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Abstract Stellate ganglia within the intrathoracic cardiac control system receive and integrate 
central, peripheral, and cardiopulmonary information to produce postganglionic cardiac sympa-
thetic inputs. Pathological anatomical and structural remodeling occurs within the neurons of the 
stellate ganglion (SG) in the setting of heart failure (HF). A large proportion of SG neurons function 
as interneurons whose networking capabilities are largely unknown. Current therapies are limited 
to targeting sympathetic activity at the cardiac level or surgical interventions such as stellectomy, to 
treat HF. Future therapies that target the SG will require understanding of their networking capabil-
ities to modify any pathological remodeling. We observe SG networking by examining cofluctuation 
and specificity of SG networked activity to cardiac cycle phases. We investigate network processing 
of cardiopulmonary transduction by SG neuronal populations in porcine with chronic pacing-induced 
HF and control subjects during extended in-vivo extracellular microelectrode recordings. We 
find that information processing and cardiac control in chronic HF by the SG, relative to controls, 
exhibits: (i) more frequent, short-lived, high magnitude cofluctuations, (ii) greater variation in neural 
specificity to cardiac cycles, and (iii) neural network activity and cardiac control linkage that depends 
on disease state and cofluctuation magnitude.

Editor's evaluation
The paper thoroughly examines the role of the stellate ganglia in the control of cardiac rhythmicity. 
The empiric findings on stellate-ganglia-mediated regulation of cardiac activity in the presence of 
chronic cardiac failure, in particular, are translationally relevant and could be the basis of future drug-
based interventions.

Introduction
Neural control of cardiac function involves adaptive adjustment of mechanical and electrical activity to 
meet the organism’s demand for blood flow. This cardioneural control scheme consists of neural popu-
lations in the central, peripheral, and intrinsic cardiac nervous systems. Interactions among compo-
nents of the cardiac nervous system highlight that these neural populations work in concert, rather 
than as independent, singular processing units (Ardell et al., 2016). From an information processing 
standpoint, the operation of these interconnected neural networks has evolved to coordinate cardiac 
function on a beat-by-beat basis, producing the ‘functional’ outputs of this control scheme such 
as blood pressure, heart rate, or respiratory pressure (RP) and rate. Localized adaptations in the 
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cardioneural network in response to pathology can cause an evolution of global network properties 
with heightened risk of poor outcomes without measurable evidence from these functional outputs 
(Deyell et al., 2015; Kember et al., 2013).

There is a current focus on understanding cardioneural network processing within the stellate 
ganglion (SG), a collection of nerves serving as the major source of sympathetic input to the heart 
(Mehra et al., 2022). The SG (located in either side of the neck) operates as an integrative layer 
within the control hierarchy where it processes central cardiac inputs to the heart, receives cardiac 
feedback, and projects efferent control outputs to the heart. In pathological states such as heart 
failure (HF), morphological and neurochemical remodeling of SG neurons have been reported in 
both animal models (Ajijola et al., 2013; Han et al., 2012; Ajijola et al., 2015; Nakamura et al., 
2016) and in humans (Ajijola et al., 2020; Ajijola et al., 2012b). Due to its key role in proarrhythmic 
neural signaling and convenience in surgical accessibility, clinical interventions targeting SG are used 
to treat various cardiovascular conditions (Vaseghi et al., 2012; Vaseghi et al., 2017; Ajijola et al., 
2012a). It has also been established that an enhanced cardiac sympathetic afferent reflex contributes 
to sympathoexcitation and pathogenesis of HF (Wang and Zucker, 1996; Ma et al., 1997; Chen 
et al., 2015; Wang et al., 2017; Wang et al., 2008; Wang et al., 2014; Gao et al., 2005; Gao et al., 
2007). Despite these novel interventions and general understanding, SG clinical therapy will remain 
largely unexplored without greatly improved understanding of SG neuronal information processing 
in healthy versus pathological states. Prior studies examining the SG neural activity have been limited 
to in vivo extracellular recordings (Armour, 1983; Armour, 1986; Armour et al., 1998; Yoshie et al., 
2020; Yoshie et al., 2018).

Recently, we explored network processing of cardiopulmonary transduction by SG neuronal popu-
lations in healthy porcine, defining a novel metric ‘neural specificity’ that measures specificity of neural 
firing patterns to cardiopulmonary signals (Sudarshan et al., 2021). This metric is contrastive and a 
measure of the difference between the probability density function (PDF) of neural ‘sampling’ of a 
control target relative to the same in the random sampling limit. While the target, left ventricular 
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Figure 1. Event rate ‍(ER)‍ and entropy results between control and heart failure (HF) animals (horizontal axes). 
White triangles indicate data points. (A, B) HF group animals show higher ‍ERMEAN ‍ and ‍ERSTD‍ compared to control 
group ‍(p < 0.05)‍. (C, D) HF group animals show higher entropy variability (‍EntropySTD‍, Equation 2, ‍p = 0.008‍, in 
(D)), and no difference in ‍EntropyMEAN ‍ (Equation 2, ‍p = 0.08‍, in (C)). For ‍ER‍, p values are from two-sample t-test 
or Wilcoxon rank-sum tests, depending on normality. For entropy, p-values are from linear mixed effects (LMEs, 
Equation 2) detailed in Materials and methods.
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pressure (LVP) considered here is periodic this is not a necessary condition for use of the specificity 
metric; it is also applicable to aperiodic signals in an event-based fashion.

In the current work, we investigate differences in information transfer between control and HF 
porcine models with multi-channel electrode arrays. We first uncover network-level spatiotemporal 
dynamic signatures by quantifying short-lived high cofluctuation events in neural activity. Second, 
we study coherence and consistency in the evolution of neural specificity with respect to the control 
target. Third, we expose differences in neural specificity and its coherence and consistency, via 
entropy, inside and outside cofluctuation events. These differences are considered for control and HF 
models and quantify differences in the maintenance of function between these groups.

