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Abstract Using embryonic stem cells (ESCs) in regenerative medicine or in disease modeling 
requires a complete understanding of these cells. Two main distinct developmental states of ESCs 
have been stabilized in vitro, a naïve pre-implantation stage and a primed post-implantation stage. 
Based on two recently published CRISPR-Cas9 knockout functional screens, we show here that the 
exit of the naïve state is impaired upon heme biosynthesis pathway blockade, linked in mESCs to 
the incapacity to activate MAPK- and TGFβ-dependent signaling pathways after succinate accu-
mulation. In addition, heme synthesis inhibition promotes the acquisition of 2 cell-like cells in a 
heme-independent manner caused by a mitochondrial succinate accumulation and leakage out of 
the cell. We further demonstrate that extracellular succinate acts as a paracrine/autocrine signal, 
able to trigger the 2C-like reprogramming through the activation of its plasma membrane receptor, 
SUCNR1. Overall, this study unveils a new mechanism underlying the maintenance of pluripotency 
under the control of heme synthesis.

Editor's evaluation
In their study, Detraux D and colleagues provide compelling evidence demonstrating a role for 
heme biosynthesis on FGF-ERK and TGF β signalling and exit from naïve pluripotency, and in 
controlling the 2-cell-like cell state. The observations and conclusions provided by the authors are 
convincing and potentially relevant in the field of pluripotent cell state transitions.

Introduction
The development and regeneration of an organism are two processes held by stem cells. These cells 
possess unique features such as an unlimited capacity for self-renewal and the ability to differentiate 
into various cell types. With their pluripotent phenotype, embryonic stem cells (ESCs) retain the ability 
to differentiate into all cell types of the embryo. First in mouse (Martin, 1981; Evans and Kaufman, 
1981), then later in human (Thomson et al., 1998), two main states of pluripotent stem cells have 
been described: the naïve ESCs, resembling the inner cell mass (ICM) of the pre-implantation embryo 
epiblast, and the primed ESCs, mirroring the epiblast of the post-implantation stage. While these 
cells represent timely close stages in embryo development, they display dramatic differences, such 
as developmental potential (Gafni et al., 2013; Ware et al., 2014), epigenetic landscape, X-chromo-
some inactivation pattern and metabolic activity (Sperber et al., 2015; Theunissen et al., 2016; Zhou 
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et al., 2012; Sahakyan et al., 2017; Grow et al., 2015; Takashima et al., 2014; Nichols and Smith, 
2009). Aside from these two pluripotent stages, ESC culture is known to be very heterogenous in 
terms of pluripotent or epigenetic marker expression (Sustáčková et al., 2012). Interestingly, a small 
population (representing about 1 %) of mouse ESCs grown in naïve conditions displays features of the 
two-cell stage embryo (2C-like population or 2CLCs) exhibiting extended potential (Macfarlan et al., 
2012). This subset also displays the expression of 2C-specific genes such as the Zscan4 cluster, the 
retro-transposable element MuERVL or the master regulator DUX (Macfarlan et al., 2012; Percharde 
et al., 2018; Ishiuchi et al., 2015), a disappearance of chromocenters and loss of the core pluripo-
tency protein OCT4 (Macfarlan et al., 2012). However, despite the well-known differences between 
the different pluripotent states, little is understood about the molecular mechanisms governing the 
transition between them.

Several studies have started to address the question of the naive-to-primed ESC transition using 
different screening methods to identify genes controlling this transition (reviewed in Li et al., 2020). 
Notably, a few studies have revealed mTORC1/2 as a critical component for the naïve-to-primed 
transition (Mathieu et al., 2019; Li et al., 2018; Duggal et al., 2015) that regulates key develop-
mental pathways such as Wnt signaling (Sperber et al., 2015; Mathieu et al., 2019; Xu et al., 2016; 
Taelman et al., 2019). Among the hits of the different screens, we observed the recurrence of genes 
involved in the heme biosynthesis pathway. This pathway, starting in mitochondria, uses succinyl-CoA 
and glycine as starting material. It then proceeds to successive cytosolic reactions before ending by 
the formation of the heme molecule in the mitochondrial matrix. Although largely studied in hemato-
poietic stem cells, the roles of this biosynthetic pathway and this metabolite have never been studied 
in the context of pluripotency. In this study, we demonstrate the incapacity of mouse ESCs (mESCs) 
to exit from naïve toward the primed state under heme synthesis inhibition, a process caused by the 
inability to activate the core MAPK and TGFβ-SMADs signaling pathways due to an accumulation of 
extramitochondrial succinate. We also show that heme synthesis inhibition in naïve mESCs favors the 
emergence of 2CLCs in the cell population. This effect is heme-independent as hemin supplementa-
tion does not prevent it. We next demonstrate that the reprogramming in 2C-like state upon heme 
biosynthesis inhibition is actually caused by the accumulation and release of succinate derived from 
the heme synthesis inhibition, acting as both paracrine and autocrine signals.

Results
Murine ESCs are dependent on heme biosynthesis to properly 
transition to the primed stage
In order to unveil the pathways required for the naïve-to-primed ESC transition, we compared the 
results of whole genome CRISPR-Cas9 screens previously published for mouse and human ESCs 
(Mathieu et al., 2019; Li et al., 2018). The significant hits (p val <0.05) were submitted to the DAVID 
functional annotation tools. For the human screen, positive hits for apoptosis were removed. Indeed, 
since a negative selection was applied to induce the death of primed human ESCs (hESCs), cells 
that acquired a resistance to cell death by mutating genes involved in apoptosis would be spared. 
Figure 1a displays the top Gene Ontologies (GO) for the DAVID biological processes showing ‘heme 
biosynthetic process’ as one of the most enriched in both studies (Mathieu et al., 2019; Li et al., 
2018). Seven out of 8 enzymes of this metabolic pathway (ALAD, PBGD, UROS, UROD, CPOX, PPOX, 
and FECH) came out as positive hits in the CRISPR screen during the naïve-to-primed mESC transition. 
In hESCs, only the 4 cytosolic enzymes (PBGD, UROS, UROD, and CPOX) were highlighted. In both 
models, the expression of these genes both in vitro and in vivo is not modified Table 1. Together, the 
results stress the importance of this metabolic pathway for the naive-to-primed transition, although its 
role in non-hematopoietic stem cells is poorly understood.

