continued
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deletion on trabecular thickness or number, the direction of effects for those phenotypes suggests 
that the observed decrease in bone volume fraction and BMD may be explained by the cumulative 
but more subtle effects of Ppp6r3 deletion on trabecular thickness and number. Consistent with our 
caliper-based observations that femoral width was decreased at the midshaft in Ppp6r3 mutants, we 
observed a decrease in medullary and total area in the femoral midshaft. We also hypothesized that 
Ppp6r3 deficiency might lead to defects in matrix composition; however, we did not observe any 
significant differences. The lack of differences might be due to the fact that we used relatively young 
mice for these assays.

Our hypothesis regarding the directions of effect of Ppp6r3 expression on BMD based on the eQTL 
and eBMD/lumbar spine BMD GWAS were opposite to what we observed. There are several reasons 
that may explain this. First, our hypothesis was based on expression data in non-bone tissues and cell 
types. Recent studies have shown that the direction of eQTL effects can differ between different cells 
and tissues within humans (Peters et al., 2016; Mizuno and Okada, 2019). Second, our hypothesis 
was based on human data, while our functional experiments were performed in mice. Third, we glob-
ally deleted Ppp6r3 in mice, as opposed to ablating it in a cell-type-specific manner. Future studies 
investigating which tissue/cell-type Ppp6r3 is operative in and the generation of conditional Ppp6r3 
knockouts will allow us to unravel the precise role of this association and Ppp6r3 in the regulation of 
bone mass.

As we and others have shown, the use of both TWAS and eQTL colocalization can prioritize puta-
tively causal genes underlying GWAS associations. Here, we have shown the utility of this approach 
even in the absence of eQTL data from the most phenotype-relevant tissue. However, it is important to 
highlight the limitations of our analysis. While studies have shown that many eQTL are shared among 
tissues, the lack of eQTL data in bone and bone cells means that bone-specific eQTL were missed. 
For example, a study conducted by Mullin et al. performed eQTL colocalization and summary-based 
Mendelian randomization (SMR) by utilizing GWAS and expression data from osteoclast-like cells, and 
prioritized several eBMD genes (Mullin et al., 2020). Thirty-eight percent of the colocalizing eQTL 
and 19% of the SMR genes that they identified overlapped with our 512 prioritized genes, suggesting 
that we have missed many potential effector genes with eQTL specific to bone cells. In addition, 
the use of multiple non-bone tissues may have inflated the number of false positives based on coin-
cidence of strong TWAS and eQTL colocalization signals that have no biological impact on bone. 
Furthermore, the lack of bone transcriptomic data may also explain the observed disparity between 
our hypothesized and observed direction-of-effect for PPP6R3. It is also important to note that due to 
the reliance of this approach on eQTL data, genes that affect BMD via non-expression-related mech-
anisms were not captured. Another limitation of our approach arises from the definition of loci based 
on linkage disequilibrium (LD). We used a set of previously defined approximately independent LD 
blocks, derived from a cohort of European individuals, in our fastENLOC analysis (Berisa and Pickrell, 
2016). The inexact nature of these data may lead to spurious colocalizations due to mismatches in LD 
structure between the reference LD blocks and the GWAS/eQTL populations. Additionally, because 
the GWAS and eQTL data have mismatching LD structures, due to their being derived from cohorts 
with different ancestries, our analyses, particularly the colocalization analyses, may suffer from reduced 
power (Hukku et al., 2021). This also raises the related issue of the reduced generalizability of our 
results in non-European individuals, which brings further attention to the necessity of performing 
GWASs and providing reference data in diverse and underrepresented populations. Additionally, 
another issue arises when considering correlations in expression, and predicted expression, between 
genes in a locus, which may lead to spurious associations in TWAS analyses (Wainberg et al., 2019). 
Finally, as we show above, our method does not perform as well as prioritizing genes based on their 
proximity to GWAS associations. However, because our method utilizes systems genetics techniques 
and data, such as eQTL, we believe that our method prioritizes genes in a more biologically relevant 
manner. In fact, utilizing the closest gene method alone, PPP6R3 would not have been prioritized 
as a bone-relevant gene. We suggest that future studies utilize both prioritization techniques, such 
as taking the closest genes to GWAS associations and cross referencing them with colocalizing and 
TWAS-associated genes, in order to provide further evidence for functional validation.

In summary, we applied a combined TWAS/colocalization approach using GTEx and identified 512 
putatively causal BMD genes. We further investigated PPP6R3 and demonstrated that it is a regu-
lator of lumbar spine BMD. We believe this work provides a valuable resource for the bone genetics 

https://doi.org/10.7554/eLife.77285
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community and may serve as a framework for prioritizing genes underlying GWAS associations using 
publicly available tools and data for a wide range of diseases.

Methods
fastENLOC colocalization
For each of the eBMD and fracture GWASs, we performed colocalization using fastENLOC, by 
following the tutorial and guidelines available at https://github.com/xqwen/fastenloc (Wen, 2022).

Briefly, for each GWAS, we converted variant coordinates to the hg38 human genome assembly, 
using the UCSC liftOver tool (minimum ratio of bases that must remap = 1; https://genome.ucsc.​
edu/cgi-bin/hgLiftOver). We calculated z-scores by dividing GWAS betas by standard errors. We then 
defined loci based on European LD blocks, as defined based on the results of Berisa and Pickrell, 
2016.

Z-scores were then converted to posterior inclusion probabilities using torus (Wen, 2015). Finally, 
these data were colocalized with fastENLOC for all 49 GTEx V8 tissues, with the ‘-total_variants’ flag 
set to 14,000,000. Colocalization was performed using pre-computed GTEx multi-tissue annotations, 
obtained from https://github.com/xqwen/fastenloc; Wen, 2022. Finally, to identify protein-coding 
genes in the results, we utilized Ensembl’s ‘hsapiens_gene_ensembl’ dataset using biomaRt (version 
2.45.8).

S-MultiXcan
We conducted a TWAS by integrating genome-wide SNP-level association summary statistics from 
an eBMD GWAS (Morris et al., 2019) with GTEx version 8 gene expression QTL data from 49 
tissue types. We used the S-MultiXcan approach for this analysis, to correlate gene expression 
across tissues to increase power and identify candidate susceptibility genes (Barbeira et al., 2019). 
Default parameters were used, with the exception of the ‘--cutoff_condition_number’ parameter, 
which was set to 30. Bonferroni-correction of p values was performed on the resultant gene set 
(22,337 genes), using R’s ‘p.adjust’ function. This was followed by the removal of non-protein-
coding genes. The analysis was also performed in the same manner using summary statistics from 
a fracture GWAS (Morris et al., 2019). Finally, to identify protein-coding genes in the results, we 
utilized Ensembl’s ‘hsapiens_gene_ensembl’ dataset using biomaRt (Durinck et al., 2009; Durinck 
et al., 2005).

Creation of the ‘known bone gene’ list
We generated a ‘known bone gene’ set as follows: First, we downloaded Gene Ontology IDs for the 
following terms: ‘osteo*’, ‘bone’, and ‘ossif*’ from AmiGO2 (version 2.5.13) (Carbon et al., 2009). 
After removal of non-bone-related terms, we extracted all mouse and human genes related to the GO 
terms, using biomaRt. From this list, we retained protein-coding genes.

We also used the ‘Human-Mouse: Disease Connection’ database available at the Mouse Genome 
Informatics website, to download human and mouse genes annotated with the terms ‘osteoporosis’, 
‘bone mineral density’, ‘osteoblast’, ‘osteoclast’, and ‘osteocyte’. We used biomaRt to identify the 
gene biotypes, and retained protein-coding genes. We then used the MGI human-mouse homology 
table (http://www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt) to 
convert all mouse genes to their human homologs. Finally, we removed genes that were not interro-
gated in both the colocalization and the TWAS analyses.

