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Abstract Pediatric acute respiratory distress syndrome (PARDS), though both common and deadly 
in critically ill children, lacks targeted therapies. The development of effective pharmacotherapies 
has been limited, in part, by lack of clarity about the pathobiology of pediatric ARDS. Epithelial lung 
injury, vascular endothelial activation, and systemic immune activation are putative drivers of this 
complex disease process. Prior studies have used either hypothesis- driven (e.g., candidate genes 
and proteins, in vitro investigations) or unbiased (e.g., genome- wide association, transcriptomic, 
metabolomic) approaches to predict clinical outcomes and to define subphenotypes. Advances in 
multiple omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, 
have permitted more comprehensive investigation of PARDS pathobiology. However, omics studies 
have been limited in children compared to adults, and analyses across multiple tissue types are 
lacking. Here, we synthesized existing literature on the molecular mechanism of PARDS, summarized 
our interrogation of publicly available genomic databases to determine the association of candidate 
genes with PARDS phenotypes across multiple tissues and cell types, and integrated recent studies 
that used single- cell RNA sequencing (scRNA- seq). We conclude that novel profiling methods such 
as scRNA- seq, which permits more comprehensive, unbiased evaluation of pathophysiological mech-
anisms across tissue and cell types, should be employed to investigate the molecular mechanisms of 
PRDS toward the goal of identifying targeted therapies.

Introduction
Pediatric acute respiratory distress syndrome (PARDS) was first defined in children in 2015 as the acute 
onset of parenchymal lung disease on chest x- ray with severe hypoxemia not explained by cardiac 
disease (Pediatric Acute Lung Injury Consensus Conference Group, 2015). PARDS compared to 
ARDS affecting adults has lower incidence (2–13 Pediatric Acute Lung Injury Consensus Conference 
Group, 2015; Schouten et al., 2016; Hough, 2017 vs. 17.9–81.0 Rubenfeld et al., 2009 ; Rubenfeld 
et al., 2009; Li et al., 2011 per 100,000 person- years) and mortality (18%–27% Pediatric Acute Lung 
Injury Consensus Conference Group, 2015 vs. 27%–45% Rubenfeld et al., 2009; Li et al., 2011). 
Sepsis is the most common cause of ARDS affecting adults while pneumonia is the most common 
cause of PARDS (Khemani et al., 2019). Epidemiologic differences between pediatric and adult ARDS 
may reflect differences in lung function, immune response, and disease mechanism between children 
and adults.

The onset of PARDS follows a severe physiological insult, which can take a variety of forms including 
pneumonia, aspiration, inhalation, sepsis, pancreatitis, transfusion, or trauma. Prior studies have noted 
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differences in risk factors and clinical outcomes for children with distinct PARDS phenotypes (e.g., 
direct vs. indirect lung injury), which may reflect differences in pathobiology (Yehya et  al., 2018; 
Whitney et al., 2020a). The fact that a relatively small proportion of children, who are at risk for 
PARDS after exposure to a severe physiologic insult, develop PARDS may reflect underlying biological 
differences in genetically determined host susceptibility.

PARDS mortality has decreased slightly over time (Pediatric Acute Lung Injury Consensus Confer-
ence Group, 2015; Khemani et al., 2019), possibly due to improvements in delivery of supportive 
care. Targeted pharmacologic therapies are lacking, which may reflect a lack of knowledge about the 
pathobiology of this complex disease process. Prior studies have provided some insights into the 
biological processes driving ARDS development in those at risk, clinical outcomes in pediatric and 
adults with ARDS, and phenotypic heterogeneity. However, limitations in methodology and scope 
exist, and we continue to lack clarity about which molecular mechanisms affecting which tissues and 
cell types at what time produce this complex disease process.

We sought to summarize the existing literature and data on molecular investigations of PARDS, 
which has included both hypothesis- driven and unbiased investigations. Adult ARDS literature is 
included where it supports or refutes pediatric data, or addresses questions not yet investigated 
in PARDS. We review candidate gene, candidate protein, and in vitro investigations testing hypoth-
eses about PARDS risk, outcomes, and subphenotypes. We review genome- wide association studies 
(GWAS), transcriptomic, and metabolomic discovery investigations also addressing PARDS risk, 
outcomes, and subphenotypes. Then, using the list of candidate genes that have been investigated, 
we appraise the results of our own survey of publicly available gene databases to determine the 
concordance between genotype and phenotype across multiple tissues and cell types. Finally, we 
discuss limitations of the methods to date and describe some of the ways in which single- cell RNA 
sequencing (scRNA- seq) may address prior limitations. The overarching goal of this work is to compile 
what is known about PARDS using unbiased genomic techniques in order to elucidate disease mech-
anism with the goal of identifying potential treatment targets.

Summary of research to date
Hypothesis-driven investigations
Candidate gene studies
The development of PARDS in response to a severe physiologic insult is thought to reflect epithe-
lial lung injury, systemic inflammation, and activation of the vascular endothelium. Candidate gene 
studies, therefore, have largely focused on genetic polymorphisms related to these processes, 
including surfactant protein function, pulmonary inflammation, systemic inflammation, and endothe-
lial activation (Figure 1). While the requirement for a preceding physiologic insult precludes pedigree 
studies of PARDS, candidate gene studies (Table 1) have identified polymorphisms associated with 
the development of disease in some patients compared to others.

