A timer gene network is spatially regulated by the terminal system in the *Drosophila* embryo

Erik Clark\(^1,2,3\)*, Margherita Battistara\(^1,4\), Matthew A. Benton\(^1,5\)*

\(^1\)Department of Zoology, University of Cambridge, UK; \(^2\)Department of Systems Biology, Harvard Medical School, USA; \(^3\)Department of Genetics, University of Cambridge, UK; \(^4\)Department of Physiology, Development and Neuroscience, University of Cambridge, UK; \(^5\)Developmental Biology Unit, EMBL, Heidelberg, Germany

Abstract In insect embryos, anteroposterior patterning is coordinated by the sequential expression of the “timer” genes *caudal*, *Dichaete* and *odd-paired*, whose expression dynamics correlate with the mode of segmentation. In *Drosophila*, the timer genes are expressed broadly across much of the blastoderm, which segments simultaneously, but their expression is delayed in a small “tail” region, just anterior to the hindgut, which segments during germband extension. Specification of the tail and the hindgut depends on the terminal gap gene *tailless*, but beyond this the regulation of the timer genes is poorly understood. We used a combination of multiplexed imaging, mutant analysis, and gene network modelling to resolve the regulation of the timer genes, identifying 11 new regulatory interactions and clarifying the mechanism of posterior terminal patterning. We propose that a dynamic Tailless expression gradient modulates the intrinsic dynamics of a timer gene cross-regulatory module, delineating the tail region and delaying its developmental maturation.

Introduction

Insect segments are patterned by a relatively conserved gene regulatory network including gap genes, pair-rule genes and segment-polarity genes (reviewed in Nasiadka et al., 2002; Hughes and Kaufman, 2002; Clark et al., 2019). Within and across species, embryonic development depends on these network components being activated at the right times and in the right places. Locally, the maturation of any given segment involves segmentation genes being activated in a conserved temporal sequence (e.g., primary pair-rule genes before secondary pair-rule genes and segment-polarity genes; Akam, 1987; Baumgartner and Noll, 1990; Schroeder et al., 2011; Clark and Akam, 2016). Globally, the relative timing of segmentation across the anteroposterior (AP) axis correlates with the specific developmental mode of each species, ranging from predominantly sequential, germband-based patterning in the cricket *Gryllus bimaculatus* or the beetle *Tribolium castaneum*, to more-or-less simultaneous, blastoderm-based patterning in the fruit fly *Drosophila melanogaster* (reviewed in Davis and Patel, 2002).

Previously, we have proposed that segment patterning is coordinated by an underlying framework of “timer gene” (alternatively, “timing factor”) expression, which broadly regulates segmentation gene expression in time and space (Clark and Peel, 2018; Clark et al., 2019). We identified the timer genes (not necessarily exhaustively) as *caudal* (*cad*; Mlodzik et al., 1985; Macdonald and Struhl, 1986), *Dichaete* (*D*; Russell et al., 1996; Nambu and Nambu, 1996), and *odd-paired* (*opa*;
Benedyk et al., 1994), all of which code for transcription factors. The expression dynamics of these genes correlate with the progression of segmentation: in *Drosophila* they are expressed sequentially within the blastoderm, while in *Tribolium* the same expression sequence occurs in cells emerging from the segment addition zone into the segmented germ band (Schulz et al., 1998; Copf et al., 2004; El-Sherif et al., 2014; Clark and Peel, 2018). In addition, the protein products of these genes are known to directly regulate many segmentation genes in *Drosophila* (Rivera-Pomaret al., 1995; Schulz and Tautz, 1995; La Rose, 1997; Hader et al., 1998; Ma et al., 1998; Clark and Akam, 2016; Vincent et al., 2018; Soluri et al., 2020; Koromila et al., 2020).

However, we currently do not understand how the timer genes themselves are spatiotemporally regulated within the embryo. What accounts for their local sequential activation in segmenting tissues, and why are these dynamics so deeply conserved across species? How is their expression globally regulated along the AP axis, and why is this regulation so evolutionarily flexible?

Here, we investigate these issues in the *Drosophila* embryo, exploiting the fact that segmentation in this model species is not quite so simultaneous as it is often described. Although most of the *Drosophila* blastoderm is patterned simultaneously before gastrulation, the most posterior part of the segmental ectoderm is not patterned until germ band extension (Kuhn et al., 2000). This "tail" region (see Box 1) is located posterior to abdominal segment 8 (A8) and anterior to the prospective hindgut, and eventually gives rise to a set of ectodermal structures known as the embryonic terminalia (Turner and Mahowald, 1979; Sato and Denell, 1986; Jürgens, 1987). Consistent with the timer gene hypothesis, the tail exhibits *cad*, *D*, and *opa* expression dynamics which differ from those in the rest of the trunk (Macdonald and Struhl, 1986; Russell et al., 1996; Clark and Akam, 2016; Clark and Peel, 2018), correlating with the difference in segmentation dynamics.

The patterning of the tail region is dependent on the posterior terminal system (reviewed in Perkins and Perrimon, 1991), and, in particular, on its downstream effector, Talless (Tll; Strecker et al., 1986; Pignon et al., 1990). Tll has well-characterised effects on gap gene expression (Jaeger, 2011; Janssens et al., 2013), but its contribution to timer gene regulation is relatively unexplored. As a consequence, the specific regulatory interactions that mediate tail patterning remain unknown (Casanova, 1990; Wu and Lengyel, 1998; Smits and Shvartsman, 2020).

In this study, we discover that *Drosophila* timer gene expression is shaped by a combination of cross-regulatory interactions and extrinsic spatiotemporal inputs. Using multiplexed hybridisation chain reaction in situ hybridisation (HCR ISH; Choi et al., 2016; Trivedi et al., 2018; Choi et al., 2018), we first show that the tail region gives rise to two sets of parasegment-like boundaries after gastrulation, clarifying its segmental nature. We then characterise timer gene expression in wild-type embryos, timer gene mutants, and terminal system mutants, uncovering 11 new regulatory interactions within the *Drosophila* AP patterning network. Using a simple logical model, we show that the revised network both explains wild-type patterning dynamics and recapitulates the mutant phenotypes we examined. We conclude by discussing which aspects of timer gene regulation are likely to be conserved or divergent across species.

Results

Two parasegment-like boundaries form sequentially from the *Drosophila* tail region after gastrulation

The *Drosophila* embryo is well-known for its simultaneous mode segmentation, in which a segmental pattern is laid down at the end of the blastoderm stage, prior to significant morphogenetic movements. 14 prospective parasegment boundaries appear at this stage, marked by segmental stripes of segment-polarity gene expression (DiNardo, 1985; Baumgartner et al., 1987; Baker, 1988; Lee et al., 1992; Grossniklaus et al., 1992).

Sandwiched in between parasegment boundary 14 (PSB14; see Box 1) and the broad posterior domain of *wg* (thought to correspond to prospective hindgut; Baker, 1988) are about 4 cell rows of ectoderm that remain unpatterned by segment-polarity genes at the end of the blastoderm stage...
Box 1: Notes on terminology

Morphological segments are offset from the initial metameric subdivisions of the embryo, the parasegments, by about 2/3 of a segment repeat (**Martinez-Arias and Lawrence, 1985; Lawrence et al., 1985; Ingham et al., 1985**; also see Figure 1C). The nth parasegment boundary (PSBn) refers to the anterior boundary of parasegment n.

Segment-polarity stripes are conventionally numbered according to the parasegment they are located within (**Baker, 1987**; also see Figure 1A,C). Thus, the first en stripe is en1, because it marks the anterior of parasegment 1, and the 14th en stripe is en14. The first wingless (wg) stripe, expressed just anterior to en1, is wg0, and the 14th wg stripe, expressed just anterior to en14, is wg13.

The term **telson** has been used to refer to the posterior region of the *Drosophila* embryo/larva (usually everything posterior to A8, sometimes everything posterior to A7; **Lohs-Schardin et al., 1979; Sato and Denell, 1986; Nusslein-Volhard et al., 1987; Perkins and Perrimon, 1991**). As “telson” generally refers to a terminal non-segmental region of an animal (**Snodgrass, 1935**), or at least its most posterior segment, it is non-standard to use this word to refer to a region that contains more than one segment. We therefore use the more neutral term **tail** (**Jürgens, 1987**) to refer to the region posterior to PSB14 and anterior to the hindgut.

(Figure 1A, stage 6). This “tail” region (see Box 1) goes on to form the most terminal structures of the larva (**Turner and Mahowald, 1979; Jürgens, 1987**), including a 15th parasegment boundary (**Kuhn et al., 1995, 2000**), various sensory organs (**Sato and Denell, 1986; Jürgens, 1987; Kuhn et al., 1992**), and the anal pads (external organs involved in ion transport; **Jarial, 1987**).

The segmental nature of the tail is unclear. The tissue just posterior to PSB15 is abdominal segment 10 (A10; Figure 1C). Some authors consider the region to contain a cryptic 11th abdominal segment as well (**Jürgens, 1987; Baumgartner et al., 1987**), but most do not (see The segmental character of the *Drosophila* tail) and to the best of our knowledge a 16th parasegment boundary has not been described. To investigate this issue, we used multiplexed HCR ISH to re-examine the expression of the parasegment boundary markers wingless (wg; **Baker, 1987; Rijsewijk et al., 1987**), engrailed (en; **Kornberg et al., 1985; Fjose et al., 1985**), sloppy-paired (slp; **Grossniklaus et al., 1992**), and even-skipped (eve; **Macdonald et al., 1986**) during germband extension and extended germband stages (Figure 1; Figure 1—figure Supplement 1).

wg and *en* expression in the tail

The *wg* and *en* stripes associated with PSB15 emerge during germband extension (**Figure 1A, stages 8.3-8.4**). In contrast to published descriptions of *wg* expression (**Baker, 1987, 1988**), we identified an additional *wg* stripe, *wg*15, which appeared after germband extension (**Figure 1A, stage 11.1**). During subsequent development, a medial patch of *en* expression appeared posteriorly adjacent to *wg*15 (**Figure 1A, stage 11.2**). This “en16” domain is clearly not a full stripe as found in parasegment boundaries 1-15. However, the domain marks the median neuroblast lineage of abdominal segment 10 (**Birkholz et al., 2013**), and median neuroblasts always originate from posterior segment compartments (**Bate, 1976; Doe, 1992; Biffar and Stollewerk, 2014**). *wg*15 and en16 therefore seem to correspond to a vestigial 16th parasegment boundary within the *Drosophila* embryo (**Figure 1C**).

slp and *eve* expression in the tail

In the simultaneously-segmenting region of the embryo (here, termed the “trunk”), segment-polarity domains are initially patterned by stripes of pair-rule gene expression (**DiNardo and O’Farrell, 1987; Jaynes and Fujioka, 2004; Clark, 2017**). In the tail, PSB15 is prefigured by pair-rule gene stripes *slp*14 and *eve*15, which appear after gastrulation (**Macdonald et al., 1986; Grossniklaus et al., 1992; Kuhn et al., 2000**). We found that *slp*14 and *eve*15 emerged simultaneously early in germband extension (**Figure 1B, stage 8.1**), at around the same time as the polarised cell divisions of mitotic domain 4
Figure 1: Segmentation of the tail region after gastrulation. A: \(wg\) and \(en\) expression from gastrulation to extended germband. Left column shows merged maximum projections of \(wg\), \(en\), and DAPI (nuclei). Middle column shows merged \(wg\) and \(en\) expression, either maximum projections (stage 6, stage 11.2), or sagittal sections (stage 8.1 to stage 11.1). Enlarged close-ups of the boxed regions are shown in the right column. Key expression domains are annotated with labels; newly-established domains are shown in large font; \(wg\)post = \(wg\) posterior domain. Stages 6-11.1 show lateral views, stage 11.2 is a “dorsal” view which actually mainly shows the ventral side of the posterior germband, due to germband extension. B: \(slp\)1 \((slp)\) and \(eve\) expression during the division of mitotic domain 4 (stage 8.1) and at extended germband (stage 11.1). Both stages show dorsolateral views. Left column shows a merge with DAPI (nuclei); right column shows gene expression alone. Enlarged close-ups of the boxed regions are shown below the whole embryo views; see Appendix 2 for details of how the close-up for stage 11.1 was re-sliced. Key expression domains are annotated with labels. C: schematic diagram showing the expression of key segmentation genes before tail segmentation (stage 6) and after tail segmentation (stage 11). The tail region is shaded in grey; note the expansion of the region due to morphogenesis, and the refinement of the \(cad\) domain. PSB16 is shown as a dotted line due to its vestigial nature; \(en\)16 is also depicted as narrower than the other domains. Lighter shading for \(eve\) domains represents weaker or decaying expression. C1-3 = gnathal segments; T1-3 = thoracic segments; A1-10 = abdominal segments; Ma = mandibular segment; Mx = maxillary segment; Lb = labial segment. All embryos are anterior left, dorsal up. Scale bars = 50 \(\mu m\); grey lines show embryo outlines.

Figure 1—figure supplement 1. Single channel images.

\footnote{(Foe, 1989; da Silva and Vincent, 2007). At the end of germband extension, we were surprised to find that an additional set of abutting \(slp\) and \(eve\) stripes, \(slp\)15 and \(eve\)16, emerged posterior to PSB15 (Figure 1B, stage 11.1), in the same region as \(wg\)15 and \(en\)16. This finding supports our conclusion that \(wg\)15 and \(en\)16 are segmental in nature. To the best of our knowledge, the \(slp\)15 domain has not been described previously. Persistent}
eve expression at the posterior of the embryo is well-known, although it has been described as a remnant of eve15 (Macdonald et al., 1986; Frasch et al., 1987; Sackerson et al., 1999; Kuhn et al., 2000) or the 7th eve pair-rule stripe (Singer et al., 1996) rather than a separate domain. [Note that eve15 is described by some authors (e.g., Sackerson et al., 1999) as the 8th stripe of **eve**, not counting the seven “minor” **eve** stripes that appear at even-numbered parasegment boundaries just before gastrulation.]

In summary, we propose that two parasegment-like boundaries form sequentially from the tail region of the *Drosophila* embryo after gastrulation (Figure 1C). In both cases, segment-polarity gene expression is preceded by a template of abutting **slp** and **eve** expression, similar to the odd-numbered parasegment boundaries of the trunk; (Lawrence et al., 1987; Cadigan et al., 1994). Unlike in the trunk, however, the resolved segmental eve stripes appear de novo and are not preceded by a pair-rule phase of expression.

Timer gene expression differs between the trunk and the tail

Given that *Drosophila* shows distinct segmentation dynamics in the trunk and the tail, we examined the expression of the timer genes (**cad**, **D** and **opa**) in these regions during blastoderm stages and early germ band extension (for an earlier survey using an inferior in situ hybridisation method, see Clark and Peel, 2018). To account for the movement of nuclei/cells during blastoderm (Keränen et al., 2006) and gastrulation stages, we co-stained the timer genes with **wg** and used the posterior **wg** domain as a fiducial marker. (The posterior **wg** domain appears to be stable relative to nuclei, as nuclear transcription foci are not offset anteriorly or posteriorly relative to cytoplasmic transcripts.) To aid with fine scale staging of embryos, we have divided stage 5, which lasts ~40 minutes at 25°C, into 5 timeclasses based on gene expression and morphology (see Appendix 1).

Timer gene expression in the trunk

In the trunk, **cad**, **D**, and **opa** transcripts are expressed sequentially over stages 4-6; first **cad**, then **D**, then **opa** (Figure 2; Figure 2—figure Supplement 2). Despite some AP intensity modulation (presumably downstream of gap and pair-rule genes), similar temporal dynamics are present across the whole trunk region, consistent with its simultaneous mode of segmentation. **cad**, which is maternally deposited and then zygotically expressed, clears from the trunk by stage 5.4 (Levine et al., 1985; Mlodzik et al., 1985; Hoey et al., 1986; Macdonald and Struhl, 1986; Mlodzik and Gehring, 1987a; Schulz and Tautz, 1995). **D**, which is detectable from stage 4.1 (nuclear cycle 10), reaches appreciable levels at stage 4.4 (nuclear cycle 13), rapidly reaches a very high peak at stage 5.2, then declines sharply, with residual expression clearing by stage 6, replaced ventrally by persistent expression in the neuroectoderm (Russell et al., 1996; Nambu and Nambu, 1996). Finally, **opa** appears at stage 5.1, rapidly builds to high levels, then tapers off during germ band extension (Benedyk et al., 1994; Clark and Akam, 2016).

Cad, Opa protein dynamics broadly match their respective transcript dynamics, albeit with time-lags for synthesis and decay (Figure 2—figure Supplement 3; Figure 2—figure Supplement 4). Cad levels decrease steadily in the trunk over stage 5 (see Figure 2B in Surkova et al., 2008). D levels rise and fall gradually from stage 4.4 to stage 6, peaking at mid stage 5 (Figure 2—figure Supplement 3; Figure 2—figure Supplement 4C). Finally, Opa levels increase throughout stage 5 and into stage 6 (Figure 2—figure Supplement 4B; see also the live quantification of llama-tagged Opa in Soluri et al., 2020). Segmentation stages in the trunk are therefore characterised temporally by decreasing Cad levels, increasing Opa levels, and a pulse of D expression in between (Figure 2—figure Supplement 4D).

Timer gene expression in the tail

In the tail, a similar **cad/D/opa** expression sequence is evident, but delayed with respect to the trunk (Figure 2). **cad** is expressed continuously in the tail region throughout stage 5 and into germ band extension. In contrast, **D** and **opa** expression in the tail region remains either low (**D**) or absent (**opa**)
Figure 2: Timer gene expression dynamics in wild-type embryos. Column 1 shows a two-channel wg and DAPI (nuclei) merge for embryos of gradually increasing age; columns 2-4 show cad, D, and opa channels from the same embryos; column 5 shows a three-channel cad / D / opa merge. The plots at the right show quantitative expression traces (67.5-97.5% AP axis; all measurements from the anterior pole) for all four genes, extracted from the embryos pictured to the left (see Appendix 2). The stage 4.3, stage 4.4 and stage 5.1 embryos are from a different scanning session compared to the rest of the figure. All embryos are anterior left, dorsal up. Stages 4.3-6 show lateral views; stage 8.2 is dorsolateral. Scale bar = 50 μm; grey lines show embryo outlines.

Figure 2—source data 1. Expression trace source data.

Figure 2—figure supplement 1. Additional single channel images.

Figure 2—figure supplement 2. Additional early stage embryos.

Figure 2—figure supplement 3. D antibody staining in embryos from stage 4 to stage 6.

Figure 2—figure supplement 4. Expression dynamics of timer gene transcripts and proteins.

Figure 2—figure supplement 4—source data 1. Expression trace source data

through most of stage 5. At stage 5.4, a D tail domain emerges within the lateral part of the cad tail domain, rapidly strengthening and extending dorsoventrally. D protein becomes prominent in the tail domain at stage 6 (Figure 2—figure Supplement 3; Figure 2—figure Supplement 4C), again reflecting a modest time-lag for protein synthesis. Finally, opa expression expands into the tail region from late stage 5 (described below).

High-resolution close-ups of nascent transcripts, mature transcripts, and synthesised protein (Figure 3; Figure 3—figure Supplement 1) reveal subtle posterior shifts. The cad tail domain is
Figure 3: Timer gene expression in the tail region of wild-type embryos at high resolution. **A, B:** leftmost column shows the posterior ends of the selected embryos, each with a boxed region of interest in the tail; middle columns show high-resolution close-ups of the boxed region without and with DAPI signal (“-nuclei” vs “+nuclei”); rightmost column shows quantitative expression traces along the x-axis of the boxed region. **A:** timer gene expression, as in Figure 2. **B:** wg and opa expression (as in A), combined with a cad intronic probe (cad-Intron, showing intranuclear transcription foci) and an antibody stain for Opa protein. Solid lines in the expression plots show the average intensity of wg, opa, and Opa protein; dashed lines show the normalised density of cad and opa transcription foci (see Appendix 2). Note the staggered AP distributions of Opa protein, opa transcript, and opa transcription foci, the shrinking gap between the posterior wg domain and the opa/Opa signal, and the refinement of the cad-Intron domain over time. All embryos are anterior left, dorsal up, lateral view. Scale bars = 50 μm (embryo posteriors), 20 μm (boxed close-ups). For the high-resolution close-ups, the curvature of the tissue was straightened prior to z-projection (see Appendix 2).