Experimentally, to trigger the exit of the naïve mESC state, the serum-free media with naïve cyto-
kines cocktail (LIF; CHIR99021 and PD0325901; 2iL) is switched to a media with fibroblast growth 
factor 2 (FGF2) and activin A for 48 hr, allowing mESCs to gain post-implantation features (EpiLC). 
Using succinylacetone (SA) to inhibit heme synthesis, by interfering with ALAD activity (Sassa and 
Kappas, 1983), and 10 μM of hemin for its rescue, we show that, when mESCs are pushed for 48 hr 
to exit the naïve stage (EpiLC) in the presence of SA (EpiLC +SA), the expression of the primed gene 
markers Fgf5, Fgf15, Otx2, Oct6, Dnmt3a, and Zic2 is significantly reduced (Figure 1b). In addition, 
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Figure 1. Heme synthesis inhibition impairs the exit of mESCs from the naïve state; effect mediated by heme. (a) DAVID biological processes GO 
enrichment from two independent CRISPR-Cas9 screens for the naive state exit, in mouse (left panel) (Li et al., 2020) and in human (right panel) 
(Mathieu et al., 2019). The heme biosynthetic pathway is highlighted In red. (b) Relative expression of naïve and primed markers of mESCs in naïve 
conditions (2iL), in transition for 2 days to the Epi stage (EpiLC) with or without 0.5 mM succinylacetone as heme synthesis inhibitor (EpiLC +SA) and 
10 µM hemin supplementation (EpiLC +SA + H), assessed by RT-qPCR relative to Gapdh expression (Tfcp2l1, transcription factor CP2-like 1; Esrrβ, 
estrogen-related receptor β; Klf2/4, Kruppel-like factor 2/4; Tbx3, T-Box Transcription Factor 3; Fgf5/15, fibroblast growth factor-5/15; Zic2, zic family 
member 2; Otx2, homeobox protein 2). Results expressed as mean +/-S.D. *p<0.05, **p<0.01, ***p<0.001. ANOVA-1. n=3 independent biological 
replicates. (c) Western blot analysis of the protein abundance of OTX2 and DNMT3A relative to GAPDH as a loading control for cells in naïve conditions 
(2iL), in transition for 2 days to the Epi stage (EpiLC) with 0.5 mM SA (+SA) and 10 µM hemin (+H) supplementation. Representative blot of three 

Figure 1 continued on next page
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the loss of expression for naïve markers (Esrrb, Tfcp2l1, Klf2-4, and Tbx3) is partially prevented in 
these conditions. This was confirmed at the protein level by a decrease in the abundance of OTX2 
and DNMT3A analyzed by western blot (Figure 1c) and the increase in the abundance of KLF4 by 
immunofluorescence, when cells were treated with SA during the transition (Figure 1d). Furthermore, 
the subcellular localization of TFE3, mainly nuclear in naïve cells and only cytosolic in primed cells 
(Mathieu et al., 2019; Betschinger et al., 2013), remains nuclear in the presence of SA (Figure 1D). 
Hemin supplementation restores the gene expression, the protein abundance and the subcellular 
localization of TFE3 to levels similar to those found in cells incubated without SA (Figure 1a–d). To 
consolidate this, we then generated an ALAD KO line, which was maintained in culture with hemin 
supplementation to avoid degeneration. In accordance with the results obtained with SA, removal 
of hemin during the transition perturbed the exit from the naive state (Figure  1—figure supple-
ment 1). Finally, principal component analysis (PCA) of the normalized gene expression from RNA 
sequencing also reveals the segregation of the cells treated with SA (EpiLC + SA) from either the 
controls (EpiLC) or the cells rescued with hemin (EpiLC +SA + H) (Figure 1e). An impairment of the 
naïve state exit is also observed to some extent in human ESCs (Elf1 cell line) when pushed to exit in 
TeSR for 4 days (Figure 1—figure supplement 1c). Overall, these results confirm the functional screen 
data by showing that the inhibition of heme biosynthesis impairs the naive-to-primed mESC transition.

Heme synthesis inhibition prevents the activation of key signaling 
pathways associated with implantation
Heme deficiency is canonically sensed in mammals through the nuclear factor BACH1 (reviewed 
in Zhang et al., 2018), increasing its nuclear localization or the activation of the integrated stress 
response (ISR; reviewed in Pakos-Zebrucka et al., 2016) through the action of the heme-regulated 
inhibitor (HRI). While we did not observe an accumulation of BACH1 in the nucleus following SA treat-
ment (Figure 2—figure supplement 1a), we did observe an increase in EIF2α phosphorylation and a 
reduction in global protein translation, both showing activation of the ISR (Figure 2—figure supple-
ment 1b-c). However, activation of this pathway with a chemical activator of HRI, BTdCPU (Chen 
et al., 2011), effectively reducing protein translation to the extent of SA, did not prevent the exit from 
the naive stage (Figure 2—figure supplement 1d-e). Thus, to identify the mechanisms involved in 
the failure of the cells to properly undergo the transition, we performed a gene set enrichment anal-
ysis (GSEA) with the KEGG pathways (Kyoto Encyclopedia of Genes and Genomes) between EpiLC 
and EpiLC +SA RNAseq data. While genes involved in xenobiotic detoxification or cytochrome P450 
are expected to be upregulated in response to SA-induced heme deprivation (Vinchi et al., 2014; 
Lämsä et al., 2012), many crucial signaling pathways involved in development are shown negatively 
enriched in SA-treated condition (Figure 2a). We thus focused our attention on the pathways directly 
associated with the naive-to-primed transition that is triggered by the combined presence of FGF2 
and activin A in the growth culture medium, especially since detailed analysis of the PC loadings 
driving the PC2 separation (Figure 1e) highlights several SMAD pathway-related proteins (Figure 2—
figure supplement 1f). On the one hand, the MAPK-ERK1/2 pathway (downstream of FGF2) was not 
activated in EPI +SA cells, as shown by the absence of phosphorylation of ERK1/2 (Figure 2—figure 
supplement 1g). On the other hand, the activin A-SMAD pathway activation was also compromised 
as shown by the difference in nuclear localization of SMAD2/3 when compared to the EpiLC cells 
(Figure 2—figure supplement 1h) or SMAD3 phosphorylation (Figure 2b–c). Interestingly, chem-
ical inhibition of those two pathways by 1  μM PD0325901 (MEKi) and 5  μM SIS3 (TGFβ-SMADi) 

biological replicates. (d) Phase contrast micrographs of cells in naive (2iL), or in transition to the primed (EpiLC) state with treatment with SA and hemin 
(H). Scale bar = 50 μm. Confocal micrographs of mESCs in naive stage or in transition for TFE3 (Transcription Factor Binding To IGHM Enhancer 3) and 
KLF4, in green. Scale bar = 20 μm. TFE3 n=3 and KLF4 n=3 biological replicates (e) Principal component analysis (PCA) of the normalized RNAseq data 
transcripts.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. Heme synthesis inhibition perturbs the exit of the naïve state in mESCs and hESCs.

Figure supplement 1—source data 1. Raw uncropped and annotated western blot images for Figure 1—figure supplement 1c.

Source data 1. Raw uncropped and annotated western blot images for Figure 1c.

Figure 1 continued
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Figure 2. SA prevents the activation of the MAPK and Activin A-SMAD pathways during the mESC transition through the cytosolic accumulation of 
succinate. (a) GSEA performed on RNAseq data were analyzed for KEGG pathways. Up- and Down-regulated KEGG pathways in EpiLC + SA versus 
EpiLC Ctl, represented as normalized enrichment scores (NES). (b) Western blot analysis of the time course protein abundance of SMAD3 and phospho-
SMAD3 relative to GAPDH as a loading control for cells in naïve conditions (2iL), in transition for up to 2 days to the Epi stage (EpiLC) with 0.5 mM SA 
as heme synthesis inhibitor. Representative blot of 5 biological replicates, and quantified in (c). (d) Time course gene expression analysis of Fgf5 and 
Tbx3 assessed by RT-qPCR, expressed as mean +/-S.D. ANOVA-2. n=5 independent biological replicates. (e) Western blot analysis of SDHB during the 

