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LabNet hardware control software for 
the Raspberry Pi
Alexej Schatz*, York Winter

Humboldt Universität, Berlin, Germany

Abstract Single-board computers such as the Raspberry Pi make it easy to control hardware 
setups for laboratory experiments. GPIOs and expansion boards (HATs) give access to a whole 
range of sensor and control hardware. However, controlling such hardware can be challenging, 
when many experimental setups run in parallel and the time component is critical. LabNet is a C++ 
optimized control layer software to give access to the Raspberry Pi connected hardware over a 
simple network protocol. LabNet was developed to be suitable for time-critical operations, and to 
be simple to expand. It leverages the actor model to simplify multithreading programming and to 
increase modularity. The message protocol is implemented in Protobuf and offers performance, 
small message size, and supports a large number of programming languages on the client side. It 
shows good performance compared to locally executed tools like Bpod, pyControl, or Autopilot and 
reaches sub-millisecond range in network communication latencies. LabNet can monitor and react 
simultaneously to up to 14 pairs of digital inputs, without increasing latencies. LabNet itself does not 
provide support for the design of experimental tasks. This is left to the client. LabNet can be used 
for general automation in experimental laboratories with its control PC located at some distance. 
LabNet is open source and under continuing development.

Editor's evaluation
LabNet is an exciting new platform for experimental control using Raspberry Pis. As experiments get 
more complex in neuroscience, new validated tools are needed to continue to allow users flexibility, 
precision, and be fast, and LabNet is such a tool. Through extensive benchmarking and documenta-
tion of their tool, they demonstrate excellent performance, scalability, and provide examples of how 
their platform can be adopted.

Introduction
The combination of open-source software, low cost microcontroller electronics, and the easy access 
to digital fabrication have led to a plethora of open-source solutions for animal behaviour experi-
mental systems (Open Behaviour [Laubach et al., 2021], Bpod [Sanders, 2021], Autopilot [Saunders 
and Wehr, 2019], pyControl [Akam et al., 2022], MiniScope [Cai et al., 2016], Bonsai [Lopes et al., 
2015], Whisker [Cardinal and Aitken, 2010], OpenEphys GUI [Siegle et al., 2017]). Using our 10-year 
experience with the Rasperry Pi for animal behaviour experimental control and after two decades with 
different self-developed embedded control approaches, we have developed in C++ a new, powerful, 
and highly versatile platform for hardware control via the Raspberry Pi.

We had two major goals: the platform has to be suitable for time-critical operations and be easy to 
extend. Furthermore, LabNet had to support a wide variety of hardware components and we wanted 
to simultaneously control multiple animal behaviour experimental operant boxes. When conducting 
automated behavioural experiments, it is advantageous to test many animals in parallel with iden-
tical or, if necessary, individually specific experiments. This is the only way to obtain complete data 
sets quickly and can only be achieved through automation. Figure  1 shows examples of operant 
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conditioning cages (Skinner boxes; Skinner, 1938) as controlled by LabNet. Our intention was not to 
create a completely new ecosystem like Autopilot. We wanted to simplify communication with hard-
ware for projects using their coding language of choice on the PC. Also, we wanted to remain general 
so that LabNet can become a general platform for experimental laboratory automation.

We selected the Raspberry Pi because it is low cost, powerful, has a wide selection of I/O add-
ons and software components. To keep signal lines short, we gave each experimental setup its own 
Raspberry Pi. All systems are connected to the Ethernet network and are manageable via a central 
instance. This instance can be a normal PC and be located outside of the laboratory. Thus, the condi-
tion of experimental states and the animals can be monitored at any time, even without entering the 
laboratory.

Autopilot also uses a swarm of Raspberry Pis. However, it implements a hierarchy where each Rasp-
berry Pi can take a different role. This requires an additional configuration step and can complicate 
troubleshooting. We wanted to avoid this as well. This is the reason why each of our Raspberry Pis 
runs the same software and overall experimental control is executed by the central instance that is for 
example run from a PC. This separation also determined the network architecture of the entire system. 
The local instances on the Raspberry Pi are servers, and the central instance is the client. There can be 
one client to control experiments on all systems or multiple clients each controlling an experiment on 
one or more systems. But, at least so far, not multiple clients connected to one server.

Results
System overview
We designed LabNet as a distributed system (network) where LabNet presents a node running on a 
RasPi. We had two important requirements for this system: openness and scalability (see van Steen 
and Tanenbaum, 2017). Openness means that each node can control an experimental chamber on 
its own or together with a number of other nodes (for experimental system examples, see Figure 1 
and 4). Scalability means that there can be any number of nodes and thus experimental chambers in 
the system. However, a node or a chamber has to be removable from the system without adjustments 
on the other nodes. To ensure this, each node in our system is controlled by a RasPi, each RasPi is 
configured in the same way and controlled by the same software. However, this also comes with the 
restriction that at most one experimental system can be connected to each RasPi to be removable 
without electrical adjustments. But this also means a simplification: LabNet only needs to accept a 
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Figure 1. Examples of behavioural setups controlled by LabNet. A Skinner box (left) contains (a) a feeder magazine that typically has a photo gate for 
nose-poke detection and a reward pellet dispenser. It also has (b) a row of LEDs and (c) a tone generator. (d) A monitor displays visual stimuli and may 
have a touch sensor for touchscreen functionality. The T-Maze (right) also has (a) a food magazine and (b) LEDs, and furthermore (e) an optical sensor to 
detect the return of the mouse to the start position and (f) two motorized doors that can be lowered to restrict access to the arms. Legend: Images and 
diagrams generated with TikZ.
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single connection and does not need resource management for multiple connections, because only 
one experiment runs on one system and the hardware is not shared.