Figure 3—figure supplement 1. Single channel images.

mostly anterior to the wg posterior domain, with an overlap of a single cell row (**Figure 3A cad/wg merge**). At stage 5.4, cad is actively transcribed in a domain 3-4 cells wide, but this shrinks to 2-3 cells wide by stage 6, with transcription ceasing at the anterior edge (**cad intronic probe, Figure 3B**). Throughout this period, the domain of active opa transcription, marked by prominent intranuclear foci, extends about one cell row posterior to the Opa protein domain (**Figure 3B Opa/opa merge**), and also overlaps the cad domain by about one cell row (**Figure 3A cad/opa merge; Figure 3B opa/cad-Intron merge**). This suggests that opa transcription gradually invades the cad tail domain from the anterior edge, with cad transcription then ceasing in these cells as Opa levels increase (**Figure 3B Opa/cad-intron merge**). Supporting this interpretation, we confirmed that a posterior expansion of Opa expression is evident in published live-imaging data (**Soluri et al., 2020**).

In summary, we find that timer gene expression differs sharply between the trunk and the tail, although both regions express cad, D, and opa in the same temporal sequence. The difference in timer gene expression between the trunk and the tail correlates with the difference in simultaneous versus sequential segmentation dynamics described above.
The timer genes are patterned by cross-regulation

The relative spatiotemporal expression dynamics of the timer genes are suggestive of cross-regulation. To investigate this possibility, we examined timer gene expression in opa, D and cad mutants (Figure 4; Figure 4—figure Supplement 1), and discovered a variety of cross-regulatory effects. As cad is expressed maternally as well as zygotically, we examined cad maternal mutants (cad^{m-2}) and cad zygotic mutants (cad^{m-2}) in addition to cad null mutants (cad^{m-2}), in order to disentangle maternal and zygotic effects (Figure 4—figure Supplement 3). We also examined timer gene expression in wg mutants, but did not observe any aberrant expression in these embryos during our stages of interest (Figure 4—figure Supplement 4).

Timer gene expression in opa mutants

In opa mutants, trunk expression of D persisted longer than usual, resulting in a more prominent stripy pair-rule pattern, while the tail domain was stronger and extended further anterior than normal (Figure 4A,B; Figure 4—figure Supplement 1B; Figure 4—figure Supplement 5). The cad tail domain looked similar to wild-type at stage 5.5 (Figure 4A,B; Figure 4—figure Supplement 1B), but was broader at stage 6 (Figure 4—figure Supplement 5), suggesting it failed to retract posteriorly as in wild-type. opa transcription and the posterior wg domain looked normal.

Timer gene expression in D mutants

In D mutants, cad expression persisted abnormally in the trunk, with marked AP modulation, and the cad tail domain extended further anterior than normal (Figure 4A-C; Figure 4—figure Supplement 1B). The D allele we used had very low transcript levels (presumably due to nonsense-mediated decay, S. Russell pers. comm.), but the residual expression indicated that both the clearance of D expression from the trunk and the appearance of the D tail domain may have been delayed. The posterior wg domain, the posterior border of the cad tail domain, and the posterior border of the opa domain were all modestly anteriorly shifted relative to wild-type (Figure 4B; Figure 4—figure Supplement 1A; Figure 4—figure Supplement 2); even after allowing for this shift, the gap between the wg domain and the opa domain was slightly larger in D embryos than in wild-type (Figure 4—figure Supplement 1B).

Timer gene expression in cad^{m-2} mutants

In cad^{m-2} mutants, cad expression persisted abnormally in the trunk (Figure 4A-C), though without the AP modulation seen in D mutants. D expression levels were weaker than normal at early stage 5 (Figure 4C, stage 5.2), the D neuroectodermal expression domain appeared precociously (Figure 4C, stage 5.4), and the D tail domain was only expressed in the ventral half of the embryo (arrowhead in Figure 4A). The posterior wg domain was generally absent (arrowhead in Figure 4A; Wu and Lengyel, 1998), although weak expression was observed in some embryos, consistent with the variability of the cad^{m-2} larval phenotype (Macdonald and Struhl, 1986). The opa domain showed strong pair-rule modulation in the anterior trunk (arrowheads in Figure 4A; Figure 4—figure Supplement 2).

Timer gene expression in cad^{m-2} and cad^{m-2+} mutants

One copy of maternal cad (cad^{m-2} embryos) largely rescued the cad^{m-2} phenotype, except that the D tail domain was lost prematurely, during germband extension (Figure 4—figure Supplement 3B). The posterior wg domain was present, conflicting with a previous report (Wu and Lengyel, 1998).

One copy of zygotic cad (cad^{m-2} embryos) rescued the D tail domain fully, and partially rescued the wg posterior domain (Figure 4—figure Supplement 3C), but the blastoderm dynamics of D and cad expression were still perturbed.

Other observations from cad^{m-2} mutants

We wondered whether the premature neuroectodermal expression of D in cad^{m-2} mutants might indicate a more general pattern of precocious neuroectoderm development. To investigate this,
Figure 4: Timer gene expression in timer gene mutants. A: Timer gene expression in wild-type, *opa* mutants, *D* mutants, and *cad^m-2* mutants at stage 5.5. The leftmost column shows a four-channel merge and the other columns show individual channels. In the *cad^m-2* embryo, note the absence of the *wg* posterior domain (arrowhead in *wg* channel), the dorsal loss of the *D* tail domain (arrowhead in *D* channel), and the AP modulation of the *opa* trunk domain (arrowheads in *opa* channel). The brightness and contrast of the *D* channel was adjusted for the *D* embryo to reveal the very weak residual signal. (Caption continued on next page.)
we examined the expression of muscle segment homebox (msh, also known as Drop; Lord et al.,
1995), a key neuroectoderm patterning gene expressed outside the D neuroectodermal domain.

We found that msh was also expressed prematurely in cadmz- mutants, particularly in posterior
parts of the embryo (Figure 4—figure Supplement 3A).

Fixed and mounted cadmz- embryos had a different range of shapes and sizes compared to wild-
type embryos (Figure 4—figure Supplement 6). We did not investigate whether this was specifically
due to the loss of Cad expression or an artefact of the “FLP-DFS” technique for generating germline
clones (Chou and Perrimon, 1996). Given the robustness of AP patterning to variation in embryonic
genotype (Huang et al., 2020), this minor morphological effect is unlikely to be the cause of the
gene expression changes we observed.

In summary, our investigation of timer gene mutant phenotypes provides strong evidence
for timer gene cross-regulation. cad is derepressed in D mutants, and D is derepressed in opa
mutants. cadmz- embryos have a complex phenotype in which the early expression of D is reduced,
neuroectodermal gene expression is activated prematurely, the posterior wg domain is lost, and
the D tail domain fails to activate dorsally. Finally, opa expression is fairly normal across all the
mutants, except that its posterior border is anteriorly shifted in D mutants. These phenotypes, in combination with the expression dynamics described in the previous
section, suggest that Opa represses D and cad, D represses cad, and Cad activates D (see Appendix 3
for detailed reasoning). In addition, Cad is required for the expression of posterior wg, and D has a
modest but concerted effect on the entire posterior fate map. Finally, most of the cadmz- phenotype
is mediated by maternal Cad, but zygotic Cad has specific late effects on D in the tail.

Tll and Hkb expression dynamics correlate with timer gene patterning in the posterior of the embryo

We next wanted to understand why timer gene expression differs between the trunk, tail, and
prospective gut regions; i.e., how the timer gene network is spatially regulated. We therefore ex-
amined how timer gene expression relates to the expression domains of the zygotic terminal sys-
tem genes tll (Jürgens et al., 1984; Strecker et al., 1986; Pignoni et al., 1990) and huckebein (hkb;
Weigel et al., 1990; Bronner and Jackle, 1991), the obvious candidates for providing this spatial
information.

tll and hkb expression dynamics

tll and hkb, which both code for repressive transcription factors, are expressed in nested domains
at the posterior pole, with tll expression extending further from the pole than hkb expression (Fig-
Figure 5: Timer gene expression relative to posterior terminal gene expression in wild-type embryos. A, B: timer and terminal gene expression in embryos of increasing age; only the posterior end of each embryo is shown. Left columns show either three-channel or two-channel merges; right column shows quantitative expression traces (67.5-97.5% AP axis) of all four genes in the stain (see Appendix 2). A: timer gene expression relative to tll; note the posterior regression and changing intensity of the tll domain and the different spatial relationships with opa, D, and cad. B: cad and wg expression relative to hkb and tll; note how the posterior wg domain emerges within the tll-positive gap that opens up between cad and hkb. All embryos are anterior left, dorsal up, lateral view. Scale bar = 50 μm; grey lines show embryo outlines.

Figure 5—source data 1. Expression trace source data.
Figure 5—source data 2. Measurements of the size of the posterior tll expression domain at stage 5.2 versus 5.5.
Figure 5—figure supplement 1. Expression of tll and hkb in wild-type embryos from stage 2 to stage 6.
Figure 5—figure supplement 2. Single channel images.
Figure 5—figure supplement 3. Expression dynamics of tll and hkb transcripts.
Figure 5—figure supplement 3—source data 3. Expression trace source data.
Figure 5—figure supplement 4. Relative expression dynamics of Hkb, Tll and Opa proteins.
Figure 5—figure supplement 4—source data 4. Expression trace source data.
Figure 5—figure supplement 5. Relative expression dynamics of Hkb, Tll and Opa proteins.
Figure 5—figure supplement 5—source data 5. Expression trace source data.
Figure 5—figure supplement 6. Examples of source imaging data for supplementary plots.
ure 5; Figure 5—figure Supplement 1; Pignoni et al., 1990; Bronner and Jackle, 1991). tll is transcribed at low levels from as early as nuclear cycle 9 (Pignoni et al., 1992), and we detected similar early transcription for hkb. Transcript levels in both domains peak at around stage 5.2 and then decline, with tll expression fading by stage 6 and hkb persisting at low levels after gastrulation (Figure 5; Figure 5—figure Supplement 1; Figure 5—figure Supplement 3). Previous studies (Pignoni et al., 1990, 1992) reported retraction of the tll border by about 5% egg length between stage 4.4 (nuclear cycle 13) and stage 5 (nuclear cycle 14); we noticed that this border also retracts by about 3-4 nuclear diameters over the course of stage 5 (Figure 5—source data 2). [Note that the absolute (% AP axis) shifts in Figure 5—figure Supplement 3 appear smaller than this, because the posterior retraction of gene expression across nuclei is partially cancelled out by the anterior flow of nuclei away from the pole (Keränen et al., 2006).]

Tll and Hkb protein dynamics (Figure 5—figure Supplement 4; Figure 5—figure Supplement 5) are spatiotemporally similar to tll/hkb transcript dynamics, albeit with a slight time lag, with the Tll protein border therefore lying slightly anterior to the tll transcript border during the second half of stage 5 (Figure 5—figure Supplement 4A). Our Tll antibody data closely resembles that collected by the Reinitz group, who noted that “in contrast to the posterior domains of the other gap genes, the [Tll] posterior domain does not shift position with time” (Surkova et al., 2008). We interpret the same data as providing evidence for a modest posterior retraction of the Tll domain over time, which does indeed contrast with the anterior shifts of the trunk gap genes, and is partially masked by anterior nuclear flow.

tll and hkb expression dynamics relative to the timer genes

The tll and hkb anterior borders correlate closely with the resolving expression boundaries of cad, D, opa and wg (Figure 5). At stage 4.4 (nuclear cycle 13), the graded tll border overlaps the graded posterior edge of the D domain (Figure 5A, top row). By mid stage 5, a narrow gap of low expression opens between the tll domain and the trunk domains of D and opa (Figure 5A, middle row), which is then filled by the cad and D tail domains at late stage 5 (Figure 5A, bottom row). cad is expressed ubiquitously throughout the posterior of the embryo at stage 4.4 (Figure 5B, top row), then fades from the hkb domain by mid stage 5 (Figure 5B, middle row), with a narrow gap of low expression opening up between the cad and hkb domains by late stage 5 (Figure 5B, bottom row). The wg posterior domain initiates at the border between cad and hkb expression present at mid stage 5 (Figure 5B, middle row), and by late stage 5 the wg posterior domain neatly demarcates the strip of tll-positive hkb-negative cells (Figure 5B, bottom row).

In summary, the spatiotemporal expression dynamics of Tll and Hkb make them good candidates for patterning the timer gene boundaries and the posterior wg domain, because they are differentially expressed across the various terminal regions. Specifically, from posterior to anterior, the prospective posterior midgut experiences strong expression of both Tll and Hkb, the prospective hindgut experiences strong expression of Tll but weak/transient expression of Hkb, the tail region experiences weak/transient expression of Tll, and the trunk is consistently free of Tll and Hkb expression.

The terminal system interacts with the timer gene network to pattern the posterior of the embryo

To determine whether Hkb and Tll spatially regulate the timer genes, we investigated timer gene expression in hkb- mutants, tll- mutants, and torso (tor) mutants (Figure 6). Tor (Klingler et al., 1988; Sprenger et al., 1989; Casanova and Struhl, 1989) is a maternally provided receptor necessary for transducing the extracellular signal-regulated kinase (ERK) signal that specifies the poles of the embryo (reviewed in Duffy and Perrimon, 1994; Li, 2005; Goyal et al., 2018), and therefore tor mutants express neither hkb nor tll (Bronner and Jackle, 1991; Pignoni et al., 1992).
Figure 6: Timer gene expression in terminal system mutants. A-F: gene expression in wild-type and mutant embryos of increasing ages. The leftmost column shows a four-channel merge; the middle columns show individual channels; the rightmost column shows quantitative expression traces (75-100% AP axis) from the embryos shown to the left. A: timer gene expression in wild-type. The AP axis is truncated in the expression plot for the stage 6 embryo (diagonally shaded area) due to proctodaeal invagination. B: timer gene expression in tor mutants. Note how the timer gene expression expands all the way to the posterior pole (excluding the pole cells). (Caption continued on next page.)
Figure 6: Timer gene expression in terminal system mutants (continued). The broad posterior \textit{wg} domain seen at stage 5.4-5.5 is mispatterned segmental expression; the posterior \textit{wg} domain seen in wild-type embryos is absent. C: timer gene expression in \textit{tll} mutants, relative to \textit{wg} expression. Note that the \textit{cad}, \textit{D}, and \textit{opa} domains share a similar posterior border, the \textit{cad} domain fades over time, and the \textit{wg} posterior domain is absent. (Some mispatterned segmental \textit{wg} expression is seen near the posterior of the embryo, similar to \textit{tor} mutants). D: timer gene expression in \textit{tll} mutants, relative to \textit{hkb} expression. Note that the posterior borders of \textit{cad}, \textit{D} and \textit{opa} all about the \textit{hkb} expression domain. E: timer gene expression in \textit{hkb} \textit{mutants}, relative to \textit{wg} expression. Note that \textit{cad} is not repressed from the posterior pole until stage 5.5, and the posterior \textit{wg} domain extends to the posterior pole. F: timer gene expression in \textit{hkb} \textit{mutants}, relative to \textit{tll} expression. Note that the \textit{tll} domain is small, and it preserves normal relationships with the \textit{cad}, \textit{D} and \textit{opa} domains. G,H: single-channel quantitative expression traces (75-100% AP axis) from multiple wild-type and mutant stage 5.5 embryos. Note the absence of spatial patterning in \textit{tor} mutants and the posteriorly shifted expression boundaries in \textit{tll} and \textit{hkb} \textit{mutants}. All embryos are anterior left, dorsal up, lateral view. Scale bar = 50 \textmu m; grey lines show embryo outlines. All traces are individually normalised; mutant traces are overlaid on wild-type traces (grey) for ease of comparison.

Figure 6—source data 1. Expression trace source data.

Figure 6—figure supplement 1. Timer gene expression traces from terminal system mutants, relative to wild-type.

Figure 6—figure supplement 2. Expression of \textit{tll} in wild-type and \textit{hkb} \textit{embryos} from stage 5.5 to stage 7.

Timer gene expression in \textit{tor} mutants

In \textit{tor} mutants (Figure 6B,G), all posterior spatial patterning of the timer genes was lost, and their temporal expression dynamics resembled those seen in the trunk of wild-type embryos. Thus \textit{cad}, \textit{D}, and \textit{opa} were all expressed to the very posterior of the embryo at the beginning of stage 5, with first \textit{cad} and then \textit{D} expression turning off as stage 5 progressed. The posterior domain of \textit{wg} was absent, and the region of segmental \textit{wg} expression expanded posteriorly, as described previously (Mohler, 1995). Loss of the \textit{cad} tail domain in \textit{tor} and torso-like (\textit{tsl}) mutants has also been described previously (Mlodzik and Gehring, 1987b; Schulz and Tautz, 1995).

Timer gene expression in \textit{tll} and \textit{tll} \textit{opa} mutants

In \textit{tll} mutants (Figure 6C,D,G; Figure 6—figure Supplement 1A), the posterior \textit{wg} domain was absent (Wu and Lengyel, 1998), and the \textit{cad}, \textit{D} and \textit{opa} domains were expanded posteriorly to abut the \textit{hkb} domain, which looked similar to wild-type (Figure 7B). Normal expression of \textit{hkb} in \textit{tll} mutants has been previously reported (Bronner and Jackle, 1991; Bronner et al., 1994; Ashyraliyev et al., 2009).

A posteriorly-shifted \textit{cad} tail domain was transiently expressed (Figure 6C,G; Figure 4—figure Supplement 5). This finding conflicts with previous reports that the \textit{cad} tail domain was either unaffected (Reinitz and Levine, 1990) or completely absent (Mlodzik and Gehring, 1987b) in \textit{tll} mutants.

The pattern of \textit{D} expression in the trunk was abnormal (presumably caused by feedback from the segmentation genes, which are misregulated in \textit{tll} mutants; Mahoney and Lengyel, 1987; Casanova, 1990; Janssens et al., 2013), and a persistent posterior \textit{D} domain did not emerge (Figure 6C; Figure 4—figure Supplement 5).

\textit{tll} \textit{opa} double mutants showed similar patterning dynamics to \textit{tll} single mutants, except that tail-like expression of \textit{D} was rescued and persisted into germband extension (Figure 4—figure Supplement 5).

Timer gene expression in \textit{hkb} mutants

In \textit{hkb} mutants (Figure 6E-H), the \textit{wg} posterior stripe became a posterior cap (Mohler, 1995), and \textit{cad} expression persisted longer than normal at the posterior pole. The relative phasing of the \textit{cad}, \textit{D}, \textit{opa} and \textit{wg} domains was preserved, but the whole terminal pattern was posteriorly shifted/expanded into territory that would normally express \textit{hkb} (Figure 6H).

In contrast to previous reports that \textit{tll} expression is unaffected in \textit{hkb} mutants (Bronner and Jackle, 1991; Bronner et al., 1994; Bronner and Jackle, 1996), we found that the \textit{tll} domain was
smaller than normal, thereby preserving the correlation between tll levels and timer gene expression boundaries seen in wild-type embryos (Figure 6F; Figure 6—figure Supplement 1B). Expression of tll persisted throughout stages 6 and 7, rather than fading at stage 6, and ectopic expression appeared at the anterior pole (Figure 6—figure Supplement 2).

In summary, all posterior spatial patterning of the timer genes is dependent on the terminal system, via tor. Expression boundaries associated with the tail and hindgut are perturbed in tll mutants, while expression boundaries associated with the posterior midgut are perturbed in hkb mutants. In addition, there is a concerted posterior shift of the fate map in hkb' mutants, which we attribute to the reduced size of the tll domain.

Our observations from this and the previous section suggest that Tll strongly represses D and opa and weakly represses cad, while Hkb represses wg, cad, D, and opa (see Appendix 3 for detailed reasoning). Hkb is also necessary for activation of tll at normal levels (an interaction that is presumably indirect, since Hkb acts as a repressor; Goldstein, 1999), and for timely repression of tll after stage 5.

Fkh demarcates the tail / hindgut border and activates posterior wg

Having found that Tll is necessary for patterning both the tail region and the posterior wg domain (prospective hindgut), we next asked how these regions are distinguished from each other. Forkhead (Fkh) is a zygotic transcription factor which is expressed in the posterior of the embryo from stage 4.4 (nuclear cycle 13) downstream of Tor (Weigel et al., 1989, 1990) and is required for the specification of hindgut identity (Jürgens and Weigel, 1988; Weigel et al., 1989; Kuhn et al., 1995; Hoch and Pankratz, 1996).

fkh expression in *cad*mutants, *hkb' and tll' mutants

We examined the expression of *fkh* relative to other terminal genes in wild-type embryos and in mutant genotypes in which tail or hindgut patterning is perturbed (Figure 7A,B).

In wild-type embryos at stage 5.4, the posterior *fkh* domain had a fairly sharp border, which lined up with the anterior border of the posterior *wg* domain and the posterior border of the *cad* tail domain.

In *cad* mutants, *fkh* expression was strongly reduced (Wu and Lengyel, 1998), contrasting with the tll and hkb domains in these embryos, which looked normal (Figure 7—figure Supplement 1; Wu and Lengyel, 1998; Olesnicky et al., 2006).

In hkb' mutants, the *fkh* domain was reduced in size (Weigel et al., 1990; Gaul and Weigel, 1991), correlating with the reduced size of the tll domain and the posteriorly shifted *wg* and *cad* borders in this genotype.