Figure 2 continued on next page
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(Figure 2—figure supplement 1g-h) shows that the inhibition of the SMAD translocation mimics the 
transition defects observed with SA as revealed by the gene expression analysis of naive and primed 
markers (Figure 2—figure supplement 1i). This pathway inhibition was especially observed after 24 h 
of treatment, and concomitant with the defect in gene expression (Figure 2b–d). Addition of two- or 
threefold increased doses of activin or FGF2 did not rescue the gene expression pattern, indicating a 
strong inhibition (Figure 2—figure supplement 1j). Mechanistically, previous reports have shown that 
heme biosynthesis consumes a lot of the glycine and succinyl-CoA precursors in the mitochondria, 
acting as some sort of ‘succinyl-CoA sink’ (Atamna, 2004). We thus hypothesized that heme synthesis 
inhibition would increase the abundance of succinyl-CoA in mitochondria, that could then exit the 
organelle in the form of succinate and accumulate in other cell compartments (Atamna, 2004). The 
accumulation of succinate precursor is reinforced by the observed decreased abundance of the succi-
nate dehydrogenase (SDH), consuming succinate in the TCA, known to be destabilized by the loss 
of heme (nicely reviewed in Kim et al., 2012; Figure 2e). Together, these results indicate a possible 
accumulation of succinate in response to heme synthesis inhibition, that could potentially cause the 
transition defect. To test this hypothesis, we used butylmalonate (BM), an inhibitor of the dicarbox-
ylate carrier (DIC; SLC25A10), to prevent leakage of succinate from the mitochondrial matrix to the 
cytosol (Mills et al., 2018), and this nicely resumed the transition as shown by the gene expression 
profile of mESCs in the EpiLC + SA + BM condition (Figure 2f).

Succinate accumulation and/or SDH ablation is known to increase protein lysine succinylation 
(Smestad et al., 2018), an effect that is observed upon SA treatment and that we mimicked by inhib-
iting Sirt7, a cytosolic and nuclear desuccinylase (Figure 2g). The ability of this molecule to mimic SA 
in the pathway’s inhibition (Figure 2h–i) and to prevent the exit of the naive state (Figure 2f) points at 
succinylation events as the cause of the transition defects.

Blockade of heme synthesis in naive mESCs triggers the activation of a 
2C-like program
In addition to this defect in the exit from the naive state, we found that treatment of naïve 2iL cells 
with SA also modifies the global gene expression as 2iL + SA samples cluster away from 2iL control 
cells when analyzed by PCA performed on RNAseq data (Figure 3a). Our attention was thus drawn 
on markers reported to be expressed in the two-cell embryo. Indeed, a small proportion of the mESC 
population actually expresses a gene signature reminiscent of the 2 C stage, these cells thus called 
2C-like cells (2CLCs) (Macfarlan et al., 2012). Indeed, the expression of the 142 genes previously 
identified as upregulated in this 2C-like population (Macfarlan et al., 2012) was statistically upreg-
ulated in 2iL versus 2iL + SA (Figure 3b) and this was further confirmed by RT-qPCR for a selection 
of the most common markers (Figure 3c) and further supported by the upregulation of the 2CLC 
markers in ALAD KO mESCs (Figure  3d). As the studies that characterize this 2C-like population 

transition, relative to GAPDH as loading control. Representative blot of 2 biological replicates. (f) Relative expression of naïve and primed markers of 
mESCs in naïve conditions (2iL), in transition for 2 days to the Epi stage (EpiLC) with or without 0.5 mM SA (EpiLC + SA), 1 µM butylmalonate (+BM) or 
5 µM of Sirt7 inhibitor supplementation, assessed by RT-qPCR relative to Gapdh expression. n=3 independent biological replicates. ANOVA1 (g) Median 
fluorescence intensity of succinyllysine residues measured by flow cytometry for mESC in transition with 5 µM Sirt7 inhibitor (Sirt7i). n=3 independent 
biological replicates, ANOVA1. (h) Representative western blot analysis of the abundance of the total and phosphorylated forms of SMAD3 and ERK1/2, 
using GAPDH as loading control, for mESC in transition with a Sirt7 inhibitor (Sirt7i), and quantified in (i).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Raw uncropped and annotated western blot images for Figure 2b.

Source data 2. Raw uncropped and annotated western blot images for Figure 2e.

Source data 3. Raw uncropped and annotated western blot images for Figure 2h.

Figure supplement 1. SA prevents the activation of the MAPK and Activin A-SMAD pathways during the mESC transition.

Figure supplement 1—source data 1. Raw uncropped and annotated western blot images for Figure 2—figure supplement 1b.

Figure supplement 1—source data 2. Raw uncropped and annotated western blot images for Figure 2—figure supplement 1c.

Figure supplement 1—source data 3. Raw uncropped and annotated western blot images for Figure 2—figure supplement 1d.

Figure supplement 1—source data 4. Raw uncropped and annotated western blot images for Figure 2—figure supplement 1g.

Figure 2 continued

https://doi.org/10.7554/eLife.78546
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Figure 3. Heme synthesis inhibition pushes mESCs toward a 2C-like stage. (a) Principal component analysis (PCA) of the normalized RNAseq data 
transcripts of naïve mESCs (2iL) treated for 48 hr with 0.5 mM SA ± 10 μM Hemin. (b) Boxplot of mean Log2FC of 2 C markers defined in Macfarlan 
et al., 2012 or all analyzed mRNAs in 2iL +SA versus 2iL control cells. Statistical significance is calculated by Student T-test. p<0.001. (c) Relative 
expression of 2 C gene markers of mESCs assessed by RT-qPCR relative to Gapdh expression and to 2iL naive control represented as a Tukey box 
and whisker plot. The line represents the median and the +is the mean. Oct4=octamer-binding transcription factor 4, Muervl = murine endogenous 
retrovirus-like, Dux = double homeobox, Zfp352=Zinc-finger protein 352, Tcstv1=2-cell-stage variable group member 1, Dub1=Ubiquitin Specific 
Peptidase 36, Zscan4c=Zinc Finger And SCAN Domain Containing 4, isoform c. n=9. (d) Gene expression analysis of 2CLC markers of ALAD KO mESCs 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.78546
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report an important heterogeneity at the population level (Macfarlan et al., 2012; Eckersley-Maslin 
et al., 2016), we quantified the fraction of ZSCAN4+ and MUERVL-GAG+ cell populations by immu-
nostaining followed by confocal microscopy observations. As shown in Figure 3e and f, treatment 
with SA increases the fraction of 2C-like cells by two to three folds. A similar trend is observed for 
genes involved in the ZGA for hESCs (Taubenschmid-Stowers et al., 2022; Figure 3g).