GO enrichment analyses
GO analysis was performed for the set of protein-coding genes passing the colocalization threshold 
RCP ≥0.1 and S-MultiXcan Bonferroni p value ≤0.05, using the ‘topGO’ package (version 2.46.0) in 
R (Alexa and Rahnenfuhrer, 2021). Enrichment tests were performed for the ‘Molecular Function’, 
‘Biological Process’, and ‘Cellular Component’ ontologies, using all protein-coding genes that were 
subjected to colocalization and MultiXcan analysis as background. Enrichment was performed using 
the ‘classic’ algorithm with Fisher’s exact test. p values were not adjusted for multiple testing.

https://doi.org/10.7554/eLife.77285
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http://www.informatics.jax.org/downloads/reports/HOM_MouseHumanSequence.rpt
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LD calculations
LD between variants was calculated using the LDlinkR (version 1.0.2) R package, using the ‘EUR’ popu-
lation (Myers et al., 2020).

Ppp6r3 knockout mouse generation
The study was carried out in strict accordance with NIH’s Guide for the Care and Use of Labora-
tory Animals. Additionally, the University of Virginia Institutional Animal Care and Use Committee 
approved all animal procedures. Ppp6r3 gene-trap mice were generated using targeted embryonic 
stem cell clones heterozygous for the Ppp6r3tm1a(KOMP)Wtsi gene-trap allele obtained from the Interna-
tional Knockout Mouse Project (KOMP; https://www.komp.org). KOMP ES clones were karyotyped 
and injected using a XYClone Laser (Hamilton Thorne, Beverly, MA) into B6N-Tyrc-Brd/BrdCrCrl (Charles 
River, Wilmington, MA) eight-cell stage embryos to create chimeric mice. Resultant chimeras were 
bred to B6N-Tyrc-Brd/BrdCrCrl mice to obtain germline transmission of the Ppp6r3 gene-trap allele. 
From a breeding pair of two heterozygous mice, we generated our experimental population through 
HET × HET matings. Breeder mice were fed a breeder chow diet (Envigo Teklad S-2335 mouse breeder 
sterilizable diet, irradiated. Product # 7904), and experimental mice were fed a standard chow diet 
(Envigo Teklad LM-485 irradiated mouse/rat sterilizable diet. Product #7912).

Genotyping of Ppp6r3 mice
DNA for genotyping was extracted from tail clips as follows: tail clips were incubated overnight at 
55°C in a solution of 200 µl digestion/lysis buffer (Viagen Direct PCR [tail], Los Angeles, CA) and 1 mg/
ml proteinase K (Viagen, Los Angeles, CA). After overnight incubation, tails were heated at 85°C for 
45 min, and solutions were subsequently stored at 4°C.

For genotyping, PCR reactions were set up as follows. For each reaction, 1 μl of DNA was mixed 
with 24 μl of a master mix consisting of 19.5 μl nuclease-free H2O, 2.5 μl 10× PCR reaction buffer 
(Invitrogen, Waltham, MA), 0.75  μl of MgCl2 (Invitrogen, Waltham, MA), 0.5  μl of 10  mmol Quad 
dNTPs (Roche Diagnostics GmbH, Mannheim, Germany) 0.25 μl of Platinum Taq DNA polymerase 
(Invitrogen, Waltham, MA), and 0.25 μl of each primer, diluted to 20 μmol.

Primers: PCR primers were obtained from Integrated DNA Technologies, Coralville, IA.

Forward primer: 5′-CAC ​CTG ​GGT ​TGG ​TTA ​CAT ​CC-3′
Reverse primer: 5′-GAC ​CCT ​GCC ​TTA ​AAA ​CCA ​AA-3′

The following PCR settings were used:

•	 Initialization: 94°C, 120 s
•	 Denaturation: 94°C, 30 s (37 cycles)
•	 Annealing: 54°C, 30 s (37 cycles)
•	 Elongation: 72°C, 35 s (37 cycles)
•	 Final elongation: 72°C, 300 s

PCR products were run on a 2% agarose gel for 150 min at 60 V, to distinguish between wild-type, 
heterozygous and mutant Ppp6r3 mice.

PPP6R3 western blotting
Mouse spleens 20–40 mg in weight were suspended in 1% NP40 buffer (50 mM Tris [pH 8] 100 mM 
NaCl, 1% NP40, 1 mM EGTA(egtazic acid), 1 mM EDTA(ethylenediaminetetraacetic acid), Protease 
inhibitor cocktail (04-693-116-001, Roche), 1 mM PMSF(phenylmethylsulfonyl fluoride), 50 mM NaF, 
0.2 mM sodium vanadate). The tissue was homogenized by RNase-free disposable pestles (Thermo 
Fisher #12-141-364) and incubated for 10 min on ice. After brief sonication, the sample was centri-
fuged for 10 min at 13,000 × rpm at 4°C. The protein concentration in the extract was measured by 
Bradford assay. 100 µg of sample protein was boiled 5 min in sodium dodecyl sulfate (SDS) sample 
buffer, loaded in each lane, resolved by gradient SDS–polyacrylamide gel electrophoresis (Bio-Rad 
#456-1085) and immunoblotted as described in Guergnon et  al., 2009. Primary antibodies were 
diluted 1:1000 (SAPS1 Ab: Thermo Fisher #PA5-44275, SAPS3 Ab: Thermo Fisher #PA5-58405, PP6C 
Ab: Sigma #HPA050940).

https://doi.org/10.7554/eLife.77285
https://www.komp.org
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PPP6R3 functional validation
Experimental mice of both sexes were sacrificed at approximately 9 weeks of age (mean age = 61 
days). At sacrifice, the right femurs were isolated, and femoral morphology (length and widths in ante-
rior–posterior and medial–lateral orientations) was measured with digital calipers (Mitoyuto American, 
Aurora, IL).

Femurs were then wrapped in phosphate-buffered saline (PBS)-soaked gauze and stored at −20°C, 
until analysis. Lumbar vertebrae L3–L5 were also dissected at sacrifice and were wrapped in PBS-
soaked gauze and frozen at −20°C. Given our prior experience in measuring bone geometry and 
microstructure, we used a minimum N = 14 for our analyses, ensuring 80% power to detect a statisti-
cally significant effect at an alpha ≤0.05.

Bulk RNA isolation, sequencing, and quantification
We isolated RNA from a randomly chosen subset (n = 16, 4/sex each of WT and MUT) of the available 
mice.Total RNA was isolated from L5 vertebrae, using the mirVana miRNA Isolation Kit (Life Technolo-
gies, Carlsbad, CA). Total RNA-seq libraries were constructed using Illumina TruSeq Stranded mRNA 
LT sample prep kits. Samples were sequenced to an average of 39 million 2 × 151 bp paired-end reads 
(total RNA-seq) on an Illumina NextSeq500 sequencer by Psomagen, Inc A custom bioinformatics 
pipeline was used to quantify RNA-seq data. Briefly, RNA-seq FASTQ files were quality controlled 
using FASTQC (version 0.11.5) and MultiQC (version 1.11). Reads were trimmed using bbduk (bbmap 
package version 38.57). Trimmed reads were then aligned to the mm10 genome assembly with HISAT2 
(version 2.1), and quantified with Stringtie (version 1.3.3). Read count information was then extracted 
with a Python script provided by the Stringtie website (​prepDE.​py).

Bulk RNA differential expression analyses
Using gene count matrices, differential expression was performed using DESeq2 (Love et al., 2014; 
Version 1.34.0) between wild-type and mutant samples. We used the ‘DESeq’ function from DESeq2, 
with a design formula of ~sex + genotype. p values were adjusted using the ‘p.value’ function, using 
the ‘BH’ method.