Surfactant is a mixture of phospholipids and surfactant proteins (SP- A, SP- B, SP- C, and SP- D), and 
is critical for lowering surface tension at the alveolar–epithelial interface and protection against patho-
gens (Whitsett and Weaver, 2015). Patients with inherited surfactant deficiency demonstrate severe 
if not lethal respiratory failure. Surfactant lipids and proteins are produced by type II alveolar cells, and 
the surfactant lipid transporter (ABCA3) is required to form lamellar bodies that are secreted into the 
airways. Thus, variants in the genes encoding surfactant proteins A through D and ABCA3 have been 
of interest in ARDS. The SFTPA1, SFTPA2, SFTPB, SFTPC, and SFTPD genes encode SP- A1, SP- A2, 
SP- B, SP- C, and SP- D proteins, respectively. Among nearly 400 children with pneumonia, of whom the 
most severely affected had PARDS and need for mechanical ventilation, an association was demon-
strated between SFTPB Single nucleotide polymorphisms (SNPs) and need for mechanical ventilation 
(Dahmer et al., 2011). In another study comparing children with acute respiratory failure and healthy 
newborn controls, SNPs in SFTPA1, SFTPA2, and SFTPC were associated with acute respiratory failure 
and pulmonary dysfunction after hospital discharge (Gandhi et al., 2020).

The angiotensin I- converting enzyme (ACE) degrades bradykinin and catalyzes angiotensin I–
II, a potent vasoconstrictor with proinflammatory and profibrotic effects. High levels of circulating 
ACE are associated with pulmonary inflammation, and ACE is also highly expressed by endothelial 
cells composing the pulmonary microvasculature (Aird, 2007). The insertion/deletion (I/D) variant 
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(rs4646994, a 287–289 basepair Alu- type repeat sequence in intron 16) in the ACE1 gene has func-
tional significance such that the D allele is associated with increased ACE activity and higher ACE 
levels in plasma and tissue. The association between D allele and ARDS risk and outcomes has been 
tested in several observational studies. In children, the I/D variant failed to demonstrate association 
with PARDS status but increased frequency of D allele was associated with PARDS severity (Cruces 
et al., 2012; Plunkett et al., 2008). An adult study confirmed the association between the DD geno-
type, increased risk for ARDS, and increased mortality from ARDS (Adamzik et al., 2007; Marshall 
et al., 2002) but did not test the I/D variant.

Candidate genes associated with systemic inflammation have been of long- standing interest in 
PARDS. Systemic inflammation often accompanies pulmonary inflammation, and systemic inflamma-
tory processes such as sepsis are risk factors for PARDS. Tumor necrosis factor-α (TNF-α), encoded by 

Figure 1. The relationships between ARDS candidate genes and phenotypes reported by genome- wide association studies. The nodes (circles) 
represent genes (light gray, gene symbols not italicized) or phenotypes (dark gray), and the associated genotype–phenotype pairs are connected 
by curved lines. For clear visualization, the original phenotypes reported by individual studies were simplified (Supplementary file 2). Node size is 
proportional to reported number of genotype–phenotype associations. The biological characteristics of ARDS, including pulmonary inflammation, 
systemic inflammation, and vascular endothelial activation, are associated with multiple candidate genes for ARDS. Abbreviations: ACE = angiotensin 
I- converting enzyme; AGER = advanced glycosylation end product- specific receptor; AGT = angiotensin; ANGPT = angiopoietin; ARDS = acute 
respiratory distress syndrome; CARMIL1 = capping protein regulator and myosin 1 linker 1; CFTR = cystic fibrosis transmembrane conductance 
regulator; CXCL8 = C- X- C motif chemokine ligand; EPAS1 = endothelial PAS domain protein 1; FER = feline encephalitis virus- related tyrosine kinase; 
FLT1 = fms- related receptor tyrosine kinase 1; HSPG = heparan sulfate proteoglycan; IL = interleukin; KLK2 = kallikrein- related peptidase 2; SFTP = 
surfactant protein; LTA = lymphotoxin alpha; MAP3K1 = mitogen- activated protein kinase 1; MBL = mannose binding lectin; NFE2L2 = nuclear factor, 
erythroid- like, BZIP transcription factor 2; PPFIA = protein tyrosine phosphatase receptor type F interacting protein alpha; SELP = selectin P; THBD = 
thrombomodulin; TNF = tumor necrosis factor; VCAM1 = vascular cell adhesion molecule 1; VEGFA = vascular endothelial growth factor A; vWF = von 
Willebrand Factor.
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Table 1. Key Pediatric Studies.

Approach
Candidate 

Gene(s) Sample Size Findings (Adjusted OR and CI) Author, Journal*, Year

HYPOTHESIS- 
DRIVEN

Candidate Gene TNF, LTA
490 intubated with sepsis, 610 
healthy controls (total 1100)

Protective effect of TNF- 308GA against ARDS in infants: OR 
0.2, P=0.001 Azevedo et al., 2012

ACE
60 with ARDS, 60 healthy 
controls (total 120, all <15 years)

I/D genotype not increased in ARDS: rate 0.4 (ARDS) vs. 0.3 
(controls), P=NS Cruces et al., 2012

SFTPB

395 with pneumonia: 37 
requiring mechanical ventilation, 
26 with ALI/ARDS

Two linkage disequilibrium- tag SNPs associated with 
mechanical ventilation: GTGCGCG AOR = 2.62, CI 1–6.8, 
ATATAAG AOR = 3.1, CI 1–8.9 Dahmer et al., 2011

SFTP

248 children <2 years with acute 
respiratory failure, 468 newborn 
healthy controls

34 interactions among 3 SNPs of SFTPA1, SFTPA2, SFTPC 
associated with acute respiratory failure (P=0.000000002–0.05) 
and pulmonary dysfunction after discharge (P=0.00002–0.03) Gandhi et al., 2020

ACE

13 Caucasian children with 
ARDS, 30 acute hypoxemic 
respiratory failure, 186 ICU 
controls (total 216)

I/D polymorphism not associated with acute hypoxemic 
respiratory failure or ARDS Plunkett et al., 2008

Candidate Protein IL8 480 with acute respiratory failure
Increased IL8 associated with mortality, duration mechanical 
ventilation, ICU LOS but not ARDS diagnosis Flori et al., 2019

many

3 cohorts: 46 with sepsis ARDS, 
54 with sepsis without ARDS, and 
19 ICU controls (total 119)