The induction of the 2C-like program is succinate-dependent
Interestingly, and as opposed to the naive-to-primed setup, the observed phenotype seems indepen-
dent of heme as it is not rescued by hemin supplementation (Figure 4a–b). We thus investigated the 
putative role of succinate accumulation in the phenotype. The abundance of succinylated proteins in 
naive cells treated or not with SA was assessed using a pan-succinyllysine antibody in confocal micros-
copy and in flow cytometry (Figure 4c). In basal conditions, the bulk of succinyllysine modifications 
are located in the mitochondria (Figure 4—figure supplement 1), as expected. However, a dramatic 
increase in the signal associated with succinylated proteins is observed in all subcellular compartments 
when heme synthesis is inhibited, an effect that is not (or very partially) rescued upon hemin supple-
mentation (Figure 4c). We then postulated that blocking the exit of this metabolite from mitochon-
dria would prevent the acquisition of widespread succinyl-lysine post-translational modifications and 
impair the acquisition of the 2C-like cells markers, only if this phenotype is dependent on increased 
succinate concentration. As hypothesized, addition of BM combined to SA is correlated to a rescue of 
both the increase in 2 C markers and the proportion of ZSCAN4 or MUERVL-positive cells in the popu-
lation (Figure 4a and d). Altogether, this shows that an accumulation of extra-mitochondrial succinate 
upstream of heme synthesis in naive mESCs induces a 2C-like phenotype, reinforced by the inability of 
glycine to induce same effect (Figure 4a). In order to observe the levels of protein succinylation, and 
by extension the levels of succinate, in endogenous 2CLCs of the mESC population, we took advan-
tage of a previously described reporter cell line for this 2C-state, characterized by the stable insertion 
of a construct containing a turboGFP-coding gene under the control of the MUERVL long terminal 
repeat (2 C:::turboGFP; Ishiuchi et al., 2015; Rodriguez-Terrones et al., 2020). The simultaneous 
observation of the endogenous GFP fluorescence, the absence of OCT4 (Macfarlan et al., 2012) and 
the immunostaining of the succinyl-lysine residues showed an increase in protein succinylation specifi-
cally in the 2C-like cells (GFP+; OCT4-) sub-population, as quantified by flow cytometry (Figure 4e–f).

Since we showed that the increase in the reprogramming of some mESCs to a 2C-like state after 
heme synthesis inhibition was the result of succinate exit from mitochondria, we then aimed to further 
confirm these results, by inducing a mitochondrial accumulation of succinate, independently of heme 
biosynthesis inhibition, using Atpenin A5 (AA5), an SDH inhibitor (Miyadera et  al., 2003). AA5 
induces the protein lysine succinylation (Figure 5a), an increase in the number of ZSCAN4-positive 
cells (Figure 5b) and the expression of 2 C markers (Figure 5c and e). These effects were coun-
teracted by the addition of BM to prevent the succinate exit from the mitochondria (Figure  5b), 
confirming the involvement of succinate in the process.

Succinate acts through the activation of its receptor, SUCNR1, to 
trigger the 2C-like program
Once in the cytosol, succinate could either inhibit the α-ketoglutarate (αKG)-dependent-dioxygenases 
or exit the cell through the monocarboxylate transporters (MCTs) and act as an extracellular signal 
molecule. Indeed, succinate is a reaction product of hydroxylation reactions catalyzed by αKG-
dependent dioxygenases. Three families of dioxygenases are known to be sensitive to an increase 
in succinate concentration: the prolyl-hydroxylases (PDHs), the Ten-eleven translocation (TET) 

grown for 2 days with or without 10 µM Hemin, assessed by RT-qPCR. n=3 biological replicates. ANOVA1 (e) Immunostaining of ZSCAN4 or MUERVL-
GAG in untreated naive cells (2iL control) or treated with SA at 0.5 mM. DAPI is used as a nuclear counterstain. Scale bar = 20 μm. (f) Percentage 
of MUERVL- or ZSCAN4-positive cells in the whole population of naïve (2iL) mESCs or naïve treated or not with SA (2iL SA), counted from confocal 
micrographs as in (f) with 10 images per condition for at least 1000 cells per condition. n=4 independent biological replicates. Results expressed as 
mean +/-S.D. ** p<0.01; T-Tests. (g) Relative expression of ZGA related genes in hESCs assessed by RT-qPCR relative to TBP expression and normalized 
to naive 2iL +IGF + FGF2 (2iLIF) control, with or without 0.5 mM of SA. n=3 independent biological replicates. Results expressed as mean +/-S.D. * 
p<0.05, **p<0.01, ***p<0.001; t-tests.

Figure 3 continued
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Figure 4. mESC ‘2C-like’ reprogramming by SA is due to extramitochondrial succinate accumulation. (a) Relative expression of 2 C markers of mESCs 
assessed by RT-qPCR relative to Gapdh expression and normalized to 2iL naive control, in mESCs treated for 2 days with 0.5 mM SA (2iL SA), with 
or without 10 μM Hemin (2iL SA + H), 1 μM diethyl butylmalonate (2iL SA + BM), 1 μM BM alone (BM) or 10 mM glycine. S.D. * p<0.05, **p<0.01, 
***p<0.001. ANOVA-1. n=3–6 independent biological replicates. (b) Boxplot of mean Log2FC of 2 C markers defined in Macfarlan et al., 2012 or 
all analyzed mRNAs in 2iL + SA + H versus 2iL control cells. Statistical significance is calculated by Student T-test. p<0.001. (c) Immunostaining of 
succinylated lysine residues (green) in mESCs treated for 2 days with 0.5 mM SA, with or without 10 μM Hemin (SA + Hemin) and quantified by flow 
cytometry. Representative image of n=3 independent experiments. Scale bar = 20 μm. Results expressed as median fluorescence +/-S.D. * p<0.05, 
**p<0.01; ANOVA-1 (d) Percentage of MUERVL or ZSCAN4-positive cells in the whole population of naïve (2iL) mESCs or naive cells treated for 2 days 
with SA (2iL SA) with or without 10 μM hemin (2iL SA + H) or 1 μM diethyl butylmalonate (2iL SA + BM). n=4 independent biological replicates. Results 
expressed as mean +/-S.D. * p<0.05, **p<0.01, ***p<0.001; ANOVA-1. (e) Immunostaining of succinyllysine residues (Red) and Oct4 (cyan) of TBG4 cells 
(ES-E14TG2a mESCs with a 2C-GFP (green) reporter construct) (Mills et al., 2018). Representative image of n=3 independent experiments. Scale bar = 
20 μm. Arrows indicate 2CLCs according to the GFP reporter. (f) Quantification of the median fluorescence intensity of the succinyllysine residues in the 
GFP +and GFP- populations of TBG4 mESCs separated by flow cytometry. n=4 independent biological replicates. * p<0.05, T-test.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Treatment with SA induces a delocalization of succinyllysine-modified proteins outside of mitochondria.

https://doi.org/10.7554/eLife.78546
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Figure 5. Inhibition of SDH leading to an increase in succinate accumulation recapitulates the increase in 2CLCs due to a leakage to the extracellular 
space. (a) Immunostaining of succinylated lysine residues (green) in mESCs in 2iL media or treated with 250 nM AA5. Representative image of n=3 
independent experiments and quantified by flow cytometry. T-test. Scale bar = 20 μm (b) Percentage of ZSCAN4-positive cells in the whole population 
of naïve (2iL) mESCs or naïve treated with 250 nM AA5, with or without 1 μM diethyl butylmalonate (BM), counted from confocal micrographs with 
10 images per conditions for at least 1000 cells per condition. n=3 independent biological replicates. ANOVA1 (c) Relative expression of the 2CLC 
genes in response to 250 nM AA5 or 0.5 µM retinoic acid (RA), with or without 10 µM HX531 and 100 nM AGN193109. (d-e) Relative expression of 