Thus, the network of LabNet nodes represents the distributed system and offers, as servers, the 
hardware resources in the network. However, hardware control in the context of the experiments is 
the responsibility of clients and not a LabNet duty. For example, LabNet does not decide about an 
output pin state, but LabNet knows how to switch the state and performs it at the client’s request. 
One client could take the control over of the entire LabNet distributed system or divide the nodes 
among several clients. It all depends on the situation and requirements: a large number of identical 
experimental chambers with identical experimental tasks are usually controlled by one client while 
different experimental tasks may better be controlled by separate clients, also to start and stop exper-
iments independently. For communication between LabNet and client a flexible and fast message 
protocol using Protobuf was developed (section Message protocol). The clients can be implemented 
in any language with Protobuf support, for example, Python, C#, C++, etc.

Since the Raspberry Pi is a single-board computer, it runs ‘Raspberry Pi OS’: a Debian-based Linux 
distribution. This allows a large freedom in the choice of programming language and software tools. 
Both interpreted languages, such as Python, and compiled languages are available. LabNet was 
required to meet two criteria:

1.	 Time-critical: all operations should be performed as quickly as possible.
2.	 Flexible: new functionality extensions should be as simple as possible.

Unfortunately, all interpreted programming languages have a disadvantage in execution speed 
compared to compiled languages. Nevertheless, many of the tools developed recently, such as Auto-
pilot and pyControl, use Python. Python is a simple language and provides many packages for all 
purposes. However, because execution speed was of primary importance we decided to use C++.

Extensions with new functionalities is generally possible in two ways: (i) software adaption with 
recompilation in case of compiled languages and (ii) a plug-in system. In the current LabNet version, 
we use recompilation but our road map also includes a future plug-in system. To simply modifications 
the software must have a suitable architecture and a high degree of modularization.

Since its version 2 the Raspberry Pi has 4 cores. In addition, most of its hardware controllers, 
such as USB or Ethernet, operate asynchronously, thus they do not require CPU capacity because of 
DMA (Direct Memory Access), and they report their work completion via interrupt messages. LabNet 
needed an architecture that optimally leverages this already available hardware asynchrony for parallel 
execution. Handling GPIO lines is fast, but accessing a UART may lead to considerable delays in 
sequentially executed software. This presupposes the use of multiple threads. Since programming 
with many parallel threads is a very error-prone and time-consuming task, we decided to develop an 
actor-based software (see sections Actor model and SObjectizer). This also provides higher flexibility 
and software modularity.

Example
The following example and the corresponding listings (1–3) show how a client can initialize and control 
the hardware together with a LabNet server on a RasPi with a simple hardware setup. The client could 
run on a PC and use any language that has support for Protobuf-like Python, C++, C#, etc. Since we 
use C# in our experiments, the C# notation is also used in the listings. Basically, it shows the use of 
some of the LabNet messages, but the communication via TCP/IP is omitted for simplicity. We simply 
assume that a TCP/IP client exists and handles all operations like send, receive, and serialization.

Let us assume an experimental setup with an LED and audio as stimuli, a valve to release 
a liquid reward and a photo gate as a nose-poke sensor to detect animal behaviour. All 
these components can be connected directly to the GPIO pins via a simple circuit. The head-
phone jack can be used for audio output. Then, we need to send five commands to LabNet 
to initialize all components; see Listing 1. It would usually be necessary for the client to wait 
for the responses from LabNet and check the initialization results. Here, we skip this step. 

During experiments, animals must usually perform some operant behaviour. This can be 
as simple as nose poking to trigger a photo gate after a certain stimulus has been perceived. 
In Listing 2, LabNet activates an LED and produces a sine tone. In the case of the tone, it is 
instructed to automatically generate a pulsed output. On detecting On and Off state changes, 

https://doi.org/10.7554/eLife.77973
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LabNet transmits such photo gate state changes to the client. In response to the photo gate 
state change, a reward can be provided. In Listing 3, a liquid reward valve is opened for 100 ms. 

A typical experiment in combination with LabNet comprises several phases:

•	 establishing a TCP/IP connection;
•	 initializing all hardware components;
•	 turning stimuli on or off in a specific order;
•	 waiting for an animal reaction and potentially providing a reward.

Performance evaluation
Because the neurons in the brain work in the millisecond range, the response times in behavioural 
experiments are critical and should match that range.

// start GPIO interface with WiringPi  
var initIo = new GpioWiringPiInit();  
// init a digital output on pin 5  
var led = new GpioWiringPiInitDigitalOut { 
     Pin = 5,  
    IsInverted = false 
};  
// init a digital output on pin 26  
var valve = new GpioWiringPiInitDigitalOut { 
     Pin = 26, 
     IsInverted = false 
};  
// init a digital input on pin 23  
var poke = new GpioWiringPiInitDigitalIn { 
     Pin = 23, 
     IsInverted = false, 
     ResistorState = PullUp 
};
 
// start sound interface  
var initSound = new InitSound(); 
// create a sine tone
var sine = new DefineSineTone { 
     Id = 1, 
     Frequenz = 1000, 
     Volume = 0.5 
};

Listing 1
Each generated object represents an initialization message to be serialized with Protobuf and trans-
mitted to LabNet. The first message initializes the digital I/O interface with WiringPi pin notation. The 
next three initialize an LED, a valve, and a poke sensor on the WiringPi interface. The fifth creates the 
sound generator on the headphone jack. The last, initializes a sine tone with 1 kH frequency and 50% 
volume. Object initialization in C# notation. Serialization and TCP/IP communication not listed.