The *fkh* domain was also reduced in tll' mutants (Weigel et al., 1990; Gaul and Weigel, 1991). The reduced domain was the same size as the *hkb* domain, and it abutted the posteriorly shifted *cad* tail domain.

Timer gene expression in *fkh* mutants

In *fkh* mutants (Figure 7C,D), the posterior *wg* domain was largely absent (Wu and Lengyel, 1998), although there was some residual posterior *wg* expression, particularly in ventral tissue. *cad, D, and opa* expression was essentially normal throughout stage 5, although the *cad* posterior border appeared to be slightly posteriorly expanded relative to the D tail domain.

A stronger effect on *cad* expression was seen after gastrulation, when new *cad* transcription appeared posteriorly abutting the *cad* tail domain, rather than several cells away (posterior to *wg*) as in wild-type embryos (Figure 7—figure Supplement 3). Our findings contrast with a previous report, which described *cad* expression as being normal in *fkh* mutants (Jürgens and Weigel, 1988).

Abnormal morphogenesis in *fkh* and *cad* mutants

Morphogenesis was abnormal in *fkh* mutants, in that proctodaeal invagination was delayed until after stage 7 (Figure 7—figure Supplement 4). This finding contrasts with previous reports that...
Figure 7: Spatial regulation of fkh, and timer gene expression in fkh^+ mutants. (Caption continued on next page.)
morphogenesis in \(fkh \) mutants is normal until the end of the extended germ band stage (Weigel et al., 1989; Wu and Lengyel, 1998).

\(\text{cad}^{m-z} \) mutants (which have severely reduced \(fkh \) expression) show a similar morphogenetic delay (Figure 7—figure Supplement 4) as well as other defects in posterior invagination (Wu and Lengyel, 1998). Posterior invagination is dependent on Fog signalling (Costa et al., 1994; Sweeton et al., 1991; Parks and Wieschaus, 1991), which is known to be reduced in \(\text{cad}^{m-z} \) mutants (Wu and Lengyel, 1998). As Fkh is known to activate Fog signalling in other developmental contexts (Chung et al., 2017), the reduction in Fog signalling may be mediated by the reduction in Fkh.

In summary, we found a consistent pattern across wild-type, \(\text{cad}^{m-z} \), \(\text{hkb} \), and \(\text{tll} \) genotypes, in which the \(fkh \) border abutted the posterior border of the \(\text{cad} \) tail domain, and posterior \(\text{wg} \) was only expressed in \(fkh \)-positive \(\text{hkb} \)-negative territory. Accordingly, in \(fkh \) mutants, the posterior \(\text{wg} \) domain was largely lost.

These results are consistent with previously proposed regulatory interactions: that Fkh activates \(\text{wg} \) (Wu and Lengyel, 1998), that Cad activates \(fkh \) (Wu and Lengyel, 1998), and that Tll and Hkb indirectly enable \(fkh \) to be expressed (Weigel et al., 1990; Casanova, 1990; Goldstein, 1999; Moran and Jimenez, 2006). Accordingly, the activation of \(\text{wg} \) by Cad (Wu and Lengyel, 1998) appears to be indirect, via Fkh (see Appendix 3 for detailed reasoning). In addition, it is possible that Fkh represses \(\text{cad} \), but current evidence is inconclusive (see Appendix 3).

Inferred regulatory interactions collectively form a network that can be formalised and simulated

From looking at how gene expression is affected in various mutant genotypes, we have inferred a network of regulatory interactions between the timer genes and the posterior terminal genes (Figure 8A; Appendix 3). Most (11/18) of these proposed interactions originate from this study, although we also find support for previously proposed interactions related to the patterning of \(\text{tll} \), \(\text{hkb} \), \(fkh \) and \(\text{wg} \) (Figure 8B). (For a recent quantitative model of posterior gut specification using a network similar to Figure 8B, see Keenan et al., 2022.)

We now formalise the regulatory network in Figure 8A as a logical model, and see whether it reproduces the patterning dynamics that we observed in the embryo. For the purposes of this study, we are aiming for a minimal, qualitative explanation of timer gene patterning, commensurable with the essentially qualitative developmental genetic paradigm we have been working within. We are interested in the relative ordering of gene expression domains in time and space, abstracted away from specific domain sizes, expression levels or expression kinetics. To the extent that the model is able to recapitulate the essential features of both wild-type and mutant genotypes, our
Figure 8: Inferred regulatory network for posterior terminal patterning and output of resulting model. (Caption continued on next page.)
The regulatory network explains the patterning dynamics of each genotype

We simulated the patterning model for the wild-type condition (Figure 8C) and eight mutant genotypes examined in this study (fhk, cadm–2, D, opa, tor, hkb, tll, and tll opa; Figure 8D–K). A genotype-by-genotype explanation of the simulated expression dynamics is provided in Appendix 4, along with a table cross-referencing the simulated expression data with the corresponding observations from real embryos. Allowing for the simple, qualitative nature of the model, the simulations were remarkably accurate at recapitulating the patterning dynamics of each genotype.

Recapitulation of wild-type patterning

Regions 1-4 generate different gene expression as a result of their different inputs from T11 and Hkb. Across regions 3 and 4, the nested domains of strong T11 and Hkb expression specify abutting domains of hindgut (Fkh + Wg) and posterior midgut (Fkh only) fates (Weigel et al., 1990; Casanova, 1990), specifically by repressing the timer genes (both regions), activating Fkh (both regions), and differentially regulating Wg (repressed by Hkb in region 4). In region 1 (trunk), where T11 and Hkb are not expressed, gene expression is shaped by the intrinsic dynamics of the timer gene network: as D is activated and the level of Opa builds up, first Cad and then D are repressed. Finally, in region 2 (tail), these dynamics are modulated by transient expression of T11, which delays the activation of D and Opa, and thereby prolongs the expression of Cad. Crucially, this T11 expression is weaker than in region 3, and so does not activate Fkh and (therefore) Wg.
Recapitulation of mutant phenotypes

Simulated mutants of the "outputs" Fkh, Cad, D and Opa (Figure 8D-G) have perturbed gene expression within specific regions, but the overall spatial organisation of the tissue is unaffected. In the fkh mutant, Wg is never activated in region 3. In the D and opa mutants, the turnover of timer gene expression in region 1 is perturbed: the repression of cad is delayed in D, and the repression of D is delayed in opa. Finally, in the cadzmzm mutant, widespread effects on gene expression coexist with fairly normal spatial organisation: in regions 3 and 4, Fkh and (therefore) Wg are not expressed, while in regions 1 and 2 the activation of D is reduced. [Although we modelled mutants as deficiencies and therefore did not recapitulate the delayed cad repression seen in cadzmzm-embryos (Figure 4A), we can interpret this delay as a knock-on effect of the reduced D expression, since D represses Cad.]

In contrast, simulated mutants involving the "inputs" Tll and Hkb (tor, hkb, tll, tll OA; Figure 8H-K) show more serious spatial effects, which tend to resemble homeotic transformations. The tor mutant, which removes all expression of Tll and Hkb, transforms regions 2-4 into region 1. The hkb mutant essentially transforms region 4 (posterior midgut) into region 3 (hindgut). The tll mutant transforms region 2 into region 1 but produces novel expression dynamics in region 3:

D expression is transiently repressed (as in wild-type region 2) but Opa is not, producing a posteriorly shifted, transient Cad stripe and precluding any late expression of D. Finally, in the tll OA mutant, the repression from Opa on D and Cad seen in the tll mutant is removed, and region 3 is fully transformed into region 2.

Discrepancies with real embryos

The discrepancies with real patterning stem from the simple, qualitative nature of the model. The activation of Fkh and (therefore) Wg is spuriously delayed in the hkb simulation (Figure 8I), owing to the discrete implementations of time, Tll expression and Fkh regulation. The model cannot recapitulate the subtle shifting dynamics with the tail region (Figure 3), because the tail is modelled as a single, discrete block. Similarly, the model cannot recapitulate the concerted fate map shifts seen in hkb and D mutants (Figure 6E-H; Figure 4B), because there is no representation of region size. That said, if we extrapolate from the existing results, we can interpret the posterior shifting dynamics within the tail region as resulting from the posterior retraction of Tll expression over time (Figure 5—figure Supplement 3; Figure 5—figure Supplement 4), interpret the posterior fate map shift in hkb mutants as resulting from (indirect) cross-activation of tll by Hkb (Figure 6H), and interpret the anterior fate map shift in D mutants as resulting from potential cross-repression of tll by D.

In summary, the genetic interactions we uncovered in this study are able to explain the qualitative aspects of timer gene patterning in both wild-type and mutant genotypes. In particular, our model explains how a graded Tll domain delineates both the anterior and posterior boundaries of the tail region, and explains why transient expression of Tll within the tail region is important for producing its characteristic timer gene dynamics. The model also explains the posteriorly shifted tail-like expression domains seen in tll and tll OA mutants as the result of graded and dynamic Hkb expression. For insight into quantitative phenomena such as the fate map shifts in hkb and D mutants, it will be necessary to analyse quantitative models incorporating zygotic cross-regulation of tll.

Discussion

In this study we have used mutants, multiplexed imaging and modelling to elucidate how the blastoderm expression dynamics of the Drosophila timer genes cad, D, and Opa arise from a combination of cross-regulatory interactions and spatially localised inputs from the posterior terminal system. This work has four main implications. First, we have demonstrated that timer gene expression is partially driven by intrinsic network dynamics. Second, we have uncovered more evidence that the
timer genes have broad effects on developmental timing, through our discovery that \textit{cad}^{m-z}- embryos precociously express genes associated with neural differentiation. Third, we have produced a coherent model for the patterning of the posterior terminal region. Fourth, we have clarified the segmental nature of the \textit{Drosophila} tail. These findings increase our understanding of \textit{Drosophila} development and have evolutionary significance for the mechanisms of axial patterning in other species.

Timer gene expression is regulated by intrinsic network dynamics and extrinsic spatiotemporal inputs

This work provides evidence for a set of cross-regulatory interactions between \textit{cad}, \textit{D}, and \textit{opa} that helps generate dynamic, sequential expression. In particular, we find that Cad activates \textit{D} (i.e., promotes the expression of the next gene in the sequence), while \textit{D} represses \textit{cad} and \textit{Opa} represses \textit{cad} and \textit{D} (i.e., both inhibit the previous genes in the sequence). Opa is not cross-regulated, however, making it an “input-only” component of the three gene network (at least in the blastoderm context).

Timer gene expression is also shaped by extrinsic spatiotemporal regulation. In this work, we show how the timer gene network interacts with the posterior terminal system: most notably, \textit{Tll} differentially represses \textit{cad}, \textit{D} and \textit{opa} in the tail region, indirectly allowing \textit{cad} expression to be maintained. The localised inputs from the posterior terminal system are overlaid on global temporal regulation provided by the nuclear:cytoplasmic ratio (which is particularly important for regulating the onset of \textit{opa} transcription; \textit{Lu et al.}, 2009) as well as the levels of maternal factors such as Tramtrack (\textit{Harrison and Travers}, 1990; \textit{Brown et al.}, 1991; \textit{Read et al.}, 1992), Zelda (\textit{Li et al.}, 2008; \textit{Harrison et al.}, 2011; \textit{Nien et al.}, 2011; \textit{McDaniel et al.}, 2019), Stat92e (\textit{Van et al.}, 1996; \textit{Hou et al.}, 1996; \textit{Tsurumi et al.}, 2011) and GAGA Factor/Trithorax-like (\textit{Farkas et al.}, 1994; \textit{Bhat et al.}, 1996; \textit{Moshe and Kaplan}, 2017; \textit{Gaskill et al.}, 2021). Ironically, precisely because these maternal factors are so crucial to development, their patterning roles remain less well understood than those of the zygotic patterning genes, which are less pleiotropic and therefore easier to study.

Timer gene expression has broad effects on developmental timing

Recent work in the \textit{Drosophila} blastoderm has demonstrated the extensive effects of timer genes on developmental gene expression. Opa has been shown to act as a pioneer factor, reshaping gene expression genome-wide by opening chromatin at hundreds of target enhancers (\textit{Soluri et al.}, 2020; \textit{Koromila et al.}, 2020). Cad and \textit{D} are also known to regulate expression across the genome (\textit{Li et al.}, 2008; \textit{MacArthur et al.}, 2009; \textit{Aleksic et al.}, 2013). Here, we have found that early Cad expression appears to be necessary for the correct timing of later developmental events, because neuroectodermal gene expression turns on precociously in \textit{cad}^{m-z}- embryos. The vertebrate Cad ortholog Cdx4 has also been shown to temporally regulate neural differentiation, in the developing spinal cord (\textit{Joshi et al.}, 2019), a tissue in which \textit{D} and Opa orthologs play key developmental roles (reviewed in \textit{Graham et al.}, 2003; \textit{Merzdorf}, 2007; \textit{Houtmeyers et al.}, 2013; \textit{Stevanovic et al.}, 2021). More generally, comparative evidence suggests that Cad/Cdx plays a deeply conserved role in the formation of the posterior body and the patterning of the posterior gut (\textit{Copf et al.}, 2004; \textit{Wu and Lengyel}, 1998; \textit{van Rooijen et al.}, 2012; \textit{Zhong et al.}, 2020). In this context, \textit{Drosophila} \textit{cad}^{m-z}- mutants offer a rare opportunity to study the genome-wide effects of a total loss of Cad/Cdx function without also catastrophically perturbing early developmental events.

A revised picture of posterior terminal patterning in \textit{Drosophila}

In this work we have investigated blastoderm gene expression downstream of the posterior terminal system, revisiting a patterning network that was most intensely studied in the late 1980s and early 1990s (\textit{Strecker et al.}, 1986; \textit{Mahoney and Lengyel}, 1987; \textit{Mlodzik and Gehring}, 1987b; \textit{Strecker et al.}, 1988; \textit{Jürgens and Weigel}, 1988; \textit{Weigel et al.}, 1990; \textit{Casanova}, 1990; \textit{Bronner and Jackle}, 1991; \textit{Wu and Lengyel}, 1998). The modern availability of marked balancers and multiplexed
imaging techniques has allowed us to clarify the topology and spatiotemporal dynamics of the network, and incorporate genes (D and opa) that had not been cloned at the time most of the original work was completed. All told, we have identified 11 new regulatory interactions involved in Drosophila AP patterning, put forward the first formalised model (to our knowledge) for the patterning of the tail, and provided a solid foundation for future quantitative analyses of this system. Although simple, our model provides new insights into how the tail and hindgut regions are specified in the early embryo. Both regions, along with segment A8, have long been known to depend on Tll expression (Strecker et al., 1986; Diaz et al., 1996). tll alleles can be arranged into a coherent phenotypic series in which the most posterior structures within the Tll-dependent region are the most sensitive to tll perturbation and the most anterior structures are the least (Strecker et al., 1986; Diaz et al., 1996), suggesting that this part of the blastoderm fate map is patterned by a gradient of Tll activity (Casanova, 1990). However, it has not been clear at the network level how graded Tll activity would be transduced into a specific series of boundaries and domains.

We found that tll expression was strong and persistent within the hindgut region, but weaker and transient in the tail region, with the anterior border of the expression domain retracting posteriorly across nuclei over time. We additionally found that Tll effectively patterned both the anterior and posterior boundaries of the tail region, by differentially repressing D and opa relative to cad. Crucially, D and opa were repressed even where Tll expression was transient and weak, but cad was not repressed (and fkh was not activated) unless Tll expression was stronger, helping explain the transition from tail fate to hindgut fate as Tll levels increase. Furthermore, the retraction of the Tll domain over time explains the posterior shifting dynamics we found for the timer genes within the tail region, which contrasts with the anterior shifting dynamics previously described for the pair-rule and gap genes (Jaeger et al., 2004; Keränen et al., 2006; Surkova et al., 2008; Lim et al., 2018).

We also discovered, to our surprise, that there is a concerted posterior fate map shift in hkb embryos, apparently mediated by a reduction in the size of the tll domain. (A subtle anterior fate map shift additionally occurs in D embryos, which might also be mediated by Tll.) Although further research is necessary to determine the mechanism by which Hkb cross-regulates tll, the phenotype implies that the size of the tll domain is not an unmediated response to terminal signalling. (Indeed, there are hints in the existing literature that tll and hkb may be zygotically cross-regulated by other AP patterning genes as well, see Casanova et al., 1994; Greenwood and Struhl, 1997; de las Heras and Casanova, 2006.) These findings may complicate the interpretation of recent studies that have characterised the input:output relationships between terminal signalling and tll and hkb expression using optogenetics (Johnson and Toettcher, 2019; Johnson et al., 2020; Keenan et al., 2020).

The segmental character of the Drosophila tail

The ancestral insect body plan has 11 true abdominal segments plus the periproct/telson, but this number has been reduced in many extant insect lineages (Snodgrass, 1935; Demerec, 1950; Matsuda, 1976; Chapman et al., 2013). In Drosophila, the most common view has been that the embryo makes 10 abdominal segments (i.e., 15 parasegment boundaries), with the anal pads located in PS15/A10 (Turner and Mahowald, 1979; DiNardo, 1985; Sato and Denell, 1986; Perkins and Perrimon, 1991; Kuhn et al.; Schmidt-Ott et al., 1994). In particular, territories corresponding to A8, A9, and A10 are visible at the morphological level during embryogenesis (Turner and Mahowald, 1979), and surveys of en, wg, hh and slp staining have found evidence for (at most) 15 parasegment boundaries (DiNardo, 1985; Baker, 1987, 1988; Kuhn et al., 1992; Grossniklaus et al., 1992; Mohler and Vani, 1992; Tabata et al., 1992; Lee et al., 1992; Tashiro et al., 1993; Kuhn et al., 1995). However, fate mapping experiments (Jürgens, 1987) and surveys of gooseberry expression (Baumgartner et al., 1987; Gutjar et al., 1993) have suggested that the embryo makes 16 parasegment boundaries, with the anal pads located in PS16/A11. There is also some evidence for A11 from patterns of gene expression in adult genital discs (Freeland and Kuhn, 1996). Given the small size of the tail region within the embryo, the fact that it is covered by am-
nioserosa during key stages of patterning, and the fact that it later undergoes complicated morphogenetic rearrangements and fusions that obscure its metameric nature, it is perhaps unsurprising that the number of *Drosophila* segments has not been unambiguously resolved. In this study, we present evidence for a vestigial 16th parasegment boundary in the embryo, by identifying additional domains of *slp* and *wg* expression and reinterpreting previously described domains of *eve* and *en*. These observations suggest that the anal pads are located in PS16. (Whether the tissue between PSB16 and the anus should be classified as a true 11th abdominal segment or a non-segmental periproct/telson is beyond the scope of this paper.) However, PSB16 appears extremely dorsoventrally restricted and may have little functional significance in the organism. As the number of abdominal segments varies across insects (*Matsuda, 1976*), the mechanistic basis of this evolutionary reduction would be interesting to study within a comparative developmental framework.

Our findings suggest that the *Drosophila* embryo sequentially patterns two parasegment boundaries after gastrulation, and that in both cases the new boundary is patterned by abutting stripes of *slp* and *eve*. In PS15 and PS16, the relative arrangement of *slp*, *eve*, *wg* and *en* expressing cells is the same, conserved pattern that is found at parasegment boundaries in the *Drosophila* trunk and throughout the arthropod phylum (reviewed in *Clark et al., 2019*). However, tail segmentation differs from trunk segmentation in that resolved, stable *eve* stripes emerge de novo and with single-segmental periodicity, rather than from a dynamic and double-segmental phase of pair-rule gene expression.

Intriguingly, a remarkably similar switch from double-segment to single-segment periodicity occurs towards the end of segmentation in the centipede *Strigamia maritima*, where stable, resolved *eve* stripes start appearing de novo in the anterior segmentation zone instead of emerging from posterior oscillatory expression (*Brena and Akam, 2013*). A possible switch from double-segmental to single-segmental patterning has also been reported for terminal segments in the beetle *Tribolium* (*Janssen, 2014*). These observations hint that terminal and trunk segments may be homonomous at the level of segment-polarity gene expression but derived from distinct ontogenetic programs. More work is needed to determine how such a developmental switch — if present — is controlled, as well as its relationship to the more general problem of terminating axial development.

Comparative analysis and evolutionary implications

We end this study by assessing the relevance of our findings from *Drosophila* to the development of other insect species. Which aspects of the *Drosophila* network are likely to be conserved in other insect species that have been used to study segmentation, such as *Tribolium*, *Nasonia vitripennis*, and *Oncopeltus fasciatus*? And how might the *Drosophila* network differ from that of its sequentially segmenting ancestors?