Figure 5 continued on next page

https://doi.org/10.7554/eLife.78546
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methylcytosine dioxygenases and the histone demethylases (HDM). Of these three classes, we ruled 
out a role for PHDs, responsible for HIF1α degradation, as the abundance of this transcription factor 
was not increased by SA nor by AA5 treatment, demonstrating a lack of stabilization following a 
putative PHD inhibition (Figure 5—figure supplement 1). Since recent reports in the literature have 
highlighted a crucial role of the epigenetic landscape and a role of the TET proteins in the acquisition 
of the 2CLC phenotype (Eckersley-Maslin et al., 2016; Huang et al., 2021; Schüle et al., 2019; Lu 
et al., 2014; Yang et al., 2016), we then focused our attention on the histone 3 (H3) and DNA meth-
ylation landscapes and observed a robust increase in the amount of trimethylation of lysines 4, 9, and 
27 of H3 (H3K4,-K9, -K27) along with an increase in the global abundance of 5mC when mESCs were 
treated with either SA or AA5 (Figure 5—figure supplement 2a-d). However, chemical inhibition of 
HDMs by JIB04 (Wang et al., 2013) and/or TET by TETin-C35 (Singh et al., 2020) does not trigger a 
rise in the proportion of 2CLCs or in 2 C marker expression (Figure 5—figure supplement 2e-f). We 
then suspected that succinate could act instead as a paracrine signal after its release in the extracel-
lular media. Indeed, exogenous supplementation with a membrane impermeable (sodium succinate) 
or permeable (dimethylsuccinate) form of succinate were able to increase the 2CLC marker expression 
(Figure 5d). We further found that inhibition of the succinate exit through the plasma membrane, 
by targeting MCT1 and 4 with the AZD3965 inhibitor (Beloueche-Babari et al., 2017; Reddy et al., 
2020) combined to inhibition of the succinate receptor SUCNR1 by NF-56-EJ40 (Haffke et al., 2019) 
is able to bring down the rise in 2CLC marker expression triggered by AA5 (Figure 5e). Recent reports 
have shown that retinoic acid (RA) also increases the 2CLC population, an effect mediated by the 
retinoic acid receptor RAR but not the RXRs (Iturbide et al., 2021). While the induction of the 2CLC 
gene signature in response to AA5 is similar to RA, the mode of action seems to involve both RAR and 
RXR since the effect is rescued by addition of both inhibitors, AGN193109 and HX531, respectively 
(Figure 5c). These findings strongly support succinate acting as a paracrine/autocrine signal upstream 
of RAR/RXR transcriptional activity. Together, these sets of data highlight the critical role of succinate 
in the acquisition and maintenance of pluri/totipotent states in mESCs by a totally new mechanism.

Discussion
The comparison of two different genome-scale CRISPR screens in the exit of the naïve state of mouse 
and human ESCs (Mathieu et al., 2019; Li et al., 2018) revealed the importance of heme biosyn-
thesis for the transition to another pluripotent state, the primed state. Using succinyl acetone (SA), a 
specific inhibitor of ALAD that catalyzes the second reaction of the pathway, and hemin to rescue the 
heme defect, we first confirmed the requirement of this pathway for the naive-to-primed transition in 
mESCs. This is in accordance with the embryonic lethality at the implantation stage of mouse embryos 
knockout for the heme synthesis pathway enzymes since the naive-to-primed transition recapitulates, 
in vitro, this critical step (shown for HMBS Lindberg et al., 1996, UROS Bensidhoum, 1998, UROD 
Phillips et al., 2001, CPOX Conway et al., 2017 and FECH Magness et al., 2002). RNAseq anal-
ysis of naïve cells undergoing transition to the primed stage in the presence of SA with or without 
addition of hemin revealed a failure to properly activate the MAPK and TGFβ-SMAD pathways in 
response to heme biosynthesis inhibition. It has been previously demonstrated that the proper acti-
vation of these two pathways is required to proceed with the transition to the primed stage (Tsanov 
et al., 2017; Jiapaer et al., 2018; Senft et al., 2018; Arman et al., 1998). While the inhibition of 
SMAD3 was able to mimic the effect observed by heme synthesis inhibition, the inhibition of MAPK 
by MEK inhibition proved to be inefficient at blocking the process, in contradiction to its role in the 

2C-gene markers of mESCs assessed by RT-qPCR relative to Gapdh expression in naïve 2iL mESCs and treated with 16 mM dimethyl succinate, 40 mM 
sodium succinate (Na succinate), 1 μM of MCT1 and 4 inhibitor (AZD3965; AZD) and 1 μM SUCNR1 receptor antagonist (NF-56-EJ40; NF56). Data 
shown as mean +/-S.D. *p<0.05, **p<0.01, ***p<0.001. ANOVA-1 followed by a Tukey post-test. n=4 independent biological replicates. (f) Graphical 
representation of the succinate-induced 2CLC reprogramming. Created with https://www.biorender.com/.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Treatment with SA or AA5 does not trigger HIF1α stabilization.

Figure supplement 2. Treatment with SA or AA5 triggers an increase of the methylation of histones and DNA that does not cause a 2C-like 
reprogramming.

Figure 5 continued

https://doi.org/10.7554/eLife.78546
https://www.biorender.com/


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology | Stem Cells and Regenerative Medicine

Detraux et al. eLife 2023;12:e78546. DOI: https://doi.org/10.7554/eLife.78546 � 13 of 22

progression of pluripotency (Tsanov et al., 2017; Jiapaer et al., 2018; Arman et al., 1998). Such a 
connection between heme synthesis inhibition and signaling pathways has only been reported once 
in PC12 neuronal cells, with SA blocking the activation of the MAPK despite the presence of nerve 
growth factor (NGF) (Zhu et al., 2002). Thus, it seems to be a conserved mechanism among various 
cell identities/types, as it is also observed in our study for cells responding to FGF2 signals. While the 
link between heme and these crucial signaling pathways remains unknown, it brings to light a crucial 
importance of this metabolite and its synthesis pathway, so far poorly understood, in the context of 
pluripotency.