Results
Neural activity was measured over 16 channels along with simultaneous LVP for approximately 6 hr of 
continuous recordings per animal. Representative neural activity recording for a single channel, LVP, 
and representative spike trains are displayed for control and HF animals in Figure 6A. A total of 17 York-
shires (6 control, 11 HF; Figure 6D) underwent the terminal experiment described in Figure 6E. Upon 
the signal processing pipeline described above, we computed two event rate measures per animal 
as the final product representing the cofluctuations (‍ERMEAN ‍, ‍ERSTD‍). As the metric representing the 
neural specificity, we computed two entropy measures per channel (‍EntropyMEAN‍, ‍EntropySTD‍), resulting 
in a total of 16 ‍EntropyMEAN‍ and 16 ‍EntropySTD‍ per animal. Finally, we used these metrics to quantify: (i) 
neural population dynamics (i.e., ‍ERMEAN‍, ‍ERSTD‍), (ii) neural specificity to target LVP, or cardiac control 
(i.e., ‍EntropyMEAN‍, ‍EntropySTD‍), and (iii) linkage between neural population dynamics and specificity (i.e., 

‍EntropyMEAN,EVENT ‍, ‍EntropySTD,EVENT ‍).

SG in HF exhibits high event rate
Figure  1A-B shows event rate outcomes grouped by HF models and controls. HF animals show 
significantly higher event rates compared to control animals for both ‍ERMEAN ‍ (‍p = 0.011‍, effect size 
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Figure 2. Cofluctuation histograms (calculated from mean or standard deviation of sliding spike rate, referred as 

‍CofluctuationMEAN ‍ and ‍CofluctuationSTD‍, respectively) and log-normal fits for each animal group. ‍µFIT ‍ and ‍σFIT ‍ are 
the respective mean and standard deviation (STD) of fitted distribution, used for 68% confidence interval bounds. 
(A, B) Control animals have narrower bounds and represent a better fit to log-normal distribution. (C, D) Heart 
failure (HF) animals display more heavily skewed distributions that indicate heavy tails.
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‍d = 1.59‍, ‍ERMEAN,HF = 0.0012evts/s‍, ‍ERMEAN,Controls = 0.0002evts/s‍) and ‍ERSTD‍ (‍p = 0.023‍, ‍d = 1.48‍, 

‍ERSTD,HF = 0.001evts/s‍, ‍ERSTD,Controls = 0.0001evts/sec‍). The cofluctuation time series for each animal is 
depicted in Figure 3, where the event time series are computed. The ‘events’ or short-lived intervals 
where high cofluctuations exist are shown as level 1, leading to the event time series in Figure 4. We 
observe that the cofluctuations are more localized in HF animals with greater heterogeneity.

HF animal models have heavy-tailed cofluctuation distributions
We qualitatively explored the statistical distribution of the cofluctuation time series. Figure 2 shows 
log-normal fits for each animal group for ‍CofluctuationMEAN‍ and ‍CofluctuationSTD‍ time series, along with 
68% confidence interval (CI) bounds, mean of fit ‍(µFIT)‍ and standard deviation of fit ‍(σFIT)‍. Control 
animals (Figure 2A–B) exhibit narrow CIs, lower ‍(µFIT)‍ and ‍(σFIT)‍ values, and tighter log-normal fits. 
In contrast, HF animals (Figure 2C–D, Figure 3, Figure 4) exhibit wider CIs, higher ‍(µFIT)‍ and ‍(σFIT)‍ 
values, and poorer log-normal fits. Of note, HF animals have heavy tails ranging further outside of 
confidence bounds.

SG shows greater variation in neural specificity to LVP in HF
We next examined the neural specificity to LVP, quantified by entropy measures in Equation 2. 
Figure 1C–D shows ‍EntropyMEAN‍ and ‍EntropySTD‍, grouped by animals. Compared to the control group, 
SG of HF animals exhibited significantly higher ‍EntropySTD‍ (variation in entropy, Figure 1D, adjusted 

‍β = 0.01‍ n.u., 95% ‍CI = ±0.01‍ n.u., ‍dRM = 0.73‍, ‍p = 0.009‍). However, there is no significant difference in 

‍EntropyMEAN‍ (mean entropy) between animal groups. (Figure 1C, ‍β = 0.04‍ n.u., ±0.05 n.u., ‍dRM = 0.82‍, 

‍p = 0.087‍).
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Figure 3. Cofluctuations time series at convergent ‍C‍ values for each animal. (A) Cofluctuations from coactivity calculation from mean of sliding spike 
rate for control animals. (B) Cofluctuations from coactivity calculation from mean of sliding spike rate for heart failure (HF) animals. (C) Cofluctuations 
from coactivity calculation from standard deviation of sliding spike rate for control animals. (D) Cofluctuations from coactivity calculation from standard 
deviation of sliding spike rate for HF animals.
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Neural network activity and cardiac control linkage depends on animal 
group and cofluctuation magnitude
We explored the nature of cardiac control inside and outside short-duration regions of high cofluctu-
ation, that is, ‘events’, characterized by strongly coherent stellate neural activity patterns. Insight into 
how these events may be relevant to cardiac control is considered here in the context of how control 
differs inside and outside events and termed ‘event entropy’.

First, we studied the extent to which event entropy differs inside and outside of events (Figure 5A, 
C, event type as fixed effect in Eq. (2)). Second, we studied whether event entropy is sensitive to the 
animal type characterized here as control or HF (Figure 5B, D, animal type as fixed effect in Eq. (9)).