Dual X-ray absorptiometry
Individual right femurs and the lumbar spine (L5 vertebrae) were isolated from surrounding soft tissues 
and frozen at −20°C in PBS. DXA was performed on the femurs and lumbar vertebrae using the Lunar 
Piximus II (GE Healthcare) as described previously by Beamer et al., 2011. In short, 10 isolated bones 
were placed in the detector field at a time and the samples were analyzed one by one, such that the 
region of interest (ROI) was set for one specimen at a time for data collection. The ROI for the femurs 
was on the entire isolated femur. For the spine, was on the entire isolated L5. Care was taken to ensure 
that the sample orientation was identical for all samples.

μCT and image analysis
All μCT analyses were carried out at the μCT Imaging Core Facility at Boston University using a Scanco 
Medical μCT 40 instrument (Brütisellen, Switzerland). The power, current, and integration time used 
for all scans were 70 kVp, 113 μA, and 200 ms, respectively. The L5 vertebrae and right femora were 
scanned at a resolution of 12 μm/voxel. Two volumes of interest (VOIs) in the L5 were selected for 
analysis: (1) the entire portion of the L5 vertebra extending from 60 μm caudal to the cranial growth 
plate in the vertebral body to 60 μm cranial to the caudal growth plate; and (2) only the trabecular 
centrum contained in the first VOI. Semi-automated-edge detection (Scanco Medical) was used to 
define the boundary between the trabecular centrum and cortical shell to produce the second VOI. 
Two VOIs were also analyzed for each femur: (1) a 0.3-mm-long segment of the diaphysis, centered 
at the mid-point of the bone; and (2) a 1.2-mm-long segment of the distal metaphyseal trabecular 
compartment. To define the location of the latter, the location of the distal femoral growth plate was 
determined, and the distal end of the VOI was set at 60 μm proximal to that growth plate. Gaussian 
filtering (sigma = 0.8, support = 1) was used for partial background noise suppression. A scan of a 
potassium hydroxyapatite phantom allowed conversion of gray values to mineral density. For segmen-
tation of bone tissue, the threshold was set at a 16-bit gray value of 7143 (521 mgHA/ccm), and this 
global threshold was applied to all of the samples. For each VOI, the following were calculated: total 

https://doi.org/10.7554/eLife.77285
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volume (TV), bone volume (BV), bone volume fraction (BV/TV), BMD, and TMD. BMD was defined 
as the average density of all voxels in the VOI, whereas TMD was defined as the average density of 
all voxels in the VOI above the threshold (Bouxsein et al., 2010). For the second VOI, the following 
additional parameters were calculated: trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), 
trabecular number (Tb.N), connectivity density (Conn.D), and structure model index (SMI) (Bouxsein 
et al., 2010).

For the femoral VOI, the following additional parameters were calculated instead: cortical thick-
ness (Ct.Th), total area (Tot.Ar), marrow area (Ma.Ar), maximum and minimum moments of inertia, and 
polar moment of inertia (Bouxsein et al., 2010).

P1NP collection and quantification
Plasma was collected via submandibular bleeding from isoflurane anesthetized wild-type and mutant 
PPP6R3 mice (N = 10/sex/genotype). Plasma P1NP levels were measured using commercially avail-
able kits from IDS (Gaithersburg, MD), according to the manufacturer’s instructions. The assay sensi-
tivity was 0.7 ng/ml. The intra-assay variation was 6.3%, and the inter-assay variation was 8.5%. All 
measurements were performed in duplicate.

Raman spectroscopy
Raman spectroscopy was performed using a Renishaw inVia Raman Microscope (Gloucestershire, UK) 
on each bone sample using a 785-nm-edge red incident laser. A rectangular filled map was created 
with 3 points in the x-axis and 20 points in the y-axis, for a total of 60 collected points. Each point 
was exposed 10 times for 6 s per exposure. A custom MATLAB script was used to evaluate the peak 
position, maximum intensity, peak width, full width at half maximum (FWHM), and the area under 
each peak. Peak area ratios were calculated for mineral:matrix, carbonate:phosphate, and crystallinity. 
Furthermore, the standard deviations of peak area ratios were calculated for each mouse, and were 
further used to evaluate the material heterogeneity in groups.

Statistical analyses
To calculate the enrichment of bone genes in prioritized genes, we performed Fisher’s exact test, 
using R’s ‘​fisher.​test’ function, with the alternative hypothesis set as ‘greater’.

For the statistical analysis of the phenotyping results, we calculated least-squares means (lsmeans) 
using the ‘emmeans’ R package (version 1.5.2.1) (Lenth, 2020). Input for the lsmeans function was a 
linear model including terms for genotype, weight, and age in days. For sex-combined data, we also 
added a term for sex. For DXA phenotypes, we included a term for ‘CenterRectX’ and ‘CenterRectY’. 
For the Raman spectroscopy data, weight and age were not included as terms in the linear model.

We used Tukey’s HSD(honest significance test) test to test for significant differences in lsmeans, 
for each pair of genotype levels. Tukey’s HSD also controls the family-wise error rate. We performed 
Welch two-sample t-test’s, using R’s ‘t.test’ function, to quantify differences in P1NP levels between 
mutant and wild-type mice.

Analyses involving data from the International Mouse Phenotyping 
Consortium
For the IMPC data, we obtained data using their ‘statistical-result’ SOLR database, using the ‘solrium’ R 
package (version 1.1.4) (Chamberlain, 2019). We obtained experimental results using the ‘Bone*Min-
eral*Density’ parameter. We then pruned the resulting data to only include ‘Successful’ analyses, and 
removed experiments that included the skull. To generate the Gpatch1 boxplot, we obtained raw 
data using from IMPC’s ‘statistical-raw-data’ SOLR database for Gpatch1, and analyzed the data in the 
same manner as IMPC, using the ‘OpenStats’ R package (version 1.0.2), using the method = ‘MM’ and 
MM_BodyWeightIncluded = TRUE arguments (Haselimashhadi et al., 2020). Finally, mouse genes 
were converted to their human syntenic counterparts using Ensembl’s ‘hsapiens_gene_ensembl’ and 
‘mmusculus_gene_ensembl’ datasets through biomaRt.

PhenomeXcan data analysis
We obtained all significant PhenomeXcan gene–trait associations from their paper 
(https://advances.sciencemag.org/content/6/37/eaba2083), and used data for the 
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‘3148_raw-Heel_bone_mineral_density_BMD’ phenotype (Pividori et  al., 2020). Furthermore, we 
constrained our search to only include genes that were annotated by the authors as ‘protein_coding’.

LSBMD/FNBMD GWAS analysis
We obtained sex-combined LSBMD and FNBMD GWAS summary statistics from GEFOS (http://www.​
gefos.org/?q=content/data-release-2012), and then used a custom script that utilized the biomaRt R 
package to convert variants to their GRCh38 coordinates.

Data availability
eBMD and fracture GWAS summary statistics were obtained from GEFOS, as were the LSBMD and 
FNBMD GWAS summary statistics. GTEx eQTL data were obtained from the GTEx web portal. Data 
from the PhenomeXcan project were obtained from Pividori et al., 2020. Statistical data from the 
IMPC were obtained using an R interface to their SOLR database. Ppp6r3 experimental data are 
provided on our GitHub (https://github.com/basel-maher/BMD_TWAS_colocalization; Al-Bargh-
outhi, 2022). Mouse-Human homologs were obtained from MGI (http://www.informatics.jax.org/​
downloads/reports/HOM_MouseHumanSequence.rpt). We also obtained data from the MGI Human-
Mouse:Disease Connection database (http://www.informatics.jax.org/diseasePortal). Gene Ontolo-
gies were obtained from AmiGO2 (http://amigo.geneontology.org/amigo).

