
Schatz and Winter. eLife 2022;11:e77973. DOI: https://​doi.​org/​10.​7554/​eLife.​77973 � 1 of 16

LabNet hardware control software for
the Raspberry Pi
Alexej Schatz*, York Winter

Humboldt Universität, Berlin, Germany

Abstract Single-board computers such as the Raspberry Pi make it easy to control hardware
setups for laboratory experiments. GPIOs and expansion boards (HATs) give access to a whole
range of sensor and control hardware. However, controlling such hardware can be challenging,
when many experimental setups run in parallel and the time component is critical. LabNet is a C++
optimized control layer software to give access to the Raspberry Pi connected hardware over a
simple network protocol. LabNet was developed to be suitable for time-critical operations, and to
be simple to expand. It leverages the actor model to simplify multithreading programming and to
increase modularity. The message protocol is implemented in Protobuf and offers performance,
small message size, and supports a large number of programming languages on the client side. It
shows good performance compared to locally executed tools like Bpod, pyControl, or Autopilot and
reaches sub-millisecond range in network communication latencies. LabNet can monitor and react
simultaneously to up to 14 pairs of digital inputs, without increasing latencies. LabNet itself does not
provide support for the design of experimental tasks. This is left to the client. LabNet can be used
for general automation in experimental laboratories with its control PC located at some distance.
LabNet is open source and under continuing development.

Editor's evaluation
LabNet is an exciting new platform for experimental control using Raspberry Pis. As experiments get
more complex in neuroscience, new validated tools are needed to continue to allow users flexibility,
precision, and be fast, and LabNet is such a tool. Through extensive benchmarking and documenta-
tion of their tool, they demonstrate excellent performance, scalability, and provide examples of how
their platform can be adopted.

Introduction
The combination of open-source software, low cost microcontroller electronics, and the easy access
to digital fabrication have led to a plethora of open-source solutions for animal behaviour experi-
mental systems (Open Behaviour [Laubach et al., 2021], Bpod [Sanders, 2021], Autopilot [Saunders
and Wehr, 2019], pyControl [Akam et al., 2022], MiniScope [Cai et al., 2016], Bonsai [Lopes et al.,
2015], Whisker [Cardinal and Aitken, 2010], OpenEphys GUI [Siegle et al., 2017]). Using our 10-year
experience with the Rasperry Pi for animal behaviour experimental control and after two decades with
different self-developed embedded control approaches, we have developed in C++ a new, powerful,
and highly versatile platform for hardware control via the Raspberry Pi.

We had two major goals: the platform has to be suitable for time-critical operations and be easy to
extend. Furthermore, LabNet had to support a wide variety of hardware components and we wanted
to simultaneously control multiple animal behaviour experimental operant boxes. When conducting
automated behavioural experiments, it is advantageous to test many animals in parallel with iden-
tical or, if necessary, individually specific experiments. This is the only way to obtain complete data
sets quickly and can only be achieved through automation. Figure 1 shows examples of operant

TOOLS AND RESOURCES

*For correspondence:
alexej.schatz@hu-berlin.de

Competing interest: The authors
declare that no competing
interests exist.

Funding: See page 15

Preprinted: 01 March 2022
Received: 18 February 2022
Accepted: 12 December 2022
Published: 30 December 2022

Reviewing Editor: Mackenzie W
Mathis, EPFL, Switzerland

‍ ‍ Copyright Schatz and Winter.
This article is distributed under
the terms of the Creative
Commons Attribution License,
which permits unrestricted use
and redistribution provided that
the original author and source
are credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.77973
mailto:alexej.schatz@hu-berlin.de
https://doi.org/10.1101/2022.02.25.481971
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Schatz and Winter. eLife 2022;11:e77973. DOI: https://​doi.​org/​10.​7554/​eLife.​77973 � 2 of 16

conditioning cages (Skinner boxes; Skinner, 1938) as controlled by LabNet. Our intention was not to
create a completely new ecosystem like Autopilot. We wanted to simplify communication with hard-
ware for projects using their coding language of choice on the PC. Also, we wanted to remain general
so that LabNet can become a general platform for experimental laboratory automation.

We selected the Raspberry Pi because it is low cost, powerful, has a wide selection of I/O add-
ons and software components. To keep signal lines short, we gave each experimental setup its own
Raspberry Pi. All systems are connected to the Ethernet network and are manageable via a central
instance. This instance can be a normal PC and be located outside of the laboratory. Thus, the condi-
tion of experimental states and the animals can be monitored at any time, even without entering the
laboratory.

Autopilot also uses a swarm of Raspberry Pis. However, it implements a hierarchy where each Rasp-
berry Pi can take a different role. This requires an additional configuration step and can complicate
troubleshooting. We wanted to avoid this as well. This is the reason why each of our Raspberry Pis
runs the same software and overall experimental control is executed by the central instance that is for
example run from a PC. This separation also determined the network architecture of the entire system.
The local instances on the Raspberry Pi are servers, and the central instance is the client. There can be
one client to control experiments on all systems or multiple clients each controlling an experiment on
one or more systems. But, at least so far, not multiple clients connected to one server.

Results
System overview
We designed LabNet as a distributed system (network) where LabNet presents a node running on a
RasPi. We had two important requirements for this system: openness and scalability (see van Steen
and Tanenbaum, 2017). Openness means that each node can control an experimental chamber on
its own or together with a number of other nodes (for experimental system examples, see Figure 1
and 4). Scalability means that there can be any number of nodes and thus experimental chambers in
the system. However, a node or a chamber has to be removable from the system without adjustments
on the other nodes. To ensure this, each node in our system is controlled by a RasPi, each RasPi is
configured in the same way and controlled by the same software. However, this also comes with the
restriction that at most one experimental system can be connected to each RasPi to be removable
without electrical adjustments. But this also means a simplification: LabNet only needs to accept a

d

b

a

c

f

e

a

b

a

b

a
f

Skinner-Box T-Maze

PC

Figure 1. Examples of behavioural setups controlled by LabNet. A Skinner box (left) contains (a) a feeder magazine that typically has a photo gate for
nose-poke detection and a reward pellet dispenser. It also has (b) a row of LEDs and (c) a tone generator. (d) A monitor displays visual stimuli and may
have a touch sensor for touchscreen functionality. The T-Maze (right) also has (a) a food magazine and (b) LEDs, and furthermore (e) an optical sensor to
detect the return of the mouse to the start position and (f) two motorized doors that can be lowered to restrict access to the arms. Legend: Images and
diagrams generated with TikZ.

https://doi.org/10.7554/eLife.77973

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Schatz and Winter. eLife 2022;11:e77973. DOI: https://​doi.​org/​10.​7554/​eLife.​77973 � 3 of 16

single connection and does not need resource management for multiple connections, because only
one experiment runs on one system and the hardware is not shared.

Thus, the network of LabNet nodes represents the distributed system and offers, as servers, the
hardware resources in the network. However, hardware control in the context of the experiments is
the responsibility of clients and not a LabNet duty. For example, LabNet does not decide about an
output pin state, but LabNet knows how to switch the state and performs it at the client’s request.
One client could take the control over of the entire LabNet distributed system or divide the nodes
among several clients. It all depends on the situation and requirements: a large number of identical
experimental chambers with identical experimental tasks are usually controlled by one client while
different experimental tasks may better be controlled by separate clients, also to start and stop exper-
iments independently. For communication between LabNet and client a flexible and fast message
protocol using Protobuf was developed (section Message protocol). The clients can be implemented
in any language with Protobuf support, for example, Python, C#, C++, etc.