// change the state of the pin 5 to true 
var setLed = new DigitalOutSet { 
     Id = new PinId { Interface = GpioWiringpi, Pin = 5 }, 
     State = true 
};  

https://doi.org/10.7554/eLife.77973
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// turn the sine tone in pulses of 500ms on and off 
var pulseSound = new DigitalOutPulse { 
     Id = new PinId { Interface = Sound, Pin = 1 }, 
     HighDuration = 500, // ms 
     LowDuration = 500, // ms 
     Pulses =10 
};

Listing 2
Information for transmission via Protobuf, building on the initialization from Listing 2.2. The LED is set 
to ON state (until an OFF command). A sound, defined as 1 kHz in Listing 2.2, is emitted as 10 pulses 
of 500 ms. Object initialization code in C# notation.

DigitalInState pokeState; // new poke state from LabNet  
if (pokeState.State) // if new state true -> on  
    // give a reward  
    var reward = new DigitalOutPulse { 
         Id = new PinId { Interface = GpioWiringpi, Pin = 26 }, 
         HighDuration = 100, // ms 
         Pulses = 1 
     }; 
}

Listing 3
In this example, LabNet has transmitted via Protobfuf a new poke sensor state (pokeState) to the PC. 
If the new poke state is true, a new message directs LabNet to deliver a reward by opening valve at 
pin 26 for 100 ms, as initialized in Listing 1. Code shown in C# notation.

LabNet was subjected to three tests to determine the latency times when executing different 
commands. A RasberryPi was connected to a PC via a router. For all tests, the client ran on a Linux PC 
(Ubuntu 20.04, Intel Core i7-6700 3.4 GHz with 16 GB RAM). To allow a comparison, the client was 
implemented in three languages: Python, C#, and C++. We used Python version 3.8. Python tests ran 
directly on top of the socket, synchronously with no additional software layers. In Python, it is also 
essential to deactivate Nagle’s algorithm. The C# version was implemented under .NET 6 and used 
Akka.NET, an actor framework. For C++, we used GCC 9.4.0, Boost version 1.75, and SObjectizer 
5.7.2. Thus, all tests in C# and C++ were implemented as actors inside an actor framework. The source 
code of all tests is included in the GitHub repository under ‘examples’.

As always, all benchmarks must be interpreted with a certain degree of caution. For example, it 
is generally not possible to create the same initial situation for the implementations in all languages. 
With C++, an external library like Boost must be used for communication via TCP/IP. In addition, we 
used SObjectizer for C++ and Akka.NET for C# for asynchronous message processing. This theoret-
ically gives the implementation in Python a slight advantage, as it runs synchronously and also has 
no complex calculations. Performance problems usually occur in Python code whenever true parallel 
execution is required (because of the Global Interpreter Lock) or when the calculations cannot be 
outsourced to a library implemented in C. Nevertheless, all three implementations provide a reason-
able expectation of the latency in real cases. This is especially true for C# and C++, since they run 
asynchronously and thus simulate the execution of several parallel-running experimental tasks with 
animals in a first approximation.

LabNet was also compiled with different optimizations to investigate the performance effects of 
the different RasberryPi boards. However, GCC 8.3 was used for all versions. The first version had only 
the default release optimizations from CMake and could run on all RasPi boards. The optimization 
flags were as follows:

•	 -mcpu=cortex-a7 for Pi 2;
•	 -mcpu=cortex-a53 for Pi 3;
•	 -mcpu=cortex-a72 for Pi 4;

https://doi.org/10.7554/eLife.77973
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•	 -mfpu=neon-vfpv4 -mfloat-abi=hard - floating-point number optimizations for all 
versions.

Each test was run 10,000 times and was performed on three different RaspberryPi boards: RasPi 
2B, 3B+, and 4B with 1 GB RAM. Statistical variables such as: mean, STD, median, and percentiles 
were calculated from the time measurements.

Set digital out test
In the ‘set out test’, a digital output is alternately set to 0 and 1. After the command for setting the pin 
has been received and processed, LabNet automatically sends back an acknowledgement. In this test, 
the time between sending the set command and receiving this confirmation was measured. Because 
of the simplicity, this test can also be seen as a type of ping measurement.

The set command from the client has 10 bytes. The server response is 22 bytes long, and includes 
the execution timestamp.

The results are shown in Figure 2a. The median for C# was between 0.36 ms for 4 and 1.01 ms 
for 2. For Python 0.32 on RasPi 4 and 0.80 on RasPi 2. For C++ 0.26 on RasPi 4 and 0.80 on RasPi 2.

Read and set GPIO
In this test, the reaction time to external events was measured. LabNet first had to detect the inter-
ruption of a photogate by an animal’s nose, send a message to the client and in response the client 
had to initiate the change of a digital output state through a message to LabNet. To simulate the 
nose-poke events, a second RasPi was used. Two pins between the two RasPis were connected: one 
for the test signal from the second RasPi and one for the response from LabNet. The second RasPi 
was only responsible for switching the first pin to 1, stopping the time and waiting until the RasPi with 
LabNet had also switched the second pin to 1 in response. The time between these two high events is 
the latency (see Figure 3b). The measurement software on the second RasPi was written in C++ and 
ran on RasPi 3B+. We also verified how fast this software can detect the response signal. To do this, 
we simply connected test and response pins on the second RasPi together. This way the response pin 
goes immediately high if the test pin is set. The latency in this case was only 0.7 ± 0.6 µs. This means 
that the second RasPi acts like a 1 MHz oscilloscope. This is entirely sufficient in our case.
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Figure 2. Results from LabNet performance tests. (a) Time to set a digital output as a Ping equivalent. (b, d) 
Latency to set a digital output in response to a change on a digital input. (c) Run the ‘read and set’ test for up to 
14 IO-pin pairs in parallel. LabNet ran on RasPi 4. Tests were repeated 10,000 times and results are in milliseconds. 
Tests were performed on three different RaspberryPi boards: Rv2 is 2B, Rv3 is 3B+, and Rv4 is 4B with 1 GB RAM. 
optimized refers to the LabNet with some additional optimization flags (see main text). 1 kHz refers to the version 
without optimizations running on Rv4 with 1 kHz polling and max refers to non-stop polling. Box plots in (a–c) show 
median, lower and upper quartile, and whiskers the 2.5th and 97.5th percentiles. Data in (d) given as means and 
STD.
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The digital input state message from LabNet is 22 bytes long, and includes the timestamp. The set 
command from the client has 10 bytes. LabNet has to send two messages to indicate the input state. 
The client has also to send two messages to switch the output state. Additionally, LabNet sends two 
messages to acknowledge the output state switch. Thus, there is a total of six messages per iteration.