Code availability
Analysis code and the raw data for our Ppp6r3 functional validation analyses are available on GitHub 
(https://github.com/basel-maher/BMD_TWAS_colocalization, copy archived at swh:1:rev:6aaa-
8819c2e335013a665e76318dc98aeb9a52ce; Al-Barghouthi, 2022).
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analysis (Bonferroni p value ≤0.05). Columns are Ensembl ID, gene name, the nominal S-MultiXcan 
p value, the number of tissues available to S-MultiXcan, the number of independent components 
of variation among the tissues, and the Bonferroni-adjusted p value. (b) 1182 protein-coding genes 
that are significant in the fastEnloc colocalization analysis (regional colocalization probability [RCP] 
≥0.1). Columns are Ensembl ID, signal cluster name from the expression quantitative trait loci (eQTL) 
analysis, the gene name, the RCP, and the colocalizing Genotype-Tissue Expression (GTEx) tissue. 
(c) The 512 protein-coding genes that are significant by both TWAS and colocalization (Bonferroni 
p value ≤0.05 and RCP ≥0.1). Columns are Ensembl ID, signal cluster name from the eQTL analysis, 
gene name, the RCP, the colocalizing GTEx tissue, the nominal S-MultiXcan p value, and the 
Bonferroni-adjusted p value. (d) Number of the 512 significantly colocalizing genes per GTEx tissue. 
Columns are the GTEx tissue and the number of unique colocalizing eQTL in the relevant tissue. 
(e) The ‘known bone gene’ list. Columns are gene name and Ensembl ID. (f) The 66 genes that 
are significant by both TWAS and colocalization (Bonferroni p value ≤0.05 and RCP ≥0.1), and are 
also members of the ‘known bone gene’ list. Columns are gene name and Ensembl ID. (g) Gene 
Ontology (GO) enrichments for the 512 protein-coding genes that are significant by both TWAS and 
colocalization (Bonferroni p value ≤0.05 and RCP ≥0.1). Only GO enrichments with a p value ≤0.05 
are included. Columns are the GO IDs, GO terms, p values, the GO subontology (BP – Biological 
Process, CC – Cellular Component, MF – Molecular Function), and the Ensembl IDs for the genes 
that are members of the GO ontology. p values were calculated using a one-sided Fisher’s exact 
test, and were not adjusted for multiple comparisons. (h) The 863 genes closest to estimated bone 
mineral density (eBMD) genome-wide association study (GWAS) associations. These data were 
obtained from Morris et al., 2019. (i) 137 novel putatively causal BMD genes, after increasing 
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RCP ≥0.5, and removing genes that were members of the ‘known bone gene’ list and genes with 
a nominal (p ≤ 0.05) alteration in BMD as determined by the International Mouse Phenotype 
Consortium (IMPC). Columns are Gene name, Ensembl ID, colocalization RCP, the tissue with the 
highest RCP, the S-Multixcan Bonferroni-adjusted p value, and the number of tissues that were 
significantly colocalizing. Note that TLN2 appears twice due to having the same RCP in two tissues. 
(j) Results of the differential expression analysis performed on RNA isolated from vertebrae. The 
analysis results show the difference in expression between mutant and wild-type mice. The columns 
are the Ensembl IDs, gene names, baseMean (the average of normalized count values, taken over all 
samples), log2 fold change, standard error of the log2 fold change estimate, the Wald statistic, the 
test p value, and the BH-adjusted p value.

•  Transparent reporting form 

Data availability
All data and source code are available on GitHub: https://github.com/basel-maher/BMD_TWAS_colo-
calization (copy archived at swh:1:rev:6aaa8819c2e335013a665e76318dc98aeb9a52ce).

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Morris JA 2018 UK Biobank eBMD and 
Fracture GWAS Data 
Release 2018

http://www.​gefos.​
org/?​q=​content/​data-​
release-​2018

GEFOS, release-2018

Estrada K 2012 Data Release 2012 http://www.​gefos.​
org/?​q=​content/​data-​
release-​2012

GEFOS, release-2012

Pividori M 2020 PhenomeXcan http://​apps.​
hakyimlab.​org/​
phenomexcan/

hakyimlab, phenomexcan

GTEx Consortium 2020 GTEx V8 https://​gtexportal.​
org/​home/​datasets

gtexportal, V8

IMPC Consortium 2021 IMPC https://www.​
mousephenotype.​
org/

mousephenotype, 
mousephenotype

References
Abu-Amer Y. 2013. Nf-Κb signaling and bone resorption. Osteoporosis International 24:2377–2386. DOI: 

https://doi.org/10.1007/s00198-013-2313-x, PMID: 23468073
Al-Barghouthi B. 2022. BMD_TWAS_colocalization. swh:1:rev:6aaa8819c2e335013a665e76318dc98aeb9a52ce. 

Software Heritage. https://archive.softwareheritage.org/swh:1:dir:868bf794273483babcaffaeab49f09b2​
207bfd17;origin=https://github.com/basel-maher/BMD_TWAS_colocalization;visit=swh:1:snp:4e5dc953f62a​
3e192cf830c4ba7f93a35284ce07;anchor=swh:1:rev:6aaa8819c2e335013a665e76318dc98aeb9a52ce

Alexa A, Rahnenfuhrer J. 2021. TopGO: enrichment analysis for gene ontology. 2.46.0. R Package. https://​
bioconductor.org/packages/release/bioc/html/topGO.html

Alliance of genome resources. 2022. Alliance of genome resources. 5.2.1. Alliancegenome. https://www.​
alliancegenome.org/gene/hgnc:24658

Barbeira AN, Dickinson SP, Bonazzola R, Zheng J, Wheeler HE, Torres JM, Torstenson ES, Shah KP, Garcia T, 
Edwards TL, Stahl EA, Huckins LM, GTEx Consortium, Nicolae DL, Cox NJ, Im HK. 2018. Exploring the 
phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. 
Nature Communications 9:1825. DOI: https://doi.org/10.1038/s41467-018-03621-1, PMID: 29739930

Barbeira AN, Pividori M, Zheng J, Wheeler HE, Nicolae DL, Im HK. 2019. Integrating predicted transcriptome 
from multiple tissues improves association detection. PLOS Genetics 15:e1007889. DOI: https://doi.org/10.​
1371/journal.pgen.1007889, PMID: 30668570

Battle A, Brown CD, Engelhardt BE, Montgomery SB, GTEx Consortium, Laboratory, Data Analysis 
&Coordinating Center —Analysis Working Group, Statistical Methods groups—Analysis Working Group, 
Enhancing GTEx groups, NIH Common Fund, NIH/NCI, NIH/NHGRI, NIH/NIMH, NIH/NIDA, Biospecimen 
Collection Source Site—NDRI, Biospecimen Collection Source Site—RPCI, Biospecimen Core Resource—VARI, 
Brain Bank Repository—University of Miami Brain Endowment Bank, Leidos Biomedical—Project Management, 
ELSI Study, Genome Browser Data Integration &Visualization—EBI, et al. 2017. Genetic effects on gene 
expression across human tissues. Nature 550:204–213. DOI: https://doi.org/10.1038/nature24277, PMID: 
29022597