Since the Raspberry Pi is a single-board computer, it runs ‘Raspberry Pi OS’: a Debian-based Linux
distribution. This allows a large freedom in the choice of programming language and software tools.
Both interpreted languages, such as Python, and compiled languages are available. LabNet was
required to meet two criteria:

1.	 Time-critical: all operations should be performed as quickly as possible.
2.	 Flexible: new functionality extensions should be as simple as possible.

Unfortunately, all interpreted programming languages have a disadvantage in execution speed
compared to compiled languages. Nevertheless, many of the tools developed recently, such as Auto-
pilot and pyControl, use Python. Python is a simple language and provides many packages for all
purposes. However, because execution speed was of primary importance we decided to use C++.

Extensions with new functionalities is generally possible in two ways: (i) software adaption with
recompilation in case of compiled languages and (ii) a plug-in system. In the current LabNet version,
we use recompilation but our road map also includes a future plug-in system. To simply modifications
the software must have a suitable architecture and a high degree of modularization.

Since its version 2 the Raspberry Pi has 4 cores. In addition, most of its hardware controllers,
such as USB or Ethernet, operate asynchronously, thus they do not require CPU capacity because of
DMA (Direct Memory Access), and they report their work completion via interrupt messages. LabNet
needed an architecture that optimally leverages this already available hardware asynchrony for parallel
execution. Handling GPIO lines is fast, but accessing a UART may lead to considerable delays in
sequentially executed software. This presupposes the use of multiple threads. Since programming
with many parallel threads is a very error-prone and time-consuming task, we decided to develop an
actor-based software (see sections Actor model and SObjectizer). This also provides higher flexibility
and software modularity.

Example
The following example and the corresponding listings (1–3) show how a client can initialize and control
the hardware together with a LabNet server on a RasPi with a simple hardware setup. The client could
run on a PC and use any language that has support for Protobuf-like Python, C++, C#, etc. Since we
use C# in our experiments, the C# notation is also used in the listings. Basically, it shows the use of
some of the LabNet messages, but the communication via TCP/IP is omitted for simplicity. We simply
assume that a TCP/IP client exists and handles all operations like send, receive, and serialization.

Let us assume an experimental setup with an LED and audio as stimuli, a valve to release
a liquid reward and a photo gate as a nose-poke sensor to detect animal behaviour. All
these components can be connected directly to the GPIO pins via a simple circuit. The head-
phone jack can be used for audio output. Then, we need to send five commands to LabNet
to initialize all components; see Listing 1. It would usually be necessary for the client to wait
for the responses from LabNet and check the initialization results. Here, we skip this step.

During experiments, animals must usually perform some operant behaviour. This can be
as simple as nose poking to trigger a photo gate after a certain stimulus has been perceived.
In Listing 2, LabNet activates an LED and produces a sine tone. In the case of the tone, it is
instructed to automatically generate a pulsed output. On detecting On and Off state changes,

https://doi.org/10.7554/eLife.77973

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Schatz and Winter. eLife 2022;11:e77973. DOI: https://​doi.​org/​10.​7554/​eLife.​77973 � 4 of 16

LabNet transmits such photo gate state changes to the client. In response to the photo gate
state change, a reward can be provided. In Listing 3, a liquid reward valve is opened for 100 ms.

A typical experiment in combination with LabNet comprises several phases:

•	 establishing a TCP/IP connection;
•	 initializing all hardware components;
•	 turning stimuli on or off in a specific order;
•	 waiting for an animal reaction and potentially providing a reward.

Performance evaluation
Because the neurons in the brain work in the millisecond range, the response times in behavioural
experiments are critical and should match that range.

// start GPIO interface with WiringPi
var initIo = new GpioWiringPiInit();
// init a digital output on pin 5
var led = new GpioWiringPiInitDigitalOut {
    Pin = 5,
   IsInverted = false
};
// init a digital output on pin 26
var valve = new GpioWiringPiInitDigitalOut {
    Pin = 26,
    IsInverted = false
};
// init a digital input on pin 23
var poke = new GpioWiringPiInitDigitalIn {
    Pin = 23,
    IsInverted = false,
    ResistorState = PullUp
};

// start sound interface
var initSound = new InitSound();
// create a sine tone
var sine = new DefineSineTone {
    Id = 1,
    Frequenz = 1000,
    Volume = 0.5
};

Listing 1
Each generated object represents an initialization message to be serialized with Protobuf and trans-
mitted to LabNet. The first message initializes the digital I/O interface with WiringPi pin notation. The
next three initialize an LED, a valve, and a poke sensor on the WiringPi interface. The fifth creates the
sound generator on the headphone jack. The last, initializes a sine tone with 1 kH frequency and 50%
volume. Object initialization in C# notation. Serialization and TCP/IP communication not listed.

// change the state of the pin 5 to true
var setLed = new DigitalOutSet {
    Id = new PinId { Interface = GpioWiringpi, Pin = 5 },
    State = true
};

https://doi.org/10.7554/eLife.77973

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Schatz and Winter. eLife 2022;11:e77973. DOI: https://​doi.​org/​10.​7554/​eLife.​77973 � 5 of 16

// turn the sine tone in pulses of 500ms on and off
var pulseSound = new DigitalOutPulse {
    Id = new PinId { Interface = Sound, Pin = 1 },
    HighDuration = 500, // ms
    LowDuration = 500, // ms
    Pulses =10
};

Listing 2
Information for transmission via Protobuf, building on the initialization from Listing 2.2. The LED is set
to ON state (until an OFF command). A sound, defined as 1 kHz in Listing 2.2, is emitted as 10 pulses
of 500 ms. Object initialization code in C# notation.

DigitalInState pokeState; // new poke state from LabNet
if (pokeState.State) // if new state true -> on
   // give a reward
   var reward = new DigitalOutPulse {
      Id = new PinId { Interface = GpioWiringpi, Pin = 26 },
      HighDuration = 100, // ms
      Pulses = 1
    };
}

Listing 3
In this example, LabNet has transmitted via Protobfuf a new poke sensor state (pokeState) to the PC.
If the new poke state is true, a new message directs LabNet to deliver a reward by opening valve at
pin 26 for 100 ms, as initialized in Listing 1. Code shown in C# notation.

LabNet was subjected to three tests to determine the latency times when executing different
commands. A RasberryPi was connected to a PC via a router. For all tests, the client ran on a Linux PC
(Ubuntu 20.04, Intel Core i7-6700 3.4 GHz with 16 GB RAM). To allow a comparison, the client was
implemented in three languages: Python, C#, and C++. We used Python version 3.8. Python tests ran
directly on top of the socket, synchronously with no additional software layers. In Python, it is also
essential to deactivate Nagle’s algorithm. The C# version was implemented under .NET 6 and used
Akka.NET, an actor framework. For C++, we used GCC 9.4.0, Boost version 1.75, and SObjectizer
5.7.2. Thus, all tests in C# and C++ were implemented as actors inside an actor framework. The source
code of all tests is included in the GitHub repository under ‘examples’.

As always, all benchmarks must be interpreted with a certain degree of caution. For example, it
is generally not possible to create the same initial situation for the implementations in all languages.
With C++, an external library like Boost must be used for communication via TCP/IP. In addition, we
used SObjectizer for C++ and Akka.NET for C# for asynchronous message processing. This theoret-
ically gives the implementation in Python a slight advantage, as it runs synchronously and also has
no complex calculations. Performance problems usually occur in Python code whenever true parallel
execution is required (because of the Global Interpreter Lock) or when the calculations cannot be
outsourced to a library implemented in C. Nevertheless, all three implementations provide a reason-
able expectation of the latency in real cases. This is especially true for C# and C++, since they run
asynchronously and thus simulate the execution of several parallel-running experimental tasks with
animals in a first approximation.