The results are summarized in Figure 2b and d. For C# the median was 0.89 ms for 4 and 1.23 ms 
for 2 and mean values were 0.9±0.19 ms for 4 and 1.24±0.18 ms for 2. For Python the median was 
0.89 ms for 4 and 1.28 ms for 2 and mean values were 0.88±0.18 ms for 4 and 1.24±0.16 ms for 2. For 
C++, the median was 0.93 ms for 4 and 1.12 ms for 2 and mean values were 0.92±0.15 ms for 4 and 
1.12±0.07 ms for 2.

LabNet uses a polling mechanism to detect changes in digital inputs. By default, LabNet runs at 
4 kHz polling. But we also evaluated latencies for 1 kHz and non-stop polling on Pi 4. Mean values 
in case of 1 kHz were 1.23±0.16 and 0.75±0.13 ms for non-stop for C#. Four kHz with 0.9 ± 0.19 ms 
offers slightly worse results compared to non-stop polling, but on the other hand only utilizes 10% of 
the capacity of one CPU core.

As a further result, the compiler optimization flags did not influence any of the tests. This indicates 
that LabNet has no performance issues on the RasPi.

The 1 GigE update of the RasberryPi 4 causes a performance increase over models 2 and 3. Despite 
the differences in implementation, all clients are relatively close with their performance. The results 
also show that the language used at the client side is not important, at least for the simple cases 
considered here.

Stress test
This is an extension of the ‘read and set’ tests. But now 14 pairs of pins were connected; all 28 GPIOs 
on both RasPis were used. The C++ program on the second RasPi ran up to 14 tests in parallel, each 
in an own thread. The pause between single measurement runs was set to 1 ms. We needed this pause 
to give all threads a chance to be executed. The C++ measurement program ran on the RasPi 3B+ as 
before and LabNet on 4.

The results in Figure 2c show that LabNet can monitor and control up to 14 pairs of IO-pins in 
parallel without any loss in performance. Interestingly, the latencies went down slightly for two test 
signals, but then remained at this level; the median for C# was 0.89 ms for one signal and 0.70 ms for 
two. This probably has to do with the polling in LabNet and the parallel test execution of the second 
RasPi. With two signals, it is more likely that LabNet will notice the pin state change within shorter 
delay.

(a) latencies
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pyControl
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0.100 ± 0.002
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local network

(b) latency measurement
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Figure 3. Latencies comparison and measurement. (a) Comparison of execution latencies. All tools performed 
the same ‘read and set’ task to achieve comparability, except Whisker. Whisker server implements a 1 kHz polling 
frequency on the PC. LabNet for digital input polling depends on the internal RasPi 4 kHz polling frequency. 
Only for LabNet do the latencies include the message transfer over the Ethernet wire. Values give means with 
STD. LabNet was operated with a C# client. LabNet and Autopilot use the RasPi 4. (b) The latency measurement 
in Read and set GPIO test. The measurement RasPi generates the high ‘test’ signal, saves the time, and waits 
until the ‘response’ signal is also high. The time tk between these two high events is the latency. The test RasPi 
repeats this for 10,000 times and saves the results in a CSV file. RasPi acts here as 1 MHz oscilloscope. All packages 
(Autopilot, Bpod, pyControl, and LabNet) were tested in the same way. In the Stress test we have multiple ‘test’ 
and ‘response’ lines.
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Additionally, we looked at how many latency measurements per second the second RasPi could 
execute. With a single test signal this was just over 400 events per second. With the maximum of 14 
tests each single pin switched only 200 but all pins together a total of 2800 times per second. The 
drop in the number of events per second from 400 for a single IO-pin occurs as soon as more than 
4 IO-pin pairs are handled. This is a consequence of the four CPU cores on the RasberryPi. As soon 
as the test signal has been set, the software continuously monitors the state of the response pin. 
This keeps one CPU core fully busy and prevents the execution of the other test threads. However, 
this performance evaluation also shows that LabNet has no problems to process several thousand 
messages per second in each direction.

Comparison
Our comparison of LabNet latency performance with other software tools is summarized in Figure 3a. 
We implemented an adapted version of the ‘read and set’ test for Autopilot, Bpod, and pyControl to 
achieve measurement comparability. The latency measurements were performed in exactly the same 
way as previously with LabNet. Two pins were connected to the measurement RasPi. The same C++ 
measurement program ran again on a RasPi 3b+, set the test pin to 1, and waited until the response 
pin was also set to 1. Tests were repeated 10,000 times. Different from LabNet all tools ran locally 
and did not send commands over the wire in the network. For source code and data, see the Code 
availability section.