The cross-regulatory interactions that we found between the timer genes might be quite widely conserved in insect segmentation. Activation of *D* by *Cad*, repression of *cad* by *Opa*, and repression of *D* by *Opa* are all consistent with a segment addition zone that is subdivided into a posterior region that expresses *Cad* and *D* and an anterior region that expresses *Opa*, as seen for example in *Tribolium* (*Clark and Peel, 2018*). However, repression of *cad* by *D* would need to be reconciled with the sustained expression of both *cad* and *D* in the posterior segment addition zone. Intriguingly, some of the timer gene cross-regulatory interactions may even be important for regulating expression dynamics in completely different developmental contexts, given that *Opa* has recently been found to repress *D* during the temporal patterning of *Drosophila* intermediate neural progenitors (*Abduselamoglu et al., 2019*).

The different components of the *Drosophila* terminal system seem to have acquired their posterior patterning roles at different times: posterior *ttl* expression is found across diverse holometabolon species (*Schroeder et al., 2000; Lynch et al., 2006; Wilson and Dearden, 2009; García-Solache et al., 2010; Lemke et al., 2010; Klomp et al., 2015*) although not in hemipterans (*Weisbrod*...
et al., 2013; Bickel et al., 2013), whereas hkb and tor appear to have been recruited to terminal patterning roles more recently (García-Solache et al., 2010; Kittelmann et al., 2013; Duncan et al., 2013). In Tribolium, tll is expressed downstream of tor (as in Drosophila), and tor RNAi embryos fail to express cad and wg in the posterior of the embryo, resulting in AP truncation (Schoppmeier and Schröder, 2005). In Nasonia, tll RNAi results in a reduction of posterior cad, as well as in gap gene misregulation that disrupts much of abdominal segmentation (Lynch et al., 2006). It will be instructive to test whether these losses of cad expression in Tribolium and Nasonia are mediated by ectopic expression of Opa, as we found for tll- and tor- mutants in Drosophila. If so, it would suggest that the initial spatial regulation of the timer gene network by Tll in the posterior blastoderm might be conserved across holometabolans, despite their varying modes of development.

So, how does timer gene regulation differ between sequentially segmenting embryos (which establish a persistent segment addition zone) and simultaneously segmenting embryos like Drosophila? One key difference is likely to be the role of a posterior Wnt signalling centre: there is evidence from many different sequentially segmenting species that Wnt signalling is important for activating cad expression and maintaining the segment addition zone (reviewed in Clark et al., 2019), whereas we found that timer gene expression was unaffected in Drosophila wg- mutants, at least during our stages of interest. In addition, it seems probable that timer gene cross-regulation of opa is important in sequentially segmenting species, with this having been lost from the Drosophila lineage during the evolution of simultaneous patterning.

If we modify the Drosophila timer gene network to incorporate these additional features (Appendix 4), we can see how appropriate segment addition zone dynamics might naturally emerge (Figure 8—figure Supplement 1). It therefore seems plausible that the cross-regulatory interactions between the Drosophila timer genes may represent an evolutionary vestige of a “dynamical module” that was originally involved in axial elongation (Clark and Peel, 2018; Clark, 2021). Functional experiments in sequentially segmenting species will be necessary to test this hypothesis.

Materials and Methods

<table>
<thead>
<tr>
<th>Reagent type (species) or resource</th>
<th>Designation</th>
<th>Source or reference</th>
<th>Identifiers</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>gene (Drosophila melanogaster)</td>
<td>caudal (cad)</td>
<td>FlyBase</td>
<td>FLYB:FBgn0000251</td>
<td></td>
</tr>
<tr>
<td>gene (D. melanogaster)</td>
<td>Dichaete (D)</td>
<td>FlyBase</td>
<td>FLYB:FBgn0000411</td>
<td></td>
</tr>
<tr>
<td>gene (D. melanogaster)</td>
<td>engrailed (en)</td>
<td>FlyBase</td>
<td>FLYB:FBgn0000577</td>
<td></td>
</tr>
<tr>
<td>gene (D. melanogaster)</td>
<td>even-skipped (eve)</td>
<td>FlyBase</td>
<td>FLYB:FBgn0000606</td>
<td></td>
</tr>
<tr>
<td>gene (D. melanogaster)</td>
<td>forkhead (fkh)</td>
<td>FlyBase</td>
<td>FLYB:FBgn0000659</td>
<td></td>
</tr>
<tr>
<td>gene (D. melanogaster)</td>
<td>huckebein (hkb)</td>
<td>FlyBase</td>
<td>FLYB:FBgn0261434</td>
<td></td>
</tr>
<tr>
<td>gene (D. melanogaster)</td>
<td>muscle segment homeobox (msh)</td>
<td>FlyBase</td>
<td>FLYB:FBgn0000492</td>
<td></td>
</tr>
<tr>
<td>gene (D. melanogaster)</td>
<td>odd-paired (opa)</td>
<td>FlyBase</td>
<td>FLYB:FBgn0003002</td>
<td></td>
</tr>
<tr>
<td>gene (D. melanogaster)</td>
<td>sloppy-paired (slp)</td>
<td>FlyBase</td>
<td>FLYB:FBgn0003430</td>
<td></td>
</tr>
<tr>
<td>gene (D. melanogaster)</td>
<td>tailless (tlf)</td>
<td>FlyBase</td>
<td>FLYB:FBgn0003720</td>
<td></td>
</tr>
<tr>
<td>gene (D. melanogaster)</td>
<td>torso (tor)</td>
<td>FlyBase</td>
<td>FLYB:FBgn0003733</td>
<td></td>
</tr>
<tr>
<td>gene (D. melanogaster)</td>
<td>wingless (wg)</td>
<td>FlyBase</td>
<td>FLYB:FBgn0284084</td>
<td></td>
</tr>
<tr>
<td>strain, strain background (D. melanogaster)</td>
<td>Oregon-R</td>
<td>Bloomington Drosophila Stock Center</td>
<td>BDSC:5; RRID:BDSC_5</td>
<td>"wild-type"</td>
</tr>
<tr>
<td>Reagent type (species) or resource</td>
<td>Designation</td>
<td>Source or reference</td>
<td>Identifiers</td>
<td>Additional information</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>strain, strain background (Escherichia coli) genetic reagent (D. melanogaster)</td>
<td>One Shot BL21 Star (DE3)</td>
<td>ThermoFisher Scientific</td>
<td>C601003</td>
<td>chemically competent cells gift from H. Skaer</td>
</tr>
<tr>
<td>genetic reagent (D. melanogaster)</td>
<td>Df(3R)Exel6217</td>
<td>Bloomington Drosophila Stock Center</td>
<td>BDSC:7695; FLYB:FBab0038272; RRID:BDSC_7695</td>
<td>deficiency covering the tll locus</td>
</tr>
<tr>
<td>genetic reagent (D. melanogaster)</td>
<td>TM6C, twi-lacZ</td>
<td>Bloomington Drosophila Stock Center</td>
<td>BDSC:7251; FLYB:FBba0000071; FLYB:FBti0010595; RRID:BDSC_7251</td>
<td></td>
</tr>
<tr>
<td>genetic reagent (D. melanogaster)</td>
<td>TM3, hb-lacZ</td>
<td>Bloomington Drosophila Stock Center</td>
<td>BDSC:78357; FLYB:FBba0000047; FLYB:FBti0010581; RRID:BDSC_78357</td>
<td>gift from S. Russell</td>
</tr>
<tr>
<td>genetic reagent (D. melanogaster)</td>
<td>hsFLP</td>
<td>Bloomington Drosophila Stock Center</td>
<td>BDSC:6; FLYB:FBti0002044; RRID:BDSC_6</td>
<td></td>
</tr>
<tr>
<td>genetic reagent (D. melanogaster)</td>
<td>ovoD1 FRT40A</td>
<td>Bloomington Drosophila Stock Center</td>
<td>BDSC:2121; FLYB:FBtp00000359; FLYB:FBti0002071; RRID:BDSC_2121</td>
<td>no longer listed in BDSC</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Reagent type (species) or resource</th>
<th>Designation</th>
<th>Source or reference</th>
<th>Identifiers</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>antibody</td>
<td>anti-D (rabbit polyclonal)</td>
<td>Soriano and Russell, 1998</td>
<td>(1:10)</td>
<td></td>
</tr>
<tr>
<td>antibody</td>
<td>anti-Hkb (rat polyclonal)</td>
<td>Ashyraliyev et al., 2009</td>
<td>(1:100)</td>
<td></td>
</tr>
<tr>
<td>antibody</td>
<td>anti-Opa (guinea-pig polyclonal)</td>
<td>this paper</td>
<td>(1:5000)</td>
<td></td>
</tr>
<tr>
<td>antibody</td>
<td>anti-Tll (rabbit polyclonal)</td>
<td>Kosman et al., 1998</td>
<td>(1:100)</td>
<td></td>
</tr>
<tr>
<td>antibody</td>
<td>anti-guineapig Alexa Fluor 647 (goat polyclonal)</td>
<td>Invitrogen</td>
<td>Cat#:A-21450; RRID:AB_2735091</td>
<td>(1:500)</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-rabbit Alexa Fluor 488 (goat polyclonal)</td>
<td>Invitrogen</td>
<td>Cat#:A-11034; RRID:AB_2576217</td>
<td>(1:500)</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-rabbit Alexa Fluor 555 (goat polyclonal)</td>
<td>Invitrogen</td>
<td>Cat#:A-21429; RRID:AB_2535850</td>
<td>(1:500)</td>
</tr>
<tr>
<td>antibody</td>
<td>anti-rat Alexa Fluor 488 (goat polyclonal)</td>
<td>Invitrogen</td>
<td>Cat#:A-11006; RRID:AB_2534074</td>
<td>(1:500)</td>
</tr>
<tr>
<td>recombinant DNA reagent</td>
<td>FI01113 (clone)</td>
<td>Drosophila Genomics Resource Center</td>
<td>DGRC:1623347; RRID:DGRC_1623347</td>
<td>opa cDNA</td>
</tr>
<tr>
<td>recombinant DNA reagent</td>
<td>Gateway pDONR221 (plasmid)</td>
<td>ThermoFisher Scientific</td>
<td>Cat#:12536017</td>
<td></td>
</tr>
<tr>
<td>recombinant DNA reagent</td>
<td>Gateway pET-DEST42 (plasmid)</td>
<td>ThermoFisher Scientific</td>
<td>Cat#:12276010</td>
<td></td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>cad</td>
<td>Molecular Instruments</td>
<td>HCR v3.0 probes</td>
<td>designed to target NCBI:NM_134301.4</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>cad-Intron</td>
<td>Molecular Instruments</td>
<td>HCR v3.0 probes</td>
<td>designed to target NCBI:NT_033779.5:20771910-20781798</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>D</td>
<td>Molecular Instruments</td>
<td>HCR v3.0 probes</td>
<td>designed to target NCBI:NM_001274901.1</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>en</td>
<td>Molecular Instruments</td>
<td>HCR v3.0 probes</td>
<td>designed to target NCBI:NM_078976.4</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>eve</td>
<td>Molecular Instruments</td>
<td>HCR v3.0 probes</td>
<td>designed to target NCBI:NM_078946.4</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>fkh</td>
<td>Molecular Instruments</td>
<td>HCR v3.0 probes</td>
<td>designed to target NCBI:NM_001300645.1</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>hkb</td>
<td>Molecular Instruments</td>
<td>HCR v3.0 probes</td>
<td>designed to target NCBI:NM_079497.4</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>msh</td>
<td>Molecular Instruments</td>
<td>HCR v3.0 probes</td>
<td>designed to target NCBI:NM_057976.3</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>opa</td>
<td>Molecular Instruments</td>
<td>HCR v3.0 probes</td>
<td>designed to target NCBI:NM_079504.4</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>slp</td>
<td>Molecular Instruments</td>
<td>HCR v3.0 probes</td>
<td>designed to target NCBI:NM_057382.3</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>tll</td>
<td>Molecular Instruments</td>
<td>HCR v3.0 probes</td>
<td>designed to target NCBI:NM_079857.4</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Reagent type (species) or resource</th>
<th>Designation</th>
<th>Source or reference</th>
<th>Identifiers</th>
<th>Additional information</th>
</tr>
</thead>
<tbody>
<tr>
<td>sequence-based reagent</td>
<td>wg</td>
<td>Molecular Instruments</td>
<td>HCR v3.0 probes</td>
<td>designed to target NCBI:NM_078778.5</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>lacZ</td>
<td>Molecular Instruments</td>
<td>HCR v3.0 probes</td>
<td>designed to target NCBI:NC_000913.3: c366305-363231</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>B1-5 Alexa Fluor 488</td>
<td>Molecular Instruments</td>
<td>HCR amplifiers</td>
<td>amplifiers coordinated with probes</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>B1-5 Alexa Fluor 514</td>
<td>Molecular Instruments</td>
<td>HCR amplifiers</td>
<td>amplifiers coordinated with probes</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>B1-5 Alexa Fluor 546</td>
<td>Molecular Instruments</td>
<td>HCR amplifiers</td>
<td>amplifiers coordinated with probes</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>B1-5 Alexa Fluor 594</td>
<td>Molecular Instruments</td>
<td>HCR amplifiers</td>
<td>amplifiers coordinated with probes</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>B1-5 Alexa Fluor 647</td>
<td>Molecular Instruments</td>
<td>HCR amplifiers</td>
<td>amplifiers coordinated with probes</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>opaDM-F</td>
<td>this paper</td>
<td>PCR primers</td>
<td>AAAAAGCAGGCTTCGAAAGGCCTTCATTGAGC</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>opaA-R</td>
<td>this paper</td>
<td>PCR primers</td>
<td>AGAAAGCTGGGTTGTCGTAGCCGTGGGATG</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>attB1adap-F</td>
<td>this paper</td>
<td>PCR primers</td>
<td>GGCGACAAAGTTTGTACAAAAAAGCAGGCT</td>
</tr>
<tr>
<td>sequence-based reagent</td>
<td>attB2adap-R</td>
<td>this paper</td>
<td>PCR primers</td>
<td>GGGGACCACTTTGTACAAAAAAGCAGGCTGGT</td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>Gateway BP</td>
<td>ThermoFisher Scientific</td>
<td>Cat#:11789020</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>Clonase II</td>
<td>ThermoFisher Scientific</td>
<td>Cat#:11791020</td>
<td></td>
</tr>
<tr>
<td>commercial assay or kit</td>
<td>Gateway LR Clonase II</td>
<td>ThermoFisher Scientific</td>
<td>Cat#:11791020</td>
<td></td>
</tr>
<tr>
<td>peptitde, recombinant protein</td>
<td>Phusion Plus DNA Polymerase</td>
<td>ThermoFisher Scientific</td>
<td>Cat#:F6305</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>Overnight Express</td>
<td>Novagen</td>
<td>Cat#:71491-3</td>
<td></td>
</tr>
<tr>
<td>chemical compound, drug</td>
<td>Ni-NTA Agarose</td>
<td>Qiagen</td>
<td>Cat#:30210</td>
<td></td>
</tr>
<tr>
<td>other</td>
<td>Normal Goat Serum blocking solution</td>
<td>Vector Laboratories</td>
<td>Cat#:S-1000-20</td>
<td></td>
</tr>
<tr>
<td>other</td>
<td>DAPI stain</td>
<td>Invitrogen Scientific</td>
<td>Cat#:D1306 (1 ng/μL)</td>
<td></td>
</tr>
<tr>
<td>other</td>
<td>#1.5 coverslips</td>
<td>Corning</td>
<td>Cat#:2980-224</td>
<td></td>
</tr>
<tr>
<td>other</td>
<td>SlowFade Gold AntiFade Mountant</td>
<td>ThermoFisher Scientific</td>
<td>Cat#:S36940</td>
<td></td>
</tr>
</tbody>
</table>

Drosophila husbandry and genetics

Stock maintenance and embryo fixation (20 minutes with 4% formaldehyde in PBS) was performed as described in Sullivan et al. (2000). "Wild-type" flies were Oregon-R. The mutant alleles used were wg^{l-8} (Bloomington #5351), cad² (gift from H. Skaer), cad² (Bloomington #7091), D⁷⁷² (gift from S. Russell), opa^a (Bloomington #5340), tor^{Mr1} (gift from T. Johnson), hkb^{A32R1} (Bloomington #2059), Df(3R)Exel6217 (Bloomington #7695, a deficiency covering the tll locus), and fkh⁶ (gift from K. Roepfer). Mutant lines obtained from the Bloomington Drosophila Stock Centre were verified by cuticle preparations as described in Sullivan et al. (2000). The tll^{opa} double mutant was
generated by the Cambridge Fly Facility by recombining Df(3R)Exel6217 and opa. Mutants were balanced over marked balancer chromosomes expressing lacZ during early embryogenesis: CyO, hb-lacZ (Bloomington #6650) for the 2nd chromosome and TM6C, twi-lacZ Sb Tb (Bloomington #7251) or TM3, hb-lacZ Sb (gift from S. Russell) for the 3rd.

cad germline clones were generated using the heatshock induced FLP/FRT system as described in Selva and Stronach (2007). Briefly, 8 vials of 30 cad FRT40A / CyO virgin females (Bloomington #7091) were each crossed with 10 hsFLP w; ovoD1 FRT40A / CyO males (constructed by crossing Bloomington #6 hsFLP w; Adv / CyO females with Bloomington #2121 ovoD1 FRT40A / CyO, but note that #2121 is no longer listed in Bloomington). Adults were flipped to new vials every two days, resulting in a total of ~100 vials. When crawling L3 larvae were visible, vials were heatshocked at 37°C in a waterbath for 1 hour, allowed to recover at 25°C for 24 hours, then heatshocked again at 37°C for 1 hour. Approximately 600 non-CyO virgin females (all presumably with cad / cad ovaries) were collected from the heatshocked vials and crossed with ∼300 cad / CyO, hb-lacZ males. Resulting embryos without lacZ expression lacked both maternal and zygotic cad (cad m-z-), while embryos with lacZ expression were paternal rescues (cadm zm). Zygotic cad mutants (cad m zm) were offspring from cad / CyO, hb-lacZ parents that lacked lacZ expression; note that this genotype is also heterozygous for maternal cad.

Opa antibody generation
Clone FI01113 containing Opa coding sequence was obtained from the Drosophila Genomics Resource Center. Gateway attB primers were designed to express 386 amino acids from the N-terminus of Opa (amino acids 3-389), spanning the zinc finger region in the centre of the protein. The forward primer included a Shine-Dalgarno sequence; the reverse primer was designed to be in-frame with the C-terminal fusion of the Gateway expression vector pET-DEST42 (ThermoFisher Scientific). A two stage PCR procedure was used to obtain a final amplicon carrying the attB-sequences at each end of the N-terminal opa sequence.

Primers for the first amplification were:

<table>
<thead>
<tr>
<th>Forward Primer</th>
<th>Reverse Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>opaDM-F: AAAAAAGCAGGCTTCAGGGAGATAGAACCATGAACGCCTTCATTGAGC</td>
<td>opaA-R: AGAAAGCTGGGTTGTCGTAGCCGTGGGATG</td>
</tr>
</tbody>
</table>

Overlapping primers for the second amplification to complete the attB regions were:

<table>
<thead>
<tr>
<th>Forward Primer</th>
<th>Reverse Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>attB1adap-F: GGGGACAAGTGTCTGACCAAAAAGCAGGCT</td>
<td>attB2adap-R: GGGGACCCTTTGCTACCAAAAAGCAGGCT</td>
</tr>
</tbody>
</table>

The attB-opa amplicon was obtained by PCR with Phusion proofreading polymerase (ThermoFisher Scientific), using primers opaDM-F and opaA-R. This first amplicon was diluted 1000-fold, then Phusion PCR was repeated with primers attB1adap-F and attB2adap-R. This attB-opa amplicon was recombined into Gateway donor vector pDONR (ThermoFisher Scientific), using the BP Clonase II kit (ThermoFisher Scientific). Plasmid DNA from a sequence-verified clone was then recombined into pET-DEST42, using the LR Clonase II kit (ThermoFisher Scientific).

For expression of the fusion protein, plasmid DNA was transformed into One Shot BL21 Star (DE3) chemically competent E. coli (ThermoFisher Scientific). Opa protein was expressed in two ways, firstly by IPTG induction of exponentially growing cells (0.75 mM IPTG for 2.75 hours), secondly by overnight culture in TB Overnight Express (Novagen). The Opa fusion protein in pET-DEST42 had a C-terminal 6-His tag. Protein was purified from bacterial pellets, each from 100 ml of cells induced in IPTG or TB Overnight Express. Purification was carried out using Ni-NTA Agarose (Qiagen), under 8 M urea denaturing conditions according to the manufacturer's protocol. Purified protein was dialysed against water then concentrated using an Amicon Ultra-Ultracel 5 kDa centrifugal filter (Millipore). Antibodies were raised in two guinea pigs by Eurogentec.

