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Abstract
Background: Associations between attention-deficit/hyperactivity disorder (ADHD) and brain 
morphology have been reported, although with several inconsistencies. These may partly stem 
from confounding bias, which could distort associations and limit generalizability. We examined 
how associations between brain morphology and ADHD symptoms change with adjustments 
for potential confounders typically overlooked in the literature (aim 1), and for the intelligence 
quotient (IQ) and head motion, which are generally corrected for but play ambiguous roles (aim 
2).
Methods: Participants were 10-year-old children from the Adolescent Brain Cognitive Develop-
ment (N = 7722) and Generation R (N = 2531) Studies. Cortical area, volume, and thickness were 
measured with MRI and ADHD symptoms with the Child Behavior Checklist. Surface-based cross-
sectional analyses were run.
Results: ADHD symptoms related to widespread cortical regions when solely adjusting for demo-
graphic factors. Additional adjustments for socioeconomic and maternal behavioral confounders 
(aim 1) generally attenuated associations, as cluster sizes halved and effect sizes substantially 
reduced. Cluster sizes further changed when including IQ and head motion (aim 2), however, we 
argue that adjustments might have introduced bias.
Conclusions: Careful confounder selection and control can help identify more robust and specific 
regions of associations for ADHD symptoms, across two cohorts. We provided guidance to mini-
mizing confounding bias in psychiatric neuroimaging.
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Introduction
Large strides have been made in the identification of neuroanatomical correlates of psychiatric prob-
lems, with attention-deficit/hyperactivity disorder (ADHD) being a prominent example. ADHD is the 
most prevalent neurodevelopmental disorder in children worldwide and is characterized by atyp-
ical levels of inattention, hyperactivity, and/or impulsivity (American Psychiatric Association, 2013). 
Structural magnetic resonance imaging studies have highlighted that children with ADHD show wide-
spread morphological differences, such as in the basal ganglia (Nakao et al., 2011), subcortical areas 
(Hoogman et al., 2017), and frontal, cingulate, and temporal cortices, compared to children without 
the disorder (Hoogman et al., 2019; Shaw et al., 2013).

Consistently identifying the neuroanatomical substrate of ADHD, however, remains challenging. A 
recent meta-analysis did not find convergence across the literature on brain differences in children and 
adolescents with ADHD (Samea et al., 2019). One possible explanation for this inconsistency is the 
multifaceted nature of ADHD, in which children with the disorder have heterogeneous presentations 
on several cognitive and emotional domains, which could stem from distinct brain structural substrates. 
Other explanations regard study design. If suboptimal, it may lead to biased estimates and lack of 
generalizability, thus potentially concealing robust and replicable relations of brain morphology with 
ADHD. The present study focuses on confounding, a common source of bias in etiological studies.

Confounding bias arises when a third variable affects both the determinant (independent vari-
able) and outcome (dependent variable) of interest (i.e., is a common cause) (VanderWeele, 2019). 
Confounding leads to over- or underestimation of the true effect between determinant and outcome 
and can even change the direction of an association. To minimize confounding bias, appropriate 
confounder control is paramount, although it is challenging, especially in observational studies like 
most neuroimaging studies of ADHD. Previous literature and expert knowledge can guide the identifi-
cation of potential confounders (Hernan and Robins, 2020), which can then be appropriately adjusted 
for in regression models or using methods such as restriction, standardization, or propensity scores.

Within neuroimaging studies of ADHD, except for a few large investigations (Hoogman et al., 
2017; Mous et al., 2014; Bernanke et al., 2022), studies have generally matched or adjusted for 
a few demographic variables (e.g., age and sex) and neuroimaging metrics or parameters. Of the 
19 studies included in a systematic review of neuroimaging studies on ADHD (Saad et al., 2020), 
17 adjusted or matched for age in their analyses, 14 for sex, 9 for neuroimaging-related variables 
like head motion during scanning, and 8 for the intelligence quotient (IQ) (Supplementary file 1a). 
Further potential confounders should, however, be considered. For instance, socioeconomic status 
(SES) is related to both higher risk for ADHD and variation in cortical brain structure (Russell et al., 
2016; Noble et al., 2015). Thus, it is likely a confounder. Lack of adjustment for SES may have there-
fore concealed key relations between ADHD and brain structure. Adjustment choices are depen-
dent on the availability of large samples with data on a wide variety of covariates, which has to date 
been limited for psychiatric neuroimaging studies. Yet, this is rapidly changing with the advent of 
population neuroscience, which entails large-scale studies with neurobiological data. This lends new 
opportunities for further confounder adjustments to be considered in neuroimaging studies of ADHD. 
Conversely, previous studies have adjusted for IQ and head motion, which may not be confounders in 
the association between ADHD symptoms and the brain, and may thus have led to further bias in the 
results (Dennis et al., 2009).

In this study, we examined the association between brain structure and ADHD symptoms and how 
the selection and control for potential confounders may affect results (aim 1). Moreover, we discussed 
the complex role of IQ and head motion in brain structure–ADHD associations and the potential 
consequences of adjusting for them (aim 2). We leveraged two large, population-based cohorts: the 
Adolescent Brain Cognitive Development (ABCD) and the Generation R Studies. In line with most 
neuroimaging studies, we adopted a cross-sectional design.