ANGPT2, ANGPT2/1 ratio higher in ARDS; ANGPT2, 
ANGPT2/1 ratio, VWF, ESM1 predicted complicated course 
in sepsis; in sepsis ARDS, FLT1 decreased more quickly and 
VWF, THBD decreased more slowly in those with complicated 
course Whitney et al., 2020a

ANGPT1, 
ANGPT2, 
VCAM1, vWF

2 cohorts of patients with ARDS: 
52 direct, 46 indirect lung injury 
(total 98)

ARDS with indirect lung injury associated with increased 
ANGPT2/1 ratio, VCAM1, vWF (sensitivity 0.9, CI 0.8–1.0, 
specificity 0.8, CI 0.7–0.9) Whitney et al., 2020a

AGER, 
ANGPT2 82 with ARDS

Increased AGER, ANGPT2 associated with non- survival, organ 
failures in children with ARDS Yehya et al., 2016

CCL3, 
HSPA1b, IL8 153 with ARDS

Mortality associated with increased CCL3, HSPA1B, IL8, and 
older age in children with ARDS Yehya et al., 2018

many 235 with ARDS
Identified MMP profile associated with mortality (AOR 4.0, CI 
2.1–7.6) Zinter et al., 2019

ANGPT2, 
VEGF, VWF

259 with ARDS, 25 status post 
HCST

Early ANGPT2 (OR 3.7, CI 1.1–11.5) and increasing ANGPT2 
associated with mortality (AOR 3.3, CI 1.2–9.2), especially 
among HCST (AOR 16.3, CI 1.3–198) Zinter et al., 2016

In Vitro Studies

Neutrophils and tracheal 
aspirates from 20 ARDS viral 
pneumonia with or without 
bacterial co- infection

In bacterial co- infection: (1) neutrophils more activated with 
impaired bacterial killing, respiratory burst, (2) aspirates 
with higher neutrophil elastase and myeloperoxidase, (3) 
neutrophils transmigrated into aspirate with decreased burst/
killing of H. influenzae, S. aureus Grunwell et al., 2019

Tracheal aspirates from 42 
intubated children with, 35 
without ARDS (total 77)

Increased STAT1 phosphorylation, markers of neutrophil 
degranulation and activation, NET release. Higher airway 
NETs associated with fever ventilator- free days Grunwell et al., 2019

UNBIASED

Gene Expression
28 intubated with, 26 without 
ARDS (total 54)

Using tracheal aspirates, a 62- gene signature to identify ARDS 
was developed to achieve cross- validation AUC 0.8, CI 0.6–0.9 Grunwell et al., 2021

67 with sepsis and acute 
hypoxemic respiratory failure

Two identified endotypes differentially associated with 
mortality (OR 8, CI 1.6–41), complicated course (OR 4.2, 
1.2–14.9) Yehya et al., 2019

96 with ARDS
Three identified sub- phentoypes associated with different 
clinical characteristics, outcomes Yehya et al., 2020

Abbreviations: ACE = angiotensin- converting enzyme; AGER = advanced glycosylation end- product specific receptor; ALI = acute lung injury; ANGPT = angiopoietin; AOR = adjusted 
odds ratio; AUC = area under the receiver operator characteristic curve; ARDS = acute respiratory distress syndrome; CCL3 = C- C motif chemokine ligand 3; CI = 95% confidence 
interval; ESM1 = endothelial cell specific molecule 1; FLT1 = fms related receptor tyrosine kinase 1; HCST = hematopoietic stem cell transplant; HSPA1B = heat shock protein family A 
(Hsp70) member 1B; ICU = intensive care unit; IL = interleukin; LOS = length of stay; LTA = lymphotoxin alpha; MMP = matrix metalloproteinase; NET = neutrophil extracellular trap; 
OR = unadjusted odds ratio; SFTP = surfactant protein; SNP = single nucleotide polymorphism; SFTP = surfactant protein; THBD = thrombomodulin; TNF = tumor necrosis factor; 
TNFRSF1A = TNF receptor superfamily member 1A; VCAM1 = vascular cell adhesion molecule 1; VWF = von Willebrand Factor.

*Journal Titles are abbreviated according to U.S. National Library of Medicine convention.
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the TNFA gene, is a pleiotropic cytokine and a primary mediator of systemic inflammation. Risk for 
PARDS in a cohort of intubated children with sepsis was associated with TNFA-863 C>A genotype 
(rs18000630), and the TNFA-308 G>A genotype (rs1800629) had a protective effect against mortality 
in sepsis- associated PARDS (Azevedo et al., 2012).

The activation of coagulation system with microthrombi causing tissue hypoxia contributes to 
pulmonary vascular injury in PARDS. The endothelial protein C receptor (EPCR, encoded by the PROCR 
gene) plays a cytoprotective role in sepsis by activating protein C (APC) and mediating APC effects. 
In the presence of thrombomodulin (TM encoded by the THBD gene), thrombin activates protein C 
to APC. We are not aware of studies investigating the association between candidate genes involved 
in coagulation and PARDS. Adult ARDS mortality has been associated with two THBD (rs1042580 and 
rs3716123) and one PROCR (rs9574) SNPs (Sapru et al., 2016).

A result of systemic inflammation, especially inflammation that occurs as a response to infection, 
is the activation of the vascular endothelium. Endothelial activation has been the focus of many 
candidate gene studies in adult but not yet pediatric ARDS, including those which have sought to 
determine its role in producing the disease in patients with risk factors. The ANGPT2 gene encodes 
angiopoetin- 2 (ANGPT2), which has been associated with loss of vascular integrity, increased permea-
bility, and potentiation of vascular lung injury. In adults with sepsis, ANGPT2 intronic SNPs (rs2442608 
and rs2442630) have been associated with increased susceptibility to acute lung injury (ALI) (Meyer 
et al., 2011) or ARDS across multiple cohorts (Su et al., 2009), one in which plasma ANGPT2 was 
implicated as a causal intermediate (Reilly et al., 2018). In adults with trauma or sepsis as risk factors 
for ARDS, the development of ARDS was associated with ANGPT2 (Tejera et al., 2012) and blood 
type A in White patients (Reilly et al., 2021), potentially reflecting vascular inflammatory changes. 
FLT1 encodes soluble fms- like tyrosine kinase (sFLT, also known as vascular endothelial growth factor 
[VEGF] receptor), which competitively inhibits VEGF to promote vascular quiescence. An SNP in FLT1 
(rs9513106) was associated with reduced susceptibility to ARDS in a cohort study involving adults of 
Spanish and Western European descent with sepsis (Hernandez- Pacheco et al., 2018).