Aside from its effect on the exit of the naïve stage, we showed here that the inhibition of heme 
synthesis also triggers a reprogramming toward a 2C-like stage. Indeed, mESCs cultured in 2iL 
conditions have been previously defined as a heterogenous population that naturally includes a 
small percentage of cells displaying features of the two-cell stage embryo (Macfarlan et al., 2012; 
Rodriguez-Terrones et  al., 2020). Interestingly, this 2CLC population is transient and cycles back 
and forth to a naive pluripotency state (Macfarlan et al., 2012; Fu et al., 2020). Unexpectedly, heme 
synthesis inhibition favors this reprogramming as shown by the increase in 2C-like markers in the 
whole population and the proportion of ZSCAN4 or MUERVL-positive cells. Strikingly, this effect is 
clearly dependent on the accumulation of succinate as it is (i) not rescued by hemin, (ii) blocked by 
inhibition of the mitochondrial succinate transporter and (iii) phenocopied by SDH inhibition. Addi-
tionally, MUERVL-positive cells spontaneously emerging in naïve ESC colonies endogenously display 
a high level of succinylated proteins, supporting a role for this metabolite in the identity of the 2C-like 
state. The role of several metabolites in the gain of 2CLC features has already been recently unveiled, 
highlighting a role for acetate, lactate, and D-ribose (Rodriguez-Terrones et al., 2020). This metabo-
lite screening also showed a positive effect of succinate on the 2C-like features acquisition. Beyond its 
role in the cellular metabolism, we show here that the succinate accumulation outside mitochondria 
leads to a global reduction in cytosine demethylation activity of the TETs and histone demethylation 
as previously observed in cancers after accumulation of succinate or SDH mutations (Letouzé et al., 
2013; Xiao et  al., 2012). However, previous reports are somewhat discordant regarding the role 
of TETs in the acquisition of the 2CLC phenotype as their effect seems to be dependent on their 
interacting partners (Eckersley-Maslin et  al., 2016; Huang et  al., 2021; Schüle et  al., 2019; Lu 
et  al., 2014). For example, while TET2 could cooperate with PSPC1 (Paraspeckle Component 1) 
to reduce the expression of the retrotransposon MuERVL (Guallar et al., 2018), binding of the TET 
proteins with SMCHD1 (structural maintenance of chromosomes flexible hinge domain containing 1) 
prevents the demethylation of the Dux gene locus and thus prevents its expression (Huang et al., 
2021). Succinate accumulation would result in a global decrease in the activity of all 3 TET isoforms, 
resembling those of a TET triple KO, already shown to induce the 2 C phenotype (Lu et al., 2014). 
The methylation landscape of histones, especially H3, is also highly dynamic both in vivo, at the time 
of the zygote genome activation (ZGA) that takes place at the 2C-stage, and in the 2CLC conversion 
with remodeling of H3K4me3, H3K9me3, and H3K27me3 (Zhang et al., 2021; Wang et al., 2018; 
Yang et al., 2022) (extensively reviewed in Xia and Xie, 2020). Similarly to the situation with the TETs, 
the action of HDM on the loss or acquisition of 2C-like features in vitro is complex, as loss of KDM1a 
(lysine demethylase 1 a) is shown to promote the expression of Zscan4 and MuERVL (Macfarlan et al., 
2011) whereas loss of KDM5a and b decreases the expression of the markers and blocks the ZGA in 
vivo (Dahl et al., 2016). However, while the literature highlights a role for these modifications of the 
epigenetic landscape in the 2CLC emergence, this is not supported by the data presented here. This 
discrepancy could be due to differences in the culture conditions, as these previous studies use mESC 
grown in serum +LIF conditions, while we use ground naïve mESCs (in 2iL and serum-free culture). 
Such difference has been previously described in the establishment of another pluripotent state of 
ESCs, the paused state (Xu et al., 2022). Interestingly, instead of an epigenetic rewiring as the major 
cause of 2CLC reprogramming, our data shed light on succinate acting as a paracrine/autocrine signal, 
able to trigger the emergence of 2CLCs by an MCT-dependent export and the activation of SUCNR1 
expressing cells. Further studies are now needed to precisely dissect which downstream actors are 
truly responsible for the activation of the 2 C transcriptional program.

Our study thus brings an additional and different example of metabolic control of pluripotency, 
and adds succinate to previously reported metabolites such as S-adenosylmethionine (SAM) (Sperber 
et al., 2015), alpha-ketoglutarate (αKG) (Carey et al., 2015; Tischler et al., 2019), glutamine (Tohyama 

https://doi.org/10.7554/eLife.78546
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et al., 2016), acetyl-CoA (Moussaieff et al., 2015), lactate or D-ribose (Rodriguez-Terrones et al., 
2020) that are known to regulate the pluripotent states mostly through their contribution to modi-
fications of the epigenetic landscape (reviewed in Tsogtbaatar et  al., 2020). In addition to these 
previous studies, we highlight a role of succinate that goes beyond epigenetic landscape regulation 
but instead influences pluripotency regulation through protein succinylation and a paracrine effect. 
Further emphasis on the importance of succinate in early development is also demonstrated by the 
embryonic lethality of the SDH subunits in mice (Piruat et al., 2004; Siebers et al., 2018; Lepoutre-
Lussey et al., 2016; Takács-Vellai et al., 2021). Altogether, these results indicate a critical role of both 
heme and succinate in the progression of the pluripotency continuum, ranging from the 2CLCs on one 
hand and to the acquisition of primed pluripotency on the other.

Materials and methods
Cell culture and ALAD ko generation
mESCs (ES-E14TG2a) or tbg4 mESCs (described in Ishiuchi et  al., 2015) were cultured in N2B27 
medium consisting of a 1:1 mixture of DMEM/F12 (Gibco, 31330–038) and Neurobasal Medium 
(Gibco, 21103–049) supplemented with 1 x N-2 Supplement (Gibco, 17502–048), 1 x B-27 Supplement 
(Gibco, 17504–044), 1/100 penicillin-streptomycin (Gibco, 15140–122), 1 x MEM nonessential amino 
acids (NEAA) (Gibco, 11140–035), 1 x GlutaMAX (Gibco, 35050–038), 1 x sodium-pyruvate (Gibco, 
11360–039) and 0.1 mM β-mercaptoethanol (Gibco, 31350–010). Naïve mESCs were maintained on 
0.2% gelatin (Sigma, G1393)-coated plates at a density of 50,000 cells/cm2 and in N2B27 medium 
complemented with 103 U/ml of mLIF (ESGRO, ESG1107), 3 μM of GSK3 inhibitor (CHIR99021) (Pepro-
tech, 2520691) and 1 μM of MEK inhibitor (PD0325901) (referred to as 2iL) (SelleckChem, S1036). 
Cells were passaged every 2–3 days using accutase (Stemcell Technologies, #07920). Cells were then 
collected by centrifugation at 1200  rpm for 3  min and counted before seeding. The transition to 
EpiSC was obtained by transferring naïve mESCs on 15 μg/ml fibronectin (Gibco, 33010–018)-coated 
plates at a density of 30,000 cells/cm2 and by supplementing the N2B27 medium with 12 ng/ml of 
bFGF (Peprotech, 100-18B) and 20 ng/ml of activin A (Peprotech, 120–14 P). Coating proteins were 
incubated 1 hr before seeding. mESCs were maintained at 37 °C, 5% CO2 in a humidified incubator. 
Human ESCs, Elf1 line, were maintained of an irradiated MEF monolayer and grown in either RSeT 
(Stemcell Technologies) medium or in a medium composed of DMEM/F-12 media supplemented with 
20% knockout serum replacer (KSR), 0.1 mM nonessential amino acids (NEAA), 1 mM sodium pyru-
vate, penicillin/streptomycin (all from Invitrogen), 0.1  mM β-mercaptoethanol (Sigma-Aldrich), 1 µM 
GSK3 inhibitor (CHIR99021), 1  µM of MEK inhibitor (PD0325901), 10  ng/ml human LIF (Chemicon), 
5 ng/ml IGF1 (Peprotech) and 10  ng/ml bFGF. Cells were transferred to matrigel-coated plates prior 
to analysis. Exit from the naïve state triggered by growing the cells in mTeSR1 (StemCell technologies) 
for 4 days.

For knock-out generation, one million E14 mESC were electroporated with Cas9 (0.6 µM, Sigma) 
and gRNA (3 µM, Synthego) as RNP complex using Amaxa nucleofector (Human Stem Cell kit 2) in 
presence of 10 µM Hemin 10 uM. Individual colonies were hand-picked and plated into 96-well plates. 
DNA was extracted using Quick Extract DNA extraction solution (Epicentre#QE09050) and nested 
PCR was performed. The PCR product was purified using EXO-SAP enzyme (Thermo Fisher) and sent 
for Sanger sequencing analysis (through Genewiz).