https://doi.org/10.7554/eLife.77285
https://github.com/basel-maher/BMD_TWAS_colocalization
https://github.com/basel-maher/BMD_TWAS_colocalization
https://archive.softwareheritage.org/swh:1:dir:868bf794273483babcaffaeab49f09b2207bfd17;origin=https://github.com/basel-maher/BMD_TWAS_colocalization;visit=swh:1:snp:4e5dc953f62a3e192cf830c4ba7f93a35284ce07;anchor=swh:1:rev:6aaa8819c2e335013a665e76318dc98aeb9a52ce
http://www.gefos.org/?q=content/data-release-2018
http://www.gefos.org/?q=content/data-release-2018
http://www.gefos.org/?q=content/data-release-2018
http://www.gefos.org/?q=content/data-release-2012
http://www.gefos.org/?q=content/data-release-2012
http://www.gefos.org/?q=content/data-release-2012
http://apps.hakyimlab.org/phenomexcan/
http://apps.hakyimlab.org/phenomexcan/
http://apps.hakyimlab.org/phenomexcan/
https://gtexportal.org/home/datasets
https://gtexportal.org/home/datasets
https://www.mousephenotype.org/
https://www.mousephenotype.org/
https://www.mousephenotype.org/
https://doi.org/10.1007/s00198-013-2313-x
http://www.ncbi.nlm.nih.gov/pubmed/23468073
https://archive.softwareheritage.org/swh:1:dir:868bf794273483babcaffaeab49f09b2207bfd17;origin=https://github.com/basel-maher/BMD_TWAS_colocalization;visit=swh:1:snp:4e5dc953f62a3e192cf830c4ba7f93a35284ce07;anchor=swh:1:rev:6aaa8819c2e335013a665e76318dc98aeb9a52ce
https://archive.softwareheritage.org/swh:1:dir:868bf794273483babcaffaeab49f09b2207bfd17;origin=https://github.com/basel-maher/BMD_TWAS_colocalization;visit=swh:1:snp:4e5dc953f62a3e192cf830c4ba7f93a35284ce07;anchor=swh:1:rev:6aaa8819c2e335013a665e76318dc98aeb9a52ce
https://archive.softwareheritage.org/swh:1:dir:868bf794273483babcaffaeab49f09b2207bfd17;origin=https://github.com/basel-maher/BMD_TWAS_colocalization;visit=swh:1:snp:4e5dc953f62a3e192cf830c4ba7f93a35284ce07;anchor=swh:1:rev:6aaa8819c2e335013a665e76318dc98aeb9a52ce
https://bioconductor.org/packages/release/bioc/html/topGO.html
https://bioconductor.org/packages/release/bioc/html/topGO.html
https://www.alliancegenome.org/gene/hgnc:24658
https://www.alliancegenome.org/gene/hgnc:24658
https://doi.org/10.1038/s41467-018-03621-1
http://www.ncbi.nlm.nih.gov/pubmed/29739930
https://doi.org/10.1371/journal.pgen.1007889
https://doi.org/10.1371/journal.pgen.1007889
http://www.ncbi.nlm.nih.gov/pubmed/30668570
https://doi.org/10.1038/nature24277
http://www.ncbi.nlm.nih.gov/pubmed/29022597


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Genetics and Genomics

Al-Barghouthi et al. eLife 2022;11:e77285. DOI: https://doi.org/10.7554/eLife.77285 � 20 of 22

Beamer WG, Shultz KL, Coombs HF, DeMambro VE, Reinholdt LG, Ackert-Bicknell CL, Canalis E, Rosen CJ, 
Donahue LR. 2011. Bmd regulation on mouse distal chromosome 1, candidate genes, and response to 
ovariectomy or dietary fat. Journal of Bone and Mineral Research 26:88–99. DOI: https://doi.org/10.1002/jbmr.​
200, PMID: 20687154

Berisa T, Pickrell JK. 2016. Approximately independent linkage disequilibrium blocks in human populations. 
Bioinformatics 32:283–285. DOI: https://doi.org/10.1093/bioinformatics/btv546, PMID: 26395773

Bhattacharya A, García-Closas M, Olshan AF, Perou CM, Troester MA, Love MI. 2020. A framework for 
transcriptome-wide association studies in breast cancer in diverse study populations. Genome Biology 21:42. 
DOI: https://doi.org/10.1186/s13059-020-1942-6, PMID: 32079541

Black DM, Rosen CJ. 2016. Clinical practice: postmenopausal osteoporosis. The New England Journal of 
Medicine 374:254–262. DOI: https://doi.org/10.1056/NEJMcp1513724, PMID: 26789873

Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R. 2010. Guidelines for assessment of 
bone microstructure in rodents using micro-computed tomography. Journal of Bone and Mineral Research 
25:1468–1486. DOI: https://doi.org/10.1002/jbmr.141, PMID: 20533309

Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP. 2002. High bone 
density due to a mutation in LDL-receptor-related protein 5. The New England Journal of Medicine 346:1513–
1521. DOI: https://doi.org/10.1056/NEJMoa013444, PMID: 12015390

Brixen K, Beckers S, Peeters A, Piters E, Balemans W, Nielsen TL, Wraae K, Bathum L, Brasen C, Hagen C, 
Andersen M, Van Hul W, Abrahamsen B. 2007. Polymorphisms in the low-density lipoprotein receptor-related 
protein 5 (LRP5) gene are associated with peak bone mass in non-sedentary men: results from the Odense 
androgen study. Calcified Tissue International 81:421–429. DOI: https://doi.org/10.1007/s00223-007-9088-z, 
PMID: 18058054

Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. 2007. Incidence and economic burden 
of osteoporosis-related fractures in the United States, 2005-2025. Journal of Bone and Mineral Research 
22:465–475. DOI: https://doi.org/10.1359/jbmr.061113, PMID: 17144789

Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O’Connell J, 
Cortes A, Welsh S, Young A, Effingham M, McVean G, Leslie S, Allen N, Donnelly P, Marchini J. 2018. The UK 
Biobank resource with deep phenotyping and genomic data. Nature 562:203–209. DOI: https://doi.org/10.​
1038/s41586-018-0579-z, PMID: 30305743

Calabrese GM, Mesner LD, Stains JP, Tommasini SM, Horowitz MC, Rosen CJ, Farber CR. 2017. Integrating 
GWAS and co-expression network data identifies bone mineral density genes SPTBN1 and MARK3 and an 
osteoblast functional module. Cell Systems 4:46–59.. DOI: https://doi.org/10.1016/j.cels.2016.10.014, PMID: 
27866947

Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S, Hub A, Group WPW. 2009. AmiGO: online access to 
ontology and annotation data. Bioinformatics 25:288–289. DOI: https://doi.org/10.1093/bioinformatics/​
btn615, PMID: 19033274

Chamberlain S. 2019. Solrium: general purpose R interface to “Solr. 1.1.4. R Package. https://github.com/​
ropensci/solrium

Chesi A, Wagley Y, Johnson ME, Manduchi E, Su C, Lu S, Leonard ME, Hodge KM, Pippin JA, Hankenson KD, 
Wells AD, Grant SFA. 2019. Genome-Scale capture C promoter interactions implicate effector genes at GWAS 
loci for bone mineral density. Nature Communications 10:1260. DOI: https://doi.org/10.1038/s41467-019-​
09302-x, PMID: 30890710

Consortium Gte. 2013. The genotype-tissue expression (gtex) project. Nature Genetics 45:580–585. DOI: 
https://doi.org/10.1038/ng.2653, PMID: 23715323

Consortium Gte. 2020. The gtex Consortium atlas of genetic regulatory effects across human tissues. Science 
369:1318–1330. DOI: https://doi.org/10.1126/science.aaz1776, PMID: 32913098

Cristiano L. 2020. PPP6R3 (protein phosphatase 6 regulatory subunit 3). Atlas of Genetics and Cytogenetics in 
Oncology and Haematology 01:70657. DOI: https://doi.org/10.4267/2042/70657

Dickinson ME, Flenniken AM, Ji X, Teboul L, Wong MD, White JK, Meehan TF, Weninger WJ, Westerberg H, 
Adissu H, Baker CN, Bower L, Brown JM, Caddle LB, Chiani F, Clary D, Cleak J, Daly MJ, Denegre JM, Doe B, 
et al. 2016. High-throughput discovery of novel developmental phenotypes. Nature 537:508–514. DOI: https://​
doi.org/10.1038/nature19356, PMID: 27626380

Durinck S, Moreau Y, Kasprzyk A, Davis S, De Moor B, Brazma A, Huber W. 2005. BioMart and bioconductor: a 
powerful link between biological databases and microarray data analysis. Bioinformatics 21:3439–3440. DOI: 
https://doi.org/10.1093/bioinformatics/bti525, PMID: 16082012

Durinck S, Spellman PT, Birney E, Huber W. 2009. Mapping identifiers for the integration of genomic datasets 
with the R/bioconductor package biomart. Nature Protocols 4:1184–1191. DOI: https://doi.org/10.1038/nprot.​
2009.97, PMID: 19617889