HCR in situ hybridisation and antibody staining
Prior to staining, fixed embryos stored in methanol were put through a rehydration series of 5 minutes each at 75%, 50%, and 25% methanol in PBS + 0.1% Tween-20, then washed 3 times with
PBS + 0.1% Tween-20.

HCR in situ hybridisation was performed using probes and hairpins produced by Molecular Instruments, following the protocol for whole-mount fruit fly embryos included in Choi et al., 2016, adapted for v3.0 probes as described in Choi et al., 2018. In addition, the percentage of dextran sulphate in the probe hybridisation and amplification buffers was reduced from 10% w/v to 5% w/v, to reduce viscosity and allow the embryos to settle more easily in the tube. A 20 minute postfix step (4% formaldehyde in 5x SSC + 0.1% Tween-20) was added at the end of the protocol to stabilise the signal.

For antibody staining following HCR, embryos were incubated for 30 minutes in blocking solution [5% Normal Goat Serum (Vector Laboratories) in 5x SSC + 0.1% Triton X-100], at room temperature with rocking. Embryos were then incubated overnight in preabsorbed primary antibody diluted in blocking solution, at 4°C with rocking. Embryos were washed 4 times for 15 minutes in 5x SSC + 0.1% Triton X-100, at room temperature with rocking, then incubated for 30 minutes in blocking solution, at room temperature with rocking. Embryos were then incubated for 2 hours with fluorescently labeled secondary antibody diluted in blocking solution, at room temperature with rocking. Embryos were washed 4 times for 15 minutes then 1 time for 30 minutes with 5x SSC + 0.1% Triton X-100, at room temperature with rocking. Antibody staining without prior HCR was performed as above with the exception that PBS was used instead of 5x SSC. Primary antibodies were guinea pig anti-Opa (this work) at 1:5000, rabbit anti-Dichaete (Soriano and Russell, 1998) at 1:10, rabbit anti-Tll (Kosman et al., 1998) at 1:100, and rat anti-Hkb (Ashyraliyev et al., 2009) at 1:100. Secondary antibodies were goat anti-guinea pig Alexa Fluor 647 (Invitrogen A-21450), goat anti-rabbit Alexa Fluor 488 (Invitrogen A-11034), goat anti-rabbit Alexa Fluor 555 (Invitrogen A-21429), and goat anti-rat Alexa Fluor 488 (Invitrogen A-11006), diluted 1:1 with 100% glycerol for storage and used 1:500.

Following HCR and/or antibody staining, embryos were incubated for 30 minutes with 1 ng/μL DAPI (ThermoFisher Scientific) in 5x SSC + 0.1% Tween-20, at room temperature with rocking, then washed 3 times for 30 minutes in 5x SSC + 0.1% Tween-20, at room temperature with rocking. Prior to mounting, embryos were stored in 1.5 mL tubes in SlowFade Gold Antifade Mountant (ThermoFisher Scientific).

Microscopy

Embryos were mounted in SlowFade Gold Antifade Mountant (ThermoScientific) on glass microscope slides (Thermo Scientific) with #1.5 coverslips (Corning). #1.5 coverslips were used as bridges to prevent embryos from being squashed. Clear nail varnish was used to seal the edges of the slide. Microscopy was performed on an Olympus FV3000 confocal microscope at the Department of Zoology Imaging Facility (University of Cambridge). Acquired images were 12-bit, with a 1024x768 scan format and a 2 μs/pixel dwell time. Whole embryo images were acquired using an Olympus UPlanSapo 30x 1.05 NA silicon immersion oil objective, a physical pixel size of 0.47 μm x 0.47 μm, and a Z-stack step size of 1.5 μm. The close-ups in Figure 1 and Figure 3 were acquired using an Olympus UPlanSapo 60x 1.3 NA silicon immersion oil objective, a physical pixel size of 0.21 μm x 0.21 μm, and a Z-stack step size of 0.8 μm. Each Z-stack was specified so as to span from just above the top surface of the focal embryo through to the middle of its yolk.

In each experiment, embryos had been stained for up to four transcripts and/or proteins of interest plus nuclei, generally using Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 594, Alexa Fluor 647, and DAPI. (For mutant experiments, a lacZ probe or a probe to a gene covered by a deficiency was additionally labelled with one of these same fluorophores, so that homozygous mutant embryos could be easily identified.) All imaging channels were acquired sequentially, to minimise cross-talk. The laser lines and collection windows were: 405 laser and 443-472 nm window for DAPI; 488 laser and 500-536 nm window for Alexa Fluor 488; 561 laser and 566-584 nm window for Alexa Fluor 546 or Alexa Fluor 555; 594 laser and 610-631 nm window for Alexa Fluor 594; 640 laser and 663-713 nm window for AlexaFluor 647. Alexa Fluor 514 (514 laser and 519-540 nm window) was used in
place of Alexa Fluor 488 for a round of HCR experiments carried out when the 488 laser was awaiting repair. When necessary, a transmitted light channel was also collected, to allow for embryo staging based on the progress of cellularisation.

Image analysis and figure preparation
Embryo staging was based on Bownes stages (Bownes, 1975; Campos-Ortega and Hartenstein, 1997), with subdivision of particular stages into substages where necessary (details in Appendix 1). Fiji (Schindelin et al., 2012) was used for routine inspection of imaging data and certain image adjustments (details in Appendix 2). Image processing and analysis scripts were written in Python 3 (www.python.org), using the libraries NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), scikit-image (vanderWalt et al., 2014), and matplotlib (Hunter, 2007); see Appendix 2 for details.
Figures were assembled in Affinity Designer (Serif Europe). Embryo outlines were drawn manually in Affinity. Image look-up tables (LUTs) were either chosen from the “ChrisLUTs” LUT package for ImageJ (Christophe Leterrier and Scott Harden; github.com/cleterrier/ChrisLUTs; “NeuroCyto LUTs” updatesite in Fiji), or generated for custom colours using a macro provided by Nicolás De Francesco (github.com/ndefrancesco).

Models and simulations
Models (see) were implemented in python using NumPy (Harris et al., 2020), and outputs were plotted using matplotlib (Hunter, 2007). See Appendix 4 for details.

List of figure supplements
- **Figure 1**—figure Supplement 1. Single channel images.
- **Figure 2**—figure Supplement 1. Additional single channel images.
- **Figure 2**—figure Supplement 2. Additional early stage embryos.
- **Figure 2**—figure Supplement 3. D antibody staining in embryos from stage 4 to stage 6.
- **Figure 2**—figure Supplement 4. Expression dynamics of timer gene transcripts and proteins.
- **Figure 3**—figure Supplement 1. Single channel images.
- **Figure 4**—figure Supplement 1. Timer gene expression traces from timer gene mutants, relative to wild-type.
- **Figure 4**—figure Supplement 2. Full-length opa expression traces from timer gene mutants.
- **Figure 4**—figure Supplement 3. Additional characterisation of cad^{m-2}, cad^{m-2'}, and cad^{m2'}-mutants.
- **Figure 4**—figure Supplement 4. Timer gene expression in wg⁺ mutants at stage 6.
- **Figure 4**—figure Supplement 5. Timer gene expression in opa⁺, tll⁺, and tll⁺ opa⁺ embryos at stage 6.
- **Figure 4**—figure Supplement 6. Morphological differences between wild-type and cad^{m-2}-blastoderms.
- **Figure 5**—figure Supplement 1. Expression of tll and hkb in wild-type embryos from stage 2 to stage 6.
- **Figure 5**—figure Supplement 2. Single channel images.
- **Figure 5**—figure Supplement 3. Expression dynamics of tll and hkb transcripts.
- **Figure 5**—figure Supplement 4. Relative expression dynamics of Tll protein and tll transcript.
- **Figure 5**—figure Supplement 5. Relative expression dynamics of Hkb, Tll and Opa proteins.
- **Figure 5**—figure Supplement 6. Examples of source imaging data for supplementary plots.
- **Figure 6**—figure Supplement 1. Timer gene expression traces from terminal mutants, relative to wild-type.
- **Figure 6**—figure Supplement 2. Expression of tll in wild-type and hkb⁺ embryos from stage 5.5 to stage 7.
- **Figure 7**—figure Supplement 1. Terminal gene expression traces from cad^{m-2}, tll⁺ and hkb⁺ mutants, relative to wild-type.
• Figure 7—figure Supplement 2. Timer gene expression traces from fkh mutants, relative to wild-type.
• Figure 7—figure Supplement 3. wg and cad expression in fkh mutants at stages 6 and 7.
• Figure 7—figure Supplement 4. Abnormal morphogenesis in cad^{m-} and fkh mutants.
• Figure 8—figure Supplement 1. Simulation of a hypothetical timer gene network for sequential segmentation.

List of source data files
• Figure 2—source data 1. Expression trace source data.
• Figure 4—source data 1. Expression trace source data.
• Figure 5—source data 1. Expression trace source data.
• Figure 5—source data 2. Measurements of the size of the posterior tll expression domain at stage 5.2 and stage 5.5.
• Figure 6—source data 1. Expression trace source data.
• Figure 7—source data 1. Expression trace source data.
• Figure 2—figure Supplement 4—source data 1. Expression trace source data.
• Figure 4—figure Supplement 6—source data 2. Measurements of wild-type and cad^{m-} blastoderms.
• Figure 5—figure Supplement 3—source data 3. Expression trace source data.
• Figure 5—figure Supplement 4—source data 4. Expression trace source data.
• Figure 5—figure Supplement 5—source data 5. Expression trace source data.
• Appendix 2—Figure 1—source data 1. Sample image stack and image analysis scripts.
• Appendix 2—Figure 1—source data 2. List of source image files for all figures.

List of appendices
• Appendix 1. Embryo staging and substaging criteria.
• Appendix 2. Image processing and analysis.
• Appendix 3. Evidence for proposed cross-regulatory interactions between Tll, Hkb, Fkh, Wg, Cad, D, and Opa.
• Appendix 4. Model and simulation details.

Acknowledgements
This project was made possible by Michael Akam, who provided laboratory space, resources, encouragement, and helpful feedback on the manuscript. We are grateful to Ken Siggins for generating the guinea pig anti-Opaa antibody, and to Simon Collier at the Department of Genetics Fly Facility (University of Cambridge) for creating the tll-opa double mutant. We thank the Imaging Facility at the Department of Zoology (University of Cambridge) for confocal imaging support, and members of the Drosophila community for various fly lines and reagents. EC thanks Angela DePace for hosting him in her group while work on this project was ongoing. Stocks and materials obtained from the Bloomington Drosophila Stock Center (NIH P40OD018537) and the Drosophila Genomics Resource Center (NIH 2P40OD010949) were used in this study. Information from FlyBase (Larkin et al., 2021) was invaluable.

Materials availability statement
Aliquots of the new Opa antibody are available from EC on request. The new tll-opa double mutant is available from EC on request.

Data availability statement
All necessary data are included in the main text, appendices, and supplementary information. The confocal imaging dataset on which this study is based is freely available to download from the...
Biolmage Archive (http://www.ebi.ac.uk/bioimage-archive; Ellenberg et al., 2018; Sarkans et al., 2018) under accession number S-BIAD582. This 335 GB dataset contains multiplexed image stacks of more than 800 individual embryos, including 12 different genotypes and over 50 different genotype / gene product combinations. Image analysis code is provided in Appendix 2—Figure 1—source data 1. A list of the corresponding image file(s) within the dataset for all figure panels within the main text, appendices, and supplementary information is provided in Appendix 2—Figure 1—source data 2. Source Data files are provided for the expression traces in the main and supplementary figures.

Funding statement

EC was supported by a BBSRC Research Grant (BB/P009336/1), a Junior Research Fellowship from Trinity College, Cambridge, and an EMBO postdoctoral fellowship (EMBO ALTF 383-2018). MAB was supported by the Deutsche Forschungsgemeinschaft (DFG Research Fellowship BE 6732/1-1), the Isaac Newton Trust (Research Grant) and the University of Cambridge Department of Zoology. MB was supported by a PhD studentship from the Wellcome Trust (220019/Z/19/Z).

Competing interests statement

The authors declare no competing interests.

References

Clark E, Peel AD. Evidence for the temporal regulation of insect segmentation by a conserved sequence of transcription factors. Development. 2018; p. dev.155580.

GAF is essential for zygotic genome activation and chromatin accessibility in the early Drosophila embryo. eLife. 2021; 10:e66668.

Harrison SD, Travers AA. The tramtrack gene encodes a Drosophila finger protein that interacts with the ftz transcriptional regulatory region and shows a novel embryonic expression pattern. The EMBO journal. 1990; 9(1):207–216.

Wilson MJ, Dearden PK. Tailless patterning functions are conserved in the honeybee even in the absence of Torso signaling. Developmental Biology. 2009; 335(1):276–287.

Appendix 1

Embryo staging and selection

Briefly, embryos younger than stage 5 were staged to a nuclear cycle based on their nuclear density (stage 4.1 = nuclear cycle 10; stage 4.2 = nuclear cycle 11; stage 4.3 = nuclear cycle 12; stage 4.4 = nuclear cycle 13), while embryos older than stage 5 were staged by the progress of morphogenesis, the presence of mitotic domains (Foe, 1989), and/or the appearance of terminal segment-polarity stripes. Stage 5 itself was divided into 5 substages, stage 5.1 to stage 5.5, which can be differentiated from one another on the basis of wg expression, D expression, eve expression, or the progress of cellularisation (Appendix 1—Figure 1; for most stains, we relied on wg and/or D expression). Appendix 1—Table 1 describes our staging criteria and also notes how our stage 5 classification scheme maps onto the 8 “temporal equivalence” classes used in Surkova et al. (2008), and the 4 “phases” used in Schroeder et al. (2011).

Expression patterns in embryos of the same (sub)stage and genotype generally looked remarkably similar; each phenotype we describe was observed in multiple individual embryos (biological replicates) and was consistent across different stain combinations (experiments). Occasional obviously atypical embryos (e.g., very small, or with abnormal patterns of mitotic division) were identified by visual inspection and discarded from the dataset. Any repeat scans of a given embryo were also discarded from the dataset to avoid pseudoreplication and artefacts from photo-bleaching. Embryos with the same stain combination were generally sourced from a single experiment; stainings were only repeated and/or combined when this was necessary to improve the coverage of stages. Embryos of all orientations were examined when characterising mutant phenotypes, but only laterally oriented embryos were selected for figure preparation and quantitative analysis. In most figures, a single representative embryo and/or expression trace is shown for any given (sub)stage. In some figures (Figure 4; Figure 6; Figure 7, Figure 4—figure Supplement 1; Figure 4—figure Supplement 2; Figure 5—figure Supplement 3; Figure 6—figure Supplement 1; Figure 7—figure Supplement 1; Figure 7—figure Supplement 2), expression traces from 2-4 embryos of the same stage and genotype are overlaid on the same axes to show the qualitative consistency of each phenotype across individuals. These sets of embryos were manually selected to be close matches in stage and orientation, since both factors influence the shape of the resulting expression trace.
Appendix 1—table 1: Embryostaging and substaging criteria used in this work. Bownes stages 4, 5, 8 and 11 (Bownes, 1975) are further divided into substages, as described, based on the expression patterns of wg, D and eve, or the progression of cellularisation. For each stage 5 substage, the corresponding "temporal equivalence class(es)" (Surkova et al., 2008) or "phase" (Schroeder et al., 2011) are also listed for comparison. Note that the subdivision of a continuous developmental process into discrete time-classes is convenient for analysis but biologically somewhat arbitrary; there are no sharp boundaries between the substages we have defined.

<table>
<thead>
<tr>
<th>stage criteria</th>
<th>Surkova</th>
<th>Schroeder</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 3 same as Bownes (1975).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1 syncytial blastoderm nuclear cycle 10 (judged by number/density of nuclei).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2 syncytial blastoderm nuclear cycle 11 (judged by number/density of nuclei).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3 syncytial blastoderm nuclear cycle 12 (judged by number/density of nuclei).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4 syncytial blastoderm nuclear cycle 13 (judged by number/density of nuclei).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>wg: not present.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: broad trunk domain, head domain not well established (mainly nuclear dots).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eve: broad trunk expression, may have some AP modulation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blastoderm morphology: round, early-looking nuclei.</td>
<td>T1 phase 1</td>
<td></td>
</tr>
<tr>
<td>5.1 wg: head and posterior domain expression just starting (mainly nuclear dots).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: head domain established, trunk domain still uniform.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eve: not yet a regular 7 stripe pattern.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blastoderm morphology: no invagination of plasma membrane.</td>
<td>T2-3 phase 2</td>
<td></td>
</tr>
<tr>
<td>5.2 wg: head and posterior domains established; wg0 and wg1 forming.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: broad trunk domain becoming fainter in the middle. No tail domain.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eve: regular 7 stripe pattern but stripes still fuzzy and broad.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blastoderm morphology: plasma membrane invaginating.</td>
<td>T4-T5 phase 2</td>
<td></td>
</tr>
<tr>
<td>5.3 wg: wg0 and wg1 well established; trunk stripes (mainly odd-numbered) just appearing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: tail domain appearing laterally with similar intensity to trunk expression; anterior and posterior halves of the trunk domain are well-separated; trunk expression is becoming more modulated.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eve: 7 well separated but still symmetrical stripes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blastoderm morphology: membranes have reached the bottom of the nuclei.</td>
<td>T6-7 phase 3</td>
<td></td>
</tr>
<tr>
<td>5.4 wg: segmental pattern clearly developing (both odd-numbered and even-numbered stripes), though may not be fully established.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: tail domain is more established and has separated from the trunk; trunk expression is starting to fade and neuroectoderm expression is just appearing, including a bright anterior-ventral stripe.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eve: anterior stripes narrowing to 2-cell wide late element expression; posterior stripes becoming AP graded as they transition to the late element.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blastoderm morphology: elongated nuclei.</td>
<td>T8 phase 4</td>
<td></td>
</tr>
<tr>
<td>5.5 wg: regular segmental stripes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D: tail domain strong; trunk expression (except dorsal saddle) fading; neuroectoderm expression developing but not yet uniform across the AP axis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>eve: all 7 stripes have narrowed, faint secondary stripes present.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>blastoderm morphology: signs of gastrulation and/or cephalic furrow formation; by late stage 6 pole cells moving dorsally and dorsal crumpling present.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 same as Bownes (1975).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 same as Bownes (1975).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1 mitotic domain 4 dividing.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2 wg14 absent/weak, en15 absent.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.3 wg14 present, en15 absent/weak.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.4 wg14 present, en15 present.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 same as Bownes (1975).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 same as Bownes (1975).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.1 wg15 present, en16 absent.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.2 wg15 present, en16 present.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12+ same as Bownes (1975).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 1—figure 1: Substaging scheme for stage 5 embryos. Representative gene expression patterns and blastoderm morphology for each of the 5 substages in our substaging scheme for stage 5 (nuclear cycle 14). See Appendix 1—Table 1 for details. Rightmost column shows transmitted light images of a sagittal view of the dorsal blastoderm surface (imaged on a confocal microscope); black arrowheads point to the invaginating plasma membrane. All embryos are anterior left, dorsal up, lateral view. Scale bars = 50 μm (whole embryos), 20 μm (membrane close-ups); grey lines show embryo outlines. Note that the 5 images in each row are not all sourced from the same embryo.
Appendix 2

Initial image processing

Initial processing of raw image stacks was carried out to detect, rotate, mask, and crop each focal embryo (Appendix 2—Figure 1A-E, Appendix 2—Figure 1—source data 1 script 1). Briefly, a “height map” of a given z-stack was built up by thresholding a maximum projection of z range 0 : i for increasing values of i, and summing these together to produce an image showing the topography of any embryos within the field of view (Appendix 2—Figure 1B). Local peaks within a truncated version of this image were detected and then used as the seeds for a watershed segmentation to separate touching embryos, while “low-lying” background areas were masked (Appendix 2—Figure 1C). Because all images were centred on a specific embryo of interest, the convex hull of the central segmented region was used as the embryo mask (Appendix 2—Figure 1D). The major axis of the embryo mask was used to determine the orientation of this focal embryo, and the image was rotated accordingly so as to align its AP axis with the horizontal. The embryo mask was then dilated slightly, before being used to crop the image and mask non-embryo background (Appendix 2—Figure 1E). This process was first applied to all images in batch, and then the resulting masks were inspected for accuracy. Any images with unsatisfactory masks were reprocessed individually, with manual parameter adjustment at the image segmentation step to correct the mask. Processed images were then flipped horizontally and/or vertically as necessary, to yield a consistent “anterior left, dorsal up” orientation.