As a whole, candidate gene studies have demonstrated associations between the development 
of ARDS in patients with clinical risk factors and polymorphisms implicated in pulmonary inflamma-
tion, systemic inflammation, or endothelial activation. These associations have been demonstrated 
in multiple cohorts with varying risk factors for ARDS. However, the association of specific SNPs with 
ARDS has not been adequately replicated, and pediatric studies have been few. A strength of candi-
date gene studies is that they are highly feasible and useful when sample size is small. Notable disad-
vantages of candidate gene studies are false positives and poor replication. Furthermore, candidate 
gene studies are hypothesis- driven, investigating only genes of interest based on prior knowledge, 
and thus may unduly emphasize known biological themes while failing to address what has not yet 
been hypothesized.

Protein biomarker studies
Candidate protein studies of PARDS (Table 1) are numerous because they are highly feasible. Protein 
biomarkers are assayed from peripheral blood of patients with or at risk for PARDS, which is rela-
tively noninvasive and low cost. Outcomes of interest for candidate protein studies have included: (1) 
whether PARDS develops in patients with clinical risk factors, (2) predictors of PARDS outcomes, and 
(3) distinguishing subphenotypes of PARDS to elucidate differences in pathobiology, clinical charac-
teristics, and outcomes.

The development of ARDS in children and adults with clinical risk factors for the syndrome has 
been associated with candidate protein biomarkers reflecting endothelial activation, systemic inflam-
mation, and epithelial lung injury. Limited number of studies and small sample sizes in pediatric ARDS 
reflects lower incidence of ARDS in children compared to adults as well as challenges associated with 
pediatric research (e.g., smaller circulating blood volume, less frequent blood draws).

Early increase in endothelial biomarkers ANGPT2 and ANGPT2/ANGPT1 ratio was associated with 
the development of PARDS in our prior study of children with extrapulmonary sepsis (Whitney et al., 
2020b). Among those with PARDS, persistent organ dysfunction or death was associated with rapid 
decline in endothelial biomarker sFLT, and slow decline in von Willebrand Factor (vWF) and TM, which 
reflect the activation of the coagulation system (Whitney et  al., 2020b). In a cohort of children, 
who underwent hematopoietic stem cell transplant, PARDS mortality was associated with both early 
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elevation in and subsequent increase of ANGPT2 (Zinter et al., 2016). A profile of matrix metallo-
proteinases (MMPs) associated with multiple markers of inflammation and endothelial activation and 
predicted severe morbidity or mortality in a cohort of 235 children with PARDS (Zinter et al., 2019). 
One study of adults with ALI (Supplementary file 1) confirmed the association between increased 
ANGTP2 and mortality, modified by the presence of infection (Calfee et al., 2012).

Biomarkers of systemic inflammation have been studied in peripheral blood and bronchoalveolar 
lavage (BAL) fluid. In a cohort of children with acute respiratory failure, circulating interleukin- 8 (IL- 8) 
level was associated with worse outcomes but not PARDS status (Flori et al., 2019). The association of 
IL- 8 with poor outcome from PARDS in the context of sepsis was confirmed in a larger cohort (Yehya 
and Wong, 2018).

A biomarker associated with pulmonary epithelial injury, receptor for advanced glycation end- 
products (RAGE), is encoded by the AGER gene and has activity in the lung. Yehya et al. found 
increased RAGE and ANGPT2 to be associated with nonsurvival and increased number of nonpulmo-
nary organ failures in PARDS (Yehya et al., 2016). Three studies of septic adults (Supplementary file 
1) supported these findings in demonstrating the association between increased RAGE and ARDS 
status (Uchida et al., 2006; Jones et al., 2020; Ware et al., 2013).

Defining endotypes with biomarkers
The concept of endophenotype was proposed as ‘measurable components unseen by the unaided 
eye along the pathway between disease and distal genotype (Gottesman and Gould, 2003)’ while 
an endotype is a subtype of disease defined by molecular pathobiology of treatment response 
(Anderson, 2008). Distinguishing endophenotypes has been of interest in ARDS, and endotypes of 
PARDS have been identified, which are associated with distinct clinical factors and outcomes (Yehya 
et al., 2018; Whitney et al., 2020a; Yehya et al., 2018) potentially reflecting differences in pathobi-
ology (Table 1). First, Wong et al. used a large panel of biomarkers to define endotypes in pediatric 
sepsis, which were associated with differential mortality and response to therapies, including steroids 
(Wong et al., 2015; Wong et al., 2012). Yehya et al., 2019, recognizing sepsis as the most common 
cause of PARDS, used similar methods to define an endotype associated with poor outcomes from 
acute hypoxemic respiratory failure in septic children, identified by IL- 8, C- C chemokine ligand 3 
(CCL3), and heat shock protein 70 kDa 1B (HSPA1B), and age. The identifying characteristics were 
then tested in a PARDS cohort with good prediction of mortality (Yehya and Wong, 2018).