LabNet was also compiled with different optimizations to investigate the performance effects of
the different RasberryPi boards. However, GCC 8.3 was used for all versions. The first version had only
the default release optimizations from CMake and could run on all RasPi boards. The optimization
flags were as follows:

•	 -mcpu=cortex-a7 for Pi 2;
•	 -mcpu=cortex-a53 for Pi 3;
•	 -mcpu=cortex-a72 for Pi 4;

https://doi.org/10.7554/eLife.77973

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Schatz and Winter. eLife 2022;11:e77973. DOI: https://​doi.​org/​10.​7554/​eLife.​77973 � 6 of 16

•	 -mfpu=neon-vfpv4 -mfloat-abi=hard - floating-point number optimizations for all
versions.

Each test was run 10,000 times and was performed on three different RaspberryPi boards: RasPi
2B, 3B+, and 4B with 1 GB RAM. Statistical variables such as: mean, STD, median, and percentiles
were calculated from the time measurements.

Set digital out test
In the ‘set out test’, a digital output is alternately set to 0 and 1. After the command for setting the pin
has been received and processed, LabNet automatically sends back an acknowledgement. In this test,
the time between sending the set command and receiving this confirmation was measured. Because
of the simplicity, this test can also be seen as a type of ping measurement.

The set command from the client has 10 bytes. The server response is 22 bytes long, and includes
the execution timestamp.

The results are shown in Figure 2a. The median for C# was between 0.36 ms for 4 and 1.01 ms
for 2. For Python 0.32 on RasPi 4 and 0.80 on RasPi 2. For C++ 0.26 on RasPi 4 and 0.80 on RasPi 2.

Read and set GPIO
In this test, the reaction time to external events was measured. LabNet first had to detect the inter-
ruption of a photogate by an animal’s nose, send a message to the client and in response the client
had to initiate the change of a digital output state through a message to LabNet. To simulate the
nose-poke events, a second RasPi was used. Two pins between the two RasPis were connected: one
for the test signal from the second RasPi and one for the response from LabNet. The second RasPi
was only responsible for switching the first pin to 1, stopping the time and waiting until the RasPi with
LabNet had also switched the second pin to 1 in response. The time between these two high events is
the latency (see Figure 3b). The measurement software on the second RasPi was written in C++ and
ran on RasPi 3B+. We also verified how fast this software can detect the response signal. To do this,
we simply connected test and response pins on the second RasPi together. This way the response pin
goes immediately high if the test pin is set. The latency in this case was only 0.7 ± 0.6 µs. This means
that the second RasPi acts like a 1 MHz oscilloscope. This is entirely sufficient in our case.

(a) set/ping test

Rv2 Rv3 Rv4 Rv2
optimized

Rv3
optimized

Rv4
optimized

0.5

1

1.5

2

la
te
nc
y,
m
s

C# C++ Python

(b) read and set gpio

Rv2 Rv3 Rv4 Rv2
optimized

Rv3
optimized

Rv4
optimized

Rv4
1kHz

Rv4
max

0.5

1

1.5

2

la
te
nc
y,
m
s

C# C++ Python

(c) stress test

1 2 4 6 8 10 12 14

0.5

1

1.5

2

la
te
nc
y,
m
s

C# C++ Python

(d) read and set gpio (mean with std dev)

Rv2 Rv3 Rv4 Rv2
optimized

Rv3
optimized

Rv4
optimized

Rv4
1kHz

Rv4
max

0.5

1

1.5

2

la
te
nc
y,
m
s

C# C++ Python

Figure 2. Results from LabNet performance tests. (a) Time to set a digital output as a Ping equivalent. (b, d)
Latency to set a digital output in response to a change on a digital input. (c) Run the ‘read and set’ test for up to
14 IO-pin pairs in parallel. LabNet ran on RasPi 4. Tests were repeated 10,000 times and results are in milliseconds.
Tests were performed on three different RaspberryPi boards: Rv2 is 2B, Rv3 is 3B+, and Rv4 is 4B with 1 GB RAM.
optimized refers to the LabNet with some additional optimization flags (see main text). 1 kHz refers to the version
without optimizations running on Rv4 with 1 kHz polling and max refers to non-stop polling. Box plots in (a–c) show
median, lower and upper quartile, and whiskers the 2.5th and 97.5th percentiles. Data in (d) given as means and
STD.

https://doi.org/10.7554/eLife.77973

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Schatz and Winter. eLife 2022;11:e77973. DOI: https://​doi.​org/​10.​7554/​eLife.​77973 � 7 of 16

The digital input state message from LabNet is 22 bytes long, and includes the timestamp. The set
command from the client has 10 bytes. LabNet has to send two messages to indicate the input state.
The client has also to send two messages to switch the output state. Additionally, LabNet sends two
messages to acknowledge the output state switch. Thus, there is a total of six messages per iteration.

The results are summarized in Figure 2b and d. For C# the median was 0.89 ms for 4 and 1.23 ms
for 2 and mean values were 0.9±0.19 ms for 4 and 1.24±0.18 ms for 2. For Python the median was
0.89 ms for 4 and 1.28 ms for 2 and mean values were 0.88±0.18 ms for 4 and 1.24±0.16 ms for 2. For
C++, the median was 0.93 ms for 4 and 1.12 ms for 2 and mean values were 0.92±0.15 ms for 4 and
1.12±0.07 ms for 2.

LabNet uses a polling mechanism to detect changes in digital inputs. By default, LabNet runs at
4 kHz polling. But we also evaluated latencies for 1 kHz and non-stop polling on Pi 4. Mean values
in case of 1 kHz were 1.23±0.16 and 0.75±0.13 ms for non-stop for C#. Four kHz with 0.9 ± 0.19 ms
offers slightly worse results compared to non-stop polling, but on the other hand only utilizes 10% of
the capacity of one CPU core.

As a further result, the compiler optimization flags did not influence any of the tests. This indicates
that LabNet has no performance issues on the RasPi.

The 1 GigE update of the RasberryPi 4 causes a performance increase over models 2 and 3. Despite
the differences in implementation, all clients are relatively close with their performance. The results
also show that the language used at the client side is not important, at least for the simple cases
considered here.

Stress test
This is an extension of the ‘read and set’ tests. But now 14 pairs of pins were connected; all 28 GPIOs
on both RasPis were used. The C++ program on the second RasPi ran up to 14 tests in parallel, each
in an own thread. The pause between single measurement runs was set to 1 ms. We needed this pause
to give all threads a chance to be executed. The C++ measurement program ran on the RasPi 3B+ as
before and LabNet on 4.

The results in Figure 2c show that LabNet can monitor and control up to 14 pairs of IO-pins in
parallel without any loss in performance. Interestingly, the latencies went down slightly for two test
signals, but then remained at this level; the median for C# was 0.89 ms for one signal and 0.70 ms for
two. This probably has to do with the polling in LabNet and the parallel test execution of the second
RasPi. With two signals, it is more likely that LabNet will notice the pin state change within shorter
delay.