In Whisker, the communication occurs over the network; however, both Whisker and all task clients 
usually run on the same PC. Such communication is extremely fast and is also reported by the Whisker 
authors (Cardinal and Aitken, 2010) to require only 0.066 ms. The 1 ms latency comes from Whis-
ker’s internal 1 kHz polling frequency for processing incoming commands. For Whisker we could not 
perform the ‘read and set’ test ourselves. Therefore, 1 ms is used as reference value.

Autopilot runs in a Rasberry Pi swarm. However, the tasks ran locally. To perform the ‘read and set’ 
test, the ‘free water task’ from the Autopilot GitHub repository was adapted. This waits for a digital 
input event, activates a digital output for a short time, and repeats. The measured mean latency was 
0.93 ± 0.08 ms on RasPi 4.

The pyControl state machine is also very simple. It has only two states, which simply monitor the 
digital input and turn the digital output on and off. The mean latency is 0.66 ± 0.11 ms. This is compa-
rable with reported results 0.56±0.02 ms from Akam et al., 2022. The used MicroPython pyboard 
version was 1.1.

Since the Bpod state machine runs at 10 kHz, we expected it to perform best which was the case. 
The mean latency was 0.1 ± 0.002 ms. We tested the version r2 of the Bpod State Machine.

According to these measurements, LabNet achieves latency times comparable to locally executed 
applications, even despite client control of LabNet over the network via TCP/IP.

Discussion
With LabNet we present a C++ optimized control layer software to control Raspberry Pi connected 
hardware over a simple network protocol. LabNet can be used for general automation in experi-
mental laboratories. And the controlling PC can be located at some distance. The version of LabNet 
presented here is not our first solution of distributed experimental hardware control. After initially 
using PC digital IO boards for 760 parallel IO lines (Winter and Stich, 2005), we moved to a custom 
developed microcontroller board connected to the PC initially via UART and later via Ethernet. In 
2015 we switched to the Rasberry Pi avoiding own hardware development. We used a prior version 
of LabNet for 5 years before rebuilding over the past 2 years from the ground up the current highly 
optimized version of LabNet using our prior experience with laboratory experimental control. In the 
following we present some of the experimental systems that included LabNet control.

For our experiments with nectar-feeding bats we controlled a system of up to 76 artificial sugar 
water feeders (artificial flowers) each of which included a nose-poke sensor, an LED, a motorized swivel 
arm to close the flower and two valves for reward (Winter and Stich, 2005). Later the flowers were 
extended with RFID readers for the individual identification of ID chipped bats and has been used with 
freely ranging bats both in the rainforest (Nachev et al., 2017) and in the laboratory (Wintergerst 
et al., 2021). These systems had up to 23 flowers and each flower was accessible to all bat. While in 

https://doi.org/10.7554/eLife.77973
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the earlier systems we used a UART-to-Ethernet converter from Perle Systems to receive RFID data, 
we now use a custom 32-channel UART HAT for the Rasperry Pi with LabNet. Also the stepper-motor 
nectar pumps and the rest of the hardware (nose-poke sensor, LED, valves, etc.) are now connected 
to the RasPi and controlled via LabNet. As to the network, in the case of individually kept animals, 
each flower had its own RasPi while in flower fields, several flowers shared one RasPi, depending the 
distance between experimental units.

We also perform behavioural experiments with rodents. In a study on rational choice by mice, ID 
chipped mice in a group home cage could choose between four water dispensers built very similar to 
our artificial bat flowers, with nose-poke sensor, a valve, an RFID reader, and a syringe pump to deliver 
the water. Here, all hardware was connected to RasPi and controlled with LabNet. We have also used 
LabNet in connection with commercially available experimental chambers. An example is the touch-
screen system for rats from Campden Instruments that we extended using LabNet that controlled a 
gating system (ID sorter) to automatically perform experiments with group housed rats (Marion et al., 
2017) (see Figure 4 and more below). The program for the sorting procedure on the PC started the 
experiment in the touchscreen chamber via a TCP/IP protocol implemented in collaboration with 
Campden Instruments every time a new animal was sorted in. This allowed us to conduct the experi-
ments with multiple animals automatically and unsupervised.

More recently we have implemented an experimental touchscreen system for group housed mice 
that is fully under RasPi and LabNet control (Figure 4). This consists of a touchscreen system, a sorter, 
and a home cage. The touchscreen system has a monitor with an IR touch frame, a pellet magazine 
with pose-poke sensor, a row of LEDs, and a tone generator. All components are connected to a 
RasPi with LabNet control. Listings 2.2–2.2 show how this hardware can be initialized and controlled 
from the PC. The sorter has three RFID readers, two motorized doors, and two hall effect sensors, all 
connected to a RasPi. The readers connect via UART-USB converters, motors are controlled via UART, 
and the hall effect sensors for door state connect to IO ports. The sorting procedure, that is, when 
which door goes up or down, is realized by the PC, the client. The animals live inside the home cage 
and participate voluntarily and unsupervised in the experiments in the touchscreen chamber. Figure 4 
shows only one system, but we had up to four systems connected and controlled by one PC. This 

d

b

a

c

�3 �2 �1
�2

�1 �1

Skinner-Box with RasPi

Sorter with RasPi Home-Cage

PC

Figure 4. A complete behavioural setup controlled by LabNet. On the left is the touchscreen chamber. (a) Feeder magazine with a nose-poke sensor 
and a pellet dispenser, (b) a row of LEDs, (c) a tone generator, (d) monitor displays for visual stimuli with IR touch frame sensor. In the middle is the 
sorting module. (‍r1 − r3‍) three RFID readers. r2 and r3 are positioned so that the animals can be read anywhere inside the sorter and r1 so that the animal 
is read when it leaves the sorter. (d1, d2) Two doors to catch the animal inside the sorter and guide it to the experimental chamber or the home cage. 
The animals live inside the home cage and can participate voluntarily and unsupervised in the experiments in the touchscreen chamber via the sorter. 
Both the touchscreen system and the sorter are each equipped with their own RasPi and connected to PC via Ethernet. The sorter can be removed 
without electrical adjustments, because it is controlled by its own RasPi and is therefore completely independent from the touchscreen system. Then 
experiments can be conducted with manually introduced animals.

https://doi.org/10.7554/eLife.77973
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also shows the advantage of a distributed system like LabNet. In order to control more systems, they 
were simply connected to the network without further adjustments. With identical systems, the same 
experiments could run everywhere at the same time.