Edwards SL, Beesley J, French JD, Dunning AM. 2013. Beyond gwass: illuminating the dark road from 
association to function. American Journal of Human Genetics 93:779–797. DOI: https://doi.org/10.1016/j.ajhg.​
2013.10.012, PMID: 24210251

Estrada K, Styrkarsdottir U, Evangelou E, Hsu Y-H, Duncan EL, Ntzani EE, Oei L, Albagha OME, Amin N, 
Kemp JP, Koller DL, Li G, Liu C-T, Minster RL, Moayyeri A, Vandenput L, Willner D, Xiao S-M, 
Yerges-Armstrong LM, Zheng H-F, et al. 2012. Genome-Wide meta-analysis identifies 56 bone mineral density 
loci and reveals 14 loci associated with risk of fracture. Nature Genetics 44:491–501. DOI: https://doi.org/10.​
1038/ng.2249, PMID: 22504420

https://doi.org/10.7554/eLife.77285
https://doi.org/10.1002/jbmr.200
https://doi.org/10.1002/jbmr.200
http://www.ncbi.nlm.nih.gov/pubmed/20687154
https://doi.org/10.1093/bioinformatics/btv546
http://www.ncbi.nlm.nih.gov/pubmed/26395773
https://doi.org/10.1186/s13059-020-1942-6
http://www.ncbi.nlm.nih.gov/pubmed/32079541
https://doi.org/10.1056/NEJMcp1513724
http://www.ncbi.nlm.nih.gov/pubmed/26789873
https://doi.org/10.1002/jbmr.141
http://www.ncbi.nlm.nih.gov/pubmed/20533309
https://doi.org/10.1056/NEJMoa013444
http://www.ncbi.nlm.nih.gov/pubmed/12015390
https://doi.org/10.1007/s00223-007-9088-z
http://www.ncbi.nlm.nih.gov/pubmed/18058054
https://doi.org/10.1359/jbmr.061113
http://www.ncbi.nlm.nih.gov/pubmed/17144789
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1038/s41586-018-0579-z
http://www.ncbi.nlm.nih.gov/pubmed/30305743
https://doi.org/10.1016/j.cels.2016.10.014
http://www.ncbi.nlm.nih.gov/pubmed/27866947
https://doi.org/10.1093/bioinformatics/btn615
https://doi.org/10.1093/bioinformatics/btn615
http://www.ncbi.nlm.nih.gov/pubmed/19033274
https://github.com/ropensci/solrium
https://github.com/ropensci/solrium
https://doi.org/10.1038/s41467-019-09302-x
https://doi.org/10.1038/s41467-019-09302-x
http://www.ncbi.nlm.nih.gov/pubmed/30890710
https://doi.org/10.1038/ng.2653
http://www.ncbi.nlm.nih.gov/pubmed/23715323
https://doi.org/10.1126/science.aaz1776
http://www.ncbi.nlm.nih.gov/pubmed/32913098
https://doi.org/10.4267/2042/70657
https://doi.org/10.1038/nature19356
https://doi.org/10.1038/nature19356
http://www.ncbi.nlm.nih.gov/pubmed/27626380
https://doi.org/10.1093/bioinformatics/bti525
http://www.ncbi.nlm.nih.gov/pubmed/16082012
https://doi.org/10.1038/nprot.2009.97
https://doi.org/10.1038/nprot.2009.97
http://www.ncbi.nlm.nih.gov/pubmed/19617889
https://doi.org/10.1016/j.ajhg.2013.10.012
https://doi.org/10.1016/j.ajhg.2013.10.012
http://www.ncbi.nlm.nih.gov/pubmed/24210251
https://doi.org/10.1038/ng.2249
https://doi.org/10.1038/ng.2249
http://www.ncbi.nlm.nih.gov/pubmed/22504420


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Genetics and Genomics

Al-Barghouthi et al. eLife 2022;11:e77285. DOI: https://doi.org/10.7554/eLife.77285 � 21 of 22

Fitzpatrick LA. 2002. Secondary causes of osteoporosis. Mayo Clinic Proceedings 77:453–468. DOI: https://doi.​
org/10.4065/77.5.453, PMID: 12004995

Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, Eyler AE, Denny JC, GTEx 
Consortium, Nicolae DL, Cox NJ, Im HK. 2015. A gene-based association method for mapping traits using 
reference transcriptome data. Nature Genetics 47:1091–1098. DOI: https://doi.org/10.1038/ng.3367, PMID: 
26258848

Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, Plagnol V. 2014. Bayesian test for 
colocalisation between pairs of genetic association studies using summary statistics. PLOS Genetics 
10:e1004383. DOI: https://doi.org/10.1371/journal.pgen.1004383, PMID: 24830394

Giral H, Landmesser U, Kratzer A. 2018. Into the wild: GWAS exploration of non-coding rnas. Frontiers in 
Cardiovascular Medicine 5:181. DOI: https://doi.org/10.3389/fcvm.2018.00181, PMID: 30619888

Giroux S, Elfassihi L, Cardinal G, Laflamme N, Rousseau F. 2007. Lrp5 coding polymorphisms influence the 
variation of peak bone mass in a normal population of French-Canadian women. Bone 40:1299–1307. DOI: 
https://doi.org/10.1016/j.bone.2007.01.004, PMID: 17307038

Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, 
Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, 
Arslan-Kirchner M, et al. 2001. Ldl receptor-related protein 5 (LRP5) affects bone accrual and eye development. 
Cell 107:513–523. DOI: https://doi.org/10.1016/s0092-8674(01)00571-2, PMID: 11719191

Guergnon J, Derewenda U, Edelson JR, Brautigan DL. 2009. Mapping of protein phosphatase-6 association with 
its SAPs domain regulatory subunit using a model of helical repeats. BMC Biochemistry 10:24. DOI: https://doi.​
org/10.1186/1471-2091-10-24, PMID: 19835610

Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, Jansen R, de Geus EJC, Boomsma DI, Wright FA, 
Sullivan PF, Nikkola E, Alvarez M, Civelek M, Lusis AJ, Lehtimäki T, Raitoharju E, Kähönen M, Seppälä I, 
Raitakari OT, et al. 2016. Integrative approaches for large-scale transcriptome-wide association studies. Nature 
Genetics 48:245–252. DOI: https://doi.org/10.1038/ng.3506, PMID: 26854917

Haselimashhadi H, Mason JC, Mallon A-M, Smedley D, Meehan TF, Parkinson H. 2020. OpenStats: a robust and 
scalable software package for reproducible analysis of high-throughput phenotypic data. PLOS ONE 
15:e0242933. DOI: https://doi.org/10.1371/journal.pone.0242933, PMID: 33378393

Hukku A, Pividori M, Luca F, Pique-Regi R, Im HK, Wen X. 2021. Probabilistic colocalization of genetic variants 
from complex and molecular traits: promise and limitations. American Journal of Human Genetics 108:25–35. 
DOI: https://doi.org/10.1016/j.ajhg.2020.11.012, PMID: 33308443

Kemp JP, Morris JA, Medina-Gomez C, Forgetta V, Warrington NM, Youlten SE, Zheng J, Gregson CL, 
Grundberg E, Trajanoska K, Logan JG, Pollard AS, Sparkes PC, Ghirardello EJ, Allen R, Leitch VD, 
Butterfield NC, Komla-Ebri D, Adoum A-T, Curry KF, et al. 2017. Identification of 153 new loci associated with 
heel bone mineral density and functional involvement of GPC6 in osteoporosis. Nature Genetics 49:1468–
1475. DOI: https://doi.org/10.1038/ng.3949, PMID: 28869591

Lattin JE, Schroder K, Su AI, Walker JR, Zhang J, Wiltshire T, Saijo K, Glass CK, Hume DA, Kellie S, Sweet MJ. 
2008. Expression analysis of G protein-coupled receptors in mouse macrophages. Immunome Research 4:5. 
DOI: https://doi.org/10.1186/1745-7580-4-5, PMID: 18442421