(a) latencies

0 0.2 0.4 0.6 0.8 1

Autopilot
Bpod

pyControl
Whisker
LabNet

0.926 ± 0.076
0.100 ± 0.002

0.655 ± 0.106
1

0.897 ± 0.194

latency, ms

local network

(b) latency measurement

��−1 �� ��+1

response

test

��−1 �� ��+1

response

test

Figure 3. Latencies comparison and measurement. (a) Comparison of execution latencies. All tools performed
the same ‘read and set’ task to achieve comparability, except Whisker. Whisker server implements a 1 kHz polling
frequency on the PC. LabNet for digital input polling depends on the internal RasPi 4 kHz polling frequency.
Only for LabNet do the latencies include the message transfer over the Ethernet wire. Values give means with
STD. LabNet was operated with a C# client. LabNet and Autopilot use the RasPi 4. (b) The latency measurement
in Read and set GPIO test. The measurement RasPi generates the high ‘test’ signal, saves the time, and waits
until the ‘response’ signal is also high. The time tk between these two high events is the latency. The test RasPi
repeats this for 10,000 times and saves the results in a CSV file. RasPi acts here as 1 MHz oscilloscope. All packages
(Autopilot, Bpod, pyControl, and LabNet) were tested in the same way. In the Stress test we have multiple ‘test’
and ‘response’ lines.

https://doi.org/10.7554/eLife.77973

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Schatz and Winter. eLife 2022;11:e77973. DOI: https://​doi.​org/​10.​7554/​eLife.​77973 � 8 of 16

Additionally, we looked at how many latency measurements per second the second RasPi could
execute. With a single test signal this was just over 400 events per second. With the maximum of 14
tests each single pin switched only 200 but all pins together a total of 2800 times per second. The
drop in the number of events per second from 400 for a single IO-pin occurs as soon as more than
4 IO-pin pairs are handled. This is a consequence of the four CPU cores on the RasberryPi. As soon
as the test signal has been set, the software continuously monitors the state of the response pin.
This keeps one CPU core fully busy and prevents the execution of the other test threads. However,
this performance evaluation also shows that LabNet has no problems to process several thousand
messages per second in each direction.

Comparison
Our comparison of LabNet latency performance with other software tools is summarized in Figure 3a.
We implemented an adapted version of the ‘read and set’ test for Autopilot, Bpod, and pyControl to
achieve measurement comparability. The latency measurements were performed in exactly the same
way as previously with LabNet. Two pins were connected to the measurement RasPi. The same C++
measurement program ran again on a RasPi 3b+, set the test pin to 1, and waited until the response
pin was also set to 1. Tests were repeated 10,000 times. Different from LabNet all tools ran locally
and did not send commands over the wire in the network. For source code and data, see the Code
availability section.

In Whisker, the communication occurs over the network; however, both Whisker and all task clients
usually run on the same PC. Such communication is extremely fast and is also reported by the Whisker
authors (Cardinal and Aitken, 2010) to require only 0.066 ms. The 1 ms latency comes from Whis-
ker’s internal 1 kHz polling frequency for processing incoming commands. For Whisker we could not
perform the ‘read and set’ test ourselves. Therefore, 1 ms is used as reference value.

Autopilot runs in a Rasberry Pi swarm. However, the tasks ran locally. To perform the ‘read and set’
test, the ‘free water task’ from the Autopilot GitHub repository was adapted. This waits for a digital
input event, activates a digital output for a short time, and repeats. The measured mean latency was
0.93 ± 0.08 ms on RasPi 4.

The pyControl state machine is also very simple. It has only two states, which simply monitor the
digital input and turn the digital output on and off. The mean latency is 0.66 ± 0.11 ms. This is compa-
rable with reported results 0.56±0.02 ms from Akam et al., 2022. The used MicroPython pyboard
version was 1.1.

Since the Bpod state machine runs at 10 kHz, we expected it to perform best which was the case.
The mean latency was 0.1 ± 0.002 ms. We tested the version r2 of the Bpod State Machine.

According to these measurements, LabNet achieves latency times comparable to locally executed
applications, even despite client control of LabNet over the network via TCP/IP.

Discussion
With LabNet we present a C++ optimized control layer software to control Raspberry Pi connected
hardware over a simple network protocol. LabNet can be used for general automation in experi-
mental laboratories. And the controlling PC can be located at some distance. The version of LabNet
presented here is not our first solution of distributed experimental hardware control. After initially
using PC digital IO boards for 760 parallel IO lines (Winter and Stich, 2005), we moved to a custom
developed microcontroller board connected to the PC initially via UART and later via Ethernet. In
2015 we switched to the Rasberry Pi avoiding own hardware development. We used a prior version
of LabNet for 5 years before rebuilding over the past 2 years from the ground up the current highly
optimized version of LabNet using our prior experience with laboratory experimental control. In the
following we present some of the experimental systems that included LabNet control.

For our experiments with nectar-feeding bats we controlled a system of up to 76 artificial sugar
water feeders (artificial flowers) each of which included a nose-poke sensor, an LED, a motorized swivel
arm to close the flower and two valves for reward (Winter and Stich, 2005). Later the flowers were
extended with RFID readers for the individual identification of ID chipped bats and has been used with
freely ranging bats both in the rainforest (Nachev et al., 2017) and in the laboratory (Wintergerst
et al., 2021). These systems had up to 23 flowers and each flower was accessible to all bat. While in

https://doi.org/10.7554/eLife.77973

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Schatz and Winter. eLife 2022;11:e77973. DOI: https://​doi.​org/​10.​7554/​eLife.​77973 � 9 of 16

the earlier systems we used a UART-to-Ethernet converter from Perle Systems to receive RFID data,
we now use a custom 32-channel UART HAT for the Rasperry Pi with LabNet. Also the stepper-motor
nectar pumps and the rest of the hardware (nose-poke sensor, LED, valves, etc.) are now connected
to the RasPi and controlled via LabNet. As to the network, in the case of individually kept animals,
each flower had its own RasPi while in flower fields, several flowers shared one RasPi, depending the
distance between experimental units.

We also perform behavioural experiments with rodents. In a study on rational choice by mice, ID
chipped mice in a group home cage could choose between four water dispensers built very similar to
our artificial bat flowers, with nose-poke sensor, a valve, an RFID reader, and a syringe pump to deliver
the water. Here, all hardware was connected to RasPi and controlled with LabNet. We have also used
LabNet in connection with commercially available experimental chambers. An example is the touch-
screen system for rats from Campden Instruments that we extended using LabNet that controlled a
gating system (ID sorter) to automatically perform experiments with group housed rats (Marion et al.,
2017) (see Figure 4 and more below). The program for the sorting procedure on the PC started the
experiment in the touchscreen chamber via a TCP/IP protocol implemented in collaboration with
Campden Instruments every time a new animal was sorted in. This allowed us to conduct the experi-
ments with multiple animals automatically and unsupervised.