LabNet is a very versatile distributed system which allows to control the hardware in laboratory and 
field experiments. It achieves almost real-time hardware control despite the network communication. 
Our stress test measurements have shown that thousands of Ethernet messages can be handled by 
LabNet per second. Indeed, the bottleneck here is the client and its ability to process and react to 
LabNet messages. However, none of our systems had reached the number of messages per second 
as in the stress test and we never had performance issues. The only problem could be very large 
messages in the network communication, for example, video data. These could significantly worsen 
the latency of other messages. But, there is the possibility to put RasPis with cameras into another 
network and on the PC receive the data via another network card. LabNet can also execute multiple 
tasks on one RasPi at the same time. In our experience with the touchscreen system we observed 
inputs, generated multiple pulse trains, played sound, and displayed visual stimuli, all at the same 
time but never reached performance limits on the RasPi. The LabNet architecture with actors explicitly 
targets the execution of multiple tasks.

Raspberry Pi as the hardware platform allows connecting a wide variety of readily available sensors 
and actuators. LabNet supports already a range of hardware modules which can thus be addressed 
via network. For example, GPIOs, communication via the UARTs, sound output via a headphone jack 
or HDMI, and some Raspberry Pi HATs developed in-house. This already allows many types of exper-
iments. LabNet can also be used with hardware adaptors with available modules for operant exper-
iments from open source such as Bpod and pyControl or commercial systems from MedAssociates 
or Coulbourn Instrumentsor. In addition, LabNet can be integrated into existing systems, as shown 
above with a Campden Instruments’ system.

Here, we do not show how LabNet can be extended in C++ with new functionality. This is part of 
the API documentation which may undergo changes between versions and will be available online. 
The next version in progress will support the display of visual stimuli, touchscreen support, and 
communication via I2C. This version will also include a complete API documentation. The support for 
a Raspberry Pi-based configuration file is also planned. This would make configuration via the network 
no longer necessary and LabNet could already initialize the hardware correctly on Raspberry Pi start.

In the future, we plan to implement a software plug-in system. This will make it possible to support 
new hardware without LabNet recompiling. This will require a rework of the current LabNet API. This 
will then support messages that are unknown at LabNet compile time.

Materials and methods

 Continued on next page

Key resources table 

Reagent type (species)
or resource

Designation Source or reference Identifiers Additional information

Software, algorithm pyControl https://github.com/pyControl/code.git
RRID:SCR_021612

pyControl source
code repository, v1.7.1

Software, algorithm Autopilot https://github.com/auto-pi-lot/autopilot.git
RRID:SCR_021518

Autopilot source
code repository, v0.4.4

Software, algorithm Bpod https://github.com/sanworks/Bpod_Gen2.git RRID:SCR_015943

MATLAB software
for Bpod, Gen2

Other Bpod https://www.sanworks.io/index.php RRID:SCR_015943
r2 Bpod State Machine

https://doi.org/10.7554/eLife.77973
https://github.com/pyControl/code.git
https://identifiers.org/RRID/RRID:SCR_021612
https://github.com/auto-pi-lot/autopilot.git
https://identifiers.org/RRID/RRID:SCR_021518
https://github.com/sanworks/Bpod_Gen2.git
https://identifiers.org/RRID/RRID:SCR_015943
https://www.sanworks.io/index.php
https://identifiers.org/RRID/RRID:SCR_015943
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Reagent type (species)
or resource

Designation Source or reference Identifiers Additional information

Software, algorithm LabNet https://github.com/WinterLab-Berlin/LabNet.git SHA-1: 333bd58

LabNet source
code repository

 Continued

Data of the performance measurements, the source code for Autopilot, Bpod, and pyControl tasks 
and the source code for the graphs are included in the article’s data and source code repository.

Actor model
Developing a system with multiple threads still requires much care and can be challenging. Thread 
local state and program global state have to be protected. Some type of locking mechanism is 
required. Unfortunately, the locking mechanism itself increases not only the scalability but also the 
code complexity and error-proneness due to the locking order. Locking problems such as race condi-
tions or dead-locks must be avoided. But time and execution order-dependent errors can be difficult 
to find and fix.

LabNet is a concurrent system. The operations on the GPIOs, sending and receiving data via 
UARTs, sound output, etc. have to be independent from each other. For such purpose, message-
passing approaches have been developed. In those, all inter-thread state sharing is encapsulated 
within messages sent between threads. All messages must be immutable or be copied for each thread.

Hewitt, Bishop, and Steiger (Hewitt et al., 1973) proposed in 1973 with their actor model one of 
the first message-passing systems. Actors are active objects that communicate only over messages. 
Each actor has only knowledge about itself and its own functioning (shared-nothing principle). No 
global state exists in an actor system. Messages also do not block the sender (fire-and-forget prin-
ciple). This avoids problems such as race conditions or dead-locks.

This has further developed to a level of abstraction from only considering shared memory to 
independent actors that communicate through a well-defined message protocol. In the late 1980s, 
Ericsson developed Erlang (Armstrong, 1996), an actor-based programming language, and success-
fully used it in ATM network switches. The Akka (Lightbend, 2021) actors framework was released in 
2009 for Java and Scala.