Extraction of quantitative expression traces

Laterally oriented embryos of the appropriate stages and genotypes were then selected for the extraction of quantitative AP expression traces (Appendix 2—Figure 1F-L, Appendix 2—Figure 1—source data 1 scripts 2 and 3). Previous studies have tended to use percentage egg length to quantify AP expression profiles (e.g., Pignon et al., 1990; Surkova et al., 2008; Janssens et al., 2013), but percentage egg length is not a perfect proxy for the AP axis, due to the embryo’s curvilinear intrinsic coordinate system (Spirov et al., 2000; Luengo Hendriks et al., 2006; Spirov et al., 2013). Percentage egg length measurements for expression domains near the poles are also potentially unreliable because they depend on the degree of flattening of a mounted embryo, given that a z-projection of a squashed embryo will exaggerate the size of the termini compared to a z-projection of an unsquashed embryo, due to the different curvature in z. We therefore decided to use a heuristic approach to approximate a curved trace along the lateral surface of the embryo, using guidance from embryo morphology.

Briefly, DAPI (nuclei)-derived height maps were used to define thin embryo “shells” (~18 μm thick), which tracked the blastoderm surface in 3D and contained most of the gene expression signal (Appendix 2—Figure 1F,G). A mean z-projection of the voxels within this shell region was then saved as a multichannel 2D image (Appendix 2—Figure 1H). Next, the dorsal and ventral borders of the embryo mask were used to create a “DV map” for this image by interpolation (Appendix 2—Figure 1I), and 30% of the DV axis, corresponding to the mid-lateral part of the embryo, was selected for quantification (Appendix 2—Figure 1J). (As each embryo had a slightly different DV orientation on the slide, the selected DV range had to be adjusted manually for each image, so that the centre of the selected region consistently intersected with a DV position corresponding to the centre of the D head domain. This DV adjustment was important because the positions and expression intensities of most AP expression domains vary along the DV axis (Luengo Hendriks et al., 2006). A 3D spline was fitted along the middle of the DV region of interest, using z values from the height...
map. To improve the consistency of the traces, the posterior endpoint of the spline was anchored close to a pixel coordinate marking the transition between the posterior midgut primordium and the pole cells, which was selected manually for each image. Cumulative distance along the spline was calculated in 3D using the Pythagorean theorem, accounting for the anisotropy of the z axis relative to the x and y. The total AP distance along the spline was normalised to 1, where 0 = the anterior tip of the embryo mask, and 1 = the beginning of the pole cells. Expression intensity traces were extracted for each channel by running a sliding window of 1% AP length (roughly 1 nuclear diameter) along the spline, with each window angled normal to the xy orientation of the spline (so as to avoid generating artificial expression overlaps from slanted posterior domains), and bounded dorsally and ventrally by the DV region of interest (Appendix 2—Figure 1K). Each extracted trace (Appendix 2—Figure 1J) consisted of 500 measurements separated by a distance of 0.2% AP length.

The expression intensity traces in Figure 3 (solid plotted lines) were calculated by moving a sliding window with a width of 25 pixels (\sim1 nuclear diameter) across the x axis of the rectangular region of interest and measuring the average intensity at 1 pixel intervals. Nuclear foci for opa and the cad intronic probe were identified by detecting local peaks above a threshold intensity; the dashed plotted lines in Figure 3B are density plots for the x coordinates of the detected foci.

Normalised expression plots

When comparing traces from embryos of different stages to examine the dynamics of gene expression, all traces from a particular experimental sample were normalised to the range 0-1 as a group [i.e., for each channel, normalised values = (original values - min(group)) / (max(group) - min(group)]. When comparing traces from individual embryos of the same stage to examine the positioning of expression domains within and between genotypes, each trace was normalised to the range 0-1 individually [i.e., normalised values = (original values - min(individual)) / (max(individual) - min(individual)] In D^- mutants, expression levels were severely reduced across the entire AP axis, and so the normalised expression traces were multiplied by a small constant to dampen them. In most cases, expression traces are presented without any further adjustments. In Figure 4—figure Supplement 1B, additional plots show “aligned traces”, in which each trace has been shifted anteriorly or posteriorly by a small amount so that the position of the anterior border of the wg posterior domain coincides in all traces. The aligned plots are useful for assessing any changes to the relative positioning of particular domains (as opposed to their absolute positional variation across different embryos).

Embryo images

A list of source image files for all figure panels within the main text, appendices, and supplementary information is provided in Appendix 2—Figure 1—source data 2. Unless otherwise stated, all images of embryos are maximum intensity projections of confocal z-stacks of the upper half of the embryo. Fiji was used to adjust image brightness and contrast, in accordance with guidelines presented by Schmied and Jambor (2020). Image gamma was adjusted to 0.1 for all opa transcript stains, due to the extremely bright transcriptional foci. Embryos from the same round of staining and imaging are presented using the same brightness and contrast values; unless otherwise noted, this holds for any embryos within a given figure that share the same genotype and combination of stains. To correct for uneven illumination from the 405 laser, the DAPI (nuclei) signal from each blastoderm stage embryo was flattened by applying a Gaussian filter with $\sigma = 6$, and then dividing the original image by the new blurred image.
In Figure 1B; stage 8.1, the inset shows a maximum intensity projection from the surface to the midline of the embryo. In Figure 1B; stage 11.1, the inset shows a single section of a z-stack that was rotated 45° around the x axis using the ImageJ plug-in TransformJ (Meijering et al., 2001) using the “Quintic B-Spline” method for interpolation. In Figure 3, the curved surface of the embryo was flattened in Fiji by reslicing each channel along the long axis of the embryo (output spacing 0.206 μm), manually masking the region of interest with a segmented line (“spline fit” checked) of width 130 pixels, using the “Straighten” tool to process the entire stack, then reslicing the stack (output spacing 0.206 μm) and re-merging the channels to return to the original view. Average projections (DAPI [nuclei] and Opa channels) or maximum projections (HCR channels) were then generated for a z-range spanning from the top of the embryo to just below the nuclei.
Appendix 2—figure 1: Illustration of image processing steps. (Caption continued on next page.)
Appendix 2—figure 1: Timer gene expression in timer gene mutants (continued). Left column illustrates the initial processing of raw confocal data to generate single embryo stacks; right column illustrates the extraction of quantitative expression intensity traces from the processed stacks (see text for additional details and explanation). A: maximum z-projection of the DAPI (nuclei) channel of the raw multi-channel stack. B: height map generated from the smoothed DAPI (nuclei) channel, where the colour of the pixel (yellow=high, black=low) indicates the height of the embryo surface. C: watershed segmentation of the (inverted) height map, in which local peaks (white dots) indicate the watershed seeds, each segmented region is overlaid by a different colour, and the low-lying background area is masked (dark blue). D: the 2D mask for the focal embryo (light grey), overlaid on the maximum z-projection of the DAPI (nuclei) channel. E: a maximum z-projection of the DAPI (nuclei) channel after image rotation, cropping, masking, and manual flipping. F: height map of the embryo z-stack, as in B. Dashed line marks the location of the xz plane shown in G. G: an xz (frontal) section through the embryo, showing the embryo “shell mask” overlaid on the DAPI (nuclei) channel (top) or on a merge of all 5 imaging channels (bottom). Note that the vast majority of the transcriptional signal is contained within the shell mask. H: a 5-channel merge showing a mean z-projection of the 3D region defined by the embryo shell mask. I: a map of the DV coordinates assigned to the embryo z-projection by interpolating between the dorsal and ventral boundaries of the embryo mask. J: a region of interest (light grey area) defined by a specific range of DV coordinates. The range spans 30% of the DV axis and is selected to intersect with the round D domain in the head. Note the manually input coordinate (orange dot at the posterior of the embryo) marking the beginning of the pole cell region. K: the red line shows a 2D projection of a 3D spline fitted to the centre of the DV region of interest (x and y coordinates) and the corresponding values from the height map (z coordinates). The cyan lines are normal to the spline in x and y. Expression traces are extracted from the image by running a sliding window (width = 1% of the length of the spline in 3D, anterior and posterior boundaries normal to the spline, dorsal and ventral boundaries defined by the DV region of interest) along the spline and recording the mean intensity of each image channel. L: the quantitative expression traces extracted from the image, after normalising each trace to the 0-1 range.

Appendix 2—figure 1—source data 1. Sample image stack and image analysis scripts.

Appendix 2—figure 1—source data 2. List of source image files for all figures.
Appendix 3

Justification for gene regulatory network topology

The detailed reasoning for the topology of the gene regulatory network in Figure 8A is presented in Appendix 3—Table 1. This table summarises and discusses the experimental evidence relevant to each potential pairwise interaction between the genes in the network, drawing on the expression data from this study as well as a comprehensive survey of the existing literature on Drosophila posterior terminal patterning.

Appendix 3—Table 1. Evidence for proposed cross-regulatory interactions between Tll, Hkb, Fkh, Wg, Cad, D, and Opa. For every pairwise combination of input factor (Tll, Hkb, Fkh, Cad, D, Opa) and potential target gene (tll, hkb, fkh, wg, cad, D, opa), the inferred regulatory interaction (activation / repression / none / undetermined) is listed, accompanied by a summary of the relevant experimental evidence and line of reasoning.

<table>
<thead>
<tr>
<th>Input</th>
<th>Target</th>
<th>Interaction</th>
<th>Evidence and discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tll</td>
<td>tll</td>
<td>none</td>
<td>Tll is a dedicated repressor (Moran and Jimenez, 2006) so is unlikely to autoactivate, and sustained expression in wild-type (Figure 5—figure Supplement 1) precludes strong autorepression. Indirect activation is a possibility, but one would need to look at a tll allele that still makes transcript to assess whether tll transcription is affected in tll mutants.</td>
</tr>
<tr>
<td>Tll</td>
<td>hkb</td>
<td>none</td>
<td>hkb is transcribed within the Tll domain (Figure 5—figure Supplement 1), therefore Tll does not repress hkb. The hkb expression domain is a similar size in wild-type and tll embryos (Figure 7B), therefore Tll is not required to (indirectly) activate hkb.</td>
</tr>
<tr>
<td>Tll</td>
<td>fkh</td>
<td>(indirect) activation</td>
<td>fkh is transcribed across the Tll domain in wild-type and hkb embryos (Figure 7A; Figure 7—figure Supplement 1A), and the fkh domain is reduced (to the size of the hkb domain) in tll embryos (Figure 7A; Figure 7—figure Supplement 1B). Activation from Tll is presumed to be indirect as Tll is a dedicated repressor (Moran and Jimenez, 2006).</td>
</tr>
<tr>
<td>Tll</td>
<td>wg</td>
<td>none</td>
<td>wg is transcribed within the Tll domain in wild-type embryos (Figure 5B) and in hkb mutants (Figure 7A; Figure 7—figure Supplement 1A), therefore Tll does not repress wg. Tll is necessary for wg expression (wg expression is lost in tll mutants and is posteriorly shifted in hkb mutants, correlating with the altered Tll domain; Figure 7A; Figure 7—figure Supplement 1A), but this activation seems to be indirect (via Fkh) as Tll is a dedicated repressor (Moran and Jimenez, 2006), and the presence of Tll-positive, Hkb-negative territory is not sufficient to activate wg in fkh or cadmz genotypes (Figure 7; Figure 7—figure Supplement 1B).</td>
</tr>
<tr>
<td>Tll</td>
<td>cad</td>
<td>(weak) repression</td>
<td>cad transcription overlaps the graded anterior edge of the Tll domain throughout most of the blastoderm stage in wild-type embryos (Figure 5), indicating that Tll does not strongly repress cad. However, cad is still repressed in (Tll-positive, Fkh-positive) posterior tissue in hkb mutants (Figure 6E-G), suggesting that cad must be repressed by either Tll or Fkh (or both). As cad expression is largely normal in fkh mutants (Figure 7C,D), it seems likely that Tll does indeed repress cad, albeit more weakly than Tll represses other targets such as D and opa. Investigation of cad expression in fkh hkb double mutants would be informative for isolating the role of Tll in cad regulation.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Input</th>
<th>Target</th>
<th>Interaction</th>
<th>Evidence and discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tll</td>
<td>D</td>
<td>repression</td>
<td>The graded posterior border of the D domain is anticorrelated with Tll levels in wild-type embryos, and the D tail domain appears only after tll expression in this region decline (Figure 5A). The D posterior boundary shifts posteriorly in tll mutants, and also in hkb mutants, apparently because the tll domain is reduced (Figure 6C-H). D expression is normal in fkh mutants (Figure 7C,D), indicating that the repressive effect of Tll is not mediated by Fkh. It is currently unclear whether the D tail domain has the same regulatory logic / sensitivity to Tll as does the D trunk domain; investigation of D enhancer regions will be informative.</td>
</tr>
<tr>
<td>Tll</td>
<td>opa</td>
<td>repression</td>
<td>opa is excluded from the Tll domain in wild-type (Figure 5A), and the posteriorly shifting opa boundary (Figure 3B) correlates with the posteriorly shifting dynamics of the Tll domain (Figure 5—figure Supplement 3; Figure 5—figure Supplement 4). The opa boundary is shifted posteriorly in tll mutants, and also in hkb mutants, apparently because the tll domain is reduced (Figure 6C-H). opa expression is normal in fkh mutants (Figure 7C,D), indicating that the repressive effect of Tll is not mediated by Tll.</td>
</tr>
<tr>
<td>Hkb</td>
<td>tll</td>
<td>(indirect)</td>
<td>tll is coexpressed with Hkb (Figure 5—figure Supplement 1), therefore Hkb does not repress tll. The tll domain is reduced in hkb mutants (Figure 6F,H), but as Hkb is a repressor (Goldstein, 1999) and tll expression is affected anterior to the Hkb domain, this hkb dependent activation of tll is presumably indirect. tll expression also persists longer in hkb mutants (Figure 6—figure Supplement 2), but again the Hkb-dependent effect on tll (in this case, late repression) is presumably indirect.</td>
</tr>
<tr>
<td>Hkb</td>
<td>hkb</td>
<td>none</td>
<td>Hkb is a repressor (Goldstein, 1999) so is unlikely to autoactivate. Sustained hkb expression in wild-type embryos (Figure 5—figure Supplement 1) precludes strong autorepression. Indirect activation is a possibility, but one would need to look at a hkb allele that still makes transcript to assess whether hkb transcription is affected in hkb mutants.</td>
</tr>
<tr>
<td>Hkb</td>
<td>fkh</td>
<td>(indirect)</td>
<td>fkh is transcribed across the Hkb domain (Figure 7—figure Supplement 1B), therefore Hkb does not repress fkh. fkh is still expressed within the hkb domain in tll mutants (Figure 7A,B), indicating that Hkb can activate fkh independently of Tll. As Hkb is a repressor (Goldstein, 1999), this activation is presumably indirect.</td>
</tr>
<tr>
<td>Hkb</td>
<td>wg</td>
<td>repression</td>
<td>The wg posterior boundary abuts the Hkb anterior boundary in wild-type embryos (Figure 5B), and wg expression extends to the posterior pole in hkb mutants (Figure 6E,G; Figure 7A,B).</td>
</tr>
<tr>
<td>Hkb</td>
<td>cad</td>
<td>repression</td>
<td>cad is not expressed within the Hkb domain from early stage 5 in wild-type embryos (Figure 5; Figure 5—figure Supplement 2), and clearance of cad expression from the posterior pole is delayed in hkb mutants (Figure 6E; Figure 7A,B). cad remains repressed from the Hkb domain in tll mutants (Figure 6C,D,G; Figure 7A,B), indicating that Hkb represses cad independently of Tll. In addition, cad expression is largely normal in fkh mutants throughout blastoderm stages (Figure 7C,D), suggesting that cad repression is not mediated by Fkh. Examining cad expression in tll fkh double mutants would be helpful to confirm whether Hkb represses cad independently of both Tll and Fkh.</td>
</tr>
<tr>
<td>Hkb</td>
<td>D</td>
<td>repression</td>
<td>D expression is excluded from the Hkb domain in tll mutants (Figure 6D). Examining D expression in tll fkh double mutants would be helpful to confirm whether this repression is independent of Fkh.</td>
</tr>
<tr>
<td>Hkb</td>
<td>opa</td>
<td>repression</td>
<td>opa expression is excluded from the Hkb domain in tll mutants (Figure 6D). Examining opa expression in tll fkh double mutants would be helpful to confirm whether this repression is independent of Fkh.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Input</th>
<th>Target</th>
<th>Interaction</th>
<th>Evidence and discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fkh</td>
<td>tll</td>
<td>none</td>
<td>tll expression precedes Fkh expression in wild-type (Figure 5—figure Supplement 1; Weigel et al., 1989; extended imaging dataset), therefore Fkh is not required to activate tll. Tll and Fkh are co-expressed throughout stage 5 (Figure 7A,B; extended imaging dataset), indicating that Fkh does not repress tll. In addition, although we did not examine tll expression in fkh mutants, tll-dependent patterning of D and opa appears normal in fkh mutants (Figure 7C,D), indicating that tll expression is unlikely to be perturbed. It would be useful to examine tll expression in fkh mutants to confirm this.</td>
</tr>
<tr>
<td>Fkh</td>
<td>hkb</td>
<td>none</td>
<td>hkb expression precedes Fkh expression in wild-type (Figure 5—figure Supplement 1; Weigel et al., 1989; extended imaging dataset), therefore Fkh is not required to activate hkb. Hkb and Fkh are co-expressed throughout stage 5 (Figure 7—figure Supplement 1B; extended imaging dataset), indicating that Fkh does not repress hkb. It would be useful to examine hkb expression in fkh mutants to confirm this.</td>
</tr>
<tr>
<td>Fkh</td>
<td>fkh</td>
<td>none</td>
<td>Sustained Fkh expression in wild-type embryos (Figure 7A; Weigel et al., 1989; extended imaging dataset) suggests autorepression is unlikely. It would be useful to examine fkh expression in fkh mutants to assess whether autoactivation occurs.</td>
</tr>
<tr>
<td>Fkh</td>
<td>wg</td>
<td>activation</td>
<td>wg is only expressed in Fkh-positive, Hkb-negative territory in wild-type embryos (Figure 5B), and wg expression is strongly reduced in fkh mutants (Figure 7C,D; Figure 7—figure Supplement 3; Figure 7—figure Supplement 4) and also cad—mutants (Figure 4A,B; Figure 7A; Figure 4—figure Supplement 3A), which have reduced fkh expression (Figure 7A,B).</td>
</tr>
<tr>
<td>Fkh</td>
<td>cad</td>
<td>undetermined</td>
<td>The posterior cad boundary consistently abuts the anterior fkh boundary, for example in wild-type embryos, tll mutants, and hkb mutants (Figure 7A,B). However, cad expression is largely normal in fkh—mutants throughout stage 5 (Figure 7C,D), with a possible posterior expansion after gastrulation (Figure 7—figure Supplement 3). Because we think that Tll both represses cad and (indirectly) activates fkh, it is unclear whether Fkh indeed has no effect on cad, or alternatively whether Fkh and Tll repress cad redundantly. Misexpression of Fkh in the tail region would be informative.</td>
</tr>
<tr>
<td>Fkh</td>
<td>D</td>
<td>undetermined</td>
<td>Unclear, as Fkh is only ever expressed in territories expressing D repressors Tll or Hkb (Figure 7A,B). Misexpression of Fkh in segmental territories would be informative.</td>
</tr>
<tr>
<td>Fkh</td>
<td>opa</td>
<td>undetermined</td>
<td>Unclear, as Fkh is only ever expressed in territories expressing opa repressors Tll or Hkb (Figure 7A,B). Misexpression of Fkh in segmental territories would be informative.</td>
</tr>
<tr>
<td>Cad</td>
<td>tll</td>
<td>none</td>
<td>The tll domain emerges from Cad-positive territory (Figure 5A), therefore Cad does not repress tll. Tll is expressed normally in cad—mutants (Figure 7A,B), therefore Cad is not required to activate tll.</td>
</tr>
<tr>
<td>Cad</td>
<td>hkb</td>
<td>none</td>
<td>The hkb domain emerges from Cad-positive territory (Figure 2; Figure 5B), therefore Cad does not repress hkb. Hkb is expressed normally in cad—mutants (Figure 7—figure Supplement 1B), therefore Cad is not required to activate hkb.</td>
</tr>
<tr>
<td>Cad</td>
<td>fkh</td>
<td>activation</td>
<td>Fkh expression is strongly reduced in cad—mutants, even though tll and hkb expression is largely normal (Figure 7A,B; Figure 7—figure Supplement 1).</td>
</tr>
<tr>
<td>Cad</td>
<td>wg</td>
<td>none</td>
<td>Although the wg posterior domain is lost in cad—mutants (Figure 4A,B; Figure 4—figure Supplement 3A), this phenotype is likely mediated by the loss of fkh expression in these embryos (Figure 7A,B), because the wg posterior domain is also lost in fkh—mutants (Figure 7C,D; Figure 7—figure Supplement 3; Figure 7—figure Supplement 4) and these have normal cad expression (Figure 7C,D). In addition, wg expression persists posterior to the cad domain throughout germband extension in wild-type, after broad blastoderm Cad expression has decayed (Figure 2).</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Input</th>
<th>Target</th>
<th>Interaction</th>
<th>Evidence and discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cad</td>
<td>cad</td>
<td>none</td>
<td>The persistent expression of cad in the tail in both wild-type embryos and cad<sup>mz</sup> mutants (Figure 4C) is inconsistent with both direct autorepression and direct autoactivation. We interpret the delayed clearance of cad from the trunk in cad<sup>mz</sup> mutants (Figure 4C) as due to the lower levels of D in this genotype (Figure 4C), rather than due to direct autoregulation.</td>
</tr>
<tr>
<td>Cad</td>
<td>D</td>
<td>activation</td>
<td>D expression emerges within Cad-positive territory in both the trunk and the tail in wild-type embryos (Figure 2), indicating that Cad does not repress D. Reduced D levels in the trunk of cad<sup>mz</sup> embryos (Figure 4C), dorsal loss of D tail expression in cad<sup>mz</sup> embryos (Figure 4; Figure 4—figure Supplement 3A), and late loss of D tail expression in cad<sup>mz</sup> embryos (Figure 4—figure Supplement 3B) all indicate that Cad activates D. However, additional activators of D must exist, given that D expression is reduced rather than completely lost in cad<sup>mz</sup> embryos.</td>
</tr>
<tr>
<td>Cad</td>
<td>opa</td>
<td>none</td>
<td>opa is transcribed strongly across the trunk while Cad levels are still high in wild-type embryos (Figure 2; Figure 2—figure Supplement 4), and opa expression later invades the cad tail domain from the anterior (Figure 3B), indicating that Cad does not repress opa. opa is expressed largely normally in cad<sup>mz</sup> mutants (Figure 4A; Figure 4—figure Supplement 2; though note the AP modulation), indicating that Cad is not required to activate opa.</td>
</tr>
<tr>
<td>D</td>
<td>tll</td>
<td>undetermined</td>
<td>There is a subtle anterior shift and expansion of the posterior terminal fate map in D<sup>−</sup> mutants (Figure 4A,B; Figure 4—figure Supplement 2), which can be most easily explained by supposing that D represses tll. Although we did not examine tll expression in D<sup>−</sup> mutants, tll and D are expressed in opposing gradients during stage 4.4 (nuclear cycle 13) in wild-type embryos (Figure 5A), and it seems plausible that mutual repression between tll and D could help to scale the AP pattern. Investigation of tll expression in D<sup>−</sup> mutants and misexpression of D in the posterior of the embryo would both be informative experiments.</td>
</tr>
<tr>
<td>D</td>
<td>hkb</td>
<td>undetermined</td>
<td>Unclear, as domains of D and hkb expression are distinct (Figure 5). Misexpression of D in the posterior of the embryo would be informative.</td>
</tr>
<tr>
<td>D</td>
<td>fkh</td>
<td>undetermined</td>
<td>Unclear, as domains of D and fkh expression are distinct (Figure 2; Figure 7A,B). Although we did not examine fkh expression in D<sup>−</sup> mutants, the wg posterior domain is activated normally in D<sup>−</sup> mutants (Figure 4A,B) suggesting that fkh expression is unlikely to be strongly affected. Misexpression of D in the posterior of the embryo would be informative.</td>
</tr>
<tr>
<td>D</td>
<td>wg</td>
<td>undetermined</td>
<td>Unclear, as domains of D and wg expression are distinct (Figure 2). The wg posterior domain looks essentially normal in D<sup>−</sup> mutants (Figure 4A,B). Misexpression of D in the posterior of the embryo would be informative.</td>
</tr>
<tr>
<td>D</td>
<td>cad</td>
<td>repression</td>
<td>cad expression ceases in the trunk as D levels increase in wild-type embryos (Figure 2; Figure 2—figure Supplement 3; Figure 2—figure Supplement 4), while cad expression persists in some parts of the trunk in D<sup>−</sup> mutants (Figure 4A). The anterior border of the cad tail domain correlates with the earlier position of the posterior border of the D trunk domain in wild-type, hkb<sup>−</sup> mutants, tll<sup>−</sup> mutants, and tll<sup>−</sup> opa<sup>−</sup> mutants (Figure 2; Figure 6; Figure 4—figure Supplement 5; extended imaging dataset).</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>undetermined</td>
<td>We were unable to assess possible autoregulatory effects, as D transcript levels were strongly reduced in the D<sup>−</sup> mutants we examined (Figure 4A), presumably due to nonsense-mediated decay.</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Input</th>
<th>Target</th>
<th>Interaction</th>
<th>Evidence and discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>opa</td>
<td>none</td>
<td>opa expression emerges from D-positive territory in the trunk in wild-type (Figure 2; Figure 2—figure Supplement 3; Figure 2—figure Supplement 4), and opa expression is largely normal in D mutants (Figure 4A; Figure 4—figure Supplement 2), indicating that D neither represses nor activates opa. The opa posterior border is shifted slightly anteriorly in D mutants (Figure 4—figure Supplement 2), but this is likely to be an indirect effect mediated by Tll, or possibly by Cad.</td>
</tr>
<tr>
<td>Opa</td>
<td>tll</td>
<td>undetermined</td>
<td>Unclear, as the domains of opa and tll expression are distinct (Figure 5A). Misexpression of Opa in the posterior of the embryo would be informative.</td>
</tr>
<tr>
<td>Opa</td>
<td>hkb</td>
<td>undetermined</td>
<td>Unclear, as domains of opa and hkb expression are distinct (Figure 5). Misexpression of Opa in the posterior of the embryo would be informative.</td>
</tr>
<tr>
<td>Opa</td>
<td>fkh</td>
<td>undetermined</td>
<td>Unclear, as domains of opa and fkh expression are distinct (Figure 5; Figure 7A,B). Misexpression of Opa in the posterior of the embryo would be informative.</td>
</tr>
<tr>
<td>Opa</td>
<td>wg</td>
<td>undetermined</td>
<td>Unclear, as domains of opa and (posterior) wg expression are distinct (Figure 2). Interestingly, Opa activates the segmental wg stripes in the trunk (Benedyk et al., 1994), but Opa/Zic is a Wnt antagonist in other developmental contexts (Pourbrahir et al., 2011; Fujimi et al., 2012; Murgan et al., 2015). Misexpression of Opa in the posterior of the embryo would be informative.</td>
</tr>
<tr>
<td>Opa</td>
<td>cad</td>
<td>repression</td>
<td>The anterior border of the cad tail domain retracts in wild-type embryos as Opa levels increase (Figure 3B), suggesting that Opa represses cad. Repression of cad by Opa is also suggested by the late repression of the ectopic cad expression present in the trunk of D mutants (Figure 4A; extended imaging dataset), and by the late repression of the cad posterior domain in tll mutants, which overlaps with opa expression (Figure 6C,G; Figure 4—figure Supplement 5).</td>
</tr>
<tr>
<td>Opa</td>
<td>D</td>
<td>repression</td>
<td>In wild-type embryos, D expression in the trunk decreases as Opa levels increase (Figure 2; Figure 2—figure Supplement 4), and the anterior border of the D tail domain lines up with the Opa posterior border (Figure 3A). In opa mutants, D expression in the trunk persists for longer and D expression in the tail is strengthened (Figure 4A,B; Figure 4—figure Supplement 5), indicating that Opa represses D. In addition, a D tail domain does not emerge in tll mutants, which misexpress opa anterior to the Hkb domain (Figure 6C,D,G), but a tail-like D domain does emerge in tll opa double mutants (Figure 4—figure Supplement 5).</td>
</tr>
<tr>
<td>Opa</td>
<td>opa</td>
<td>none</td>
<td>Sustained opa expression in wild-type embryos (Figure 2; Figure 2—figure Supplement 4) and normal expression of opa in opa mutants (Figure 4A; Figure 4—figure Supplement 2; Figure 4—figure Supplement 5) indicate that strong autoregulatory effects are unlikely, at least within our period of interest.</td>
</tr>
</tbody>
</table>
Appendix 4