Results
Associations between ADHD symptoms and brain morphology are 
widespread
We analyzed data from 10-year-old children from the ABCD (N = 7722, multisite) and Generation R (N 
= 2531, single-site) Studies (Supplementary file 1b). ADHD symptoms were measured with the Child 
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Behavioral Checklist (CBCL). T1-weighted images were obtained with 3T scanners (Casey et al., 2018; 
Kooijman et al., 2016). We ran vertex-wise linear regression models for ADHD with cortical surface 
area, volume, and thickness. Results for surface area, which constituted the main findings here, are 
presented in-text, while findings for volume and thickness in the figure supplements. We adjusted for 
demographic and study characteristics which have been generally considered by previous literature 
(Supplementary file 1a): age, sex, ethnicity, and study site (ABCD only). We refer to this model as 
model 1, as further adjustments for confounders are outlined in subsequent steps.

We found that higher ADHD symptoms were associated with less bilateral surface area in both 
cohorts. As shown in Figure 1, associations were widespread, as the clusters of association covered 
1165.7 cm2 of the cerebral cortex in the ABCD Study, and 446.1 cm2 in the Generation R Study. Across 
both cohorts, we consistently identified clusters for surface area in the lateral occipital, postcentral, 
rostral middle and superior frontal, and superior parietal cortices. For cortical thickness, we found two 
small frontal clusters in the ABCD Study (16.1 cm2) and no clusters in the Generation R Study, which 
suggests that cortical thickness does not relate or does not relate strongly to ADHD, in line with prior 
literature (Hoogman et al., 2019; Figure 1—figure supplement 1).

Confounder selection: socioeconomic and maternal behavioral factors
Next, we considered factors that have been previously linked to ADHD and brain structure in the liter-
ature, and are thus potential confounders. To illustrate this background knowledge and the assump-
tions about relations between variables, we used Directed Acyclic Graphs (DAGs), a type of causal 
diagram (Hernan and Robins, 2020). These guide the identification (and dismissal) of covariates 
that may act as confounders. Of note, while assumptions may not hold, this theoretical approach is 
preferred to methods selecting confounders based on model statistics (Lee, 2014). The DAGs are 
depicted in Figure 2 and Figure 2—figure supplements 1 and 2, and the rationales for variable 
inclusion are explained below and in the Methods.

Based on the literature, lower SES is associated with a higher risk for ADHD (Russell et al., 2016) 
and with variation in cortical brain structure (Noble et al., 2015). Thus, confounding by socioeco-
nomic factors in the relation between ADHD and brain morphology is likely. We therefore addition-
ally adjusted for a second set of confounders (model 2) related to SES: household income, maternal 
education, and maternal age at childbirth.

Figure 1. Significant clusters in the association of attention-deficit/hyperactivity disorder (ADHD) symptoms with cortical surface area based on the 
Adolescent Brain Cognitive Development (ABCD) and Generation R Studies, for model 1. Note. Rows represent the results for the ABCD or Generation 
R Studies, and the columns represent the left and right hemispheres. Regions in red represent significant clusters from model 1 (adjusted for sex, age, 
race/ethnicity, and site [ABCD only]).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Significant clusters in the association of attention-deficit/hyperactivity disorder (ADHD) symptoms with cortical volume (top) and 
thickness (bottom) based on the Adolescent Brain Cognitive Development (ABCD) and Generation R Studies, for model 1.

Figure supplement 2. Significant clusters in the association of attention-deficit/hyperactivity disorder (ADHD) diagnosis with cortical surface area (top), 
volume (middle), and thickness (bottom) for the Adolescent Brain Cognitive Development (ABCD) Study, for model 1.

https://doi.org/10.7554/eLife.78002
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Moreover, several factors concerning maternal 
behavior, pre- and postnatally, have been asso-
ciated with both ADHD and brain morphology. 
For instance, prenatal exposure to substances is 
known to increase the risk of developing ADHD 
symptoms and has been associated with variation 
in cerebral volume and surface area (Eilertsen 
et  al., 2017; Lees et  al., 2020). Postnatal 
maternal psychopathology has been linked to 
higher child ADHD symptoms (Clavarino et  al., 
2010) and smaller brain volume in children (Zou 
et  al., 2019). Thus, in model 3 we additionally 
adjusted for prenatal exposure to substance use 
(tobacco and cannabis), and postnatal maternal 
psychopathology.

Adjusting for additional 
confounders led to reductions in 
the clusters of association
Adjustments for SES (model 2) led to reductions 
in the spatial extent of the clusters for surface area 
and volume in both cohorts (Figure 3). For surface 
area, cluster sizes for ADHD symptoms reduced 
from 1165.7 cm2 in model 1 to 952.8 cm2 in model 
2 (=−18%) in the ABCD Study, and from 446.1 to 
229.6 cm2 (=−49%) in the Generation R Study. 
Similar reductions were observed for volume and 
thickness (Figure 3—figure supplement 1). After 
adjusting for the confounders added in model 3, 
across both cohorts, we consistently identified 
clusters for surface area in the cuneus, precuneus, 
fusiform, inferior parietal, isthmus of the cingu-
late, pericalcarine, pre- and postcentral, rostral 
middle and superior frontal, superior temporal 
and supramarginal cortices.

Similar results were observed for ADHD diagnosis
To explore whether the results observed for associations between brain morphology and ADHD 
symptoms applied to children with an ADHD diagnosis, we repeated the primary analysis using the 
ADHD diagnostic data from the Kiddie Schedule for Affective Disorders and Schizophrenia (KSADS) 
in the ABCD Study. In line with our primary results, ADHD diagnosis was associated with less bilateral 
surface area and volume. Compared to clusters for ADHD symptoms, those associated with ADHD 
diagnosis were smaller, but overlapping (Figure  1—figure supplement 2). We observed similar 
patterns of reduction in the spatial extent of the clusters after adjusting for each set of confounders 
(Figure 3—figure supplement 2). For surface area, cluster sizes for ADHD symptoms covered 234.4 
cm2 in model 1 and reduced to 199.5 cm2 in model 2 (=−15%), and 55.5 cm2 in model 3 (=−72%, 
compared to model 2).