Lenth R. 2020. Emmeans: estimated marginal means, aka least-squares means. 1.5.2.1. R Package. https://​
github.com/rvlenth/emmeans

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-Seq data with 
deseq2. Genome Biology 15:550. DOI: https://doi.org/10.1186/s13059-014-0550-8, PMID: 25516281

Mao J, Wang J, Liu B, Pan W, Farr GH, Flynn C, Yuan H, Takada S, Kimelman D, Li L, Wu D. 2001. Low-density 
lipoprotein receptor-related protein-5 binds to axin and regulates the canonical wnt signaling pathway. 
Molecular Cell 7:801–809. DOI: https://doi.org/10.1016/s1097-2765(01)00224-6, PMID: 11336703

Marques-Pinheiro A, Levasseur R, Cormier C, Bonneau J, Boileau C, Varret M, Abifadel M, Allanore Y. 2010. 
Novel LRP5 gene mutation in a patient with osteoporosis-pseudoglioma syndrome. Joint Bone Spine 77:151–
153. DOI: https://doi.org/10.1016/j.jbspin.2009.11.013, PMID: 20096619

Miller PD, Zapalowski C, Kulak CA, Bilezikian JP. 1999. Bone densitometry: the best way to detect osteoporosis 
and to monitor therapy. The Journal of Clinical Endocrinology and Metabolism 84:1867–1871. DOI: https://doi.​
org/10.1210/jcem.84.6.5710, PMID: 10372677

Mirza F, Canalis E. 2015. Management of endocrine disease: secondary osteoporosis: pathophysiology and 
management. European Journal of Endocrinology 173:R131–R151. DOI: https://doi.org/10.1530/EJE-15-0118, 
PMID: 25971649

Mizuguchi T, Furuta I, Watanabe Y, Tsukamoto K, Tomita H, Tsujihata M, Ohta T, Kishino T, Matsumoto N, 
Minakami H, Niikawa N, Yoshiura K-I. 2004. Lrp5, low-density-lipoprotein-receptor-related protein 5, is a 
determinant for bone mineral density. Journal of Human Genetics 49:80–86. DOI: https://doi.org/10.1007/​
s10038-003-0111-6, PMID: 14727154

Mizuno A, Okada Y. 2019. Biological characterization of expression quantitative trait loci (eQTLs) showing 
tissue-specific opposite directional effects. European Journal of Human Genetics 27:1745–1756. DOI: https://​
doi.org/10.1038/s41431-019-0468-4, PMID: 31296926

Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai RC, Vulpescu NA, Forgetta V, Kleinman A, 
Mohanty ST, Sergio CM, Quinn J, Nguyen-Yamamoto L, Luco A-L, Vijay J, Simon M-M, Pramatarova A, 
Medina-Gomez C, Trajanoska K, Ghirardello EJ, et al. 2019. An atlas of genetic influences on osteoporosis in 
humans and mice. Nature Genetics 51:258–266. DOI: https://doi.org/10.1038/s41588-018-0302-x, PMID: 
30598549

https://doi.org/10.7554/eLife.77285
https://doi.org/10.4065/77.5.453
https://doi.org/10.4065/77.5.453
http://www.ncbi.nlm.nih.gov/pubmed/12004995
https://doi.org/10.1038/ng.3367
http://www.ncbi.nlm.nih.gov/pubmed/26258848
https://doi.org/10.1371/journal.pgen.1004383
http://www.ncbi.nlm.nih.gov/pubmed/24830394
https://doi.org/10.3389/fcvm.2018.00181
http://www.ncbi.nlm.nih.gov/pubmed/30619888
https://doi.org/10.1016/j.bone.2007.01.004
http://www.ncbi.nlm.nih.gov/pubmed/17307038
https://doi.org/10.1016/s0092-8674(01)00571-2
http://www.ncbi.nlm.nih.gov/pubmed/11719191
https://doi.org/10.1186/1471-2091-10-24
https://doi.org/10.1186/1471-2091-10-24
http://www.ncbi.nlm.nih.gov/pubmed/19835610
https://doi.org/10.1038/ng.3506
http://www.ncbi.nlm.nih.gov/pubmed/26854917
https://doi.org/10.1371/journal.pone.0242933
http://www.ncbi.nlm.nih.gov/pubmed/33378393
https://doi.org/10.1016/j.ajhg.2020.11.012
http://www.ncbi.nlm.nih.gov/pubmed/33308443
https://doi.org/10.1038/ng.3949
http://www.ncbi.nlm.nih.gov/pubmed/28869591
https://doi.org/10.1186/1745-7580-4-5
http://www.ncbi.nlm.nih.gov/pubmed/18442421
https://github.com/rvlenth/emmeans
https://github.com/rvlenth/emmeans
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.1016/s1097-2765(01)00224-6
http://www.ncbi.nlm.nih.gov/pubmed/11336703
https://doi.org/10.1016/j.jbspin.2009.11.013
http://www.ncbi.nlm.nih.gov/pubmed/20096619
https://doi.org/10.1210/jcem.84.6.5710
https://doi.org/10.1210/jcem.84.6.5710
http://www.ncbi.nlm.nih.gov/pubmed/10372677
https://doi.org/10.1530/EJE-15-0118
http://www.ncbi.nlm.nih.gov/pubmed/25971649
https://doi.org/10.1007/s10038-003-0111-6
https://doi.org/10.1007/s10038-003-0111-6
http://www.ncbi.nlm.nih.gov/pubmed/14727154
https://doi.org/10.1038/s41431-019-0468-4
https://doi.org/10.1038/s41431-019-0468-4
http://www.ncbi.nlm.nih.gov/pubmed/31296926
https://doi.org/10.1038/s41588-018-0302-x
http://www.ncbi.nlm.nih.gov/pubmed/30598549


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Genetics and Genomics

Al-Barghouthi et al. eLife 2022;11:e77285. DOI: https://doi.org/10.7554/eLife.77285 � 22 of 22

Mullin BH, Tickner J, Zhu K, Kenny J, Mullin S, Brown SJ, Dudbridge F, Pavlos NJ, Mocarski ES, Walsh JP, Xu J, 
Wilson SG. 2020. Characterisation of genetic regulatory effects for osteoporosis risk variants in human 
osteoclasts. Genome Biology 21:80. DOI: https://doi.org/10.1186/s13059-020-01997-2, PMID: 32216834

Myers TA, Chanock SJ, Machiela MJ. 2020. ldlinkr: an R package for rapidly calculating linkage disequilibrium 
statistics in diverse populations. Frontiers in Genetics 11:157. DOI: https://doi.org/10.3389/fgene.2020.00157, 
PMID: 32180801

Nica AC, Dermitzakis ET. 2013. Expression quantitative trait loci: present and future. Philosophical Transactions 
of the Royal Society of London. Series B, Biological Sciences 368:20120362. DOI: https://doi.org/10.1098/rstb.​
2012.0362, PMID: 23650636

Peacock M, Turner CH, Econs MJ, Foroud T. 2002. Genetics of osteoporosis. Endocrine Reviews 23:303–326. 
DOI: https://doi.org/10.1210/edrv.23.3.0464, PMID: 12050122

Peters JE, Lyons PA, Lee JC, Richard AC, Fortune MD, Newcombe PJ, Richardson S, Smith KGC. 2016. Insight 
into genotype-phenotype associations through eQTL mapping in multiple cell types in health and immune-
mediated disease. PLOS Genetics 12:e1005908. DOI: https://doi.org/10.1371/journal.pgen.1005908, PMID: 
27015630

Pividori M, Rajagopal PS, Barbeira A, Liang Y, Melia O, Bastarache L, Park Y, Consortium Gte, Wen X, Im HK. 
2020. PhenomeXcan: mapping the genome to the phenome through the transcriptome. Science Advances 
6:eaba2083. DOI: https://doi.org/10.1126/sciadv.aba2083, PMID: 32917697