More recently we have implemented an experimental touchscreen system for group housed mice
that is fully under RasPi and LabNet control (Figure 4). This consists of a touchscreen system, a sorter,
and a home cage. The touchscreen system has a monitor with an IR touch frame, a pellet magazine
with pose-poke sensor, a row of LEDs, and a tone generator. All components are connected to a
RasPi with LabNet control. Listings 2.2–2.2 show how this hardware can be initialized and controlled
from the PC. The sorter has three RFID readers, two motorized doors, and two hall effect sensors, all
connected to a RasPi. The readers connect via UART-USB converters, motors are controlled via UART,
and the hall effect sensors for door state connect to IO ports. The sorting procedure, that is, when
which door goes up or down, is realized by the PC, the client. The animals live inside the home cage
and participate voluntarily and unsupervised in the experiments in the touchscreen chamber. Figure 4
shows only one system, but we had up to four systems connected and controlled by one PC. This

d

b

a

c

�3 �2 �1
�2

�1 �1

Skinner-Box with RasPi

Sorter with RasPi Home-Cage

PC

Figure 4. A complete behavioural setup controlled by LabNet. On the left is the touchscreen chamber. (a) Feeder magazine with a nose-poke sensor
and a pellet dispenser, (b) a row of LEDs, (c) a tone generator, (d) monitor displays for visual stimuli with IR touch frame sensor. In the middle is the
sorting module. (‍r1 − r3‍) three RFID readers. r2 and r3 are positioned so that the animals can be read anywhere inside the sorter and r1 so that the animal
is read when it leaves the sorter. (d1, d2) Two doors to catch the animal inside the sorter and guide it to the experimental chamber or the home cage.
The animals live inside the home cage and can participate voluntarily and unsupervised in the experiments in the touchscreen chamber via the sorter.
Both the touchscreen system and the sorter are each equipped with their own RasPi and connected to PC via Ethernet. The sorter can be removed
without electrical adjustments, because it is controlled by its own RasPi and is therefore completely independent from the touchscreen system. Then
experiments can be conducted with manually introduced animals.

https://doi.org/10.7554/eLife.77973
https://www.perle.com

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Schatz and Winter. eLife 2022;11:e77973. DOI: https://​doi.​org/​10.​7554/​eLife.​77973 � 10 of 16

also shows the advantage of a distributed system like LabNet. In order to control more systems, they
were simply connected to the network without further adjustments. With identical systems, the same
experiments could run everywhere at the same time.

LabNet is a very versatile distributed system which allows to control the hardware in laboratory and
field experiments. It achieves almost real-time hardware control despite the network communication.
Our stress test measurements have shown that thousands of Ethernet messages can be handled by
LabNet per second. Indeed, the bottleneck here is the client and its ability to process and react to
LabNet messages. However, none of our systems had reached the number of messages per second
as in the stress test and we never had performance issues. The only problem could be very large
messages in the network communication, for example, video data. These could significantly worsen
the latency of other messages. But, there is the possibility to put RasPis with cameras into another
network and on the PC receive the data via another network card. LabNet can also execute multiple
tasks on one RasPi at the same time. In our experience with the touchscreen system we observed
inputs, generated multiple pulse trains, played sound, and displayed visual stimuli, all at the same
time but never reached performance limits on the RasPi. The LabNet architecture with actors explicitly
targets the execution of multiple tasks.

Raspberry Pi as the hardware platform allows connecting a wide variety of readily available sensors
and actuators. LabNet supports already a range of hardware modules which can thus be addressed
via network. For example, GPIOs, communication via the UARTs, sound output via a headphone jack
or HDMI, and some Raspberry Pi HATs developed in-house. This already allows many types of exper-
iments. LabNet can also be used with hardware adaptors with available modules for operant exper-
iments from open source such as Bpod and pyControl or commercial systems from MedAssociates
or Coulbourn Instrumentsor. In addition, LabNet can be integrated into existing systems, as shown
above with a Campden Instruments’ system.

Here, we do not show how LabNet can be extended in C++ with new functionality. This is part of
the API documentation which may undergo changes between versions and will be available online.
The next version in progress will support the display of visual stimuli, touchscreen support, and
communication via I2C. This version will also include a complete API documentation. The support for
a Raspberry Pi-based configuration file is also planned. This would make configuration via the network
no longer necessary and LabNet could already initialize the hardware correctly on Raspberry Pi start.

In the future, we plan to implement a software plug-in system. This will make it possible to support
new hardware without LabNet recompiling. This will require a rework of the current LabNet API. This
will then support messages that are unknown at LabNet compile time.

Materials and methods

 Continued on next page

Key resources table

Reagent type (species)
or resource

Designation Source or reference Identifiers Additional information

Software, algorithm pyControl https://github.com/pyControl/code.git
RRID:SCR_021612

pyControl source
code repository, v1.7.1

Software, algorithm Autopilot https://github.com/auto-pi-lot/autopilot.git
RRID:SCR_021518

Autopilot source
code repository, v0.4.4

Software, algorithm Bpod https://github.com/sanworks/Bpod_Gen2.git RRID:SCR_015943

MATLAB software
for Bpod, Gen2

Other Bpod https://www.sanworks.io/index.php RRID:SCR_015943
r2 Bpod State Machine

https://doi.org/10.7554/eLife.77973
https://github.com/pyControl/code.git
https://identifiers.org/RRID/RRID:SCR_021612
https://github.com/auto-pi-lot/autopilot.git
https://identifiers.org/RRID/RRID:SCR_021518
https://github.com/sanworks/Bpod_Gen2.git
https://identifiers.org/RRID/RRID:SCR_015943
https://www.sanworks.io/index.php
https://identifiers.org/RRID/RRID:SCR_015943

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Schatz and Winter. eLife 2022;11:e77973. DOI: https://​doi.​org/​10.​7554/​eLife.​77973 � 11 of 16

Reagent type (species)
or resource

Designation Source or reference Identifiers Additional information

Software, algorithm LabNet https://github.com/WinterLab-Berlin/LabNet.git SHA-1: 333bd58

LabNet source
code repository

 Continued

Data of the performance measurements, the source code for Autopilot, Bpod, and pyControl tasks
and the source code for the graphs are included in the article’s data and source code repository.

Actor model
Developing a system with multiple threads still requires much care and can be challenging. Thread
local state and program global state have to be protected. Some type of locking mechanism is
required. Unfortunately, the locking mechanism itself increases not only the scalability but also the
code complexity and error-proneness due to the locking order. Locking problems such as race condi-
tions or dead-locks must be avoided. But time and execution order-dependent errors can be difficult
to find and fix.

LabNet is a concurrent system. The operations on the GPIOs, sending and receiving data via
UARTs, sound output, etc. have to be independent from each other. For such purpose, message-
passing approaches have been developed. In those, all inter-thread state sharing is encapsulated
within messages sent between threads. All messages must be immutable or be copied for each thread.

Hewitt, Bishop, and Steiger (Hewitt et al., 1973) proposed in 1973 with their actor model one of
the first message-passing systems. Actors are active objects that communicate only over messages.
Each actor has only knowledge about itself and its own functioning (shared-nothing principle). No
global state exists in an actor system. Messages also do not block the sender (fire-and-forget prin-
ciple). This avoids problems such as race conditions or dead-locks.

This has further developed to a level of abstraction from only considering shared memory to
independent actors that communicate through a well-defined message protocol. In the late 1980s,
Ericsson developed Erlang (Armstrong, 1996), an actor-based programming language, and success-
fully used it in ATM network switches. The Akka (Lightbend, 2021) actors framework was released in
2009 for Java and Scala.

SObjectizer
From the several actor model libraries that are available for C++ such as the C++ Actor Framework
(CAF) (Charousset et al., 2013), SObjectizer (Stiffstream, 2021), or Theron (Mason, 2019) we chose
SObjectizer.

In SObjectizer a class or struct is sufficient to define a message. Actors are also normal classes
derived from an agent_t base class. Thus, actors automatically have a ‘message box’ (Mbox), through
which messages can be received, and also methods that are automatically called, for example, before
an actor is started or stopped.

An Mbox can receive messages of all possible types. The Mbox of an actor has no name and must
be communicated to other actors. However, named Mboxes can also exist. A reference to such an
Mbox can be created anytime via its name. This practical feature is used in LabNet to access important
actors that always exist.

It is also possible to mix actors with other paradigms. This allows to move some parts of the appli-
cation into the Boost ASIO (Boost, 2021) or into threads. Mboxes can still be used for communication
with actors from the outside. For communication with code from outside the actor world, the so-called
MChain are used. An MChain looks like a queue: actors can place messages there and threads can pull
them at a later time. For example, LabNet uses Boost ASIO for TCP/IP communication and threads for
some clearly defined tasks such as digital input polling.