Regardless of the animal group, ‍EntropyMEAN,NON−EVENT ‍ significantly exceeds ‍EntropyMEAN,EVENT ‍ 
(Figure  5A, ‍β = 0.007‍ n.u., ±0.004 n.u., ‍dRM = 0.07‍, ‍p < 0.001‍). Similarly, ‍EntropySTD,NON−EVENT ‍ signifi-
cantly exceeds ‍EntropySTD,EVENT ‍ (Figure 5C, ‍β = 0.01‍ n.u., ±0.002 n.u., ‍dRM = 0.29‍, ‍p < 0.001‍). An exam-
ination of the contribution of each animal group showed no significant difference between groups 
for ‍EntropyMEAN,EVENT ‍ (Figure 5B, ‍β = 0.06‍ n.u., ±0.0 n.u., ‍dRM = 1.13‍, ‍p = 0.07‍). On the other hand, HF 
animals exhibited an increase in ‍EntropySTD,EVENT ‍ compared to control animals (Figure 5D, ‍β = 0.02‍ n.u., 
±0.02 n.u., ‍dRM = 0.75‍, ‍p = 0.012‍). These analyses imply that the linkage between neural network 
function and cardiac control differ inside and outside of cofluctuation events and between animal 
groups in the SG.
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Figure 4. Events time series at convergent ‍(C, T)‍ pairs for each animal. (A) Events from coactivity calculation from mean of sliding spike rate for control 
animals. (B) Events from coactivity calculation from mean of sliding spike rate for heart failure (HF) animals. (C) Events from coactivity calculation from 
standard deviation of sliding spike rate for control animals. (D) Events from coactivity calculation from standard deviation of sliding spike rate for HF 
animals.
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Discussion
In this work, we performed a novel investigation of SG neural population dynamics and neural spec-
ificity to continuous LVP in control and HF Yorkshire pigs. The methods in this work are intended to 
measure the way population neural activity relates to closed-loop control of a target and how that 
computation changes in diseased states. This was applied here to closed-loop control of cardiac 
output where the assumed target was LVP.

The methods in this work involved.

•	 Neural specificity: A measure of bias in neural activity toward ’sampling’ of specific target states. 
The target specificity is a contrastive measure that compares neural sampling of a target relative 
to random sampling of the same target.

•	 Neural specificity coherence: Entropy of neural specificity was used to measure coherence of 
neural specificity as a function of time.

•	 Cofluctuation events: The degree of coactivity in the dynamics of the mean and its standard 
deviation was measured between pairs of channels from minimum to maximum physical sepa-
ration and this exposed short-duration ‘events’ when cofluctuation was unusually high.

•	 Event entropy: Functional significance of cofluctuation events was evaluated by comparing 
differences in the degree of neural specificity coherence inside and outside of events.

Prevalence of short-lived cofluctuations in SG activity in HF
In prior work, we identified neural specificity toward near-peak systole of the LVP waveform in control 
animals (Sudarshan et al., 2021). Application of this metric and the construction of a related coher-
ence measure provided insight into differences in neural processing dynamics between control and 
HF animals. Our results show that cardiac control exerted within diseased states has greater variation 
in entropy and thus less consistency for HF animals compared to control animals. This finding may 
extend to other pathologies for which the cardiac control hierarchy is disrupted.

Neural network activity is linked to cardiac control
Based on the effect size ‍(dRM)‍, event entropy magnitude appears to be higher with greater variation 
observed in HF animals compared to control animals (Figure 5B-D). This implies a level of increased 
unpredictability and increased difficulty in cardiac control for animals in HF over control animals.
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Figure 5. Event entropy Equation 2 investigation involved consideration of entropy values inside and outside of 
event regions. (A) There is significant difference between in ‍EntropyMEAN,EVENT ‍ and ‍EntropySTD,EVENT ‍ across all animals 

‍(p = 0.0006)‍. (B) There is no significant difference in ‍EntropyMEAN,EVENT ‍ between animal groups ‍(p = 0.07)‍. (C) There 
is significant difference in ‍EntropySTD,EVENT ‍ between events and non-events across all animals ‍(p < 0.0001)‍. (D) There 
is significant difference in ‍EntropySTD,EVENT ‍ between animal groups ‍(p < 0.012)‍.

https://doi.org/10.7554/eLife.78520


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Physics of Living Systems

Gurel, Sudarshan et al. eLife 2022;11:e78520. DOI: https://​doi.​org/​10.​7554/​eLife.​78520 � 7 of 24

A limitation of this result is that the effect sizes for event versus non-event comparisons are small to 
medium, which potentially indicates a larger study is necessary to better understand the physiological 
contributions from event type. Another limitation of the study lies in the absence of multiple-class 
pathologies (i.e., different HF models or other reproducible models) and in the absence of stratified 
pathologies (i.e., animal models with varying degrees of HF). Measurement of these neurocardiac 
metrics during slow, quasi-static application of clinically relevant stressors (Akeju and Brown, 2017; 
Chamadia et  al., 2019) should provide unique opportunities to investigate unresolved questions. 
Future studies should focus on expanding the data set to examine how these metrics change with 
varying pathologies or varying disease models. We also cannot exclude possible effects of general 
anesthesia, open chest, and open pericardial effects on our findings, though the effects are likely 
consistent across the groups studied in the same manner.

Conclusion
In this study, we looked, for the first time to our knowledge, at long-term studies of in vivo cardiac 
control in baseline states. The baseline states provide unique signatures that differentiate animals 
with HF and controls. We discovered the inputs (i.e., neural signals) and outputs (i.e., blood pressure) 
are linked, which led us to develop metrics to analyze the dynamical state of this networked control 
(Gurel et al., 2022). The primary observation has been that event-based processing within the SG 
and its relationship to cardiac control is strongly modified by HF pathology. Our analysis is pointing 
to HF being best considered as a spectrum rather than a binary state. The magnitude of cofluctuation 
and neural specificity may give us a measure of the degree of HF and insight into the extent to which 
cardiac control is compromised with respect to neural specificity and/or cofluctuation. Future therapies 
may benefit from being able to infer the degree of HF in terms of neural markers as represented in this 
work, in a less invasive way. Intriguing connections involve the alignment of our work with a growing 
consensus in neuroscience. Spatiotemporal changes in neural activity and linkages with control targets 
are associated with behavioral changes and the onset and development of specific pathologies. For 
instance, spatiotemporal brain-wide cofluctuations were reported to reveal major depression vulner-
ability (Hultman et al., 2018). Neural ensembles were linked to visual stimuli in mice (Miller et al., 
2014). Another study reported that brain’s functional connectivity is driven by high-amplitude cofluc-
tuations and that these cofluctuations encode subject-specific information during experimental tasks 
(Zamani Esfahlani et al., 2020). Similar cofluctuations were also reported to inform olivary network 
dynamics in the form of state changes in learning new motor patterns in mice (Wagner et al., 2021). 
Unique co-activation patterns in spontaneous brain activity indicated a signature for conscious states 
in mice (Gutierrez-Barragan et al., 2022). Global brain activity has also been linked to higher-level 
social behaviors (Mague et al., 2022). These parallel conclusions in cardiac and neuroscience studies 
indicate similar experimental methods used to measure neural integration relative to control targets. 
Such measurements may be instrumental to design and assess the efficacy of neurally based clinical 
interventions both at the level of the brain and the SG.