We previously reported that elevation in endothelial biomarkers ANGPT2/ANGPT1 ratio, VCAM1, 
and vWF distinguished children with ARDS due to indirect (e.g., extrapulmonary sepsis or trauma, 
shock, transfusion, pancreatitis) compared to direct (e.g., pneumonia, aspiration, drowning) lung 
injury (Whitney et al., 2020a). An adult ARDS study with complementary results (Supplementary 
file 1) showed lower ANGPT2 and higher SP- D in those with direct lung injury (Calfee et al., 2015). 
Biomarkers reflecting systemic inflammation and endothelial activation have been associated with 
worse clinical outcomes in adult ARDS (Supplementary file 1) with a differential response to therapies 
(Bos et al., 2017; Calfee et al., 2014; Famous et al., 2017; Sinha et al., 2020; Sinha et al., 2018).

In summary, protein biomarker studies in PARDS have been numerous and are highly feasible. They 
have described a pattern of epithelial and endothelial perturbations as well as systemic inflammation, 
which mirrors the findings of protein biomarker studied first conducted in adults with ARDS. Given 
known differences in ARDS epidemiology between children and adults and the putative influence 
exerted by the developing lung and immune systems, it is likely that biological differences between 
pediatric and adult ARDS exist. A precision medicine approach using unbiased omics methods may 
better define PARDS pathobiology for each patient as disease progresses or resolves.

In vitro studies
ARDS is typified by pulmonary neutrophilia, and in vitro studies (Table 1) have focused on clarifying 
the mechanisms of neutrophil activation, lack of neutrophil clearance by macrophages, and the role 
of neutrophil extracellular traps (NETs). NETs are webs of extracellular fibers composed of DNA with 
histones, myeloperoxidase (MPO) and neutrophil elastase (NE), which are important for immune 
response to infection but worsen inflammation when they persist (Brinkmann et al., 2004; Liu et al., 
2016). Grunwell et al. examined neutrophils from children with PARDS secondary to viral lower respi-
ratory tract infection with or without bacterial pneumonia, examining transmigration through their 
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model airway with cell- free tracheal aspirate fluid (Grunwell et  al., 2019). Patients with bacterial 
pneumonia had neutrophils with increased markers of activation and a defective respiratory burst, 
with airway fluid containing higher MPO and NE activity and decreased killing of H. influenzae and 
S. aureus (Grunwell et al., 2019). In a follow- up study comparing tracheal aspirates from intubated 
children with and without pediatric ARDS, increased type I interferon signaling (increased phosphory-
lation of STAT1), increased NET release (Grunwell et al., 2021). Increased markers of neutrophil acti-
vation and degranulation were observed in children with PARDS, also associated with fewer ventilator 
days in patients with higher airway NE (Grunwell et al., 2021). Similar findings were documented in 
lower airway neutrophils and neutrophils exposed to airway fluid from adults with vs. without ARDS 
(Supplementary file 1), including decreased apoptosis and macrophage activity and increased NET 
formation in ARDS (Grégoire et al., 2018).

These recent investigations represent an exciting development because they elucidate some of the 
pathobiological changes associated with lower respiratory tract infection that make a host vulnerable 
to ARDS. However, experiments were limited by study samples that were small and homogeneous, 
the inability to see changes over time, the possibility that cell signaling happens differently in vitro 
and in vivo, and a priori determination of the signaling pathways of interest. While this method is not 
easily applied to individual patients with PARDS, in vitro studies clarify aspects of disease mechanisms 
where observational studies cannot. Furthermore, in vitro studies can generate hypotheses to be 
followed- up in future clinical studies.

Unbiased investigations
Genome-wide association studies
Several GWAS have been completed in adults but not children with ARDS (Supplementary file 1). In 
a multiphase study using GWAS to compare European- American adults with trauma- associated ALI 
to controls, ALI was associated with rs47191 in the PPFIA1 gene, which encodes liprin-α-1, a protein 
involved in cell–matrix interactions and cell adhesion (Christie et al., 2012). A study of African Amer-
ican patients with ARDS compared to at- risk controls found ARDS to be associated with and a coding 
SNP (rs2228315) in the SELPLG gene, which regulates neutrophil adherence and diapedesis across the 
vascular endothelium (Bime et al., 2018). SELPLG knockout mice showed significantly reduced LPS- 
induced inflammatory lung injury compared with wild- type mice, and a neutralizing antibody against 
PSGL- 1 (P- selectin glycoprotein ligand 1) reduced lung inflammation. In a comparison of European 
adults with ARDS and at- risk septic patients, an SNP in FLT1 was associated with reduced suscepti-
bility to ARDS (Guillen- Guio et al., 2020).

Together, these studies highlight a possible role for endothelial and pulmonary epithelial changes 
in genetic susceptibility to ARDS. Although GWAS permits an unbiased investigation of the genetic 
risks than candidate gene studies, several limitations make it difficult to implement for investigating 
ARDS and PARDS. First, sample sizes required for case and control groups are large relative to the 
prevalence of ARDS. Second, biological interpretation of risk alleles and understanding their relation-
ship to associated genes in disease development is challenging. Third, it is important to understand 
the impact of genetic variants on various tissue types involved in a complex disease like ARDS which 
affects not only the lungs but peripheral vasculature as well.

Genome-wide gene expression studies
Analysis of microarray data from children with PARDS highlighted differential gene expression asso-
ciated with biological processes implicated in disease pathogenesis and outcomes (Table  1). In 
evaluating a cohort of children with sepsis and acute hypoxemic respiratory failure, Yehya et al. iden-
tified two distinct transcriptomic profiles differentially associated with mortality and persistent organ 
dysfunction (Yehya et al., 2019). Subsequently, the same group evaluated a cohort of PARDS patients 
using peripheral blood transcriptome to identify three subgroups that were associated with distinct 
baseline clinical characteristics and ARDS outcomes (Yehya et al., 2020). The first subgroup was char-
acterized by enriched adaptive immune response and persistent hypoxemia. The second subgroup 
was characterized by the activation of complement- related pathways, and the third exhibited suppres-
sion of adaptive immune and T- cell receptor pathways, which was associated with improved survival.