One important feature of SObjectizer is the built-in support for hierarchical state machines (HSMs).
All actors in SObjectizer are state machines. They can pass through several states in their lives and

https://doi.org/10.7554/eLife.77973
https://github.com/WinterLab-Berlin/LabNet.git
https://github.com/darki-31/LabNet_manuscript_data

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Schatz and Winter. eLife 2022;11:e77973. DOI: https://​doi.​org/​10.​7554/​eLife.​77973 � 12 of 16

react to incoming messages depending on their current state. An interface actor in LabNet (see Imple-
mentation section) goes through several states: hardware initialization, operation, error, etc.

Dispatchers are another important cornerstone of SObjectizer. Dispatchers provide an actor with
the working context. They manage all message queues and execute the actors if there are messages in
the queue (Mbox). We have chosen the dispatcher with a thread pool. It provides a good compromise
between thread management overhead and parallelism. But it is still possible to use other dispatcher
types (e.g. one with one thread per actor) without having to adapt the actors.

Message protocol
Our criteria for choosing the serialization tool were good performance, small message size, and
support in as many programming languages as possible. Text-based serialization formats, such as
XML, JSON, or ASCII-based plain-text, have the advantage of being human-readable. The Whisker
server uses an ASCII-based format (Cardinal and Aitken, 2010). The disadvantages are the message
size, higher computing requirements, and, at least for the ASCII version, a custom message parser.

For our application, a binary format is a better solution, and we chose Protobuf Google, 2021. It
is very popular and offers support for many programming languages. However, Protobuf has some
disadvantages. For example, it is not the most memory or computationally efficient tool. Libraries such
as Flatbuffers, Cap’n Proto, or Simple Binary Encoding (SBE) are more efficient. However, these nega-
tive aspects of Protobuf only become critical when sending extremely large messages (some MBytes)
or at a very high rate (millions per second) . This is typically not the case in experiments that focus on
actions of animal behaviour.

Protobuf uses a special meta-language to define messages. With protoc-generator, it is possible
to create these message protocols for each supported programming language. Files with message
definitions are a part of the Git repository.

One Protobuf disadvantage must be mentioned. A serialized Protobuf message contains no infor-
mation about the byte length nor the message type. Protobuf leaves this information to the trans-
mission medium. We have solved this simply: each message begins with two pieces of information:
type and size. This is also the officially recommended approach. Both are encoded as a number in
Protobuf’s varint notation and are easy to parse with the Protobuf API.

Implementation
The current implementation does not contain configuration files for LabNet. The hardware initializa-
tion is exclusively performed through client messages. LabNet comprises several loosely coupled
actors. The most important are briefly described below (see also Figure 5).

resources
manager

interfaces
manager

server

digital out
helper

IO

UART

sound

UART0

UART4

read thread

write thread

read thread

write thread

input polling

ASIO
TCP/IP

Protobuf

main actors interfaces
actor environment with thread pool dispatcher

Figure 5. The core of LabNet is the actor environment with thread pool dispatcher. Within the environment, the main actors are always present. The
actors of the individual interfaces are started by the interfaces manager as needed. The interface actors can also outsource their work to other actors
and threads. All main and interface actors can communicate with each other. The threads themselves and network communication via Boost ASIO, on
the other hand, are hidden behind their actors.

https://doi.org/10.7554/eLife.77973
https://google.github.io/flatbuffers/
https://capnproto.org
https://github.com/real-logic/simple-binary-encoding

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Schatz and Winter. eLife 2022;11:e77973. DOI: https://​doi.​org/​10.​7554/​eLife.​77973 � 13 of 16

The network communication runs over TCP/IP. The server in LabNet is implemented in Boost ASIO
(Boost, 2021). The implementation is hidden behind the server actor. This actor can send and receive
the Protobuf messages and also informs the actor world about the connection state. If the connec-
tion is lost, the actors can stop their work and automatically continue it later at the same point on a
reconnection.

At the beginning, no single interface actor to communicate with the hardware exists. These actors
combine all the possibilities for the hardware control: for example, initialization, set or get digital pin
state, etc. They are automatically created and started by the interface manager. Currently, several
‘interfaces’ exist:

1.	 GpioWiringPi to control input and output pins with WiringPi (Henderson, 2019).
2.	 IoBoard is a self-developed PCB top plane with power supply and pin connectors.
3.	 UART can send and receive data over the internal RasPi UART and USB to RS232 converters.
4.	 UartBoard is a self-developed PCB top plane with up to 32 UART connectors using SPI.
5.	 Sound allows a simple sound output in the form of sine tones over HDMI or a headphone jack.
6.	 BleUart is a Nordic UART service over Bluetooth Low Energy (BLE) and allows to communicate

with Bluetooth devices.

Many pins on the Raspberry Pi offer more than one functionality. Clear responsibility for a hard-
ware resource must be ensured. Each ‘interface’ actor must request the resources from the resource
manager. This is one of the first steps during the interface initialization state.

The ‘interfaces’ with digital outputs offer only the possibility to switch the output pin state. More
complex procedures are implemented by the digital out helper actor. This actor can automatically
turn off a pin after a defined time or generate pulses by specifying the on/off duration and number
of pulses. Additionally, a group of pins can be automatically switched on and off together in a loop.

Related work
Most of the comparable software control tools published for behavioural experiments are more
general packages. In addition to hardware control, they offer a more or less powerful tool for creating
experiments, a user interface and a possibility to visualize the data. Although LabNet is only respon-
sible for the hardware, a comparison is still worthwhile.

Wisker-Server
The development of Whisker control suite started in 1999 by Cardinal and Aitken at the Depart-
ment of Experimental Psychology, University of Cambridge, and is ongoing (Cardinal and Aitken,
2010). Initially, the aim was to use the existing resources of a PC and plugged-in IO cards to control
behavioural experiments with visual stimuli and touchscreens in several boxes simultaneously. This
was solved by an additional software layer where Whisker operates as the server and controls the
hardware. The clients must connect to the server over TCP/IP, and each one controls an experiment in
one of the chambers. The clients themselves can be written in any programming language. Commu-
nication occurs through a plain-text protocol.

Because of the outsourcing of the experiments to the clients, Whisker’s approach is similar to ours.
Due to the flexibility in implementing the clients, complex experiments can be realized with Whisker.
Hardware support includes digital I/O devices (National Instruments, Advantech, etc.), visual stimuli
on computer monitors, touchscreens, audio, and more. Whisker is commercially used in ‘ABET II’ by
Campden Instruments Ltd.

pyControl
pyControl (Akam et al., 2022) is an open-source hardware and software framework for controlling
behavioural experiments. The hardware is based on the MicroPython microcontroller that typically
controls a single experimental box each. Several pyControl breakout boards can connect to a PC via
USB. Each board has six so-called behaviour ports and four BNC ports. Each port can be connected to
a module: to drive LEDs, nose-poke sensors, stepper motors, and speakers. Two behaviour ports have
I2C internally and can drive a port expander module to increase the number of ports.

Tasks on the MicroPython microcontroller and pyControl on the PC use Python. A task is defined
as a finite-state machine. It comprises a collection of states and events that cause the switch between
states. In data management, all events and state changes are stored with timestamps.

https://doi.org/10.7554/eLife.77973
http://egret.psychol.cam.ac.uk/whisker/whatsnew.shtml
https://campdeninstruments.com
https://micropython.org

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Schatz and Winter. eLife 2022;11:e77973. DOI: https://​doi.​org/​10.​7554/​eLife.​77973 � 14 of 16

pyControl provides sufficient I/O ports to realize most tasks on a system. However, for the hard-
ware types, we are limited to the firmware capabilities and available modules, although free wiring is
also possible. The mandatory requirement to define the task as a state machine can be useful but may
also become a limitation.