Model and simulation details
In Figure 8, the *Drosophila* AP axis is modelled as four discrete regions, where region 1 represents the trunk, region 2 represents the tail, region 3 represents the hindgut primordium, and region 4 represents the posterior midgut primordium. Each region receives hard-coded inputs from Tll and Hkb, logical variables that can take the values 0 (no expression), 1 (weak expression), or 2 (strong expression). Region 1 remains free of both Tll and Hkb expression across all four timepoints (0, 0, 0, 0). Region 2 experiences weak, transient Tll expression (1, 1, 0, 0) and no Hkb expression (0, 0, 0, 0). Region 3 experiences rapidly established strong Tll expression (1, 2, 2, 2) and transient weak Hkb expression (1, 1, 0, 0). Region 4 experiences rapidly established strong Tll expression (1, 2, 2, 2) and persistent strong Hkb expression (2, 2, 2, 2).

In addition to Tll and Hkb, each region can express Fkh, Wg, Cad, D, and Opa, logical variables that can take one of either three (0, 1, 2) or two (0, 1) possible values, as defined by their regulatory logic:

\[
\begin{align*}
Fkh &= 1 \text{ if } (Tll + Hkb) > 1 \text{ and } (Cad + Fkh) > 0; \text{ else } Fkh = 0. \\
Wg &= 1 \text{ if } Fkh > 0 \text{ and } Hkb < 2; \text{ else } Wg = 0. \\
Cad &= 1 \text{ if } D < 2 \text{ and } Opa < 2 \text{ and } Hkb < 2 \text{ and } Tll < 2; \text{ else } Cad = 0. \\
D &= 2 \text{ if } Opa < 2 \text{ and } Tll < 1 \text{ and } Hkb < 1 \text{ and } Cad > 0; \text{ else } D = 1 \text{ if } Opa < 2 \text{ and } Tll < 1 \text{ and } Hkb < 1 \text{ and } Cad < 1; \text{ else } D = 0. \\
Opa &= 2 \text{ if } Hkb < 2 \text{ and } Tll < 1 \text{ and } Opa > 0; \text{ else } Opa = \begin{cases} 1 & \text{if } Hkb < 2 \text{ and } Tll < 1 \text{ and } Opa < 1; \\
0 & \text{else } Opa = 0. \end{cases}
\end{align*}
\]

Thus, Fkh is only expressed when combined Tll and Hkb levels are high, and Cad must initially be present for Fkh expression to become established. Wg is expressed when Fkh is present but Hkb levels are low. Cad is on by default but repressed by strong D, strong Opa, strong Tll or strong Hkb. D can be repressed by strong Opa or any amount of Hkb or Tll, and Cad must be present for D to be expressed strongly. Finally, Opa can only be repressed by Tll or strong Hkb, but it must transit through weak expression before it reaches high levels. This last condition represents the observation that Opa protein is synthesised relatively slowly (Figure 2—figure Supplement 4; Clark and Akam, 2016; Soluri et al., 2020).

Each simulation begins at \(r_0\) with Cad ubiquitously expressed, and then proceeds through 3 iterations (1–3) in which the expression of Fkh, Wg, Cad, D, and Opa is synchronously updated based on the current state of the region. \(r_0\) represents stage 4, \(r_1\) represents early stage 5, \(r_2\) represents mid stage 5, and \(r_3\) represents stage 6. Over the course of a simulation, expression dynamics within each region are shaped both by the (potentially dynamic) inputs from Tll and Hkb, and by cross-regulation between the other factors. The limited number of expression updates reflects the rapid development of the *Drosophila* blastoderm, which limits the number of regulatory links (i.e., temporally distinct rounds of protein synthesis or decay) within any particular dynamical causal chain (Nasiadka and Krause, 1999). Mutant genotypes are simulated by keeping the relevant factor(s) turned off for all timepoints.

Genotype-by-genotype explanation of simulation output
This section explains the simulated patterning dynamics of each genotype in terms of their underlying regulatory logic. For the wild-type simulation, all expression changes across timepoints \(r_1 – r_3\) are explained. For the mutant genotypes, only the differences from the wild-type simulation are explained. Appendix 4—Table 1 lists the key properties of the simu-
lated expression patterns in each genotype, and, for each prediction, provides figure cross-references to real embryo data showing the same thing.

Wild-type (Figure 8C): At t1, all three timer genes have begun to be expressed, but they are differentially repressed by the terminal gap genes; D and Opa are more sensitive to Tll and so are repressed everywhere but region 1, while Cad is only repressed in region 4, due to the strong Hkb expression there. Fkh has been activated in regions 3 and 4 due to strong combined Hkb and Tll expression, together with activation from Cad.

At t2, the Cad expression domain has refined from both the anterior and the posterior. In region 1 it has been repressed by D, and in region 3 it has been repressed by the strengthening of Tll expression. Wg has been activated by Fkh in region 3, but remains repressed in region 4 by strong Hkb expression.

At t3, D has been repressed in region 1 by the strong Opa expression that has built up over time. Finally, D and Opa have been de-repressed in region 2, due to the previous clearance of Tll.

fkh (Figure 8D): due to the absence of Fkh, Wg is never activated in region 3.

cad^{m^{-z}} (Figure 8E): due to the absence of Cad, Fkh is never activated in regions 3-4, and Wg in turn is never activated in region 3. D is also expressed less strongly, both in region 1 and in region 2.

D (Figure 8F): due to the absence of D, Cad expression persists longer in region 1, although it is later repressed by Opa.

opa (Figure 8G): due to the absence of Opa, D is not repressed completely in region 1. The residual D expression in region 1 is weaker than in region 2, because only region 2 receives activation from Cad.

tor (Figure 8H, modelled as a hkb tll double mutant): in the absence of Tll and Hkb input, all regions behave exactly like region 1.

hkb (Figure 8I): due to the absence of Hkb, Cad expression persists for longer in region 4 and Wg is de-repressed. There is also a delay in Fkh and (therefore) Wg expression, which does not affect the final expression pattern.

tll (Figure 8J): due to the absence of Tll, the expression of all three timer genes is posteriorly expanded and the size of the Fkh domain is reduced. An assumption of graded early Hkb expression that represses D more anteriorly than Cad and Opa is necessary to explain the transient Cad expression in region 3: Cad is first repressed by D in regions 1 and 2, and only later by Opa in region 3. Because Fkh is not expressed outside the Hkb domain, Wg is never expressed.

tll opa (Figure 8K): patterning resembles the tll mutant through t₂, but diverges at t₃ due to the absence of Opa. Specifically, Cad expression in region 3 is allowed to persist, and D expression is de-repressed in region 3 after the clearance of Hkb. Weak D expression also persists in regions 1 and 2, similar to region 1 in opa mutants.

Modified model for sequential segmentation

In Figure 8—figure Supplement 1, the AP axis of a sequentially segmenting species is modelled as a growing array of “cells” with a Wg signalling centre at the posterior end, as in Clark, 2021. The domain starts at one cell long at t0, then adds a cell each iteration by duplicating the most posterior cell. The range of effective Wg signalling is finite (in this case, 8 cells from the posterior signalling centre), so the zone of Wg signalling moves posteriorly with
Each cell may express Cad, D, and 0pa, which are Boolean variables with the following regulatory logic:

- Cad = 0 if Opa > 0 or (D > 0 and Wg < 1); else Cad = 1.
- D = 0 if Opa > 0; else D = 1.
- Opa = 0 if Cad > 0; else Opa = 1.

Thus, Cad is repressed by Opa and D but can be coexpressed with D in the presence of Wg signalling. D is repressed by Opa, and Opa is repressed by Cad. At each iteration, expression in each cell is updated synchronously, based on the current state of the cell.
Appendix 4—table 1: Cross-references for simulation output and corresponding expression data. For each simulated genotype, the “prediction / observation” column lists noteworthy behaviours of the system that were both predicted by the model and observed in real embryos. The relevant simulation timepoint(s) are listed, along with figure references for the corresponding expression data, and the stages of the embryos / expression traces shown. wt = wild-type; Fig = Figure; SFig = figure Supplement.

<table>
<thead>
<tr>
<th>genotype</th>
<th>t</th>
<th>prediction / observation</th>
<th>corresponding data</th>
<th>stage(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt</td>
<td>t0</td>
<td>cad expressed ubiquitously</td>
<td>Fig 2, SFig 2.2,2.4,5.3</td>
<td>4.4</td>
</tr>
<tr>
<td>wt</td>
<td>t0</td>
<td>Nested domains of tll and hkb already established</td>
<td>SFig 5.1</td>
<td>4.4</td>
</tr>
<tr>
<td>wt</td>
<td>t1</td>
<td>Expression of other factors either absent or just beginning</td>
<td>Fig2</td>
<td>4.4</td>
</tr>
<tr>
<td>wt</td>
<td>t1</td>
<td>fkh expressed where tll (and hkb) expression is strong</td>
<td>Fig 7A,B, SFig 7.1</td>
<td>5.4</td>
</tr>
<tr>
<td>wt</td>
<td>t1</td>
<td>cad clearing from posterior pole</td>
<td>Fig 2, SFig 2.4,5.3</td>
<td>5.2</td>
</tr>
<tr>
<td>wt</td>
<td>t1</td>
<td>D and opa expressed in trunk, complementary to tll</td>
<td>Fig 5A</td>
<td>5.2</td>
</tr>
<tr>
<td>wt</td>
<td>t2</td>
<td>tll domain retracts / narrows over time</td>
<td>Fig 5, SFig 5.3,5.4,5.5</td>
<td>5.2-5.5</td>
</tr>
<tr>
<td>wt</td>
<td>t2</td>
<td>wg expressed in tll-positive, hkb-negative territory</td>
<td>Fig 5B</td>
<td>5.4</td>
</tr>
<tr>
<td>wt</td>
<td>t2</td>
<td>cad clears from trunk and tll domain, expressed in between D/opa to the anterior and tll/wg to the posterior</td>
<td>Fig 2.3A,5</td>
<td>5.4-5.5</td>
</tr>
<tr>
<td>wt</td>
<td>t2</td>
<td>A gap opens up between the tll and D/opa domains</td>
<td>Fig 5A</td>
<td>5.2-5.5</td>
</tr>
<tr>
<td>wt</td>
<td>t2</td>
<td>A gap opens up between the hkb and cad domains</td>
<td>Fig 5B</td>
<td>5.3-5.5</td>
</tr>
<tr>
<td>wt</td>
<td>t2</td>
<td>opa/Opa expression builds up in the trunk over time</td>
<td>Fig 2.3, SFig 2.4,5.3,5.5</td>
<td>5.1-5.6</td>
</tr>
<tr>
<td>wt</td>
<td>t3</td>
<td>D expression clears from the trunk</td>
<td>Fig 2, SFig 2.3,2.4</td>
<td>6</td>
</tr>
<tr>
<td>wt</td>
<td>t3</td>
<td>D expression appears in the tail, coexpressed with cad</td>
<td>Fig 2.3A SFig 2.3,2.4</td>
<td>5-5.6</td>
</tr>
<tr>
<td>wt</td>
<td>t3</td>
<td>New opa expression appears within the tail, overlapping cad</td>
<td>Fig 3B</td>
<td>5.5-6</td>
</tr>
<tr>
<td>fkh</td>
<td>t2</td>
<td>t3</td>
<td>Posterior wg domain absent, patterning otherwise normal</td>
<td>Fig 2.3A,5</td>
</tr>
<tr>
<td>cadm-z-</td>
<td>t1</td>
<td>Early D expression is weaker than wt</td>
<td>Fig 4C</td>
<td>5.2</td>
</tr>
<tr>
<td>cadm-z-</td>
<td>t1</td>
<td>fkh expression severely reduced</td>
<td>Fig 7A,B</td>
<td>5.4</td>
</tr>
<tr>
<td>cadm-z-</td>
<td>t2</td>
<td>Posterior wg domain absent</td>
<td>Fig 4A,B,7A,B, SFig 4.3</td>
<td>5.2-6</td>
</tr>
<tr>
<td>cadm-z-</td>
<td>t3</td>
<td>Tail D expression reduced compared to wt</td>
<td>Fig 4, SFig 4.3</td>
<td>5.4-6</td>
</tr>
<tr>
<td>cadm-z-</td>
<td>t0</td>
<td>t1</td>
<td>t2</td>
<td>t3</td>
</tr>
<tr>
<td>D</td>
<td>t2</td>
<td>cad expression persists longer in the trunk</td>
<td>Fig 4A,B</td>
<td>5.5</td>
</tr>
<tr>
<td>opa</td>
<td>t3</td>
<td>Expression of cad, D, and opa extends to the posterior pole</td>
<td>Fig 4A, SFig 4.5</td>
<td>5.5-6</td>
</tr>
<tr>
<td>tor</td>
<td>t1</td>
<td>Expression of cad, D, and opa extends to the posterior pole</td>
<td>Fig 4A, SFig 4.5</td>
<td>5.5-6</td>
</tr>
<tr>
<td>tor</td>
<td>t2</td>
<td>cad expression clears from the embryo at the normal time</td>
<td>Fig 6B</td>
<td>5.4</td>
</tr>
<tr>
<td>tor</td>
<td>t3</td>
<td>D expression clears from the embryo at the normal time</td>
<td>Fig 6B</td>
<td>5.5</td>
</tr>
<tr>
<td>tor</td>
<td>t2</td>
<td>The posterior wg domain is absent</td>
<td>Fig 6B</td>
<td>5.2-5.5</td>
</tr>
<tr>
<td>hkb</td>
<td>t2</td>
<td>The posterior wg domain extends to the posterior pole</td>
<td>Fig 6E,G,7A,B</td>
<td>5.4-5.5</td>
</tr>
<tr>
<td>hkb</td>
<td>t1</td>
<td>cad expression persists longer in the posterior of the embryo</td>
<td>Fig 6E,G,7A,B</td>
<td>5.4</td>
</tr>
<tr>
<td>tll</td>
<td>t1</td>
<td>The size of the fkh domain is reduced</td>
<td>Fig 7A,B</td>
<td>5.4</td>
</tr>
<tr>
<td>tll</td>
<td>t1</td>
<td>cad, D and opa expression is posteriorly expanded</td>
<td>Fig 6C,D,G SFig 4.5</td>
<td>5.3-6</td>
</tr>
<tr>
<td>tll</td>
<td>t1</td>
<td>cad and opa share a posterior border, D is slightly more anterior</td>
<td>Fig 6C,D, SFig 6.1</td>
<td>5.3-5.5</td>
</tr>
<tr>
<td>tll</td>
<td>t2</td>
<td>A transient cad stripe is expressed anterior to the hkb domain</td>
<td>Fig 6C,D, SFig 4.5</td>
<td>5.3-6</td>
</tr>
<tr>
<td>tll</td>
<td>t3</td>
<td>The cad stripe is repressed and there is no posterior D domain</td>
<td>Fig 6C, SFig 4.5</td>
<td>6</td>
</tr>
<tr>
<td>tll'opa</td>
<td>t3</td>
<td>There is persistent posterior cad expression and a posterior D domain, unlike in tll</td>
<td>SFig 4.5</td>
<td>6</td>
</tr>
</tbody>
</table>
Figure 1—figure supplement 1. A: individual wg, en and DAPI (nuclei) channels from the two-channel and three-channel merges shown in Figure 1A, plus two additional embryos (stage 5.2 and stage 5.4) showing wg and en expression at earlier stages. B: individual slp, eve and DAPI (nuclei) channels from the two-channel and three-channel merges shown in Figure 1B. Embryo orientations as described for Figure 1. Scale bars = 50 μm; grey lines show embryo outlines.

