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CHAPTER

ONE

HIPPOCAMPAL UNFOLDING

Our approach to unfolding the hippocampus involves constructing a coordinate system, defined using the solutions to
partial differential equations to enforce smoothness, and to employ anatomically-derived boundary conditions. Each
of the three coordinates (AP, PD, IO) are solved independently of each other, each using distinct boundary conditions
defined by the hippocampus tissue segmentation. With the notation 𝐿𝑅𝑂𝐼 to represent the labelled set of voxels in the
hippocampus of a specific ROI, the domain of the solution, along with boundary conditions as source and sink, are
defined as follows:

𝐿𝑑𝑜𝑚𝑎𝑖𝑛 =
{︁
𝐿𝐺𝑀 ∪ 𝐿𝐷𝐺, if coords = 𝐴𝑃 ∨ 𝑃𝐷 ∨ 𝐼𝑂

𝐿𝑠𝑜𝑢𝑟𝑐𝑒 =

⎧⎪⎨⎪⎩
𝐿𝐻𝐴𝑇𝐴, if coords = 𝐴𝑃

𝐿𝑀𝑇𝐿𝐶 , if coords = 𝑃𝐷

𝐿𝑆𝑅𝐿𝑀 ∪ 𝐿𝑃𝑖𝑎𝑙 ∪ 𝐿𝐶𝑦𝑠𝑡, if coords = 𝐼𝑂

𝐿𝑠𝑖𝑛𝑘 =

⎧⎪⎨⎪⎩
𝐿𝐼𝑛𝑑𝐺𝑟𝑖𝑠, if coords = 𝐴𝑃

𝐿𝐷𝐺, if coords = 𝑃𝐷

𝐿𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑, if coords = 𝐼𝑂

1.1 Template-based shape injection

We make use of a fluid diffeomorphic image registration, between a template hippocampus tissue segmentation, and
the U-net tissue segmentation, in order to 1) help enforce the template topology, and 2) provide an initialization to the
Laplace solution. By performing a fluid registration, driven by the segmentations instead of the MRI images, the warp
is able to bring the template shape into close correspondence with the subject, but the regularization helps ensure that
the topology present in the template is not broken. The template we use was built from 22 ex vivo images from the
Penn Hippocampus Atlas.

The registration is performed using greedy, initialized using moment tensor matching (without reflections) to obtain
an affine transformation, and a multi-channel sum of squared differences cost function for the fluid registration. The
channels are made up of binary images, split from the multi-label tissue segmentations, which are then smoothed with
a Gaussian kernel with standard deviation of 0.5mm. The Cyst label is replaced by the SRLM prior to this, since the
locations of cysts are not readily mapped using a template shape. After warping the discrete template tissue labels to
the subject, the subject’s Cyst label is then re-combined with the transformed template labels.

The pre-computed Laplace solutions on the template image (analogous to method described below), 𝜓𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒
𝐴→𝑃 ,

𝜓𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒
𝑃→𝐷 , 𝜓𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒

𝐼→𝑂 , are then warped to the subject using the diffeomorphic registration to provide an initialization
for the subject.
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1.2 Fast marching initialization

As an alternative if template-based shape injection is not used, we employ a fast marching method to provide an ini-
tialization to the Laplace solution, to speed up convergence. We make use of the scikit-fmm Python package, that finds
approximate solutions to the boundary value problems of the Eikonal equation,

𝐹 (x) |∇𝜑(x)| = 1,

which describes the evolution of a closed curve as a function of time, 𝜑, with speed 𝐹 (x) > 0 in the normal direction
at a point x on the curve. The fast marching implementation provides a function (image) representing travel time to the
zero contour of an input, 𝜑.

We first perform fast marching from the source (forward direction), by initializing the zero contour with:

𝜑0(x) =

{︃
0, x ∈ 𝐿𝑠𝑜𝑢𝑟𝑐𝑒

1, x /∈ 𝐿𝑠𝑜𝑢𝑟𝑐𝑒

and we make use of the NumPy masked arrays to avoid computations in voxels outside of 𝐿𝑑𝑜𝑚𝑎𝑖𝑛. We use a constant
speed function of 1, and perform fast marching to produce a travel-time image, 𝑇𝑓𝑜𝑟𝑤𝑎𝑟𝑑(x), that is normalized by
max(𝑇𝑓𝑜𝑟𝑤𝑎𝑟𝑑(x)) to obtain an image from 0 to 1 (0 at the source). We perform the same process for the sink region,
by setting 𝜑 based on 𝐿𝑠𝑖𝑛𝑘, which produces a normalized 𝑇𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(x) image. We combine forward and backward
images by averaging 𝑇𝑓𝑜𝑟𝑤𝑎𝑟𝑑 and 1 − 𝑇𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 to produce the combined fast marching image, 𝑇𝑓𝑎𝑠𝑡𝑚𝑎𝑟𝑐ℎ.