Bpod
Bpod Sanders, 2021 was originally developed in the Brody lab and is now maintained by Josh Sanders
(Sanworks LLC.). It also has been expanded to PyBpod as a python port of the Bpod MATLAB project
by members of the Champalimaud Foundation. Bpod offers only four I/O ports but has additional
module ports that each provide an interface to Arduino-powered modules. Thus, Bpod gains addi-
tional flexibility: analog I/O, I2C, Ethernet, and more can be accessed via these modules.

A MATLAB package is offered to write experimental tasks. Unfortunately, the package documen-
tation is limited. The tasks are also defined as finite-state machines. After starting the task, the state
machine is transferred to the Bpod. From there, it communicates with the MATLAB frontend. This
design results in the restriction that only a single Bpod can be controlled per MATLAB session. There-
fore, Bpod is much more limited regarding software than pyControl or Whisker. Multiple systems
cannot run simultaneously, and the functionality is limited by the firmware and the state machine.

Autopilot
Autopilot Saunders and Wehr, 2019 is an open-source framework for behavioural experiments devel-
oped in the Wehr Lab at the University of Oregon. It uses Python, and the target platform is the
Raspberry Pi.

The focus of Autopilot from the beginning has been the ability to control multiple systems. The
basic unit in the software architecture of Autopilot is an agent. Each agent runs on its own Raspberry
Pi and can communicate with other agents. Currently, three types of agents exist: terminal, pilot, and
child.

Terminal agents are the only user-oriented with a graphical user interface. They are responsible for
data logging and visualization. The experimental tasks are also managed here and transferred to the
pilots, which are also responsible for experimental task execution. The pilots communicate with the
external hardware that is connected to the Raspberry Pi and forward the experimental data to the
terminals for logging or visualization. Each pilot can also have several child agents. Child agents can
take over a part of a task if the task has been configured accordingly. The child agents are invisible to
the terminals and communicate only with their parent pilot.

Among all tools discussed here, Autopilot offers most flexibility. It already supports a whole range
of hardware. This includes digital I/O, audio, cameras, and some sensors such as temperature. More-
over, since it is open-source, support for additional hardware can be added. New behavioural experi-
ments can also be implemented. However, in both cases, we are limited to Python.

Code availability
The source code of LabNet is available over the GitHub repository under a GPL-3.0 license.

Data of the performance measurements, the source code for Autopilot, Bpod and pyControl tasks,
and the source code for the graphs are also accessible via the GitHub repository, (copy archived at
swh:1:rev:d52e52c51e3f7c5b0e12f95829b8cf4886bb3379; Schatz and Winter, 2022).

There are instructions for two possible compilation paths. The first is on the Raspberry Pi with Visual
Studio Code and CMake. The second is with Visual Studio 2019 and Docker. The archive also contains
the source code of all tests from Performance evaluation under ‘examples’.

Acknowledgements
We thank R Cardinal, T Akam, J Sanders, and J Saunders for comments on an earlier version of the
manuscript.

Support for this work was received through the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation), SFB 1315, project-ID 327654276, and EXC 257: NeuroCure, project-ID
39052203.

https://doi.org/10.7554/eLife.77973
https://www.sanworks.io/about/about.php
https://github.com/pybpod/pybpod
https://fchampalimaud.org/champalimaud-research
https://github.com/WinterLab-Berlin/LabNet
https://github.com/darki-31/LabNet_manuscript_data
https://archive.softwareheritage.org/swh:1:dir:e93ba2cf567f6d8230097f60735c8d1ea2f077c3;origin=https://github.com/darki-31/LabNet_manuscript_data;visit=swh:1:snp:147c5a9160b26fead84b349fc25e0a0058a11de1;anchor=swh:1:rev:d52e52c51e3f7c5b0e12f95829b8cf4886bb3379

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Schatz and Winter. eLife 2022;11:e77973. DOI: https://​doi.​org/​10.​7554/​eLife.​77973 � 15 of 16

Additional information

Funding

Funder Grant reference number Author

Deutsche
Forschungsgemeinschaft

SFB 1315 project-ID
327654276

Alexej Schatz

Deutsche
Forschungsgemeinschaft

EXC 257: NeuroCure
project-ID 39052203

Alexej Schatz

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Author contributions
Alexej Schatz, Software, Visualization, Writing - original draft; York Winter, Conceptualization, Super-
vision, Funding acquisition, Methodology, Writing - review and editing

Author ORCIDs
Alexej Schatz ‍ ‍ http://orcid.org/0000-0002-2664-2103

Decision letter and Author response
Decision letter https://doi.org/10.7554/eLife.77973.sa1
Author response https://doi.org/10.7554/eLife.77973.sa2

Additional files
Supplementary files
•  Transparent reporting form

Data availability
Tool source code and performance measurements are available on GitHub (https://github.com/​
WinterLab-Berlin/LabNet and https://github.com/darki-31/LabNet_manuscript_data respectively).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Schatz A 2022 performance
measurements data

https://​github.​com/​
darki-​31/​LabNet_​
manuscript_​data

GitHub, LabNet_
manuscript_data

References
Akam T, Lustig A, Rowland J, Kapanaiah SKT, Esteve-Agraz J, Panniello M, Marquez C, Kohl M, Kätzel D,

Costa RM, Walton M. 2022. PyControl: Open Source, Python Based, Hardware and Software for Controlling
Behavioural Neuroscience Experiments. bioRxiv. DOI: https://doi.org/10.1101/2021.02.22.432227

Armstrong J. 1996. Erlang - a survey of the language and its industrial applications. In In Proceedings of the
symposium on industrial applications of Prolog (INAP96. .

Boost. 2021. Boost c++ libraries. 1.81.0. Boost Software License. http://www.boost.org
Cai DJ, Aharoni D, Shuman T, Shobe J, Biane J, Song W, Wei B, Veshkini M, La-Vu M, Lou J, Flores SE, Kim I,

Sano Y, Zhou M, Baumgaertel K, Lavi A, Kamata M, Tuszynski M, Mayford M, Golshani P, et al. 2016. A shared
neural ensemble links distinct contextual memories encoded close in time. Nature 534:115–118. DOI: https://​
doi.org/10.1038/nature17955, PMID: 27251287

Cardinal RN, Aitken MRF. 2010. Whisker: a client-server high-performance multimedia research control system.
Behavior Research Methods 42:1059–1071. DOI: https://doi.org/10.3758/BRM.42.4.1059, PMID: 21139173

Charousset D, Schmidt TC, Hiesgen R, Wählisch M. 2013. Native Actors – A Scalable Software Platform for
Distributed, Heterogeneous Environments. In Proc. of the 4rd ACM SIGPLAN Conference on Systems,
Programming, and Applications (SPLASH ’13), Workshop AGERE. . DOI: https://doi.org/10.1145/2541329.​
2541336