Figure 2—figure supplement 1. Additional single channel images. Individual DAPI (nuclei) and wg channels from the two-channel merges shown in the leftmost column of Figure 2. All embryos are anterior left, dorsal up. Stages 4.3-6 show lateral views, stage 8.2 is a dorsolateral view. Scale bar = 50 μm; grey lines show embryo outlines.

Figure 2—figure supplement 2. Additional early stage embryos. Timer gene expression and DAPI (nuclei) staining in young wild-type embryos; note the weak, patchy D expression at stage 4.2. All embryos are anterior left, dorsal up, lateral view. Scale bar = 50 μm; grey lines show embryo outlines.

Figure 2—figure supplement 3. D antibody staining in embryos from stage 4 to stage 6. As the D antibody gave high background staining in the yolk, the D protein channel shows a mean z-projection of a thin 3D “shell” tracking the embryo surface, which significantly improved the signal:background ratio (see Appendix 2). All embryos are anterior left, dorsal up, lateral view. Scale bar = 50 μm; grey lines show embryo outlines.

Figure 2—figure supplement 4. Expression dynamics of timer gene transcripts and proteins. A-C: quantitative expression traces (0-100% AP axis) from individual embryos of different ages, to convey the spatiotemporal dynamics of timer gene expression within the early embryo. The line colour of a given stage is the same across all plots (see legend at bottom left of figure). All traces in a given plot are from embryos from the same tube, imaged with the same microscope settings in the same imaging session. A: expression traces from a wg/cad/opal/D HCR (see example source embryos in Figure 2). B: expression traces from a wg/cad-Intron/opal/Opa combined HCR and antibody stain (see example source embryos in Figure 3). C: expression traces from a D antibody stain (see example source embryos in Figure 2—figure Supplement 3). D: a rough approximation of timer gene expression dynamics at 50-60% AP axis, using normalised intensity measurements from the traces in A (cad, D and opa transcripts), B (Opa protein), C (D protein), and Figure 2B from Surkova et al., 2008 (Cad protein). Note the transcript/protein time lags for expression peaks and troughs.

Figure 3—figure supplement 1. Single channel images. Individual channels from the two-channel and multi-channel merges shown in Figure 3. All embryos are anterior left, dorsal up, lateral view. Scale bars = 50 μm (embryo posteriors), 20 μm (boxed close-ups); grey lines show embryo outlines.
Figure 4—figure supplement 1. Timer gene expression traces from timer gene mutants, relative to wild-type. A, B: plots showing quantitative expression traces (67.5-97.5% AP axis) from multiple stage 5.5 embryos, individually normalised to the range 0-1. Leftmost column shows traces from wild-type embryos (coloured lines); remaining columns show traces from cad^{m-z}, D⁻ or opa⁻ mutants (coloured lines) overlaid on the same wild-type traces shown in the leftmost column (grey lines). A: traces without any alignment step; locations of borders / domains represent their absolute position along the AP axis. Note the loss of the wg posterior domain in cad^{m-z} mutants, the slight anterior shift and expansion of the fate map in D⁻ mutants, and the stronger D tail domain in opa⁻ mutants. B: all traces have been aligned with each other so that the cad posterior border from each embryo lines up with the others (see Appendix 2). Note the broadened cad domain in D⁻ mutants and the broadened D tail domain in opa⁻ mutants. Note also the slightly increased distance between opa and wg in D⁻ mutants. Source data is the same as Figure 4.

Figure 4—figure supplement 2. Full-length opa expression traces from timer gene mutants. Plots showing quantitative expression traces (0-100% AP axis) from multiple stage 5.5 embryos, individually normalised to the range 0-1. Top left plot shows opa expression in wild-type embryos (orange lines); other plots show opa expression from cad^{m-z}, D⁻ or opa⁻ mutants (orange lines) overlaid on the same wild-type traces shown in the top left plot (grey lines). Note the marked AP modulation of opa expression in the cad^{m-z} mutants, and the anteriorly shifted position of the opa posterior domain in D⁻ mutants. Source data is the same as Figure 4.

Figure 4—figure supplement 3. Additional characterisation of cad^{m-z}, cad^{m-z}+, and cad^{m-z} mutants. A: wg, D and msh expression in wild-type and cad^{m-z} mutants. Transmitted light images of a sagittal section through the dorsal membrane surface (used for embryo staging) are shown at top right; black arrowheads mark the invagination of the plasma membrane. Note the early / ectopic expression of msh in the cad^{m-z} mutants, especially in the posterior of the embryo. B: wg, cad and D expression in wild-type and cad^{m-z} (zygotic) mutants. Note the normal D expression in the cad^{m-z} mutant at stage 6 but the absence of the D tail domain in the cad^{m-z} mutant at stage 8 (white arrowheads). C: wg, cad and D expression in a cad^{m-z} mutant (top) compared to a paternally rescued cad^{m-z} mutant (bottom, note the lacZ expression in the head from the hb-lacZ marked balancer). Note that the D tail domain is rescued in the cad^{m-z} mutant (white arrowheads). The posterior wg expression domain is also partially rescued (white arrows), as is the segmental pattern. cad and D expression resembles the cad^{m-z} mutant. All embryos are anterior left, dorsal up. All embryos except the dorsolateral stage 8 wild-type embryo in B are lateral views. Scale bars = 50 μm (whole embryos), 20 μm (membrane close-ups); grey lines show embryo outlines.

Figure 4—figure supplement 4. Timer gene expression in wg⁻ mutants at stage 6. Left column shows a multi-channel merge; other columns show individual channels. (Note that the wg⁻ embryo pictured is slightly younger than the wild-type embryo and so does not show the same pattern of weak pair-rule cad stripes in the trunk. Older wg⁻ embryos express these stripes as normal.) Both embryos are anterior left, dorsal up, lateral view. Scale bar = 50 μm; grey lines show embryo outlines.
Figure 4—figure supplement 5. Timer gene expression in opa, tll, and tllopa embryos at stage 6. Individual cad, D, and opa channels are shown for each genotype, as well as two-channel merges with wg. Multi-channel merges with and without the DAPI (nuclei) channel are also shown in the left column. White arrowheads point to the D tail domain – note that it is expanded in the opa mutant, absent in the tll mutant, and “rescued” (though posteriorly shifted) in the tllopa mutant. Note also that the cad tail domain is slightly broader than normal at this stage in the opa mutant, weak/fading in the tll mutant, and partially rescued (though again, posteriorly shifted) in the tllopa mutant. All embryos are anterior left, dorsal up, lateral or ventrolateral views. Scale bar = 50 μm; grey lines show embryo outlines.

Figure 4—figure supplement 6. Morphological differences between wild-type and cadmz blastoderms. A: DAPI (nuclei) staining from a wild-type vs a cadmz embryo. The cadmz embryo is bigger and broader in the xy maximum projection, and shows a dimple in the surface in the xz (frontal) and yz (transverse) sections. B: scatter plot showing the AP (x-axis) and DV (y-axis) lengths of the embryo masks for n=78 wild-type embryos and n=73 cadmz embryos; note that the cadmz measurements are on average larger, particularly in DV. C: violin plots comparing the AP length, DV length, and fineness ratio (AP length / DV length) for the embryos in B. The rightmost violin plot compares the thickness in the z-axis (top surface of the embryo to mid-yolk) for a separate set of n=29 wild-type embryos and n=29 cadmz embryos. Horizontal lines on the violin plots mark minimum, mean and maximum values. Measurements were taken from embryos sourced from a variety of different imaging sessions and there should be no systematic differences in mounting technique. The means of all measurements shown in the violin plots are significantly different (two-tailed t-test). AP length: wild-type mean 503.5 μm, cadmz mean 512.3 μm; t = 3.12, p = 0.002. DV length: wild-type mean 217.9 μm, cadmz mean 244.8 μm; t = 9.76, p = 1.0x10^{-17}. Fineness ratio: wild-type mean 2.32, cadmz mean 2.10; t = 8.11, p = 1.7x10^{-13}. Thickness in z: wild-type mean 72.8 μm, cadmz mean 65.0 μm; t = 3.27, p = 0.002. Scale bar = 50 μm.

Figure 5—figure supplement 1. Expression of tll and hkb in wild-type embryos from stage 2 to stage 6. The adjusted (“adj.”) images for the stage 2-4.3 embryos have altered brightness and contrast to better show the early expression of tll and hkb. All embryos are anterior left, dorsal up, lateral view. Scale bar = 50 μm; grey lines show embryo outlines.

Figure 5—figure supplement 2. Single channel images. Individual channels from the two-channel and three-channel merges shown in Figure 5. All embryos are anterior left, dorsal up, lateral view. Scale bar = 50 μm; grey lines show embryo outlines.

Figure 5—figure supplement 3. Expression dynamics of tll and hkb transcripts. A, B: quantitative expression traces (0-100% AP axis) from individual embryos of different ages, to convey the spatiotemporal dynamics of gene expression within the early embryo. All traces in a given plot are from embryos from the same tube imaged with the same microscope settings in the same imaging session. The stage corresponding to each line colour is shown in the legends below the plots (colours are consistent between plots). A: expression traces from a tll CAD/D/OPA HCR (see example source embryos in Figure 5A). Note the posterior retraction of the tll boundary between stages as well as the rise and fall in tll expression levels. B: expression traces from a tll cad wg hkb HCR (see example source embryos in Figure 5B). Note the greater posterior retraction of the tll border compared to hkb, and the more pronounced fall in expression levels over stage 5.
Figure 5—figure supplement 4. Relative expression dynamics of Tll protein and tll transcript. A, B: quantitative expression traces (0-100% AP axis) from individual embryos of different ages, to convey the relative expression (A) or spatiotemporal dynamics (B) of gene expression within the early embryo (an example source embryo is shown in Figure 5—figure Supplement 6A). All traces in a given plot are from embryos from the same tube imaged in the same imaging session with the same microscope settings. Legends for gene products (A) or embryo stages (B) are shown below the plots. A: tll/Tll/eve traces from individual embryos of different ages; note the time lag for Tll protein levels compared to tll transcript, as well as the relative positions of their posterior domain borders at stage 5.4 and stage 5.5. B: the same data as in A, except that plots are grouped by gene product rather than by embryo. Note the different temporal dynamics of Tll protein compared to tll transcript, and the posterior retraction of both posterior domain borders. The eve channel was used for embryo staging; note that the stripes in older embryos are more refined and have shifted anteriorly across the blastoderm.

Figure 5—figure supplement 5. Relative expression dynamics of Hkb, Tll and Opa proteins. A, B: quantitative expression traces (0-100% AP axis) from individual embryos of different ages, to convey the relative expression (A) or spatiotemporal dynamics (B) of Hkb, Tll and Opa protein expression within the early embryo (an example source embryo is shown in Figure 5—figure Supplement 6B). All traces in a given plot are from embryos from the same tube imaged in the same imaging session with the same microscope settings. Legends for gene products (A) or embryo stages (B) are shown below the plots. A: Hkb/Tll/Opa expression from individual embryos of different ages; note the nested domain of Tll and Hkb and the correlation between the Tll and Opa borders. B: the same data as in A, except that plots are grouped by protein rather than by embryo. In all plots, the Opa channel has been linearly unmixed from the Hkb channel to remove bleedthrough signal from Hkb in the poles of the embryo.

Figure 5—figure supplement 6. Examples of source imaging data for supplementary plots. A, B: examples of individual embryos from the imaging datasets used to extract the expression traces shown in Figure 5—figure Supplement 4 (A) and Figure 5—figure Supplement 5 (B). A: Tll antibody/tll HCR/eve HCR. B: Tll/Hkb/Opa antibody stain. Both embryos are anterior left, dorsal up, lateral view. Scale bar = 50 μm; grey lines show embryo outlines.

Figure 6—figure supplement 1. Timer gene expression traces from terminal system mutants, relative to wild-type. A, B: plots showing quantitative expression traces (75-100% AP axis) from multiple stage 5.5 embryos, individually normalised to the range 0-1. Leftmost column shows traces from wild-type embryos (coloured lines); remaining columns show traces from tor-, tll- or hkb- mutants (coloured lines) overlaid on the same wild-type traces shown in the leftmost column (grey lines). A: in tor- mutants, note the loss of spatial patterning. In tll- mutants, note the posterior shifts of the cad, D, and opa posterior boundaries and the loss of the posterior wg domain. In hkb mutants, note the posterior shifts of all boundaries and the extension of the posterior wg domain to the posterior pole. B: note the posterior shift of the tll boundary in hkb- mutants, in addition to the posterior shifts of the cad, D, and opa boundaries also seen in for the hkb- mutants in A. Source data is the same as Figure 6.

Figure 6—figure supplement 2. Expression of tll in wild-type and hkb- embryos from stage 5.5 to stage 7. Note that the posterior domain persists for longer in the hkb- mutants, and ectopic expression appears at the anterior pole. All embryos are anterior left, dorsal up, lateral views. Scale bar = 50 μm; grey lines show embryo outlines.
Figure 7—figure supplement 1. Terminal gene expression traces from cad^{m-z}, tll⁻ and hkb⁻ mutants, relative to wild-type. **A, B:** plots showing quantitative expression traces (75-100% AP axis) from multiple stage 5.4 and stage 5.5 embryos, individually normalised to the range 0-1. Leftmost column shows traces from wild-type embryos (coloured lines); remaining columns show traces from cad^{m-z}, tll⁻ or hkb⁻ mutants (coloured lines) overlaid on the same wild-type traces shown in the leftmost column (grey lines). **A:** in cad^{m-z} mutants, note the severe reduction in fkh levels, the loss of the posterior wg domain, and the persistence of cad expression in the trunk. In tll⁻ mutants, note the reduced size of the fkh domain and the posterior shift of the cad domain. In hkb⁻ mutants, note the reduced sizes of the tll and fkh domains, the posterior shifts of the wg and cad domains, and the total (wg) or partial (cad) derepression of expression in the posterior of the embryo. **B:** a similar combination of genes is shown, with hkb in place of cad. Note that the size of the hkb domain is unaffected in either cad^{m-z} or tll⁻ mutants. The tll⁻ traces in both A and B are taken from a single wg/cad/hkb/fkh stain. Source data is the same as Figure 7.

Figure 7—figure supplement 2. Timer gene expression traces from fkh⁻ mutants, relative to wild-type. Plots showing quantitative expression traces (67.5-97.5% AP axis) from multiple stage 5.5 embryos, individually normalised to the range 0-1. Left column shows traces from wild-type embryos (coloured lines); right column shows traces from fkh⁻ mutants (coloured lines) overlaid on the same wild-type traces shown on the left (grey lines). Note the loss of the wg posterior domain in fkh⁻ mutants. Source data is the same as Figure 7.

Figure 7—figure supplement 3. wg and cad expression in fkh⁻ mutants at stages 6 and 7. Black arrowheads mark the posterior wg domain (severely reduced in fkh⁻ mutants). White arrowheads mark the cad tail domain. In the stage 6 wild-type embryo, note the additional cad domain posteriorly abutting the posterior wg domain (white arrow). This domain (corresponding to presumptive Malpighian tubules and proximal posterior midgut; Harbecke, 1989) is absent in stage 6 fkh⁻ mutants. In fkh⁻ mutants, new cad expression instead appears later, at the posterior edge of the tail domain (white arrow in the stage 7 embryo, pointing at prominent transcriptional foci). MD1 = mitotic domain 1 (used for embryo staging). All embryos are anterior left, dorsal up, lateral or ventrolateral views. Scale bar = 50 μm; grey lines show embryo outlines.

Figure 7—figure supplement 4. Abnormal morphogenesis in cad^{m-z} and fkh⁻ mutants. wg expression and DAPI (nuclei) staining from wild-type, cad^{m-z} mutant and fkh⁻ mutant embryos at stage 6, stage 7 and stage 8. Embryos were staged by the presence of mitotic domain 1 (MD1, stage 7) or mitotic domain 4 (MD4, stage 8). Note the delayed proctodaeal invagination seen in both cad^{m-z} and fkh⁻ mutants relative to wild-type embryos. Note also the epithelial buckling in fkh⁻ mutants (arrowheads at stage 6 and stage 7), reminiscent of folded gastrulation (fog) mutants (Sweeton et al., 1991). Both cad^{m-z} and fkh⁻ mutants also mostly lack the posterior wg domain (arrows). All embryos are anterior left, dorsal up, lateral or dorsolateral views. Scale bar = 50 μm; grey lines show embryo outlines.
Figure 8—figure supplement 1. Simulation of a hypothetical timer gene network for sequential segmentation. **A:** Arrow diagram showing a hypothetical timer gene network for sequential segmentation. Pointed arrowheads represent activation; flat arrowheads represent repression. Solid arrows are interactions taken from the *Drosophila* timer gene network in Figure 8A; dotted arrows are two additional interactions that might be present in sequentially segmenting species. The arrow from Wg to Cad supposes that Wg signalling from a posterior signalling centre activates *cad* expression, even in the presence of D. [Note that both Sox and Zic transcription factors can have different regulatory effects in the presence or absence of Wnt signalling, via molecular interactions with \(\beta\)-catenin and TCF (Pourebrahim et al., 2011; Murgan et al., 2015; Mukherjee et al., 2022)]. The arrow from Cad to Opa completes an “AC-DC circuit” network motif (Panovska-Griffiths et al., 2013; Perez-Carrasco et al., 2018) between the timer genes. **B:** simulation output from a model of the network in A operating in a scenario of posterior Wg signalling and AP axial growth (see Appendix 4). Each plot shows axial expression of the logical variables *Wg, Cad, D,* and *Opa* at a different timepoint in the simulation (t0-t30). The position of the *Wg* signalling centre (dark yellow rectangle) marks the posterior of the elongating AP axis; the spatial extent of *Wg* signalling is also shown (light yellow rectangle). Close to the posterior *Wg* signalling centre, *Cad* is activated by *Wg,* in turn activating *D* and keeping *Opa* repressed. Further away from the signalling centre, repression of *Cad* by *D* kicks in. *Cad* turns off, repression of *Opa* is lifted, and *Opa* in turn represses both *Cad* and *D.* Combined with the axial elongation of the tissue, this scenario produces posteriorly-shifting wavefront dynamics (the transition between *Cad/D* and *Opa* expression moves posteriorly across the axis over time), similar to those found in *Tribolium* (Clark and Peel, 2018).