Beta coefficients generally decreased after confounder adjustments, 
but may also increase
Surface-based studies generally focus on the spatial extent of cortical clusters associated with the 
phenotype, but, in this study, we also explored how confounding adjustments affected the regression 
coefficients for ADHD symptoms (Figure 4).

At a vertex-wise level, adjusting for socioeconomic and maternal factors (model 3) led to reduc-
tions in the beta coefficients, across the brain, for both cohorts (Figure 4—figure supplement 1). 

ADHD SymptomsBrain structure

Sex

Maternal age

Maternal education

Maternal substance use during pregnancy

Maternal psychopathology

Family income

Age

Ethnicity

Figure 2. Directed Acyclic Graphs (DAGs) for brain 
structure and attention-deficit/hyperactivity disorder 
(ADHD) symptoms (simplified). Note. DAGs illustrating 
potential confounders in the association between brain 
structure and ADHD symptoms for three sequential 
models. Model 1 included demographic and study 
characteristics: sex, age, ethnicity, and study site 
(Adolescent Brain Cognitive Development [ABCD] only) 
(in blue). Model 2 additionally included socioeconomic 
status factors: family income, maternal education, and 
maternal age at childbirth (in red). Model 3 additionally 
incorporated postnatal maternal psychopathology and 
maternal substance use during pregnancy (in green).

The online version of this article includes the following 
figure supplement(s) for figure 2:

Figure supplement 1. Illustration of Directed Acyclic 
Graphs (DAGs) using family income as an example.

Figure supplement 2. Directed Acyclic Graphs (DAGs) 
for brain structure and attention-deficit/hyperactivity 
disorder (ADHD) symptoms (complete).

https://doi.org/10.7554/eLife.78002


 Research article﻿﻿﻿﻿﻿﻿ Epidemiology and Global Health | Neuroscience

Dall'Aglio, Kim, Lamballais et al. eLife 2022;11:e78002. DOI: https://doi.org/10.7554/eLife.78002 � 5 of 20

Of note, some beta coefficients also showed increases. As confounding bias may lead to under- or 
overestimation, it is not surprising to observe both decreases and increases in the average beta coef-
ficients after adjustments.

At an anatomical region level, where estimates of vertices within a given Desikan–Killiany region 
were averaged, beta coefficients for surface area tended to decrease from model 1 to 2 by approxi-
mately 15% (Figure 4, Figure 4—figure supplement 2). Further adjustments from model 2 to 3 led to 
decreases in the average beta coefficients of certain regions and increases in others. Similar patterns 
were found for volume (Figure 4—figure supplements 3 and 4). The average beta coefficients per 
region correlated moderately to strongly between the ABCD and Generation R Studies for surface 
area (Spearman rM1 = 0.84, rM2 = 0.83, rM3 = 0.83) and volume (Spearman rM1 = 0.57, rM2 = 0.57, rM3 = 
0.70) (Figure 4—figure supplement 5).

IQ may be a confounder, mediator, or collider in neuroanatomical 
studies of ADHD
We considered one additional scenario which included IQ, a factor that is often adjusted for in previous 
studies (Supplementary file 1a). However, based on prior literature, it holds an ambiguous role in 
structural anatomy–ADHD relations. Previous studies found that children with ADHD scored lower on 
IQ than children without ADHD (Bridgett and Walker, 2006). Differential brain structure with levels 
of IQ has also been shown (Mcdaniel, 2005). However, the directions of causation between these 
variables remain unclear (Gallo and Posner, 2016). IQ may therefore be a confounder, collider, and/
or mediator in the relation between brain structure and ADHD, as depicted in the DAGs in Figure 5 
and Figure 5—figure supplement 1.

First, it could be argued that IQ is partly innate and precedes brain development and ADHD, 
making it a confounder (Figure 5A). Second, IQ may lie in the pathway between brain structure and 
ADHD and therefore act as a mediator (Figure 5B). It is conceivable that cognitive differences, as a 
consequence of subtle neurodevelopmental differences (Lee et  al., 2019), could underlie ADHD. 
Adjusting for a mediator would lead to bias when estimating the total association between brain 
structure and ADHD (VanderWeele, 2016). Third, brain structure may impact intelligence scores (Lee 
et al., 2019), and ADHD symptoms may affect IQ test performance (Jepsen et al., 2009; Figure 5C). 
A variable that is independently caused by the outcome and the determinant is also known as a 

Figure 3. Significant clusters in the association of attention-deficit/hyperactivity disorder (ADHD) symptoms with cortical surface area based on 
the Adolescent Brain Cognitive Development (ABCD) and Generation R Studies, for models 1–3. Note. Rows represent the results for the ABCD or 
Generation R Studies, and the columns represent the left and right hemispheres. The colors denote the different models. Regions in red represent 
significant clusters from model 1 (sex, age, race/ethnicity, and site [ABCD only]), orange from model 2 (model 1 + family income, maternal education, 
and maternal age at childbirth), and yellow from model 3 (model 2 + maternal smoking, substance use during pregnancy, psychopathology).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Significant clusters in the association of attention-deficit/hyperactivity disorder (ADHD) symptoms with cortical volume (top) and 
thickness (bottom) based on the Adolescent Brain Cognitive Development (ABCD) and Generation R Studies, for models 1–3.