1.3 Solving Laplace’s equation

Laplace’s equation is a second-order partial differential equation,

∇2𝜓(x) = 0,

where 𝜓 is a scalar field enclosed between the source and sink boundaries. A simple approach to solve Laplace’s
equation is with an iterative finite-differences approach (Jacobian method), where each voxel in the field is updated at
each iteration as the average of the neighbouring grid points, e.g. for a 2-D field,

𝜓𝑖+1(𝑥, 𝑦) =
1

4
[𝜓𝑖(𝑥+ ∆𝑥, 𝑦) + 𝜓𝑖(𝑥− ∆𝑥, 𝑦) + 𝜓𝑖(𝑥, 𝑦 + ∆𝑦) + 𝜓𝑖(𝑥, 𝑦 − ∆𝑦)] .

For our 3-D implementation, we use the nearest 18 neighbours, and perform the operation using convolution with a
kernel size of 3 × 3 × 3, or 27 voxels. We initialize the 𝜓 field as follows:

𝜓𝑖=0(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x ∈ 𝐿𝑠𝑜𝑢𝑟𝑐𝑒

1, x ∈ 𝐿𝑠𝑖𝑛𝑘

𝑇𝑓𝑎𝑠𝑡𝑚𝑎𝑟𝑐ℎ(x), x ∈ 𝐿𝑑𝑜𝑚𝑎𝑖𝑛

𝑁𝑎𝑁, otherwise.

We used the convolve method from the AstroPy Python package instead of NumPy’s convolve, because it avoids using
NaN values (i.e. voxels outside the gray matter) in the convolution, replacing them with interpolated values using the
convolution kernel. We iteratively update 𝜓 until either the sum-of-squared-differences,

∑︀
[𝜓𝑖(x) − 𝜓𝑖−1(x)]

2, is less
than 1×10−5, or a maximum iterations of 10,000 are reached. Note that more efficient approaches to solving Laplace’s
equation are possible (such as successive over-relaxation), however, we used this more conservative approach to avoid
stability and convergence issues.

We use this approach to independently produce 𝜓𝐴→𝑃 and 𝜓𝑃→𝐷. Note that because we are solving these fields
independent of one another, their gradient fields are not guaranteed to be perpendicular, however, we have not observed
large deviations in practice. A solution for jointly solving 𝜓𝐴→𝑃 and 𝜓𝑃→𝐷 is left for future work.

2 Chapter 1. Hippocampal unfolding
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1.4 Equivolumetric laminar coordinates

For the laminar, or inner-outer coordinates, , 𝜓𝐼→𝑂, it has been shown that an equivolumetric approach, that preserves
the volume of cortical segments by altering laminar thickness based on the curvature, is more anatomically-realistic for
the cerebral cortex. We implement this approach as the default for the IO coordinates, making use of the implementation
in NighRes. Here, we set the inner level-set to be 𝐿𝑠𝑜𝑢𝑟𝑐𝑒, effectively the SRLM, and the outer level-set as the entire
hippocampus. The continuous depth image returned by the volumetric layering function is then used directly as 𝜓𝐼→𝑂.

1.5 Warps for unfolding

We make use of the three coordinates, 𝜓𝐴→𝑃 , 𝜓𝑃→𝐷, and 𝜓𝐼→𝑂, to create 3D warp fields that transform images and
surfaces between the native domain 𝐷𝑛𝑎𝑡𝑖𝑣𝑒 ⊂ R3, and the unfolded domain 𝐷𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑 ⊂ R3.

Because solve Laplace’s equation in voxels restricted to the gray matter, the native domain, 𝐷𝑛𝑎𝑡𝑖𝑣𝑒 is made up of
x = (𝑥, 𝑦, 𝑧), where x ∈ 𝐿𝐺𝑀 .