Lines were routinely tested for mycoplasma and STR authenticated.

mESC treatment
The heme inhibitor succinylacetone (SA) (Sigma, D1415) is used at a concentration of 0.5 mM. Hemin 
(Sigma, 51280) is used at a concentration of 10 μM in 0.1 N NaOH. Diethyl butylmalonate (BM) (Sigma, 
112038) is used at a concentration of 1 mM. Atpenin A5 (Santa Cruz biotechnology, sc-202475) is 
used at 250 nM. SIS3 (Selleck chemicals, S7959) is used at 5 μM. NF-56-EJ40 (Axon Medchem 3056) 
is used at 1 μM. AZD3965 (Selleckchem S7339) is used at 1 μM. Exogenous succinate is provided 
as either 40 mM Sodium succinate (Sigma) or 16 mM dimethylsuccinate (Sigma) supplementation. 
HDM inhibition was achieved with 250 nM JIB04 (Medchem express HY-13953) and TET inhibition 
with 5  μM TETin-C35 (Aobious AOB11121). For retinoic acid experiments, RA, HY-14649, HX531 
(HY-108521) and AGN193109 (HY-U00449) were used at 0.5 µM, 10 µM and 100 nM, respectively 

https://doi.org/10.7554/eLife.78546
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(all from Medchemexpress). Inhibition of Sirt7 is 
achieved using 5 µM of the Sirt7 inhibitor 97491 
(MedChemExpress).

RNA extraction and RT-qPCR
RNA was extracted after 2 days of culture with the 
ReliaPrep RNA Tissue Miniprep System (Promega, 
Z6111) following manufacturer’s protocol for 
non-fibrous tissue by adding RNA lysis buffer on 
pelleted cells. RNA concentrations were quan-
tified with the Nanophotometer N60 (Implen). 
Reverse transcription (RT) was performed with 
the GoScript Reverse Transcriptase kit Random 
Primers (Promega, A2801) to convert 1  μg of 
RNA into cDNA. Briefly, RNA was mixed with 
RNAse-free water to obtain 1 μg of RNA in 12 μL 
and heated 5 min at 70 °C. Then, 8 μL of RT mix 
(4 μL random primers buffer, 2 μL enzyme, 2 μL 
RNAse free water) was added and the reaction 
was performed in a thermocycler (5 min at 25 °C, 
60 min at 20 °C and 15 min at 70 °C).

The qPCR was performed on the ViiA 7 Real-
Time PCR System (Thermo Fisher) with 10 ng of 
cDNA per reaction, SYBR Green GoTaq qPCR 
Master Mix (Promega, A6002) and primers listed 
in the Table 2 at a final concentration of 300 nM. 
Altogether, 2 μL of cDNA (5 ng/μL), 1 μL of forward 
primer (6 μM), 1 μL of reverse primer (6 μM), 10 μL 
of Master Mix and 6 μL of RNAse-free water were 
added in each well. Relative expression was calcu-
lated using the 2-∆Ct method with GAPDH as an 
endogenous control.

Western blot analyses
Pellets of cells were lysed by adding protein lysis 
buffer 20 mM Tris-HCl; pH 7.5, 150 mM NaCl, 15% 
Glycerol, 2% SDS, 25 x protease inhibitor cocktail 
(PIC, cOmplete protease inhibitor cocktail, Roche 
11697498001), 25 x phosphatase inhibitor buffer 
(PIB, composed of 25  mM Na3VO3, 250  mM 
4-nitrophenylphosphate, 250 mM β-glycerophos-
phate and 125  mM NaF), 1% TRITON X-100, 
SuperNuclease (Sino Biologicals, 25 U/10 μL) and 
by pipetting up and down. The protein concen-
tration was determined by Pierce protein assay 
(ThermoFisher, 22660). Samples were mixed 
with Laemmli buffer (SDS, β-mercaptoethanol, 
Bromophenol blue) and heated for 5 min at 95 °C 
before loading. An amount of 10 μg of proteins 
were loaded on SDS-containing 10 or 12% poly-
acrylamide gels. At the end of migration, proteins 
were transferred to PVDF membranes (IPFL00010) 
by liquid transfer. Membranes were then blocked 
in LI-COR Intercept blocking buffer PBS for 1 hr 
at RT and incubated overnight at 4  °C with the 

Table 2. List of primers used in qPCR.

Gene Sequences (5’ → 3’)

Mouse

DNMT3A
F: CTGC​TGTG​GAAT​ACCC​TGTT​AG
R: CTTT​CTAC​CTGC​TGCC​ATAC​TC

ESRRB
F: GCAC​CTGG​GCTC​TAGT​TGC
R: TACA​GTCC​TCGT​AGCT​CTTG​C

FGF5
F: GGGA​TTGT​AGGA​ATAC​GAGG​AGTT​
R: CCAG​AAGA​ATGG​ACGG​TTGT​

FGF15
F: TGTT​TCAC​CGCT​CCTT​CTTT​ 
R: TTCT​CCAT​CCTG​TCGG​AATC​

GAPDH
F: CATG​GCCT​TCCG​TGTT​CCT
R: CCTG​CTTC​ACCA​CCTT​CTTG​

KLF2
F: CTAA​AGGC​GCAT​CTGC​GTA
R: TAGT​GGCG​GGTA​AGCT​CGT

KLF4
F: CCAG​CAAG​TCAG​CTTG​TGAA​
R: GGGC​ATGT​TCAA​GTTG​GATT​

OCT4
F: CACG​AGTG​GAAA​GCAA​CTCA​
R: AGAT​GGTG​GTCT​GGCT​GAAC​

OTX2
F: TATC​TAAA​GCAA​CCGC​CTTA​CG
R: AAGT​CCAT​ACCC​GAAG​TGGT​C

REX1
F: CCCT​CGAC​AGAC​TGAC​CCTA​A
R: TCGG​GGCT​AATC​TCAC​TTTC​AT

TFCP2L1
F: GCTG​GAGA​ATCG​GAAG​CTAG​G
R: AAAA​CGAC​ACGG​ATGA​TGCT​C

ZIC2
F: CAAG​GTCC​GGGT​GCTT​ACC
R: ATTA​AAGG​GAGG​CCCC​GAAT​A

TBX3
F: CTCC​ATTC​CAGT​TTGG​TCAA​
R: CAAC​AGCA​GCCT​GGTT​ACAC​

OCT6
F: TTTC​TCAA​GTGT​CCCA​AGCC​
R: ACCA​CCTC​CTTC​TCCA​GTTG​

DNMT3B
F: GGCA​AGGA​CGAC​GTTT​TGTG​
R: GTTG​GACA​CGTC​CGTG​TAGT​GAG

DUX
F: AAAG​GAAG​AGCA​TGTG​CCAG​C
R: GCAG​TAAG​CTGT​CCTG​GGAA​C

ZFP352
F: AAGT​CCCA​CATC​TGAA​GAAA​CAC
R: GGGT​ATGA​GGAT​TCAC​CCAC​A

TCSTV1
F: TGAA​CCCT​GATG​CCTG​CTAA​GACT​
R: AGAT​GGCT​GCAA​AGAC​ACAA​CTGC​

ZSCAN4C
F: CCGG​AGAA​AGCA​GTGA​GGTG​GA
R: CGAA​AATG​CTAA​CAGT​TGAT​

MuERV-L
F: CCCA​TCAT​GAGC​TGGG​TACT​
R: CGTG​CAGA​TCCA​TCAG​TAAA​

DUB1
F: GCAG​GCCA​ACCT​CAAA​CAG
R: CGCA​GGGC​TCTC​CTAA​ATCT​T

Human

ZSCAN4
F: TGGA​AATC​AAGT​GGCA​AAAA​  
R: CTGC​​ATG​T​GG​AC​G​TGG​​AC

LEUTX F: GCTA​CAAT​GGGG​AAAC​TGG 
R: CTCT​​TCC​A​TT​TG​G​CAC​​GCTG​​

Table 2 continued on next page

https://doi.org/10.7554/eLife.78546


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology | Stem Cells and Regenerative Medicine