Figure supplement 2. Significant clusters in the association of attention-deficit/hyperactivity disorder (ADHD) diagnosis with cortical surface area (top), 
volume (middle), and thickness (bottom) for the Adolescent Brain Cognitive Development (ABCD) Study, for models 1–3.

https://doi.org/10.7554/eLife.78002
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Figure 4. Region-based average regression coefficients for surface area in the Adolescent Brain Cognitive 
Development (ABCD) and Generation R Studies. Note. The colors denote the different models, and the circles 
denote the average of all the betas within that region. The regions are based on the Desikan–Killiany atlas. Results 
for the ABCD and Generation R Studies are, respectively, shown on the top and bottom.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The vertex-wise change in effect sizes between models 1 and 3 for cortical surface area 
(top), volume (middle), and thickness (bottom).

Figure 4 continued on next page

https://doi.org/10.7554/eLife.78002
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collider, and adjusting for it leads to (collider) bias. Here, we explored the impact of adjusting for IQ 
when examining the relation between brain morphology and ADHD (model 4).

Adjustments for IQ led to further cluster reductions
After additionally adjusting for IQ, the spatial extent of the clusters associated with ADHD symptoms 
reduced further in both cohorts (Figure 6). For surface area, compared to model 3, clusters reduced 
from 760.2 to 605.1 cm2 (=−20%) for the ABCD Study, and from 208.6 to 93.1 cm2 for the Generation 
R Study (=−55%). Clusters of association for surface area in model 4 were located in the fusiform, 
inferior parietal, insula, lateral occipital, middle temporal, pericalcarine, pre- and postcentral, precu-
neus, rostral middle, and superior frontal, superior parietal and temporal, and supramarginal cortices. 
Findings for volume and thickness are shown in Figure 6—figure supplement 1.

Head motion does not induce confounding bias, but information bias
A final scenario was also included, to reflect the commonly used adjustments for head motion during 
scanning (Supplementary file 1a). Motion can be a large source of bias in neuroimaging studies which 
is important to address. While it does not meet the criteria for confounding as it is not a common 
cause of ADHD problems and brain morphology (Hernan and Robins, 2020), head motion can induce 
measurement error of brain morphology (Van de Walle et al., 1997; Figure 7). This is also referred to 
as information bias and can distort estimates from their true value.

The amount of measurement error in brain morphology may differ across children with versus 
without ADHD. In fact, children with impulsivity and inattention have been shown to move more 
during MRI scanning (Thomson et al., 2021; Kong et al., 2014), determining different levels of error 
in the brain morphology assessments (Figure 7, path from ADHD symptoms to motion to error in MRI 
measurement). In this scenario, adjusting for motion might lead to two situations. On one hand, since 
motion is a consequence of the outcome (ADHD), adjustments would lead to bias (Westreich, 2012). 
On the other hand, not adjusting for motion would also lead to bias because part of the observed 
relation between ADHD symptoms and brain structure would be due to the higher head motion (and 
thus the underestimation of the cortical values) of children with ADHD. In this study, we explored the 
effect of adjusting for motion during scanning in the relation between brain morphology and ADHD 
(model 5).

Adjustments for head motion led to increases in clusters
After additional adjustments for head motion, the spatial extent of the clusters generally increased. 
For surface area, compared to model 3, clusters increased from 760.2 to 936.4 cm2 (=+23.2%) for the 
ABCD Study and from 208.6 to 239.7 cm2 (=+14.9%) for the Generation R Study (Figure 8). Clusters 
of associations consistently found across cohorts were highly similar to the ones identified in model 3. 
Results for cortical volume and thickness are shown in Figure 8—figure supplement 1.

Discussion
By leveraging two large population-based studies and adopting a literature- and DAG-informed 
approach to address confounding, we showed that (1) associations between brain structure and 
ADHD symptoms, which were initially widespread, reduced when adjusting for socioeconomic and 

Figure supplement 2. Change in the regional average betas for surface area in the Adolescent Brain Cognitive 
Development (ABCD) Study (A, B) and Generation R Study (C, D).

Figure supplement 3. Region-based average regression coefficients for cortical volume in the Adolescent Brain 
Cognitive Development (ABCD) Study (top) and Generation R (bottom).

Figure supplement 4. Change in the regional average betas for volume in the Adolescent Brain Cognitive 
Development (ABCD) Study (A, B) and Generation R Study (C, D).

Figure supplement 5. Scatterplot of Spearman correlations between region-based average regression 
coefficients from the Adolescent Brain Cognitive Development (ABCD) Study (x-axis) and the Generation R Study 
(y-axis).

Figure 4 continued

https://doi.org/10.7554/eLife.78002
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maternal behavioral confounders, and that (2) careful considerations are needed when including IQ 
and/or head motion due to their complex relation with ADHD and brain morphology.

Adjustments for confounders highlighted key regions of association, 
observed across two large cohorts
Widespread associations between surface area and ADHD symptoms were initially identified, with 
higher symptoms relating to smaller brain structures, in line with previous research (Hoogman et al., 
2019; Gehricke et al., 2017). After adjustments for potential confounders typically overlooked by 
prior literature (socioeconomic and maternal behavioral factors), approximately half of the associa-
tions remained, and considerable effect size changes were observed in both the ABCD and Gener-
ation R Studies and for all cortical measures. We observed similar patterns of cluster reductions for 
ADHD diagnosis in the ABCD Study.

Regions that remained associated after adjustments and which were consistently identified across 
cohorts were the precuneus, isthmus of the cingulate, supramarginal, pre- and postcentral, and infe-
rior parietal cortices for both area and volume. Most of these regions (e.g., supramarginal) have been 
previously implicated in ADHD in clinical samples (Saad et al., 2017; Lei et al., 2014; Solanto et al., 
2009). However, many different brain areas have been detected in association with the disorder (Saad 
et al., 2020), which may have hampered prior meta-analytic efforts to identify consistent neuroana-
tomical correlates for ADHD.