The unfolded domain, 𝐷𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑, is a distinct 3D space, indexed by u = (𝑢, 𝑣, 𝑤), where 𝑢 = 𝜓𝐴→𝑃 (𝑥, 𝑦, 𝑧),
𝑣 = 𝜓𝑃→𝐷(𝑥, 𝑦, 𝑧), and 𝑤 = 𝜓𝐼→𝑂(𝑥, 𝑦, 𝑧). The 𝜓 fields are initially normalized to 0 → 1, which would produce
a rectangular prism between (0, 0, 0) and (1, 1, 1). However, we have re-scaled the aspect ratio and discretization to
better approximate the true size of the hippocampus along each dimension, producing a volume of size 256𝑥128𝑥16.
To facilitate visualization, we set the origin to (0, 200, 0) (in mm) so as not to overlap with our native space) and set a
physical voxel spacing of 0.15625mm in each direction.

1.5.1 Forward warps

The transformation, or displacement warp field, that takes points, x ∈ R3, (or surfaces) from native to unfolded space,
is denoted as 𝑇 𝑠𝑢𝑟𝑓

x→u : (𝑥, 𝑦, 𝑧) → (𝑢, 𝑣, 𝑤), and is simply defined as:

𝑇 𝑠𝑢𝑟𝑓
x→u (𝑥, 𝑦, 𝑧) = (𝜓𝐴→𝑃 (𝑥, 𝑦, 𝑧) − 𝑥, 𝜓𝑃→𝐷(𝑥, 𝑦, 𝑧) − 𝑦, 𝜓𝐼→𝑂(𝑥, 𝑦, 𝑧) − 𝑧) ,

and is valid for any point, or surface vertex, within the native domain, 𝐷𝑛𝑎𝑡𝑖𝑣𝑒. Note that construction of this displace-
ment field also involves rescaling for the physical voxel dimensions of the unfolded domain as described above, which
is left out of the above equations.

1.5.1.1 Warps for surfaces and images

The warp field that transforms points/surfaces from native to unfolded also transforms images from the unfolded to the
native domain,

𝑇 𝑠𝑢𝑟𝑓
x→u = 𝑇 𝑖𝑚𝑔

u→x,

since images on a rectilinear grid must be warped with the inverse of the transformation that is required for points
or surfaces. This is not particular to HippUnfold, and is true for any transformations. This is because instead of
pushing forward from the moving image grid (which leads to off-grid locations), we start at the fixed grid-point (e.g.
in native space), and pull-back with the inverse transformation to determine an (off-grid location) in unfolded space, to
interpolate image intensities from neighbouring grid locations (e.g. in the unfolded space).

1.4. Equivolumetric laminar coordinates 3

https://nighres.readthedocs.io/en/latest/laminar/volumetric_layering.html


HippUnfold Algorithmic Details

1.6 Inverse warps

To obtain, 𝑇 𝑠𝑢𝑟𝑓
u→x : (𝑢, 𝑣, 𝑤) → (𝑥, 𝑦, 𝑧), or equivalently, 𝑇 𝑖𝑚𝑔

u→x : 𝐷𝑛𝑎𝑡𝑖𝑣𝑒 → 𝐷𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑, requires determining the in-
verse of the transformation that is provided by the 𝜓 fields. We achieve this by first applying the forward transformation
on all grid locations in the native domain, obtaining

𝑇 𝑠𝑢𝑟𝑓
x→u (𝑥, 𝑦, 𝑧) = (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) , ∀(𝑥, 𝑦, 𝑧) ∈ 𝐷𝑛𝑎𝑡𝑖𝑣𝑒.