Materials and methods
Animal experiments
Figure  6 presents the conceptual overview and study design. The study was performed under a 
protocol approved by the University of California Los Angeles (UCLA) Animal Research Committee 
(ARC), in compliance with the UCLA Institutional Animal Care and Use Committee (IACUC) guide-
lines and the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals 
(Protocol: ARC 2015-022). Figure  6D–E summarizes the studied animal groups and experimental 
pipeline. Male Yorkshire pigs ‍(n = 17)‍ weighing ‍57.5 ± 12kg‍ were studied as control ‍(n = 6)‍ and HF 
model ‍(n = 11)‍ groups. For SG neural data collection, the animals were sedated with tiletamine and 
zolazepam (Telazol, 4–8 mg/kg) intramuscularly, intubated, and maintained under general anesthesia 
with inhaled isoflurane (2%). Continuous intravenous saline ‍(8 − 10ml/kg/h)‍ was infused throughout the 
protocol and animals were temperature maintained using heated water blankets (‍37 − 38oC‍).

Median sternotomy by an incision down the midline of the entire sternum was performed to have 
a wide view of the thoracic region (Figure 6A). The pericardium was opened to expose the heart 
and both stellate ganglia. After surgical procedures, animals were transitioned to alpha-chloralose 

https://doi.org/10.7554/eLife.78520
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anesthesia (‍6.25mg/125ml‍ for bolus, ‍20 − 35ml/kg‍ or titrated to effect for maintenance) with supple-
mental oxygen ‍(2L/min)‍ for in vivo neural recordings from the left SG. The left carotid artery was 
exposed, and a pressure catheter (SPR350, Millar Inc, Houston, TX) was inserted to continuously 
monitor LVP. Additionally, three-lead surface electrocardiogram (ECG) and RP were monitored contin-
uously, and sampled at ‍1kHz‍. Arterial blood gas contents were monitored at least hourly to ensure 
appropriate experimental conditions. At the end of the protocol, animals were euthanized under deep 
sedation of isoflurane and cardiac fibrillation was induced.

The HF model was created with implanted pacemakers (Viva Cardiac Resynchronization Therapy–
Pacemaker, Biotronik, Lake Oswego, OR), as previously described (Hori et al., 2021), and summa-
rized in Figure 6D. After implantation, animals had a recovery period of 48 hr and chronic bigeminy 
pacing was initiated from the right ventricle. This process produces premature ventricular contrac-
tions (PVCs) which lead to cardiomyopathy, also known as PVC-induced cardiomyopathy (Sadron 
Blaye-Felice et  al., 2016). To confirm the progression of cardiomyopathy, echocardiography was 
performed, before and after implantation. After the animals have been confirmed to have cardio-
myopathy (referred as HF animals) at 8 weeks after implantation, surgical procedures described in 
Figure 6E were performed, and extracellular recordings were obtained from the left SG, shown in 
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Figure 6A. It should be noted that a subset of HF animals ‍(n = 6)‍ underwent an intervention, epicar-
dial application of resiniferatoxin (RTX) to study its effects on the progression of cardiomyopathy as 
a separate study. However, no significant effect of RTX was noted in any of the echocardiographic, 
serum, physiological, and autonomic tests (Hori et al., 2021). Hence, in this work, we combined RTX-
treated HF animals with untreated HF animals.

We confirmed the RTX depleted the afferents by analyzing both structural and functional data (Hori 
et al., 2021). Structural depletion was proven with immunohistochemistry studies of the left ventricle 
(LV) and T1 dorsal root ganglion (DRG). Calcitonin gene-related peptide (CGRP)-immunoreactive 
fibers, a marker of sensory afferent nerves, was significantly reduced within the nerve bundles located 
in the LV for the RTX-treated group. Furthermore, the depletion of cardiac transient receptor potential 
vanilloid-1 (TRPV1) afferents was confirmed by the significant reduction of CGRP-expressing neurons 
in DRG. Functional depletion was proven by the response to the agonist of TRPV1 channel bradykinin 
and capsaicin. The RTX-treated group had a significantly lower LV pressure (LVP) response in the appli-
cation of bradykinin and capsaicin, indicating that elimination of cardiac sympathetic afferent reflex 
was accomplished by RTX application in each case.

SG neural recordings and experimental protocol
For each animal, a 16-channel, linear, single-shank microelectrode array (LMA, Microprobes, Gaith-
ersburg, MD) was inserted in the craniomedial pole of the left SG (Figure 6A). The LMA consisted of 
a polyimide tube of ‍0mm‍ that contains recording sites, and a stainless steel tip of ‍1mm‍ (Figure 6B). 
Polyimide tube hosted a total of 16 platinum-iridium recording sites with ‍25µm‍ radius, separated by 

‍500µm‍ intra-electrode spacing. A microelectrode amplifier (Model 3600, A-M Systems, Carlsborg, 
WA) was used to amplify (gain of ‍1000 − 2500‍) and filter (‍300Hz − 3kHz‍ band-pass filter) the acquired 

16

Cont. time matrix

i=1

n
H(X) = - P(xi) log P(xi)