Ralston SH, Uitterlinden AG. 2010. Genetics of osteoporosis. Endocrine Reviews 31:629–662. DOI: https://doi.​
org/10.1210/er.2009-0044, PMID: 20431112

Rocha-Braz MGM, Ferraz-de-Souza B. 2016. Genetics of osteoporosis: searching for candidate genes for bone 
fragility. Archives of Endocrinology and Metabolism 60:391–401. DOI: https://doi.org/10.1590/2359-​
3997000000178, PMID: 27533615

Sabik OL, Farber CR. 2017. Using GWAS to identify novel therapeutic targets for osteoporosis. Translational 
Research 181:15–26. DOI: https://doi.org/10.1016/j.trsl.2016.10.009, PMID: 27837649

Stefansson B, Brautigan DL. 2006. Protein phosphatase 6 subunit with conserved Sit4-associated protein domain 
targets IkappaBepsilon. The Journal of Biological Chemistry 281:22624–22634. DOI: https://doi.org/10.1074/​
jbc.M601772200, PMID: 16769727

Swan AL, Schütt C, Rozman J, Del Mar Muñiz Moreno M, Brandmaier S, Simon M, Leuchtenberger S, Griffiths M, 
Brommage R, Keskivali-Bond P, Grallert H, Werner T, Teperino R, Becker L, Miller G, Moshiri A, Seavitt JR, 
Cissell DD, Meehan TF, Acar EF, et al. 2020. Mouse mutant phenotyping at scale reveals novel genes 
controlling bone mineral density. PLOS Genetics 16:e1009190. DOI: https://doi.org/10.1371/journal.pgen.​
1009190, PMID: 33370286

Thom CS, Voight BF. 2020. Genetic colocalization atlas points to common regulatory sites and genes for 
hematopoietic traits and hematopoietic contributions to disease phenotypes. BMC Medical Genomics 13:89. 
DOI: https://doi.org/10.1186/s12920-020-00742-9, PMID: 32600345

van Meurs JBJ, Trikalinos TA, Ralston SH, Balcells S, Brandi ML, Brixen K, Kiel DP, Langdahl BL, Lips P, 
Ljunggren O, Lorenc R, Obermayer-Pietsch B, Ohlsson C, Pettersson U, Reid DM, Rousseau F, Scollen S, 
Van Hul W, Agueda L, Akesson K, et al. 2008. Large-Scale analysis of association between LRP5 and LRP6 
variants and osteoporosis. JAMA 299:1277–1290. DOI: https://doi.org/10.1001/jama.299.11.1277, PMID: 
18349089

Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles DA, Golan D, Ermel R, Ruusalepp A, 
Quertermous T, Hao K, Björkegren JLM, Im HK, Pasaniuc B, Rivas MA, Kundaje A. 2019. Opportunities and 
challenges for transcriptome-wide association studies. Nature Genetics 51:592–599. DOI: https://doi.org/10.​
1038/s41588-019-0385-z, PMID: 30926968

Wen X. 2015. Effective QTL Discovery Incorporating Genomic Annotations. Genetics. DOI: https://doi.org/10.​
1101/032003

Wen X, Pique-Regi R, Luca F. 2017. Integrating molecular QTL data into genome-wide genetic association 
analysis: probabilistic assessment of enrichment and colocalization. PLOS Genetics 13:e1006646. DOI: https://​
doi.org/10.1371/journal.pgen.1006646, PMID: 28278150

Wen X. 2022. fastENLOC: fast enrichment estimation aided colocalization analysis. GitHub. https://github.com/​
xqwen/fastenloc

Ziembik MA, Bender TP, Larner JM, Brautigan DL. 2017. Functions of protein phosphatase-6 in NF-κB signaling 
and in lymphocytes. Biochemical Society Transactions 45:693–701. DOI: https://doi.org/10.1042/BST20160169, 
PMID: 28620030

https://doi.org/10.7554/eLife.77285
https://doi.org/10.1186/s13059-020-01997-2
http://www.ncbi.nlm.nih.gov/pubmed/32216834
https://doi.org/10.3389/fgene.2020.00157
http://www.ncbi.nlm.nih.gov/pubmed/32180801
https://doi.org/10.1098/rstb.2012.0362
https://doi.org/10.1098/rstb.2012.0362
http://www.ncbi.nlm.nih.gov/pubmed/23650636
https://doi.org/10.1210/edrv.23.3.0464
http://www.ncbi.nlm.nih.gov/pubmed/12050122
https://doi.org/10.1371/journal.pgen.1005908
http://www.ncbi.nlm.nih.gov/pubmed/27015630
https://doi.org/10.1126/sciadv.aba2083
http://www.ncbi.nlm.nih.gov/pubmed/32917697
https://doi.org/10.1210/er.2009-0044
https://doi.org/10.1210/er.2009-0044
http://www.ncbi.nlm.nih.gov/pubmed/20431112
https://doi.org/10.1590/2359-3997000000178
https://doi.org/10.1590/2359-3997000000178
http://www.ncbi.nlm.nih.gov/pubmed/27533615
https://doi.org/10.1016/j.trsl.2016.10.009
http://www.ncbi.nlm.nih.gov/pubmed/27837649
https://doi.org/10.1074/jbc.M601772200
https://doi.org/10.1074/jbc.M601772200
http://www.ncbi.nlm.nih.gov/pubmed/16769727
https://doi.org/10.1371/journal.pgen.1009190
https://doi.org/10.1371/journal.pgen.1009190
http://www.ncbi.nlm.nih.gov/pubmed/33370286
https://doi.org/10.1186/s12920-020-00742-9
http://www.ncbi.nlm.nih.gov/pubmed/32600345
https://doi.org/10.1001/jama.299.11.1277
http://www.ncbi.nlm.nih.gov/pubmed/18349089
https://doi.org/10.1038/s41588-019-0385-z
https://doi.org/10.1038/s41588-019-0385-z
http://www.ncbi.nlm.nih.gov/pubmed/30926968
https://doi.org/10.1101/032003
https://doi.org/10.1101/032003
https://doi.org/10.1371/journal.pgen.1006646
https://doi.org/10.1371/journal.pgen.1006646
http://www.ncbi.nlm.nih.gov/pubmed/28278150
https://github.com/xqwen/fastenloc
https://github.com/xqwen/fastenloc
https://doi.org/10.1042/BST20160169
http://www.ncbi.nlm.nih.gov/pubmed/28620030

	Transcriptome-­wide association study and eQTL colocalization identify potentially causal genes responsible for human bone mineral density GWAS associations
	Editor's evaluation
	Introduction
	Results
	TWAS and eQTL colocalization identify potentially causal BMD GWAS genes
	Characterization of genes identified by TWAS/eQTL colocalization
	﻿PPP6R3﻿ is a candidate causal gene for a GWAS association on Chr. 11
	﻿PPP6R3﻿ is a regulator of femoral geometry, BMD, and vertebral microarchitecture

	Discussion
	Methods
	fastENLOC colocalization
	S-MultiXcan
	Creation of the ‘known bone gene’ list
	GO enrichment analyses
	LD calculations
	﻿Ppp6r3﻿ knockout mouse generation
	Genotyping of ﻿Ppp6r3﻿ mice
	PPP6R3 western blotting
	﻿PPP6R3﻿ functional validation
	Bulk RNA isolation, sequencing, and quantification
	Bulk RNA differential expression analyses
	Dual X-ray absorptiometry
	μCT and image analysis
	P1NP collection and quantification
	Raman spectroscopy
	Statistical analyses
	Analyses involving data from the International Mouse Phenotyping Consortium
	PhenomeXcan data analysis
	LSBMD/FNBMD GWAS analysis
	Data availability
	Code availability

	Acknowledgements
	Additional information
	﻿Competing interests
	﻿Funding
	Author contributions
	Author ORCIDs
	Ethics
	Decision letter and Author response

	Additional files
	Supplementary files

	References