Of note, some inconsistencies between the ABCD and Generation R Studies, both in size of the 
clusters and the exact location, were observed. While we used the same processing pipelines and 
similar quality control procedures and measures across cohorts, potential reasons for discrepancies in 
results must be discussed. First, the larger sample size of the ABCD Study allows for greater power 

Figure 5. Directed Acyclic Graphs (DAGs) for intelligence quotient (IQ), brain structure, and attention-deficit/
hyperactivity disorder (ADHD) symptoms. Note. (A) DAG for IQ as a confounder. In this case, adjustments are 
needed as the backdoor path from brain structure to ADHD symptoms through IQ is open. By adjusting (box 
around IQ), the path gets closed. (B) DAG for IQ as a mediator. Adjustments are not needed to estimate the total 
effect of brain structure on ADHD symptoms. (C) DAG for IQ as a collider. The backdoor path through IQ is already 
closed. Adjustments would open the path and lead to collider bias.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Directed Acyclic Graphs (DAGs) representing intelligence quotient (IQ) as a confounder, 
mediator, or a collider in the relation between brain structure and attention problems.

https://doi.org/10.7554/eLife.78002
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to detect smaller effects, which led to larger associated areas. Second, the multisite structure of 
the ABCD Study may have introduced noise in the results (e.g., by different scanners, demographic 
differences), and determined the identification of associations which are not replicable in the Gener-
ation R Study. Third, the two studies include children from different populations. While both are very 
diverse samples, the ABCD Study is comprised of a more heterogeneous sample from the US popu-
lation, which, for instance, is characterized by a wider variety of ethnicities and cultures, potentially 
permitting the discovery of more associations. Nevertheless, there was considerable overlap in the 
findings from the ABCD and Generation R Studies, with consistencies across cohorts indicating the 
most robust and generalizable associations.

Here, we discerned associated areas likely subject to confounding bias from areas robust to socio-
economic and maternal behavioral factors, and replicable across two large cohorts. Comparisons with 
prior findings should be made with caution due to differences in study design, samples (clinical vs. 
population-based), and analytical methods. Importantly, we highlighted the opportunity for future 
studies to include covariates that go beyond age and sex, can help refine associations, and can be 
readily collected. Future studies may want to consider other confounding factors, depending on their 
research question, design, and assumed causal relations.

Adjustments for IQ are often unnecessary when examining the relation 
between brain structure and ADHD
Avoiding bias from adjusting for variables that are not confounders is as important as identifying 
sources of confounding. Adjusting for mediators or colliders of the ADHD–brain structure relation 
would induce bias. Here, when adjusting for IQ, which plays an unclear role in brain structure–ADHD 
associations, cluster sizes reduced considerably in both the ABCD and Generation R Studies. This 
could indicate that IQ is a confounder, in which case adjustments would be necessary, or that IQ is a 
mediator or collider, in which case adjustments must be avoided.

First, based on previous literature and this study, the association between ADHD and IQ is rela-
tively weak (Dennis et al., 2009) (rABCD = −0.11, rGENR = −0.14), but this does not necessarily make it a 
weak confounder as the strength of confounding is due to a variable’s relation with the exposure and 
outcome. Second, if brain structure and ADHD symptoms both cause cognitive changes, adjusting 
for IQ could induce collider bias, although this is also dependent on when IQ is measured relative to 
the exposure and outcome (Hernan and Robins, 2020). Third, if brain structure determines cognitive 

Figure 6. Significant clusters in the association of attention-deficit/hyperactivity disorder (ADHD) symptoms with cortical surface area based on the 
Adolescent Brain Cognitive Development (ABCD) and Generation R Studies, after additional adjustment for intelligence quotient (IQ). Note. Rows 
represent the results for the ABCD or Generation R Studies, and the columns represent the left and right hemispheres. The colors denote the different 
models, with red vertices being significant only in model 3, orange ones in both model 3 and after adjustment for IQ, and yellow ones only after 
adjusting for IQ.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Significant clusters in the association of attention-deficit/hyperactivity disorder (ADHD) symptoms with cortical volume (top) 
and thickness (bottom) based on the Adolescent Brain Cognitive Development (ABCD) and Generation R Studies, after additional adjustment for 
intelligence quotient (IQ).

https://doi.org/10.7554/eLife.78002
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functioning, which in turn affects ADHD symptoms (mediation by IQ), adjustments would also induce 
bias (VanderWeele, 2016).

Given these scenarios, we recommend moving away from routinely adjusting for IQ in ADHD 
neuroimaging studies, and we highlight the need to carefully consider the causal model for a specific 
research question to determine whether IQ may confound associations.

There is no easy fix for dealing with head motion in brain morphology–
ADHD associations
Adjustments for neuroimaging covariates, such as head motion, are often run to reduce confounding 
bias. However, head motion, rather than inducing confounding bias, creates measurement error (infor-
mation bias). When adjusting for head motion during scanning, we observed increases in the spatial 
extent of the clusters. This might indicate a reduction or an increase in bias. First, bias might have 
been reduced by adjusting for the fact that children with ADHD will have more error in their cortical 
measures. Second, bias might have also been increased because we conditioned for head motion, 
which is a consequence of ADHD.

Overall, the role of head motion in the relation between brain structure and ADHD is complex and 
warrants the utmost care. Adjusting or not would both lead to bias, meaning that considering which 
bias might be strongest is necessary. Moreover, methods aiming to reduce information bias should be 
leveraged (Lash et al., 2021); however, further developments are needed for their application to the 
neuroimaging field.