Neural
SpecificityFiring Rate

Coactivity

Bootstrapping

Cofluctuation

Entropy

Unsupervised Spike Detection

16

16 16

16

Time series

Min. CI widthEv. rate

P
D

F

t

LV
P

 [
m

m
H

g]

t

[m
V

]
[p

ks
/s

]

t

r

ch
 p

ai
rs

t

r 
>

 th
 [

%
]

t

t

LV
P

 [
m

m
H

g]

16

1. ENTROPYMEAN
(16 per animal)
2. ENTROPYSTD
(16 per animal)

1. ERMEAN
(1 per animal)
2. ERSTD
(1 per animal)

Event Rate
# Events / Time

t

[m
V

]

Figure 7. Signal processing block diagram.

https://doi.org/10.7554/eLife.78520


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology | Physics of Living Systems

Gurel, Sudarshan et al. eLife 2022;11:e78520. DOI: https://​doi.​org/​10.​7554/​eLife.​78520 � 10 of 24

signals. The signals were transferred to a data acquisition platform (Power 1401, Cambridge Elec-
tronic Design, Cambridge, UK) and recorded using Spike2 software (Cambridge Electronic Design, 
Cambridge, UK). All data were processed in Python and MATLAB. Increases in spike rate occur within 
90 min of electrode insertion, hence a stabilization time of approximately 3 hr is required after the 
insertion takes place (Sudarshan et al., 2021).

It should be noted that our study deals with multi-electrode recordings of the closest neural popu-
lations to the electrode array. The earliest fundamental studies probing into cardiac nervous system 
used single-unit recordings, for which the target neurons should be isolated and appropriate low-
impedance conductors should be used for obtaining high-quality neural signals. Unlike these early 
studies, we used multi-unit (16-channel) electrode arrays to monitor the ensemble behaviors of SG 
neural populations. This experimental shift from single-unit to multi-unit recording has gained interest 
in the recent years in neurocardiology and neuroscience communities, offering an experimental view 
to the ensemble behaviors of neural populations (Gurel et al., 2022).

Signal processing and time-series analysis
Signal processing pipeline
A high-level description of the signal processing pipeline is in Figure 7. In summary, Pearson’s cross-
correlation is used to construct the coactivity matrix as the collection of cross-correlations between 
all possible channel pairs. The coactivity matrix is computed at each timestamp and associated with 
a window of past neural activity (Figure 7, ‘Coactivity’ block). This computation yields a causal sliding 
window of coactivity matrices referred to as the ‘coactivity time series’.

Discrete events of high cofluctuation occurring in the coactivity time series are defined using two 
thresholds: (i) the coactivity time series is mapped to a univariate ‘cofluctuation time series’ where, 
at each timestamp, the percentage of coactivity matrix members exceeding a threshold ‍C‍ is found, 
and (ii) discrete ‘events’ are defined as those timestamps when up-crossings of the cofluctuation time 
series through a second threshold ‍T ‍ occur. The method used to choose the ‍(C, T)‍ pair, detailed in this 
section, generates discrete event timestamps and allows for the computation of the event rate ‍(ER)‍ 
mean and standard deviation ‍(STD)‍ statistics, which are used later in the statistical analyses. These 
cofluctuation events are regions that expose shifts in neural processing within the SG. These events 
are linked to function through the consideration of how neural specificity differs inside and outside 
cofluctuation events in control and HF animals.

The relationship between a control target such as LVP and neural activity at each channel is quan-
tified via a continuously varying neural specificity (Sudarshan et al., 2021; Figure 7, ‘Neural Speci-
ficity’ block). The neural specificity is contrastive since it is the difference between the PDF of neural 
sampling of a target and the same found from random sampling. The neural activity in the SG is known 
to be a mixture of afferent, efferent, and local circuit activity derived from local circuit neurons with 
inputs from multiple sources. It in this sense that we define neural computation; when we observe 
the specificity to the target operating above or below the random sampling limit. Neural specificity 
is a multivariate signal measured across multiple target states at each channel as a function of time. 
This is reduced, for each channel, to a univariate time series by constructing its coherence in terms of 
entropy. The evolution of coherence in time provides access to the dynamics or consistency of neural 
computation. Detailed information about each signal processing step is provided in this section. 
Appendix 1 contains material detailing the mathematical aspects of the analysis. As stated in the 
signal processing block diagram, our outcome measures are event rate, entropy, and event entropy. 
These metrics are developed in Appendix 1.

Unsupervised spike detection
We use a competitive, adaptive threshold, unsupervised approach for neural spike detection 
(Sudarshan et  al., 2021). The algorithm initializes plus and minus barriers at the plus or minus 
signal maximum amplitude. The barriers are respectively lowered or raised until the plus or minus 
barrier ‘wins the competition’ and is the first to yield a minimal number of crossings. Detected spike 
regions are masked as a zero signal and the process repeated with barrier sizes further reduced in 
subsequent iterations. The competition is halted when one barrier is first to reach a minimal barrier 
height.

https://doi.org/10.7554/eLife.78520
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Code availability
Supporting Apache License codes are at GitHub (https://github.com/Koustubh2111/Cofluctuation-​
and-Entropy-Code-Data; copy archived at swh:1:rev:1ca5e9ce38151715cfa1aeb3d38f3bdbbf796a05; 
Koustubh, 2022).

Data set and statistical analysis
Statistical analyses are performed in MATLAB Statistics & Machine Learning Toolbox (version R2021a) 
and Python SciPy Library (version 3.8.5).

Sample size breakdown
Two channels were excluded from two animals due to insufficient signal quality. Within event rate anal-
yses, all animals had sufficient neural data (‍n = 17‍ animals, 6 control, 11 HF). Entropy analyses for three 
HF animals were excluded due to insufficient LVP quality resulting in ‍n = 14‍ animals (6 control, 8 HF).
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Outcome measures
Within the signal processing pipeline described in Figure 8, the event rate measures, ‍ERMEAN‍ and ‍ERSTD‍ 
, are used to summarize the cofluctuation time series for each animal. A mean and standard devia-
tion of the 16 channel-wise entropy time series results in 32 measures of entropy per animal (16 for 

‍Entropy
MEAN‍ and 16 for ‍Entropy

STD‍ per animal).