Detraux et al. eLife 2023;12:e78546. DOI: https://doi.org/10.7554/eLife.78546 � 16 of 22

primary antibodies. Membranes were washed 
three times for 5 min with PBS +0.1% Tween-20 
(PBST) before and after 1 h-incubation with the 
secondary antibodies at RT. Detections were 
performed and quantified with Odyssey LI-COR 
scanner. Primary and secondary antibodies were 
both diluted in Licor PBST. GAPDH was used 
as loading control. Primary and secondary anti-
bodies for GAPDH detection were incubated 
30 min. Antibodies and dilutions used are: anti-
GAPDH 1:20000(Sigma, G8795), anti-KLF4 1:200 
(R&D, AF3158), anti-Oct4 1:100 (Santa Cruz, 
sc-5279), anti-OTX2 1:100 (R&D, AF1979), anti-
pan-succinyllysines 1:300 (PTM-401), anti-TFE3 
1:400 (Sigma, HPA023881), anti-ZSCAN4 1:400 
(Millipore, AB4340), anti-MUERVL-GAG 1:200 
(Novus, NBP2-66963), anti-ERK1/2 1:1000 (Cell 
Signaling 9102), anti-phosphoERK1/2 1:1000 
(Cell Signaling 9101), anti-SMAD2/3 1:1000(Cell 

Signaling 8685), anti-SMAD3 1:1000 (Abcam ab52903).

Immunofluorescence
Cells were seeded on coated glass cover (Assistent) slips 2 days before fixation with 4% paraformal-
dehyde (Sigma, 30525-89-4) for 15 min. Coating was performed for 1 hr with 15 μg/ml of fibronectin 
or with 3.5 μg/cm2 Cell-Tak (VWR, 734–1081) diluted in 0.1 M sodium bicarbonate. Cells were perme-
abilized and blocked for 30 min incubation in blocking buffer (PBS, 0.1% TRITON, 1% BSA). Immu-
nostaining was performed by an overnight incubation of cover slips at 4 °C on 30 μL drops containing 
primary antibody diluted in blocking buffer. After three washes of 5 min in blocking buffer, the cells 
were incubated for 1 hr in the dark and at RT with 30 μL drops containing secondary antibody and 
DAPI (Sigma, 10 236 276 001) diluted 1:1000 in blocking buffer. Cover slips were mounted with 
Mowiol after three washes of 5 min in blocking buffer. Analyses were performed with a Leica TCS SP5 
confocal microscope (Leica microsystems). For 5mC analysis, cells were fixed for 15 min with 4% PFA, 
permeabilized for 10 min with PBS-0.5% Triton X-100 and treated with 4 N HCl for 20 min to denature 
DNA. Cells were then washed once with distilled water a 2 hr blocking with 2% BSA and 0.5% Triton 
X-100. After these steps, the staining process would resume as described above, using a 5mC primary 
antibody (Sigma SAB2702243) diluted 1:300 in blocking buffer (PBS, 0.1% TRITON, 1% BSA).

Flow cytometry
Cells were detached by a 5 min incubation with Accutase and spun for 5 min at 400 g. The cell pellet 
was then washed with PBS-10 % FBS followed by another centrifugation. The pellet, containing at 
least 106 cells, was fixed by adding 100 μl of 4% PFA for 15 min. After centrifugation, the cells were 
permeabilized with the Invitrogen permeabilization buffer (00833356) for 30 min at room tempera-
ture. Antibodies were incubated for 1h30 at room temperature in PBS-10 % FBS and briefly vortexed 
every 30 min. After three washes with PBS-10 % FBS, the cells were incubated with an anti-rabbit 
Alexa 647 1:1000 for 1 hr. Cell pellets were washed twice before being resuspended in PBS-10 % FBS 
and analysed with the FACSVerse machine. TBG4 ESCs (previously published Eckersley-Maslin et al., 
2016) were used for pan-succinyllysine levels measure in 2CLCs, by gating the turboGFP +popula-
tion and measuring the alexa 647 intensity.

RNA sequencing
Sequence libraries were prepared with the Lexogen QuantSeq 3' mRNA-Seq library prep kit according 
to the manufacturer’s protocol. Samples were indexed to allow for multiplexing. Library quality and 
size range were assessed using a Bioanalyzer (Agilent Technologies) with the DNA 1000 kit (Agilent 

Gene Sequences (5’ → 3’)

DUX4
F: AGGA​AGAA​TACC​GGGC​TCTG​
R: AGTC​TCTC​ACCG​GGCC​TAG

TFCP2L1 Hs01011666_m1

KLF4
F: GGGA​GAAG​ACAC​TGCG​TCA
R: GGAA​GCAC​TGGG​GGAA​GT

ESRRB hs01584024_m1

SALL1
F: AGAG​AACT​CACA​CTGG​AGAG​
R: CATG​TGTA​CCTT​AAGA​TTGC​CT

ETV4
F: CGAC​TCTG​AAGA​TCTC​TTCC​
R: TCAT​CACT​GTCT​GGTA​CCT

Table 2 continued
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Technologies, California, USA). Libraries were subsequently sequenced on an Illumina HiSeq4000 
instrument. Single-end reads of 50 bp length were produced with a minimum of 1 M reads per sample.

Quality control of raw reads was performed with FastQC v0.11.7, available online at: http://www.​
bioinformatics.babraham.ac.uk/projects/fastqc. Adapters were filtered with ea-utils fastq-mcf v1.05 
(Erik Aronesty (2011), ea-utils: “Command-line tools for processing biological sequencing data; 
https://github.com/ExpressionAnalysis/ea-utils copy archived at Expression Analysis, 2021). Splice-
aware alignment was performed with HiSAT2 against the mouse reference genome mm10. Reads 
mapping to multiple loci in the reference genome were discarded. Resulting BAM files were handled 
with Samtools v1.5 (Li et al., 2009). Quantification of reads per gene was performed with HT-seq 
Count v2.7.14. Count-based differential expression analysis was done with R-based Bioconductor 
package DESeq2. Reported p-values were adjusted for multiple testing with the Benjamini-Hochberg 
procedure, which controls false discovery rate (FDR).

Data analysis
TMM normalized rLog transformed counts were used for Principal Component analysis using R 
package PCATools. Gene set enrichment analysis (GSEA) was made on gene list ranked on Log2FC 
using R package ClusterProfiler (Yu et al., 2012). For genes with FC >2 in MUERVL::Tomato+ list from 
Macfarlan et al., 2012, Z score was calculated from TMM-rLog transformed counts and plotted as 
heatmap using R package ​Heatmap.​plus. Analysis was made using statistical programming language 
R.

Statistical analysis
One-way ANOVA statistical test followed Turkey multiple comparison test or student T-Tests were 
conducted on all results when indicated using GraphPad Prism version 9.1.1, GraphPad Software, San 
Diego, California USA, https://www.graphpad.com.
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