Similar considerations should be applied to other neuroimaging parameters which often are indi-
cators of information bias rather than confounders in brain structure–ADHD relations (e.g., time of 
the day, scanner). For instance, time of the day has been shown to influence morphometric values 
(Nakamura et al., 2015; Trefler et al., 2016), leading to information bias. If we expect for ADHD 
symptoms to influence the time of the day in which children with ADHD versus without come to 
the scanner (differential information bias), the same considerations for head motion would apply. If 
instead, children with ADHD and without come to the MRI at similar times of the day (non-differential 

Figure 7. Information bias for brain structure, attention-deficit/hyperactivity disorder (ADHD) symptoms, and head 
motion. Note. From the bottom up: We aim to measure the ‘true’ values of brain structure and ADHD symptoms. 
However, we actually measure both brain structure and ADHD symptoms imperfectly, at the MRI and through self-
reports, respectively. What we assess is therefore affected by measurement errors. Error in the MRI measurement 
is determined, in part, by excessive motion during scanning. Higher ADHD symptoms likely cause higher motion 
(dotted red path). This leads to differential information bias and creates a non-causal path from ADHD symptoms 
to brain structure through motion.

https://doi.org/10.7554/eLife.78002
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information bias), then adjustments for time of the day would be appropriate and reduce the measure-
ment error.

Generalization to psychiatric neuroimaging studies
Our considerations on confounding likely generalize to the psychiatric neuroimaging field, as several 
confounders considered here (e.g., SES) also relate to brain function and other psychiatric disorders 
(Biazoli et al., 2020; Kivimäki et al., 2020; Apter et al., 2017). Similarly, other psychiatric disorders 
are also characterized by complex relations with IQ (Der et al., 2009). Moreover, mental health prob-
lems featuring state anxiety, like internalizing and externalizing symptoms, have also been related to 
increased head motion during scanning (Eijlers et al., 2021).

Confounding control is paramount to studies examining determinants of a phenotype, like ADHD. 
However, even in these studies, one may be tempted to conduct correlational research with limited 
confounding adjustments, and then speculate about biological causal mechanisms (Hernán, 2018; 
Grosz et al., 2020). Rather, we suggest leveraging prior literature and expert knowledge to identify 
and adjust for key confounders. This can help eliminate the influence of alternative mechanisms (to 
the ones hypothesized) on the relation of interest (Hernan and Robins, 2020). Charting the assumed 
(causal) structures to identify confounders can be done through the use of tools such as DAGs (Hernan 
and Robins, 2020). Naturally, the plausibility of such assumptions should be evaluated. To facilitate 
the minimization of confounding bias in psychiatric neuroimaging, we propose a workflow in Figure 9.

Limitations of the present study and suggestions for future research
Despite leveraging two large samples with similar characteristics and assessments, this study pres-
ents several limitations. First, there is always potential for residual confounding through unmeasured 
confounders and misclassification of measured confounders. For example, given that genetic factors 
influence both ADHD and brain morphology and that there is a genetic correlation between ADHD 
risk and intracranial volume (Jansen et  al., 2015; Klein et  al., 2019; Klein et  al., 2017), certain 
genetic risk variants may be unmeasured confounders. However, we aimed to illustrate plausible 
confounding bias scenarios for ADHD and brain structure, and not to provide an exhaustive list of 
potential confounders, which may vary depending on the study population and research question. 
Future studies should also consider bias analyses to assess the impact that residual confounding may 
have on the study results (Lash et al., 2021). Bias analyses can help understand the minimum associ-
ation strength an unmeasured confounder needs to have with the determinant and outcome to fully 

Figure 8. Significant clusters in the association of attention-deficit/hyperactivity disorder (ADHD) symptoms with cortical surface area based on the 
Adolescent Brain Cognitive Development (ABCD) and Generation R Studies, after additional adjustment for motion. Note. Rows represent the results 
for the ABCD or Generation R Studies, and the columns represent the left and right hemispheres. The colors denote the different models, with red 
vertices being significant only in model 3, orange ones in both model 3 and after adjustment for motion, and yellow ones only after adjusting for 
motion.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Significant clusters in the association of attention-deficit/hyperactivity disorder (ADHD) symptoms with cortical volume (top) and 
thickness (bottom) based on the Adolescent Brain Cognitive Development (ABCD) and Generation R Studies, after additional adjustment for motion.

https://doi.org/10.7554/eLife.78002
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explain away the findings (VanderWeele and Ding, 2017). Developments may be needed, however, 
for their adaptation to the neuroimaging field.

Second, due to our cross-sectional design, deliberately chosen to correspond to most neuroim-
aging studies, we must assume all confounders precede our determinant and outcome. This is a 
plausible assumption for the Generation R Study as, being a prospective birth cohort, we could ensure 
that the confounders here considered temporally preceded both ADHD and neuroanatomical assess-
ments. However, this was not possible for the ABCD Study, which started sampling at child ages 9–10 
years. Future research on the temporal relations between potential confounders, ADHD, and brain 
structure will aid the minimization of confounding bias when investigating the structural substrates of 
ADHD.

Third, while we leveraged both symptom-level and diagnostic data for ADHD, this was done within 
population-based studies. Our results cannot, therefore, be generalized to a clinical population. 
Future research could examine the extent to which associations between brain structure and ADHD 
change after adjustments for likely confounders in clinical samples.