Statistical analysis
For variables that result in a single number per animal (such as ‍ERMEAN‍ and ‍ERSTD‍, Figure 1A–B), inde-
pendent samples t-tests or Wilcoxon rank-sum tests are respectively used for normal or non-normal 
data (normality assessed by Shapiro-Wilk) to quantify differences between animal groups.

For variables that have multiple variates per animal (such as ‍Entropy
MEAN‍ calculated from multiple 

channels, Figure 1C–D), mixed effects models are constructed in the MATLAB Statistics and Machine 
Learning Toolbox (Pinheiro and Bates, 1996; MATLAB, 2021). ‍Entropy

MEAN‍ and similarly ‍EntropySTD‍ 
(not shown) and ‍EntropyMEAN,EVENT ‍ and similarly ‍EntropySTD,EVENT ‍ (not shown) are modelled via mixed 
effects as, ‍1|‍ indicates random effects,

	﻿‍ EntropyMEAN = Animal Type + (1|channel) + (1|animal ID)‍� (1)

	﻿‍

EntropyMEAN,EVENT = Event Type + Animal Type + CoactivityType + (1|channel) + (1|animal ID) +

(1|EntropyMEAN) ‍�
(2)

In Equation 2, and depicted in Figure 1C–D, the computed metric ‍EntropyMEAN ‍ is the outcome 
variable; the animal type ‍(control/HF)‍ a fixed effect; and the channel number ‍(1 − 16)‍ and the ‍animal ID‍ 
random effects. The analysis of ‍EntropySTD‍ follows by replacing ‘MEAN’ with ‘STD’.

In Equation 2, the model ‍EntropyMEAN,EVENT ‍ is shown and refers to entropy mean data within event 
regions where the model for mean entropy data outside event regions is ‍EntropyMEAN,NON−EVENT ‍. In this 
way, models are constructed for event/non-event, mean/std entropy as the outcome variable; the 
event type (event/non-event), the animal type (control/HF), and coactivity computation type (mean/
std) are fixed effects; and channel number, animal ID, and entropy (type matching the outcome entro-
py’s type, mean, or std) are random effects.

For all analyses using mixed effects modeling, the ‍β‍ coefficients (fixed effects estimates), ‍p‍-values, 
effect sizes (‍dRM‍ based on repeated measures Cohen’s ‍dRM‍; Lakens, 2013), 95% CIs of ‍β‍ coefficients 
(lower, upper bounds) are reported in results in (‍β‍, ‍±CI ‍, ‍dRM‍, ‍p‍) format. The ‍β‍ coefficients indicate the 
adjusted differences (units matching the outcome variable’s unit) in one group compared to the other. 
For analyses with independent samples, p-values and independent samples effect sizes (‍d‍, based 
on Cohen’s ‍d‍) are reported in ‍(p, d)‍ format. For all analyses, a two-sided ‍p < 0.05‍ denoted statistical 
significance.
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Appendix 1
Cofluctuation and event rate definitions
Coactivity matrix
A 16×16 correlation matrix, 4×4 version is shown in Figure  8B for ‍n = 4‍ channels, is used to 
investigate spatial coherence among neural populations in different regions of the SG spanned by 16 
electrodes (Appendix 1—figure 1). The coactivity matrix at each timestamp is found from Pearson’s 
cross-correlation between all possible pairs of spike rate, causal channel, sliding mean, and standard 
deviation. The sliding mean and standard deviation of spike rate are ‍SpikeRateMEAN ‍ and ‍SpikeRateSTD‍, 
and are on the y-axis of Figure 8A. These are referred to as ‘spike rate’ in what follows when both 
are implied. To fix ideas, consider Pearson’s cross-correlation coefficient ‍(R)‍ between channels 1 
and 2, labeled as R12: namely, the red and blue windows, respectively, in Figure 8A. In the coactivity 
matrix depicted in Figure 8B, there are ‍n = 4‍ channels, hence ‍n − 1 = 3‍ super-diagonals. These are 
vertically stacked in Figure 8C at each timestamp beginning with the first super-diagonal as R12, 
R23, and R34. In this way, adjacent channels are placed at the bottom followed by super-diagonals 
corresponding to two and three channels of separation. The super-diagonal of the 16-channel LMA 
electrode correlation matrix has ‍n = 16‍ channels separated by ‍500µm‍ and ‍n(n − 1)/2 = 120‍ possible 
pairwise correlations (see Appendix 1—figure 5 for an example). This yields 120 rows in the stacked 
version of the coactivity matrix at each timestamp analogous to the same visualized in Figure 8C for 
‍n = 4‍ channels.

Cofluctuations and event rate
The univariate cofluctuation time series is the percentage of coactivity matrix members, at each 
timestamp, that exceed a threshold Pearson’s ‍R > C‍, depicted in Figure 8D. Discrete events are 
considered to begin at a time of up-crossing of the univariate cofluctuation time series through 
a threshold ‍T ‍. Each event ends at a down-crossing some time later, as shown in Figure  8E. 
These discrete events capture spatiotemporal zones of high SG coactivity. Up-crossing times are, 
respectively, converted to an event rate (‍ERMEAN, ERSTD‍) for the (‍SpikeRateMEAN ‍, ‍SpikeRateSTD‍) over a 
duration

	﻿‍ (ERMEAN, ERSTD) = (NMEAN,NSTD)
EventsDuration‍� (A1)

where event rate, ‍ER‍, has units ‍1/s‍ and ‍(NMEAN, NSTD)‍ are the number of up-crossings within the 
‍EventsDuration‍ considered.

Cofluctuation probability distribution
The cofluctuation time series at each threshold ‍C‍ (as in Figure 8D) qualitatively approximates a log-
normal distribution. The log-normal fits of cofluctuation time series (Figure 2) are obtained using 
Python SciPy package, with statistics and random numbers module (​scipy.​stats) (Virtanen et  al., 
2020).