SObjectizer
From the several actor model libraries that are available for C++ such as the C++ Actor Framework 
(CAF) (Charousset et al., 2013), SObjectizer (Stiffstream, 2021), or Theron (Mason, 2019) we chose 
SObjectizer.

In SObjectizer a class or struct is sufficient to define a message. Actors are also normal classes 
derived from an agent_t base class. Thus, actors automatically have a ‘message box’ (Mbox), through 
which messages can be received, and also methods that are automatically called, for example, before 
an actor is started or stopped.

An Mbox can receive messages of all possible types. The Mbox of an actor has no name and must 
be communicated to other actors. However, named Mboxes can also exist. A reference to such an 
Mbox can be created anytime via its name. This practical feature is used in LabNet to access important 
actors that always exist.

It is also possible to mix actors with other paradigms. This allows to move some parts of the appli-
cation into the Boost ASIO (Boost, 2021) or into threads. Mboxes can still be used for communication 
with actors from the outside. For communication with code from outside the actor world, the so-called 
MChain are used. An MChain looks like a queue: actors can place messages there and threads can pull 
them at a later time. For example, LabNet uses Boost ASIO for TCP/IP communication and threads for 
some clearly defined tasks such as digital input polling.

One important feature of SObjectizer is the built-in support for hierarchical state machines (HSMs). 
All actors in SObjectizer are state machines. They can pass through several states in their lives and 

https://doi.org/10.7554/eLife.77973
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react to incoming messages depending on their current state. An interface actor in LabNet (see Imple-
mentation section) goes through several states: hardware initialization, operation, error, etc.

Dispatchers are another important cornerstone of SObjectizer. Dispatchers provide an actor with 
the working context. They manage all message queues and execute the actors if there are messages in 
the queue (Mbox). We have chosen the dispatcher with a thread pool. It provides a good compromise 
between thread management overhead and parallelism. But it is still possible to use other dispatcher 
types (e.g. one with one thread per actor) without having to adapt the actors.

Message protocol
Our criteria for choosing the serialization tool were good performance, small message size, and 
support in as many programming languages as possible. Text-based serialization formats, such as 
XML, JSON, or ASCII-based plain-text, have the advantage of being human-readable. The Whisker 
server uses an ASCII-based format (Cardinal and Aitken, 2010). The disadvantages are the message 
size, higher computing requirements, and, at least for the ASCII version, a custom message parser.

For our application, a binary format is a better solution, and we chose Protobuf Google, 2021. It 
is very popular and offers support for many programming languages. However, Protobuf has some 
disadvantages. For example, it is not the most memory or computationally efficient tool. Libraries such 
as Flatbuffers, Cap’n Proto, or Simple Binary Encoding (SBE) are more efficient. However, these nega-
tive aspects of Protobuf only become critical when sending extremely large messages (some MBytes) 
or at a very high rate (millions per second) . This is typically not the case in experiments that focus on 
actions of animal behaviour.

Protobuf uses a special meta-language to define messages. With protoc-generator, it is possible 
to create these message protocols for each supported programming language. Files with message 
definitions are a part of the Git repository.

One Protobuf disadvantage must be mentioned. A serialized Protobuf message contains no infor-
mation about the byte length nor the message type. Protobuf leaves this information to the trans-
mission medium. We have solved this simply: each message begins with two pieces of information: 
type and size. This is also the officially recommended approach. Both are encoded as a number in 
Protobuf’s varint notation and are easy to parse with the Protobuf API.

Implementation
The current implementation does not contain configuration files for LabNet. The hardware initializa-
tion is exclusively performed through client messages. LabNet comprises several loosely coupled 
actors. The most important are briefly described below (see also Figure 5).

resources
manager

interfaces
manager

server

digital out
helper

IO

UART

sound

UART0

UART4

read thread

write thread

read thread

write thread

input polling

ASIO
TCP/IP

Protobuf

main actors interfaces
actor environment with thread pool dispatcher

Figure 5. The core of LabNet is the actor environment with thread pool dispatcher. Within the environment, the main actors are always present. The 
actors of the individual interfaces are started by the interfaces manager as needed. The interface actors can also outsource their work to other actors 
and threads. All main and interface actors can communicate with each other. The threads themselves and network communication via Boost ASIO, on 
the other hand, are hidden behind their actors.

https://doi.org/10.7554/eLife.77973
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The network communication runs over TCP/IP. The server in LabNet is implemented in Boost ASIO 
(Boost, 2021). The implementation is hidden behind the server actor. This actor can send and receive 
the Protobuf messages and also informs the actor world about the connection state. If the connec-
tion is lost, the actors can stop their work and automatically continue it later at the same point on a 
reconnection.

At the beginning, no single interface actor to communicate with the hardware exists. These actors 
combine all the possibilities for the hardware control: for example, initialization, set or get digital pin 
state, etc. They are automatically created and started by the interface manager. Currently, several 
‘interfaces’ exist:

1.	 GpioWiringPi to control input and output pins with WiringPi (Henderson, 2019).
2.	 IoBoard is a self-developed PCB top plane with power supply and pin connectors.
3.	 UART can send and receive data over the internal RasPi UART and USB to RS232 converters.
4.	 UartBoard is a self-developed PCB top plane with up to 32 UART connectors using SPI.
5.	 Sound allows a simple sound output in the form of sine tones over HDMI or a headphone jack.
6.	 BleUart is a Nordic UART service over Bluetooth Low Energy (BLE) and allows to communicate 

with Bluetooth devices.