In conclusion, leveraging an empirical example from two large studies on neuroanatomy and ADHD 
symptoms, we highlighted the opportunity for future studies to consider further key confounders. 
These can be identified based on prior literature and causal diagrams as well as be readily collected, 
offering a feasible venue for future research. Adjusting for these potential confounders helped iden-
tify more refined cortical associations with ADHD symptoms, robust to the influence of demographic 
and socioeconomic factors, pregnancy exposures, and maternal psychopathology. We also evaluated 

Figure 9. Suggestions for minimizing confounding bias: a workflow. Note. In this workflow, we suggest different actions that can be taken throughout 
the research process to minimize confounding bias in psychiatric neuroimaging studies.

https://doi.org/10.7554/eLife.78002
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the potential role of IQ, which could be a mediator, collider, and/or confounder. While adjusting 
for IQ led to reductions in associations, these would, however, likely not be attributable to reduced 
confounding bias. Lastly, we explored how head motion reflects information, rather than confounding 
bias. We discussed the generalizability of these considerations on confounding bias to psychiatric 
neuroimaging, and suggest a workflow that can be followed to minimize confounding bias in future 
studies.

Materials and methods
Participants
We analyzed data from two independent population-based cohorts: the ABCD Study and the Gener-
ation R Study. The ABCD Study is conducted across 21 study sites in the US and recruited since 2015 
children aged 9–10 at baseline (Garavan et al., 2018). The Generation R Study is based in Rotterdam, 
the Netherlands, with data collection spanning from fetal life until early adulthood, and started in 2002 
(Kooijman et  al., 2016). Details of the sampling rationale, recruitment, methods, and procedures 
have been described elsewhere (Kooijman et al., 2016; Garavan et al., 2018). Research protocols 
for the ABCD Study were approved by the institutional review board of the University of California, 
San Diego (#160091), and the institutional review boards of the 21 data collection sites, while the 
design of the Generation R Study was approved by the Medical Ethics Committee of the Erasmus MC 
(METC-2012-165). For both studies, written informed consent and assent from the primary caregiver 
or child were obtained.

In this cross-sectional study, we leveraged data from the baseline assessment of the ABCD Study 
(release 2.0.1) and the 10-year assessment of the Generation R Study. Both waves included behavioral 
and neuroimaging measures. We included children with data on ADHD symptoms and T1-weighted 
MRI images. Participants were excluded if (1) they had dental braces, (2) incidental findings, (3) their 
brain scans failed processing or quality assurance procedures, or (4) they were twins or triplets. Of 
note, excluding children with dental braces is unlikely to determine selection bias by SES in either the 
ABCD or the Generation R Study as the former cohort covered the costs of dental braces removal 

Figure 10. Flowcharts of participant inclusion and exclusion for Adolescent Brain Cognitive Development (ABCD) (panel A) and Generation R (panel B). 
Note. (A) In the ABCD Study, of the 11,875 participants enrolled in the study, 7722 met our inclusion and exclusion criteria. (B) In the Generation R Study, 
of the 8548 participants invited to the age 9–10 assessment, 2531 met our inclusion and exclusion criteria.

https://doi.org/10.7554/eLife.78002
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for all children who enrolled, while dental care is insured for all children in the Netherlands. Within 
the Generation R Study, a small set of participants were additionally excluded because they had a 
different scan sequence. Finally, for each non-twin sibling set, one was randomly included to mini-
mize shared method variance bias. Flowcharts for participant inclusion and exclusion are available in 
Figure 10. The final samples consisted of 7722 and 2531 children from the ABCD and Generation R 
Studies, respectively.

Measures
ADHD symptoms
Children’s ADHD symptoms, reported by the primary caregiver, were measured with the CBCL 
(school-age version) (Achenbach, 2001), an inventory widely used for parent reports of children’s 
emotional and behavioral problems. The attention problem syndrome scale (20 items) measures 
inattention, hyperactivity, and impulsivity and has been previously shown to have clinical utility and 
to discriminate between ADHD cases and controls (Eiraldi et al., 2000). Attention problems were 
analyzed on a discrete scale (range 0–19). For the ABCD Study, we repeated the analysis using present 
ADHD diagnosis from a parent-reported and computerized version of the KSADS-5. This is a dimen-
sional and categorical assessment used to diagnose current and past psychiatric disorders according 
to the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) (Kaufman et al., 1997; 
Kobak, 2020).

Image acquisition
T1-weighted data were obtained on multiple 3T scanners in the ABCD Study (Siemens Prisma, General 
Electric (GE) 750 and Philips) and one scanner in the Generation R Study (GE 750). Standard adult-
sized coils were used for the ABCD Study and an eight-channel receive-only head coil for the Gener-
ation R Study. To acquire T1-weighted structural images, the ABCD Study used an inversion prepared 
RF-spoiled gradient echo scan with prospective motion correction while the Generation R Study used 
an inversion recovery fast spoiled gradient recalled sequence (GE option = BRAVO, TR = 8.77 ms, TE 
= 3.4 ms, TI = 600 ms, flip angle = 10°, matrix size = 220 × 220, field of view = 220 × 220 mm, slice 
thickness = 1 mm, number of slices = 230, ARC acceleration factor = 2). More details can be found 
elsewhere (Casey et al., 2018; Hagler et al., 2019; White et al., 2018). Of note, in the ABCD Study, 
a technical mistake occurred at one collection site, causing the hemisphere data to be flipped. This 
was fixed before processing.

Image processing
FreeSurfer (version 6.0.0) was used for both cohorts for image processing, which was run in-house to 
maximize comparability across cohorts. Processing involved (1) removal of non-brain tissue, (2) correc-
tion of voxel intensities for B1 field inhomogeneities, (3) tissue segmentation, and (4) cortical surface-
based reconstruction. Cortical surface maps were smoothed with a full width of a half-maximum 
Gaussian kernel of 10 mm. Within the ABCD Study, quality assessment was based on manual and 
automated quality control procedures and recommended inclusion criteria for structural data from 
the ABCD team (Hagler et al., 2019). Within the Generation R Study, quality assurance was manually 
performed by visually inspecting all images by trained raters, as previously described in the literature 
(Muetzel et al., 2019). Poor quality reconstructions were excluded.