To discover transcriptomic signature in airway cells, Grunwell et  al., 2021 collected tracheal 
aspirate samples from 28 patients with PARDS and 24 without PARDS. The top- ranked gene in the 
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primary airway cells was IL17A, and a 62- gene prediction model for PARDS was developed, which was 
enriched with the genes in cytokine–cytokine receptor interaction. A neutrophil reporter assay was 
used to monitor gene expression changes seen in healthy donor neutrophils exposed to airway fluid 
patients with and without ARDS. The most significantly altered gene in the neutrophil reporter assay 
was NT5E. This preliminary study highlights a transcriptomic signature of PARDS in airway cells and 
neutrophils that could help identify future therapeutic targets.

Together, gene expression studies have strengthened existing hypotheses about mechanism of 
disease and outcomes in PARDS. Though some findings were tested in animal models, replication in 
humans is needed to validate the findings. Transcriptome analysis was performed on peripheral blood 
in most studies though Grunwell et al. examined airway epithelia. Future studies should continue 
evaluating differences across multiple tissue types to enhance understanding of ARDS pathogenesis 
in the human organism as a whole.

Metabolomics
High- resolution mass spectrometry can quantitatively measure hundreds to tens of thousands of small 
metabolites for diverse chemical species in tissue and liquid biopsy samples (Kong and Hernandez- 
Ferrer, 2020). To our knowledge metabolomics have not been used to study PARDS. Previous studies 
of adult ARDS (Supplementary file 1) used targeted metabolomics platforms with relatively limited 
chemical space coverage (Metwaly and Winston, 2020). Recently, Rogers et al. used an untargeted 
metabolomics platform to compare the profile of pulmonary edema fluid collected at the time of 
endotracheal intubation for 16 adults with ARDS compared to 13 with cardiogenic pulmonary edema. 
They found a high metabolite endotype characterized by higher concentration of lipids, amino acids, 
and carbohydrates to be associated with higher mortality from ARDS (Rogers et al., 2017).

A strength of metabolomic studies is that they are relatively unbiased and produce a large amount 
of data per patient. Current work is limited to a single fluid in a small cohort, which limits generaliz-
ability and replication may be difficult. Future precision medicine approaches to ARDS could include, 
but should not be limited to, metabolomic investigation of multiple tissue types in concert with 
genomic, transcriptomic, and protein biomarker analyses.

Interrogation of genomic knowledge databases
Decades of clinical research have proven the utility of ARDS candidate genes to define endopheno-
types, predict clinical outcomes, and discover treatment targets. These candidate genes are essential 
for normal lung function and immune responses, yet many genes have pleiotropic activities in diverse 
cell types, tissues, and organs.

We searched the NHGRI- EBI GWAS catalog (https://www.ebi.ac.uk/gwas, last accessed: June 8, 
2021) to find genotype–phenotype (GP) associations for the candidate genes. Though candidate 
genes were associated with ARDS in the cited works, we aimed to evaluate whether they were associ-
ated with a clinical phenotype similar to or associated with ARDS. Of the 735 GP associations initially 
found from catalog, we selected 140 GP associations from studies with 3000 or more individuals 
in both initial and replication cohort. The 140 selected GP pairs involved 32 candidate genes and 
64 distinct traits (defined as having distinct identifier in Experimental Factor Ontology [https://www. 
ebi.ac.uk/ols/ontologies/efo]). The 64 traits were further simplified into 14 phenotypes. The list of 
gene–trait pair along with simplified phenotypes are shown in Supplementary file 2. The network of 
associations between genes and simplified phenotypes confirms that the candidate genes are mostly 
associated with key phenotypes of ARDS: cardiovascular disease, pulmonary function, and systemic 
inflammatory diseases (Figure 1). Genetic pleiotropy may exist between individuals with higher risk 
for ARDS and these clinical phenotypes. Conversely, pediatric patients recovered from ARDS require 
close monitoring of these clinical conditions prospectively.

Summary of biomarkers by cell types at different phases
One of the most compelling reasons to characterize ARDS endotypes based on clinical factors, genetic 
risk, and biomarkers is to identify differences in pathobiology that may respond to different treatment 
strategies. For example, ANGPT2 is produced by activated endothelial cells, which destabilize the 
vascular junction in the setting of inflammation (Kim et al., 2016). Therefore, increased ANGPT2 has 
been proposed to have a causal role in ARDS due to endothelial activation (Reilly et al., 2018) and 

https://doi.org/10.7554/eLife.77405
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ANGPT or ANGPT2/1 levels associate with clinical outcome (Whitney et al., 2020a; Whitney et al., 
2020b; Zinter et al., 2016).

Specific putative biomarkers are more relevant to dysfunction of specific cell types at different 
phases of ARDS. Thus, we summarized ARDS biomarkers according to cell types implicated in the 
three major phases of ARDS progression (exudative, proliferative, and fibrotic; Mason et al., 2016 in 
Figure 2). When considering pathobiological evolution of ARDS through these proposed phases, it is 
important to note that (1) patients may present to care in different phases, (2) patients may progress 
through phases at different rates, and (3) scientific knowledge of ARDS phases is more developed for 
adults than children.

Alveolar cell types 1 and 2 (AT1 and 2) maintain the structure and function of alveoli (Figure 2, 
panel A), and multiple biomarkers indicate epithelial injury. Risk alleles for ARDS are reported in SFTPB 
and EGF genes that are important homeostatic function of AT1 cells. In the exudative phase, injured 
AT1 cells release soluble RAGE, SP- B, SP- D, CC- 16 (SCGB1A), lamininγ2 (LAMC2), KL- 6 (MUC1), and 
KGF (FGF7, Figure 2, panel B). In the proliferative phase, TGF-β and PDGF are released from AT2 
cells (Figure 2, panel C). Activated AT2 cells continue to secrete TGF-β, PDGF, and IGF- 1 to promote 
interstitial and intraalveolar fibrosis, which restrict lung capacity (Figure 2, panel D).