Many pins on the Raspberry Pi offer more than one functionality. Clear responsibility for a hard-
ware resource must be ensured. Each ‘interface’ actor must request the resources from the resource 
manager. This is one of the first steps during the interface initialization state.

The ‘interfaces’ with digital outputs offer only the possibility to switch the output pin state. More 
complex procedures are implemented by the digital out helper actor. This actor can automatically 
turn off a pin after a defined time or generate pulses by specifying the on/off duration and number 
of pulses. Additionally, a group of pins can be automatically switched on and off together in a loop.

Related work
Most of the comparable software control tools published for behavioural experiments are more 
general packages. In addition to hardware control, they offer a more or less powerful tool for creating 
experiments, a user interface and a possibility to visualize the data. Although LabNet is only respon-
sible for the hardware, a comparison is still worthwhile.

Wisker-Server
The development of Whisker control suite started in 1999 by Cardinal and Aitken at the Depart-
ment of Experimental Psychology, University of Cambridge, and is ongoing (Cardinal and Aitken, 
2010). Initially, the aim was to use the existing resources of a PC and plugged-in IO cards to control 
behavioural experiments with visual stimuli and touchscreens in several boxes simultaneously. This 
was solved by an additional software layer where Whisker operates as the server and controls the 
hardware. The clients must connect to the server over TCP/IP, and each one controls an experiment in 
one of the chambers. The clients themselves can be written in any programming language. Commu-
nication occurs through a plain-text protocol.

Because of the outsourcing of the experiments to the clients, Whisker’s approach is similar to ours. 
Due to the flexibility in implementing the clients, complex experiments can be realized with Whisker. 
Hardware support includes digital I/O devices (National Instruments, Advantech, etc.), visual stimuli 
on computer monitors, touchscreens, audio, and more. Whisker is commercially used in ‘ABET II’ by 
Campden Instruments Ltd.

pyControl
pyControl (Akam et al., 2022) is an open-source hardware and software framework for controlling 
behavioural experiments. The hardware is based on the MicroPython microcontroller that typically 
controls a single experimental box each. Several pyControl breakout boards can connect to a PC via 
USB. Each board has six so-called behaviour ports and four BNC ports. Each port can be connected to 
a module: to drive LEDs, nose-poke sensors, stepper motors, and speakers. Two behaviour ports have 
I2C internally and can drive a port expander module to increase the number of ports.

Tasks on the MicroPython microcontroller and pyControl on the PC use Python. A task is defined 
as a finite-state machine. It comprises a collection of states and events that cause the switch between 
states. In data management, all events and state changes are stored with timestamps.

https://doi.org/10.7554/eLife.77973
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pyControl provides sufficient I/O ports to realize most tasks on a system. However, for the hard-
ware types, we are limited to the firmware capabilities and available modules, although free wiring is 
also possible. The mandatory requirement to define the task as a state machine can be useful but may 
also become a limitation.

Bpod
Bpod Sanders, 2021 was originally developed in the Brody lab and is now maintained by Josh Sanders 
(Sanworks LLC.). It also has been expanded to PyBpod as a python port of the Bpod MATLAB project 
by members of the Champalimaud Foundation. Bpod offers only four I/O ports but has additional 
module ports that each provide an interface to Arduino-powered modules. Thus, Bpod gains addi-
tional flexibility: analog I/O, I2C, Ethernet, and more can be accessed via these modules.

A MATLAB package is offered to write experimental tasks. Unfortunately, the package documen-
tation is limited. The tasks are also defined as finite-state machines. After starting the task, the state 
machine is transferred to the Bpod. From there, it communicates with the MATLAB frontend. This 
design results in the restriction that only a single Bpod can be controlled per MATLAB session. There-
fore, Bpod is much more limited regarding software than pyControl or Whisker. Multiple systems 
cannot run simultaneously, and the functionality is limited by the firmware and the state machine.

Autopilot
Autopilot Saunders and Wehr, 2019 is an open-source framework for behavioural experiments devel-
oped in the Wehr Lab at the University of Oregon. It uses Python, and the target platform is the 
Raspberry Pi.

The focus of Autopilot from the beginning has been the ability to control multiple systems. The 
basic unit in the software architecture of Autopilot is an agent. Each agent runs on its own Raspberry 
Pi and can communicate with other agents. Currently, three types of agents exist: terminal, pilot, and 
child.

Terminal agents are the only user-oriented with a graphical user interface. They are responsible for 
data logging and visualization. The experimental tasks are also managed here and transferred to the 
pilots, which are also responsible for experimental task execution. The pilots communicate with the 
external hardware that is connected to the Raspberry Pi and forward the experimental data to the 
terminals for logging or visualization. Each pilot can also have several child agents. Child agents can 
take over a part of a task if the task has been configured accordingly. The child agents are invisible to 
the terminals and communicate only with their parent pilot.

Among all tools discussed here, Autopilot offers most flexibility. It already supports a whole range 
of hardware. This includes digital I/O, audio, cameras, and some sensors such as temperature. More-
over, since it is open-source, support for additional hardware can be added. New behavioural experi-
ments can also be implemented. However, in both cases, we are limited to Python.

Code availability
The source code of LabNet is available over the GitHub repository under a GPL-3.0 license.

Data of the performance measurements, the source code for Autopilot, Bpod and pyControl tasks, 
and the source code for the graphs are also accessible via the GitHub repository, (copy archived at 
swh:1:rev:d52e52c51e3f7c5b0e12f95829b8cf4886bb3379; Schatz and Winter, 2022).

There are instructions for two possible compilation paths. The first is on the Raspberry Pi with Visual 
Studio Code and CMake. The second is with Visual Studio 2019 and Docker. The archive also contains 
the source code of all tests from Performance evaluation under ‘examples’.
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