Covariate assessment
The ABCD Study
All data were collected at baseline (child age 9–10 years). Age and sex were recorded at intake. 
Child race/ethnicity was reported by the primary caregiver and was categorized as White, Black, 
Hispanic, Asian, Other by the ABCD team. Household combined net income (<$50,000, ≥$50,000 
and <$100,000, ≥$100,000) and highest parental education (<high school, high school diploma/GED, 
some college, bachelor degree, postgraduate degree) were self-reported by the primary caregiver 
in the Parent Demographics Survey. Maternal age at childbirth was measured in the Developmental 
History Questionnaire. Tobacco and cannabis use during pregnancy were retrospectively reported 
by the mother (yes, no, I do not know) in the Developmental History Questionnaire. Caregiver 

https://doi.org/10.7554/eLife.78002
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psychopathology was obtained from the Total Problems Adult Self Report Syndrome Scale. The 
Wechsler Intelligence Scale for Children-6 Matrix Reasoning total scaled score was used as a proxy for 
IQ. We used the Euler number obtained from FreeSurfer as a proxy for head motion during the acqui-
sition. The Euler number quantifies the topological complexity of the reconstructed cortical surface, 
with holes in the reconstructed surface leading to lower Euler numbers.

The Generation R Study
Age and sex were measured based on medical records obtained at birth. Child ethnicity (western and 
non-western) was assessed based on the parents’ birth country, in line with the Statistics Netherlands 
bureau. Maternal age at childbirth was prospectively measured. Family income and highest maternal 
education were obtained through prospective self-reports by the mother and/or father at child age 
5 years. Maternal education was coded into low (no/primary education), intermediate (secondary 
school, vocational training), and high (Bachelor’s degree/University). Household net monthly income 
was classified as low (<2000 euros), middle (2000–3200 euros), and high (>3200 euros). Maternal post-
natal psychopathology, measured at child age 6 months, was prospectively reported by the mother 
based on the Brief Symptom Inventory questionnaire global severity index. Mothers prospectively 
reported smoking (never used, used) and cannabis use during pregnancy (no use vs. use during preg-
nancy). Non-verbal child IQ was measured at child age 5 years, based on the Snijders-Oomen Niet-
Verbale Intelligentie Test (Tellegen and Laros, 1998), a validated Dutch non-verbal intelligence test. 
The Euler number was used as a proxy for head motion during scanning.

Covariate selection
Similar covariates were grouped into confounding sets to minimize the number of tested models 
while including relevant confounders. Factors included in model 1 related to demographic and study 
characteristics (age, sex, ethnicity, and study site [for ABCD only]). Age and sex were selected as 
these have been previously adjusted for in previous neuroimaging studies of ADHD (Supplementary 
file 1a). Ethnicity was used as a proxy for differential health risk exposure among people of different 
ethnic groups. The study site was incorporated to account for location and scanner differences in the 
ABCD Study.

Further potential confounders were selected based on previous literature and with the aid of DAGs, 
as described in the Results. In model 2, variables indicating socioeconomic factors were included 
(parental education, household income, maternal age at childbirth). Household income and parental 
education are generally considered to measure childhood SES in health research (American Psycho-
logical Association, 2021). Maternal age at childbirth can additionally inform on the SES of the child 
by capturing part of the variance unexplained by income and education (e.g., younger mothers facing 
higher occupational challenges, highly educated mothers delaying childbirth Heck et  al., 1997). 
In model 3, maternal factors from the prenatal and postnatal period were grouped (tobacco and 
cannabis use during pregnancy and maternal psychopathology) to measure early life exposures which 
may impact a child’s brain and psychiatric development.

Statistical analyses
The R statistical software (version 4.1.0) was used for all analyses. Missing data on covariates were 
imputed with chained equations using the mice R package (Buuren and Groothuis-Oudshoorn, 2011). 
Linear vertex-wise analyses were performed with the QDECR R package (Lamballais and Muetzel, 
2021), with surface area/volume/thickness and ADHD symptoms as variables of interest. Correction 
for multiple testing was applied by using cluster-wise corrections based on Monte Carlo simulations 
with a cluster forming threshold of 0.001, which yields false-positive rates similar to full permutation 
testing (Greve and Fischl, 2018). A Bonferroni correction was applied to adjust for analyzing both 
hemispheres separately (i.e., p < 0.025 cluster-wise).

Our analyses for aim 1 involved three vertex-wise linear regression models, which progressively 
expanded to adjust for additional confounding factors. The first model focused on demographic 
covariates, the second on socioeconomic ones, and the third on maternal behavioral variables related 
to psychopathology and pregnancy exposures. These models were run for ADHD symptoms (in both 
the ABCD and Generation R Studies) and ADHD diagnosis (in the ABCD Study only, as sensitivity 
analysis). For the results, we primarily reported cluster sizes, that is, the area of the cerebral cortex that 
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was statistically significantly associated with ADHD symptoms. The sizes of the clusters were reported 
in cm2.

Two additional models, building upon model 3, were run to address aim 2, to illustrate the conse-
quences of adjusting for factors with a complex and unclear relation with brain structure and ADHD 
symptoms: IQ and head motion (analyses ran separately). Of note, given that IQ and ADHD were 
weakly correlated (rABCD = −0.11, rGENR = −0.14), multicollinearity was not expected.

Code availability
Code used to conduct this project is publicly available at https://github.com/LorenzaDA/ADHD_​
brainmorphology_confounding (Copy archived at swh:1:rev:95c01381fc7fad9bedb3b5918fb80b02b-
1dcbdfa) (Dall’Aglio, 2022) under CC by 4.0.
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