Bootstrapping and selection of convergent thresholds
The event rate is calculated based on a pair of thresholds ‍(C, T)‍. The first threshold (‍C‍, Figure 8D) 
is used to reduce the coactivity time series of matrices to a univariate cofluctuation time series. The 
univariate series is the percentage of coactivity matrix entries exceeding ‍C‍ at each timestamp. The 
cofluctuation time series is then used to define regions of high cofluctuation based on intervals where 
the time series exceeds a second threshold ‍T ‍. These regions are discrete ‘events’ that begin and 
end when the cofluctuation time series, respectively, up- and down-crosses through ‍T ‍ (Figure 8D). 
Bootstrapping of the event up-crossing timestamps is used to construct the event rate histogram of 
a threshold pair ‍(C, T)‍.

https://doi.org/10.7554/eLife.78520
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Appendix 1—figure 1. Cofluctuation bootstrapping pipeline for individualized event rate (ER) for each animal—
Part I. (A) Coactivity matrix and cofluctuation time series for a cofluctuation threshold and event threshold pair 

‍(C, T)‍. (B) Cofluctuation time series with depicted events (red triangles are up-crossing timestamps) for a range of 

‍(C, T)‍ pairs. Panel A is further explained in Appendix 1—figure 5.
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Appendix 1—figure 2. Cofluctuation bootstrapping pipeline for individualized event rate (ER) for each animal—
Part II. (A) Bootstrapped histogram of ERs for a single ‍(C, T)‍ pair with 95% confidence interval ‍(CI)‍ width. 
(B) Threshold pair ‍(C, T)‍ is chosen for an animal given non-zero ‍ER‍ and ‍ER‍ convergence. Depicted ‍CI ‍ widths are 
found at all of the depicted ‍18‍ pairs available on the axes grid. (C) List of ‍(C, T)‍ pairs that show ‍ER‍ convergence 
with ‍CI ‍ widths for each animal.

These histograms lead to a convergent choice of threshold pairs ‍(C, T)‍. The convergent ‍(C, T ‍) pair 
is taken as the location in ‍(C, T)‍ space where the CI width shows apparent convergence. An upper 
bound on ‍(C, T)‍ is imposed so that there is sufficient data to compute the desired statistics.

The procedure is visualized in Appendix  1—figure 1A using a surrogate coactivity matrix ‍R‍. 
Univariate cofluctuation time series are created from a range of thresholds ‍C‍ that inclusively vary over 
60–90% with 15% increments. Discrete events are determined, shown as red up-crossing triangles 
in Appendix 1—figure 1A–B, for each of the thresholds ‍C‍ and considered over an inclusive range 
40–90% with 10% increments of event thresholds ‍T ‍. Bootstrapped events provided the associated 
‍ER‍ histogram of each ‍(C, T)‍ threshold pair and desired 95% CI width of each animal (Appendix 1—
figure 2). A convergent ‍(C, T)‍ pair for an animal is provided in Appendix 1—figure 2B ‍(C, T = 0.9, 90)‍, 
that converged to a 95% CI width of 0.005. Following this approach, convergent ‍(C, T)‍ pairs and 
bootstrapped CI widths are listed for each animal in Appendix 1—figure 2C.

Using these individualized convergent ‍(C, T)‍ pairs, original (i.e., not bootstrapped) data are used to 
calculate event rates for each animal. Note that event rates are calculated from both spike rate mean 
and standard deviation coactivity matrices, and referred to as ‍ERMEAN ‍ and ‍ERSTD‍. These are then 
used in statistical analyses (one ‍ERMEAN ‍ and one ‍ERSTD‍ per animal) as shown in Figure 7. A similar 
procedure was performed in the literature using neuroimaging time series data based on Pearson’s 
‍R‍ (Zamani Esfahlani et al., 2020); however, the threshold selection process was qualitative. In this 
work, we have developed a quantitative approach for threshold selection.

Neural specificity
The neural specificity metric (Sudarshan et al., 2021), Appendix 1—figures 3 and 4, is used to 
evaluate the degree to which neural activity is biased toward control target states taken here as LVP. 
Briefly, this metric is computed in three stages

https://doi.org/10.7554/eLife.78520
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1.	 Neural sampling: The value of the target state (LVP) is ‘sampled’ at the timestamp of each 
spike occurrence. This sampling is assumed to approximate a quasi-stationary distribution 
over a causal (backward in time) sliding window of spiking activity that is updated at each new 
timestamp. The distribution is approximated as a normalized and sliding histogram of neurally 
sampled target states (LVP).

2.	 Random sampling: The normalized, sliding random sampling histogram is found at each spike 
occurrence in (1), but based on all available LVP samples within the same causal window refer-
enced in (1), which approximates the random sampling limit.

3.	 Neural specificity: The normalized, sliding random sampling histogram (2) is subtracted from its 
neural sampling counterpart (1) to form the neural specificity contrastive measure.

Subtraction of the random sampling histogram from the neural sampling histogram allows for the 
discovery of the degree to which neural activity is biased, or specific, toward sampling control target 
states (LVP here) relative to random sampling. To explain the construction of the metric with LVP, a 
representative window is shown in Appendix 1—figure 3A with the spikes shown as green dots over 
LVP waveform. The following steps outline the construction of the neural specificity metric, ‍A‍, for a 
representative LVP window

1.	 Neural sampling: Following (Sudarshan et al., 2021), the normalized sliding window histogram 
of neurally sampled ‍LVPj‍ at all spike times tj and taken over ‍M ‍ bins is defined for bin ‍k‍ as

	﻿‍
H(SLVPj)k =

h(SLVPj)k

Σk=m
k=1 h(SLVPj)k ‍�

(A2)

(Equation A2) approximates the distribution of neural sampling of the target LVP at the green 
dots over a causal window in Appendix 1—figure 3A. The resulting normalized histogram 
shown for one timestamp (green line) in Appendix 1—figure 3.

2.	 Random sampling: The normalized sliding window histogram at the random sampling limit of 

‍LVPj‍ is computed as in (1), but based on all LVP samples within the same causal window and 
defined as ‍H(LVPj)k‍. This is depicted as sampling of the pink line in Appendix 1—figure 3A 
over the same causal window used to describe neural sampling of LVP. The result is shown for 
one timestamp as the normalized histogram (pink line) in Appendix 1—figure 3B.