Systemic infection, inflammation, and direct lung injury activate vascular endothelial cells. Genetic 
susceptibility to ARDS has been reported for the genes that are highly expressed in endothelial cells 
and have functional significance for normal cellular function, including ANGPT2 (ANGPT2), TIE2 (TEK), 
ACE, PBEF (NAMPT), VEGF (VEGFA), and PAI1 (SERPINE1) (Acosta- Herrera et al., 2014). Protein 
biomarkers released from injured endothelial cells include ANGPT1, ANGPT2, VEGF, vWF, apolipo-
proteins, cell- free hemoglobin, PAI1, endothelial glycocalyx, sTM (THBD), sICAM (ICAM1), and PROC 
(Figure 2, panel B).

Tissue- resident macrophages defend against pathogens and pollutants entering alveoli. Alve-
olar macrophages are transformed to inflammatory M1- like macrophages by the activation of NF-κB 
signaling pathway then cytokines and chemokines, including TNF-α, IL- 1β, IL- 6, IL- 8, CCL2, and CCL7, 
are released to recruit neutrophils in the exudative phase (Figure 2, panel B). Activated neutrophils 
secrete LTB4, ROS, MMPs, histones, and elastase and form NETs. In the proliferative phase, anti- 
inflammatory M2- like macrophages release lipoxins, resolvins, KGF, HGF, granulocyte- macrophage 
colony- stimulating factor (GM- CSF, and VEGF). AT2 cells proliferate and differentiate to AT1 cells 
by GM- CSF in this phase (Figure 2C). Regulatory T cells (Treg) also limit the inflammatory response. 
M2- like macrophages phagocytose apoptotic neutrophils (efferocytosis).

Genetic determinants of the innate immune response may be related to ARDS susceptibility; 
however, no risk alleles have been reproduced in two or more independent cohorts. Gene expression 
studies using peripheral blood monocytes (PBMCs) showed differential expression of IL1R2, FTL, PI3, 
and S100A2 associated with an anti- inflammatory response. Protein biomarkers from immune cells, 
including IL- 8, IL- 6, IL- 1β, IL- 18, GM- CSF (CSF2), G- CSF (CSF3), sTNFR1 (TNFRSR1A), IL- 10, and TNF 
(TNF), have been studies in ARDS; however, it is difficult to distinguish which cell types are responsible 
for these biomarkers. G- CSF is the dominant colony- stimulating factor released from diverse lung cells 
in response to proinflammatory cytokines that stimulates neutrophil development and differentia-
tion. Proinflammatory M1- like macrophages release TNF, IL- 6, IL- 1β, and IL- 23 while anti- inflammatory 
M2- like macrophages release TGFB1, IL- 10, and IL- 13.

In patients with ARDS, biomarkers have multiple actions across cell types affected at different 
stages of disease. Biomarker activity also varies according to the tissue type samples. Peripheral 
blood, tracheal aspirates, BAL fluid, lung biopsy, and autopsy samples have been used to discover 
biomarkers of ARDS; however, evaluation of abnormal biomarker levels should be interpreted in the 
context of cell types and disease stage. To this end, recent developments in maturation of single- 
cell profiling techniques such as scRNA- seq will be an important for further refinement of ARDS 
biomarkers.

Cell type-specific expression of ARDS candidate genes in COVID-19
To demonstrate the utility of scRNA- seq and similar approaches, we use a dataset generated from 
adults with lethal ARDS secondary to COVID- 19 (Melms et al., 2021). This dataset was composed 
of single- nucleus RNA sequencing of about 116,000 nuclei from lung autopsy samples that were 
highly inflamed with activated macrophages (Figure 3A). A total of 53 candidate genes were queried 
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in the Single Cell portal at Broad Institute (available at https://singlecell.broadinstitute.org/single_ 
cell/study/SCP1219/columbia-university-nyp-covid-19-lung-atlas, last accessed August 8, 2021) and 
scaled mean expression levels are shown for 41 detailed cell types defined by the original study. In 
Figure 3B, the same genes were highlighted in peripheral blood mononuclear cells (PBMCs) collected 

Figure 2. Phases of ARDS pathogenesis. Panel A shows alveolar–capillary interface in a state of good health. Panels B, C, and D, respectively, show 
the three phases of ARDS development with candidate biomarkers indicated by cell type. Candidate biomarkers indicate dysregulation following a 
physiologic insult with transition from (A) health to (B) exudative, (C) proliferative, and (D) fibrotic phases of illness. Patients may present to care in 
different phases of ARDS development, may progress through phases at different rates, and biology differ depending on cause of ARDS and patient 
age. Figure was created using Biorender.com. Abbreviations: ACE = angiotensin- converting enzyme; ANG1/ANGPT1 = angiopoietin 1; ANG2/ANGPT2 
= angiopoietin 2; ARDS = acute respiratory distress syndrome; AT1 = type I alveolar cell; AT2 = type II alveolar cell; EGF = epidermal growth factor; 
GM- CSF = granulocyte- macrophage colony- stimulating factor; HGF = hepatocyte growth factor; IGF = insulin like growth factor; IL- 1β = interleukin 1 
beta; IL- 6 = interleukin 6; IL- 8 = interleukin 8; IRF4 = interferon regulatory factor 4; KGF = keratinocyte growth factor; M1 = type I macrophage; M2 = 
type II macrophage; NAMPT = nicotinamide phosphoribosyltransferase; NET = neutrophil extracellular trap; PAI1 = plasminogen activator inhibitor 
type 1; PBEF = pre- B- cell colony- enhancing factor; PDGF = platelet- derived growth factor; PROC = protein C, inactivator of coagulation factors Va 
and VIIIa; RAGE = receptor for advanced glycation end- products; SERPINE1 = serpin family E member 1; SFTPB = surfactant protein B; sICAM/ICAM1 
= intercellular adhesion molecule 1; SPB = surfactant- associated protein B; SPD = surfactant- associated protein D; STAT6 = signal transducer and 
activator of transcription 6; sTM = soluble thrombomodulin; TGF-β = transforming growth factor beta; THBD = thrombomodulin; TIE2 (TEK) = tyrosine 
kinase with immunoglobulin- and EGF- like domains 1; TNF = tumor necrosis factor; VEGF/VEGFA = vascular endothelial growth factor A; vWF = von 
Willebrand Factor.