Google. 2021. Protocol buffers. 0.1. Google. https://developers.google.com/protocol-buffers
Henderson G. 2019. Wiring pi - GPIO interface library for the raspberry pi. Wiring Pi. http://wiringpi.com

https://doi.org/10.7554/eLife.77973
http://orcid.org/0000-0002-2664-2103
https://doi.org/10.7554/eLife.77973.sa1
https://doi.org/10.7554/eLife.77973.sa2
https://github.com/WinterLab-Berlin/LabNet
https://github.com/WinterLab-Berlin/LabNet
https://github.com/darki-31/LabNet_manuscript_data
https://github.com/darki-31/LabNet_manuscript_data
https://github.com/darki-31/LabNet_manuscript_data
https://github.com/darki-31/LabNet_manuscript_data
https://doi.org/10.1101/2021.02.22.432227
http://www.boost.org
https://doi.org/10.1038/nature17955
https://doi.org/10.1038/nature17955
http://www.ncbi.nlm.nih.gov/pubmed/27251287
https://doi.org/10.3758/BRM.42.4.1059
http://www.ncbi.nlm.nih.gov/pubmed/21139173
https://doi.org/10.1145/2541329.2541336
https://doi.org/10.1145/2541329.2541336
https://developers.google.com/protocol-buffers
http://wiringpi.com

 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Schatz and Winter. eLife 2022;11:e77973. DOI: https://​doi.​org/​10.​7554/​eLife.​77973 � 16 of 16

Hewitt C, Bishop P, Steiger R. 1973. A universal modular actor formalism for artificial intelligence. In Proceedings
of the 3rd International Joint Conference on Artificial Intelligence, IJCAI’73. .

Laubach M, Kravitz A, Khokhar J, Fobbs W, Amarante L, Frie J, White S. 2021. Open Behaviour. https://edspace.​
american.edu/openbehavior

Lightbend. 2021. Akka. 1.1. Lightbend, Inc. https://akka.io
Lopes G, Bonacchi N, Frazão J, Neto JP, Atallah BV, Soares S, Moreira L, Matias S, Itskov PM, Correia PA,

Medina RE, Calcaterra L, Dreosti E, Paton JJ, Kampff AR. 2015. Bonsai: an event-based framework for
processing and controlling data streams. Frontiers in Neuroinformatics 9:7. DOI: https://doi.org/10.3389/fninf.​
2015.00007, PMID: 25904861

Marion HR, Munawar H, Fuchs A, Winter Y. 2017. An automated, experimenter-free method for the
standardised, operant cognitive testing of rats. PLOS ONE 12:e0169476. DOI: https://doi.org/10.1371/journal.​
pone.0169476, PMID: 28060883

Mason A. 2019. Theron c++ actor library. Theron. https://github.com/berkus/theron
Nachev V, Stich KP, Winter C, Bond A, Kamil A, Winter Y. 2017. Cognition-mediated evolution of low-quality

floral nectars. Science 355:75–78. DOI: https://doi.org/10.1126/science.aah4219, PMID: 28059766
Sanders J. 2021. Sanworks - bpod. Bpod. https://www.sanworks.io/shop/products.php
Saunders JL, Wehr M. 2019. Autopilot: Automating Behavioral Experiments with Lots of Raspberry Pis. bioRxiv.

DOI: https://doi.org/10.1101/807693
Schatz A, Winter Y. 2022. LabNet manuscript data. swh:1:rev:d52e52c51e3f7c5b0e12f95829b8cf4886bb3379.

Software Heritage. https://archive.softwareheritage.org/swh:1:dir:e93ba2cf567f6d8230097f60735c8d1e​
a2f077c3;origin=https://github.com/darki-31/LabNet_manuscript_data;visit=swh:1:snp:147c5a9160b26fea​
d84b349fc25e0a0058a11de1;anchor=swh:1:rev:d52e52c51e3f7c5b0e12f95829b8cf4886bb3379

Siegle JH, López AC, Patel YA, Abramov K, Ohayon S, Voigts J. 2017. Open ephys: an open-source, plugin-
based platform for multichannel electrophysiology. Journal of Neural Engineering 14:045003. DOI: https://doi.​
org/10.1088/1741-2552/aa5eea, PMID: 28169219

Skinner BF. 1938. The Behavior of Organisms: An Experimental Analysis. New York: Appleton-Century-Crofts.
Stiffstream. 2021. Sobjectizer a cross-platform and opensource actor framework for c++. Stiffstream. https://​

github.com/Stiffstream/sobjectizer
van Steen M, Tanenbaum A. 2017. Distributed systems. Distributed-Systems.Net.
Winter Y, Stich KP. 2005. Foraging in a complex naturalistic environment: capacity of spatial working memory in

flower bats. The Journal of Experimental Biology 208:539–548. DOI: https://doi.org/10.1242/jeb.01416, PMID:
15671342

Wintergerst S, Winter Y, Nachev V. 2021. Sex-Dependent Resource Defense in a Nectar-Feeding Bat. bioRxiv.
DOI: https://doi.org/10.1101/2021.08.16.456451

https://doi.org/10.7554/eLife.77973
https://edspace.american.edu/openbehavior
https://edspace.american.edu/openbehavior
https://akka.io
https://doi.org/10.3389/fninf.2015.00007
https://doi.org/10.3389/fninf.2015.00007
http://www.ncbi.nlm.nih.gov/pubmed/25904861
https://doi.org/10.1371/journal.pone.0169476
https://doi.org/10.1371/journal.pone.0169476
http://www.ncbi.nlm.nih.gov/pubmed/28060883
https://github.com/berkus/theron
https://doi.org/10.1126/science.aah4219
http://www.ncbi.nlm.nih.gov/pubmed/28059766
https://www.sanworks.io/shop/products.php
https://doi.org/10.1101/807693
https://archive.softwareheritage.org/swh:1:dir:e93ba2cf567f6d8230097f60735c8d1ea2f077c3;origin=https://github.com/darki-31/LabNet_manuscript_data;visit=swh:1:snp:147c5a9160b26fead84b349fc25e0a0058a11de1;anchor=swh:1:rev:d52e52c51e3f7c5b0e12f95829b8cf4886bb3379
https://archive.softwareheritage.org/swh:1:dir:e93ba2cf567f6d8230097f60735c8d1ea2f077c3;origin=https://github.com/darki-31/LabNet_manuscript_data;visit=swh:1:snp:147c5a9160b26fead84b349fc25e0a0058a11de1;anchor=swh:1:rev:d52e52c51e3f7c5b0e12f95829b8cf4886bb3379
https://archive.softwareheritage.org/swh:1:dir:e93ba2cf567f6d8230097f60735c8d1ea2f077c3;origin=https://github.com/darki-31/LabNet_manuscript_data;visit=swh:1:snp:147c5a9160b26fead84b349fc25e0a0058a11de1;anchor=swh:1:rev:d52e52c51e3f7c5b0e12f95829b8cf4886bb3379
https://doi.org/10.1088/1741-2552/aa5eea
https://doi.org/10.1088/1741-2552/aa5eea
http://www.ncbi.nlm.nih.gov/pubmed/28169219
https://github.com/Stiffstream/sobjectizer
https://github.com/Stiffstream/sobjectizer
https://doi.org/10.1242/jeb.01416
http://www.ncbi.nlm.nih.gov/pubmed/15671342
https://doi.org/10.1101/2021.08.16.456451

	LabNet hardware control software for the Raspberry Pi
	Editor's evaluation
	Introduction
	Results
	System overview
	Example
	Performance evaluation
	Listing 1
	Listing 2
	Listing 3
	Set digital out test
	Read and set GPIO
	Stress test
	Comparison

	Discussion
	Materials and methods
	Actor model
	SObjectizer

	Message protocol
	Implementation
	Related work
	Wisker-Server
	pyControl
	Bpod
	Autopilot

	Code availability

	Acknowledgements
	Additional information
	﻿Funding
	Author contributions
	Author ORCIDs
	Decision letter and Author response

	Additional files
	Supplementary files

	References