3.	 Neural specificity: The neural specificity, ‍Ajk‍, for bin ‍k‍ is

	﻿‍ Ajk = H(SLVPj)k − H(LVPj)k‍� (A3)

‍Ajk‍ is mapped to three levels ‍(less, same, greater)‍ relative to random sampling. These are 
respectively defined as ‍(−1, 0, 1)‍ and depicted as ‍(purple, teal, yellow)‍ in Appendix 1—
figures 3C and 4AFigure 4. As such, given the mapping threshold ‍α > 0‍ it follows that 

‍(Ajk < −α, Ajk < α, Ajk > α)‍ is, respectively, ‍(−1, 0, 1)‍ implying ‍(less, same, greater)‍ neural 
specificity relative to random sampling and visually represented as ‍(purple, teal, yellow)‍.

Entropy definitions
Entropy
The neural specificity is reduced from a multivariate signal to a univariate signal by computing the 
Shannon entropy at each timestamp of the mapped neural specificity metric (Figure 7, Equation A3 
mapping description). The entropy of the absolute change between adjacent normalized histogram 
bins is a measure of coherence in neural specificity. The absolute change in the mapped ‍Ajk‍ at 
time tj and between adjacent bins ‍(k, k + 1), k = 1, ..., m − 1‍ is the set ‍∆Aj = (0, 1, 2)‍ with members 

‍∆Aji, i = 1, 2, 3‍. Using a base 3 logarithm to scale the entropy between 0 and 1, the entropy ‍Ej‍ of the 
difference in the mapped ‍Ajk‍ at each timestamp tj.

	﻿‍ Ej = −Σ3
∆Aji=1p(∆Aji) ln3(p(∆Aji))‍� (A4)

This unequally sampled series is interpolated to the equally sampled time series ‍E‍.

Event entropy
The neural specificity is a measure of specificity, or bias, of neural activity to target states. However, 
unusually high and short-lived cofluctuations indicate intervals in time, or ’events’, when coactivity 

https://doi.org/10.7554/eLife.78520
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between channel pairs implies that SG processing has undergone sudden changes. Functional 
relevance of cofluctuation events is found by considering the extent to which neural specificity to 
the target (LVP here) is similar or different inside and outside these events.
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Appendix 1—figure 3. Neural specificity and entropy computation—Part I. (A) Neural specificity sample showing 
left ventricular pressure (LVP) and neural spikes. Spiking activity is more specific or biased (yellow), over random 
sampling, to LVP just below systolic pressures. (B) Normalized histograms of random and neurally sampled LVP. 
(C) Bars show subtracted histograms and colors indicate the specificity thresholded with ‍α = 0.5‍: specificity 
exceeding ‍α‍ is yellow, below ‍−α‍ is blue, and between the bounds ‍(−α,α)‍ is teal.
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Appendix 1—figure 4. Neural specificity and entropy computation—Part II. (A) Sliding neural specificity time 
series (top) for a selected sliding window width ‍∆t‍. Entropy of neural specificity, computed from red highlighted 
window of width, ‍∆t‍ absolute difference (shown for a sample at bottom). (B) Entropy time series corresponding 
to the overall experiment, entropy sample computed from steps in (D). An animated version is in Appendix 1—
Animation 1.
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Appendix 1—figure 5. 16-Channel version of Appendix 1—figure 1A. A sample coactivity matrix computed 
from the sliding (rolling) mean of spike rate for the 16-channel linear mapping array (LMA) used throughout an 
experiment. Y axis shows correlation pairs (i.e., Channel 1 vs. Channel 2). Correlation pairs are stacked such that the 
lowest row corresponds to channels separated by the minimum inter-electrode distance (‍d1 = 500µm‍, 1-electrode 
away), and inter-electrode distance increasing from a separation of 1–15 channels at the top. For instance, the 
highest row shows the pair separated by the maximum inter-electrode distance (‍d15 = 15 ∗ 500µm = 7.5mm‍, 
15-electrodes away). The order corresponds to the super-diagonals of the 16×16 correlation matrix. Y axis includes 
120 comparisons for 16 channels, colors indicate Pearson’s correlation coefficients specified in the color legend.

Therefore, the functional relevance of cofluctuations in SG neural activity is examined by breaking 
the time-evolution of entropy of neural specificity into regions: ‘event’ regions (within event intervals) 
and ‘non-event’ regions (outside event intervals). The mean and standard deviation of event and non-
event entropy time series per channel are computed for each experiment and collectively referred to 
as ‘event entropy’ where this is convenient.

https://doi.org/10.7554/eLife.78520
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Appendix 1—animation 1. Entropy animation. The Animation 1.gif file contains an animation of the building 
of the neural specificity metricwith respect to left ventricular pressure (LVP). Row 1: Computation of the neural 
specificity metric for different frames is shown in the form of 20 s moving windows on a 45-s segment of the 
LVP data. The LVP data are shown in blue tracings with the neural spikes represented as red dots. Row 2: Two 
normalized histograms for each of the moving windows are calculated and shown in the second row. The 
histogram of the LVP computed at spike times (neurally sample LVP) is on the left. The histogram of the LVP in the 
window (randomly sampled LVP) is on the right. Row 3: The computed histograms are then used to compute two 
matrices in the third row. The matrices contain all the corresponding histograms computed in the previous step 
arranged vertically with a hard threshold of 0.5 applied, that is, histogram valuesgreater than 0.5 are set to 0.5 
(colored yellow). Row 4: The two matrices computed in row 3 are subtracted to obtain the neural specificity metric 
shown in the fourth row. The color scheme is explained in Appendix 1—figure 4. Row 5: Entropy shown in the fifth 
row is obtained by calculating the Shannon entropy (such as depicted in Appendix 1—figure 4) for the subtracted 
histogram in each of the moving windows for the duration of the metric.

https://doi.org/10.7554/eLife.78520
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