The source native grid location, (𝑥, 𝑦, 𝑧) for each the transformed points (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) is used to define the inverse
transformation:

𝑇 𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑
u→x (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) = (𝑥− 𝑇𝑥, 𝑦 − 𝑇𝑦, 𝑧 − 𝑇𝑧)

However, these points are only defined at scattered locations in the unfolded space, thus we need to use interpolation
between these points to obtain 𝑇 𝑠𝑢𝑟𝑓

u→x defined at all grid locations in 𝐷𝑢𝑛𝑓𝑜𝑙𝑑𝑒𝑑. We perform this operation using the
griddata function from SciPy, which interpolates unstructured multi-variate data onto a grid, by triangulating the input
data with Qhull, then performing piecewise linear barycentric interpolation on each triangle. Due to discretization in
the 𝜓 fields that produced the forward transformation, there are voxels outside the convex hull of the points that are not
able to be linearly interpolated. To fill these values in, we make use of the griddata function with nearest neighbour
interpolation instead. Note that this produces singularities in the warp (since points outside the convex hull have the
same destination as the nearest convex hull point, but this is strictly limited to the edges of the hippocampus, and have
little practical implications in our experience. After linear and nearest neighbour interpolation, the final warp field is
produced:

𝑇 𝑠𝑢𝑟𝑓
u→x = 𝑇 𝑖𝑚𝑔

x→u.

Altogether, this provides transformations to warp either images or surfaces, in either direction (that is, native to un-
folded, or unfolded to native). Image warps are defined using ITK format standards (Left-posterior-superior, or LPS
coordinate system), and thus are compatible with existing tools (e.g. ANTS) to perform the transformation, or to con-
catenate transforms. The surface warps use a different coordinate system (Right-anterior-superior, or RAS coordinate
system), for compatibility with the Connectome Workbench surface-apply-warpfield function, that operates on GIFTI
files.

1.7 Standard surface meshes

Since the unfolding produces individual warps that can be used to transform surfaces from the unfolded domain to any
individual native domain, we can produce a standardized mesh in the unfolded space (e.g. spanning a 2-D plane at a
constant𝑤 = 𝐶 laminar level), and transform this to each hippocampus to generate a native-space hippocampal surface
mesh, with 1-1 correspondence in vertices across hippocampi.

Our previous work made use of a spatially-uniform triangulated mesh in the unfolded space, now referred to as the
unfoldiso mesh. Triangles in this mesh have equal size in the unfolded domain, however, when transformed to a subject’s
native space, distortions in triangle size are produced. To address this, we triangulated surfaces with an locally-adaptive
number of points, where the spacing of the points was calculated to obtain approximately equal vertex spacing once
transformed to the native space. The surface areas and vertex spacing were optimized on the Human Connectome
Project Unrelated 100 subset, by transforming the unfoldiso surface, calculating the average area and spacing over all
100 subjects, then generating a range of triangular meshes with adaptive spacing. We selected meshes with mean vertex
spacing close to 2mm, 1mm, and 0.5mm for our standard meshes.

4 Chapter 1. Hippocampal unfolding
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1.8 Subfield segmentation

Subfield atlases in HippUnfold are now defined in the volumetric unfolded space, and are propagated to individual
images or surfaces with distinct methods. For surface meshes, the subfield volumetric labels are sampled on a standard
surface mesh using the Connectome Workbench function volume-to-surface-mapping, which creates a label GIFTI file
for the surface vertices that is applicable to both unfolded and native surfaces. For volumetric images, it is possible
to simply apply 𝑇 𝑖𝑚𝑔

u→x to the subfield atlas. The current workflow applies an analogous approach, using 𝜓𝐴→𝑃 and
𝜓𝑃→𝐷 to interpolate, as our subfield atlas labels historically existed as surface labels, instead of the current volumetric
labels, but both approaches should yield the same result.

The volumetric subfield labels are then modified to override the 𝐿𝑆𝑅𝐿𝑀 , 𝐿𝐶𝑦𝑠𝑡, and 𝐿𝐷𝐺 labels from the tissue
segmentation, since these labels are not included in the subfield atlas.

1.9 Dentate gyrus unfolding

Unfolding for the dentate gyrus conceptually identical to the hippocampus, however, the 𝜓𝐼→𝑂 and 𝜓𝑃→𝐷 fields are
swapped, since the dentate gyrus tissue is topologically-perpendicular to the rest of the hippocampus.

Furthermore, because the dentate gyrus is a much smaller structure than the hippocampus, solving Laplace’s equation
for each individual hippocampus can be challenging if the spatial resolution is limited. Thus instead, we solely make use
of the template shape injection, and use the pre-computed Laplace solution, 𝜓𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒, to define the coordinates. Also,
for the pre-computed solution, the 𝜓𝐴→𝑃 field is computed from the hippocampus (since this coordinate is naturally
constrained to be identical for both structures).

1.8. Subfield segmentation 5
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