https://doi.org/10.7554/eLife.77405
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from healthy adults (Ding et al., 2020). The CARMIL1 gene was highly expressed in diverse lung cells 
from severe COVID- 19 patients; however, it was not expressed in PBMCs from healthy adults. The 
EPAS1 gene (also known as HIF2A) was highly expressed in endothelial cells as well as AT1 and AT2 
cells. The FER gene encodes a tyrosine kinase that is involved in the regulation of actin cytoskeleton. 
The expression of FER was observed in multiple cell types including AT1, AT2, alveolar macrophages, 
and mast cells in ARDS lung while peripheral immune cells are not actively express this gene. IL1R1—
implicated in NET formation—was expressed in endothelial cells, epithelial cells, and fibroblasts. The 

Figure 3. Cell type- specific expression pattern of ARDS candidate genes. Relative expression levels of ARDS candidate genes are shown across 
cell types from lung autopsy sample from ARDS caused by COVID- 19 (A) and peripheral blood mononuclear cells a generally heathy individual (B). 
Expression levels are scaled to show relative levels across all cell types from 0 (blue) to 1 (red). The size of circle is proportional to the cells expressing 
a gene for each cell type (from 0% to 75%). AT1 and AT2: alveolar type I and II cells; FB: fibroblasts; ECM- high: high expression of extracellular matrix 
components (i.e., COL6A3, COL1A2, and COL3A1); MDM: monocyte- derived macrophages. Source data for this figure are provided in a table, Figure 
3—source data 1.

The online version of this article includes the following source data for figure 3:

Source data 1. Source data for Figure 3.

https://doi.org/10.7554/eLife.77405
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highest expression of VEGFA was found in AT1 cells and vWF expression was high across endothelial 
and epithelial cells. Many candidate genes for ARDS were highly expressed in lung cells while few 
genes such as MAP3K1 and NAMPT were also expressed in PBMC suggesting PBMC as a potential 
source of biomarker discovery (García- Laorden et al., 2017).

Recent studies using autopsy samples from adults with ARDS in the setting of COVID- 19 infec-
tion uncovered key pathobiological changes in lung tissue. Lung tissue samples were found to be 
infiltrated with aberrantly activated monocyte- derived macrophages and alveolar macrophages that 
produced high levels of interleukin (IL)- 1β and IL- 6 (Xu et al., 2020; Jiang et al., 2020). Moreover, 
failure to transition from AT1 to AT2 cells impaired lung regeneration and repair (Melms et al., 2021). 
These discoveries have added important information to our understanding of ARDS pathobiology and 
could pave the way for the development of targeted therapies.

Conclusion
Prior studies have provided insight into the pathobiological pathways that determine whether ARDS 
develops in patients with risk factors and what clinical outcomes are experienced by adults and chil-
dren with ARDS (Figure 4). Ability to define ARDS endotypes based on clinical and genomic markers 
may indicate heterogeneity in underlying pathobiology. However, prior literature is characterized by 
several limitations. First, much of the existing literature is based on relatively small cohorts, hetero-
geneous samples, and measurements confined to one or several timepoints during disease devel-
opment. Adults are better represented than children in the current ARDS literature. Second, many 
studies were designed to test hypotheses based on prior knowledge, and therefore investigation 
of disease mechanism are not unbiased and could have missed alternative conclusions. Third, most 
studies evaluated peripheral blood with a few more recent investigations of lower airway cells and BAL 
fluid. However, not all genomic changes are reflected in circulating proteins and circulating protein 
changes, if present, may not reflect changes at the tissue level. Evaluation of lung tissue from autopsy 
specimens, while offering the most specificity investigations using scRNA- seq, is not always practical 
in PARDS, owing to its relatively low mortality rate. Lung biopsy of children with PARDS may confer 
unacceptable morbidity, so tracheal aspirate or BAL specimens may be most practical. PBMCs have 
been subjected to scRNA- seq in several adult ARDS studies that demonstrated feasibility; however, 
differences between the blood and lung compartments deserve further study. A logical next step to 
address some of these issues is scRNA- seq evaluation of tracheal aspirate samples as well as peripheral 
blood from a well- characterized cohort of children with PARDS, who can be longitudinally sampled 
and followed. As technological advances continue, new methods should continue to be applied in 
order to elucidate the pathobiology of PARDS as it develops and resolves so that disease- targeted 
therapies can be developed.

Ideas and speculation: opportunities for new discoveries with scRNA-
seq
PARDS is caused by diverse exogenous pathogens and stressors, though genetic susceptibility may 
play a role in which at- risk patients develop the disease. Although risk alleles in candidate genes from 
a limited number of studies with small sample sizes have been reported for PARDS, most studies 
were underpowered. Phenotypes associated with candidate genes are diverse across multiple organ 
systems including heart, lung, kidney, and immune systems. scRNA- seq and other unbiased character-
ization methods at cell level provide great potential to identify cell types and markers in genes across 
multiple affected tissues and circulating immune cells.

https://doi.org/10.7554/eLife.77405
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Figure 4. Multi- omics approaches to define endotypes of pediatric acute respiratory distress syndrome (PARDS). Investigational methods, including 
hypothesis- driven and unbiased investigations, have led to discovery of multiple contributions to ARDS pathobiology, including systemic inflammation, 
endothelial activation, and alveolar injury. These processes affect diverse cell and tissue types, including lymphocytes, macrophages, neutrophils, 
vascular endothelial cells, and two types of alveolar cells. The degree of systemic inflammation, endothelial activation, and alveolar injury across 

Figure 4 continued on next page
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